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Microenvironmental regulation of cancer cell metabolism:
implications for experimental design and translational studies
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ABSTRACT

Cancers have an altered metabolism, and there is interest in
understanding precisely how oncogenic transformation alters
cellular metabolism and how these metabolic alterations can
translate into therapeutic opportunities. Researchers are developing
increasingly powerful experimental techniques to study cellular
metabolism, and these techniques have allowed for the analysis of
cancer cell metabolism, both in tumors and in ex vivo cancer models.
These analyses show that, while factors intrinsic to cancer cells such
as oncogenic mutations, alter cellular metabolism, cell-extrinsic
microenvironmental factors also substantially contribute to the
metabolic phenotype of cancer cells. These findings highlight that
microenvironmental factors within the tumor, such as nutrient
availability, physical properties of the extracellular matrix, and
interactions with stromal cells, can influence the metabolic
phenotype of cancer cells and might ultimately dictate the response
to metabolically targeted therapies. In an effort to better understand
and target cancer metabolism, this Review focuses on the
experimental evidence that microenvironmental factors regulate
tumor metabolism, and on the implications of these findings for
choosing appropriate model systems and experimental approaches.

KEY WORDS: Cancer, Cancer models, Metabolism,
Microenvironment, Nutrient availability, Nutrient sensing

Introduction

In cancer cells, signaling networks downstream of oncogenes and
tumor suppressors affect metabolic pathways (Nagarajan et al.,
2016). This recognition led to renewed interest in studying cancer as
ametabolic disease. Indeed, mutations in genes that activate growth
signaling pathways, such as rat sarcoma viral oncogene (RAS)
(Kimmelman, 2015), phosphoinositide 3-kinase (P/3K; also known
as PIK3CA) (Lien et al., 2016) and MYC proto-oncogene bHLH
transcription factor (MYC) (Stine et al., 2015) have been shown to
affect cellular metabolism. Mutations in tumor suppressors such as
tumor protein p53 (7P53) (Vousden and Ryan, 2009), von Hippel-
Lindau tumor suppressor (VHL) (Eales et al., 2016) and Kelch-like
ECH-associated protein 1 (KEAPI) (Romero et al., 2017; Sayin
et al., 2017) are also associated with altered cellular metabolism.
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Metabolic enzymes themselves can also harbor recurring mutations,
and in select cases this can lead to altered enzyme function that
contributes to cancer pathogenesis (Ye et al, 2018). These
metabolic alterations can be functionally required for tumor
growth (Luengo et al., 2017; Bobrovnikova-Marjon and Hurov,
2014), metastatic spread (Teoh and Lunt, 2018; Lehuede et al.,
2016; Elia et al., 2018) and resistance to therapy (Zhao et al., 2013);
thus, there is increasing interest in understanding and targeting the
metabolic liabilities of cancers.

The development of more sophisticated cellular metabolism
assays has increased our understanding of the functional effects of
oncogenic alterations in metabolic enzyme regulation, activity and
pathway use. Analytically, advances in nuclear magnetic resonance
(NMR) (Markley et al., 2017), mass spectrometry (MS) (Jang et al.,
2018; Kang et al., 2018) (see Glossary, Box 1) and computational
resources allow researchers to detect and quantitate various
metabolites. Coupled with stable isotope tracing (Box 1) and
algorithms to infer metabolic pathway flux (Kang et al., 2018; Jang
etal., 2018; Buescheretal., 2015; Kaushik and DeBerardinis, 2018;
Niedenfuhr et al., 2015; Antoniewicz, 2018; Dai and Locasale,
2017), these tools enable researchers to assess how metabolism is
altered in cancer. Other methods, including genetic or chemical
screens that indirectly study cancer metabolism by perturbing the
function of metabolic pathways, are also becoming increasingly
powerful.

Although these methodological advances now provide
researchers with an unprecedented ability to assess cancer
metabolism, deploying these techniques in the appropriate cancer
model remains important. There are often trade-offs between the
complexity of a given model and its tractability in metabolic
experiments, and not every technique that assays cellular
metabolism provides useful information in every model. Animal
models in which tumors develop in situ, such as in genetically
engineered mouse models of cancer, can recapitulate human cancer
progression in some cases (Day et al., 2015; Gengenbacher et al.,
2017). However, these models are inherently complex, and
dissecting how the multiple cell types within a tumor interact
within the microenvironment and with other tissues in the organism
is a challenge. In contrast, in vitro culture models of cancer are
experimentally tractable, but rely on studying cells in a context that
is different from that of human tumors. In this Review, we discuss
the common methods to study cellular metabolism and their
application to various cancer models. We also highlight the
experimental  findings that inform how the tumor
microenvironment influences cancer cell metabolism, and discuss
the implications of these findings for choosing the appropriate
models to investigate cancer metabolism.

Approaches to assay cellular metabolism
The way cancer cells use metabolism to enable their pathological
phenotypes is a key question that needs to be addressed. The
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Box 1. Glossary

Auxotrophic: in the context of metabolism, auxotrophy refers to the inability of cells to synthesize a particular compound or metabolite and thus auxotrophic
cells require access to that nutrient from extracellular sources.

Entosis: a cellular phenomenon that involves the engulfment and degradation of neighboring cells; a type of cell death.

Exchange flux: a phenomenon that can complicate analysis of stable isotope tracing experiments (see definition below) in which substrate-product
interconversion leads to metabolite labeling regardless of the net direction of the reaction.

Glutaminase (GLS): an enzyme that catalyzes the first step in glutamine catabolism by converting glutamine to glutamate and ammonia. Can localize to the
cytosol or mitochondria.

Macropinocytosis: a nonselective endocytic process by which bulk extracellular materials are internalized into cells.

Mass spectrometry (MS): a method usually coupled to gas chromatography or liquid chromatography and used to assess the chemical composition of
metabolites in a given sample.

Matrix effect: a phenomenon that can complicate analysis of stable metabolites by MS (see definition below) in which compounds in the sample interfere
with the ionization process necessary to detect a particular metabolite by MS. This can result in ionization suppression or enhancement and thus affect the
accuracy of quantitative metabolite measurements. Compounds with high mass or polarity can cause matrix effects.

Microtome: a tool used to thinly slice tissues. Although typically used for producing thin tissue sections for histology, a microtome can be used to cut tumor
slices that can be then cultured in vitro for several days.

Nuclear magnetic resonance spectroscopy (NMR): a method that can be used to assess metabolites in a given sample.

Organoids: a type of cell culturing method by which cancer cells [or other type(s) of cells] are embedded in a 3D matrix, such as collagen or basement
membrane, with or without particular factors to promote growth as a 3D structure. These types of culturing methods better recapitulate the spatial
organization and diversity of cells in tissues and tumors.

Pooled genetic screens: a tool to identify genes that contribute to a particular phenotype. Pooled genetic screens involve using multiple short hairpin RNAs
(shRNAs) or single guide RNAs (sgRNAs) to silence or inhibit the expression of various genes in a target cell population, which may cover most of the
genome, or a subset of genes such as metabolic enzymes. In this method, the genes for shRNAs or sgRNAs are integrated in the cell’'s genome. The
depletion or enrichment for specific sShRNAs or sgRNAs is measured with next generation sequencing techniques. A depleted or enriched shRNA or sgRNA
that targets a particular gene provides information on selection for or against loss of that gene in a particular context.

Spheroids: a type of cell culturing method by which cells are grown in clusters or aggregates, typically without the addition of ECM or special factors to the
culture medium. Spheroid culture can be promoted via a variety of manipulations including culturing cell clusters in low-attachment plates. This culturing
method maintains some aspects of spatial architecture and cell-to-cell contact observed in vivo.

Stable isotope tracing: a method by which cells, tissues or animals are exposed to stable isotope-labeled nutrients, such as '*C-glucose, and the

incorporation of the isotope-labeled atoms into various metabolites is measured using NMR or MS to infer metabolic pathway utilization.

techniques for assaying cellular metabolism and their application to
cancer research have been extensively reviewed elsewhere (Jang
et al., 2018; Kang et al., 2018; Kaushik and DeBerardinis, 2018);
however, we briefly introduce some widely used techniques to
facilitate the discussion on how these approaches can be applied to
cancer models.

Measurement of metabolite levels

One approach to investigate cellular metabolism is to measure the
levels of intracellular metabolites (also referred to as ‘metabolite
pool size’). To quantitatively assess total metabolite levels
across experimental conditions, researchers can use a variety
of chromatography—-MS- or NMR-based analytical platforms.
Depending on the approach, metabolite levels can be measured in a
targeted (for a pre-determined set of metabolites) or untargeted
manner, with a trade-off between the scope of detected metabolites
and assay sensitivity (Jang et al,, 2018; Kang et al., 2018).
Furthermore, depending on the experimental set up, researchers can
assess the relative or absolute levels of individual metabolites, with
absolute quantitation requiring the use of purified standards (Jang
et al., 2018; Kang et al., 2018). Relative quantitation is easier to
accomplish and is thus most often used, particularly for untargeted
metabolomics. However, an important consideration for relative
metabolite quantification is that the absolute levels of the metabolites
in the assayed sample will affect the interpretation of the relative
change measured. That is, metabolites present at very low
concentrations in the sample can exhibit large relative pool size
changes in an experiment, despite these changes occurring over a
concentration range that might be too low to have biological meaning.
New approaches that help interpret the biological meaning of
metabolite pool size changes, including metabolite activity screening
and integration with other data such as transcriptional changes, have

been developed and are reviewed elsewhere (Guijas et al., 2018; Jha
et al., 2015; Forsberg et al., 2018). Conversely, when measuring
absolute metabolite levels, the overall composition of the material
being measured can give rise to matrix effects (Box 1) that can affect
the apparent metabolite concentrations. This is particularly true in
complex biological samples, where levels of some metabolites, such
as phospholipids, either enhance or suppress the ionization of the
metabolite of interest, leading to errors in quantitation (Trufelli et al.,
2011). Analytical strategies, such as using isotopically labeled
internal standards or changing how samples are prepared to include
protein precipitation and/or phospholipid removal, have been
developed to minimize the impact of matrix effects on metabolite
quantitation (Bylda et al., 2014). Because metabolite pool sizes can
be assessed across a variety of experimental samples — including
cells, tissues, plasma and other biological fluids — metabolite level
measurements have been increasingly applied to cancer research,
regardless of how the metabolites themselves are measured.

Interpreting the biological meaning of metabolite level
differences across conditions can be challenging, because
measurements of metabolite pool sizes are static by nature. The
observed differences in metabolite pool size between conditions
could be caused by (1) changes in metabolite transport, (2) changes
in metabolite production or (3) changes in metabolite consumption,
and researchers need to conduct further experiments to understand
why metabolite levels have altered (Chokkathukalam et al., 2014).
Combining an assessment of metabolite pool size changes with
metabolic enzyme expression changes can help provide mechanistic
insight, and platforms such as XCMS Online (Forsberg et al., 2018)
have been developed to assist with analysis. This multiomic
approach has been utilized to infer why metabolite levels change in
some contexts, including differentiation of macrophages into
functionally discreet subsets (Jha et al., 2015).
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Extracellular flux measurements

Another method to assay cellular metabolism is to measure the
consumption and release of nutrients, also referred to as the
extracellular flux of nutrients. Extracellular flux analysis was used
in the pioneering studies that determined the glycolytic nature of
cancer, by measuring changes in glucose and lactate levels between
the afferent and efferent circulation of a tumor (Cori and Cori,
1925). Currently, this analysis is more often performed in cultured
cells, owing to the relative ease in sampling culture media over the
course of an experiment. During an extracellular flux measurement,
medium composition changes are evaluated over time, and
consumption and production rates for various extracellular
metabolites are calculated. This approach assesses which
metabolites are net consumed or produced; however, this method
does not assess how the metabolites are utilized. This caveat is
important, as it has long been assumed that highly consumed
nutrients such as glutamine and glucose are major contributors to
cell mass in proliferating cells. In fact, much of the carbon from
these molecules is excreted into the media of cultured cells,
demonstrating that glutamine and glucose are less significant
contributors to cell mass (Hosios et al., 2016). Despite these
limitations, this technique has been successfully used to identify
metabolic pathways important for cancer. For example, a
comparison of extracellular fluxes with cellular proliferation rates
using the National Cancer Institute panel of 60 human cancer cell
lines (NCI-60) identified serine—glycine—one-carbon metabolism as
a critical node for proliferating cancer cells (Jain et al., 2012).
Additionally, extracellular flux measurements can be used along
with stable isotope tracing (described below) to infer estimates of
some intracellular fluxes (Antoniewicz, 2018; Niedenfuhr et al.,
2015; Dai and Locasale, 2017). Thus, extracellular flux
measurements can suggest hypotheses about metabolic alterations
in cancer and can also complement other metabolic assays.

Metabolite tracing using stable isotopes

Radioactive isotopic tracers (such as '“C or *H) or stable isotope
tracers (such as '3C or 'N) have long been used to study
metabolism in microorganisms and the metabolic alterations
associated with diabetes. These techniques allow for dynamic
assessment of cellular metabolism outside of the static snapshot
provided by the analysis of metabolite pool sizes. The various uses
of isotopic tracers have been reviewed extensively elsewhere
(Buescher et al., 2015; Kaushik and DeBerardinis, 2018; Jang
etal., 2018; Kang et al., 2018; Antoniewicz, 2018; Niedenfuhret al.,
2015; Dai and Locasale, 2017). For stable isotope tracing, the model
system is exposed to labeled substrates and the incorporation of
these substrates into downstream molecules is measured to infer
metabolic pathway usage. In this approach, the metabolic fluxes are
not directly measured; however, some fluxes can be inferred based
on characteristic isotopic label incorporation into specific
metabolites (Buescher et al., 2015). Researchers can then estimate
the absolute flux through metabolic pathways by combining isotope
tracing with information from extracellular flux measurements and
computational modeling (Antoniewicz, 2018; Niedenfuhr et al.,
2015; Dai and Locasale, 2017). Thus, isotope tracing provides
insight into the dynamic flux of nutrients through the metabolic
network of cells, but requires the selection of an appropriate
metabolic tracer and downstream analysis.

Genetic or chemical interventions to study cellular metabolism
Indirect information about metabolic pathway use in cancer can be
obtained from genetic approaches. In these assays, RNA

interference (RNAi) or CRISPR-based pooled genetic screens
(Box 1) interrogate the relevance of a given metabolic pathway for a
cellular phenotype. RNAi-based genetic screening has identified
the importance of mitochondrial oxidative phosphorylation (Birsoy
et al., 2014) and one-carbon metabolism (Minton et al., 2018) for
cancer cell growth under limiting glucose conditions, and the
importance of dihydropyrimidine production for epithelial-
to-mesenchymal transition (EMT) of cancer cells (Shaul et al.,
2014). More recently, CRISPR-based genetic screening approaches
have identified glutamic-oxaloacetic transaminase 1 (GOTI) as
an essential gene for cancer cell proliferation under limiting
mitochondrial electron transport chain function (Birsoy et al.,
2015). CRISPR-based gene disruption has also been used to
determine the functional consequences of simultaneously
perturbing multiple metabolic enzymes including those involved
in oxidative phosphorylation and the pentose phosphate pathway
(Zhao et al., 2018).

In addition to genetic-based screening approaches, small
molecule inhibitors, when available, can also be used to assess
the functional requirements for a metabolic enzyme. A renewed
interest in metabolism has sparked the development of metabolic
enzyme inhibitors, and these inhibitors have been used to identify
the molecular signatures of cancer cells that rely on specific
metabolic pathways for proliferation. For example, pancreatic ductal
adenocarcinoma cell lines were stratified based on their intracellular
metabolite levels and subsequently treated with inhibitors based on
this metabolic categorization. This process allowed for
identification of cell lines that differentially respond to various
metabolic inhibitors (Daemen et al., 2015). Furthermore, this
approach has also been utilized in non-small cell lung cancer cell
lines, which were found to have enhanced sensitivity to glutaminase
(Box 1) inhibition if undergoing EMT (Ulanet et al., 2014).
Mesenchymal cancer cell lines, as well those selected to be in a
therapy-resistant state, have also been found to rely on redox and
glutathione metabolism for survival (Viswanathan et al., 2017;
Hangauer et al., 2017). The development of novel metabolic
enzyme inhibitors has also led to new insights, suggesting that
cancer cells in culture can adapt to metabolic pathway disruption via
the use of alternative pathways (Pusapati et al., 2016; Boudreau
et al., 2016; Biancur et al., 2017).

Functional metabolic studies using genomic or pharmacological
interventions can be highly informative; however, extrapolating
these results to understand how metabolism functions in a cell can
still be challenging. For example, GOT1 essentiality induced by
mitochondrial dysfunction does not indicate the directionality of
flux through GOT1, or why the cell requires this enzyme, which is
involved in multiple cell processes. Nevertheless, functional
screening approaches hold promise for defining the metabolic
requirements of cancer cells.

What are current mammalian model systems and how can we
test cellular metabolism in these systems?

Assays of cellular metabolism are only one facet of what
researchers need to study cancer metabolism. These assays must
be deployed in appropriate disease model systems to gain insight
into how metabolism is altered in cancer. Cancer models range
from traditional monocultures to mouse cancer models to humans,
and this section discusses how metabolic assays can be utilized in
these systems. We highlight a key trade-off: with increasing
complexity and physiological relevance of the model system,
deriving insight from metabolism assays becomes more
challenging (Fig. 1).
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Two-dimensional (2D) monocultures

Experiments using monocultures are fast, cost-sensitive, highly
tractable and allow for the highest levels of stringency for
experimental conditions (Fig. 1). Owing to easy access to both
cells and extracellular media, all of the metabolic assays described
above are feasible in 2D monocultures. Furthermore, the cost and
scalability of monoculture allow for study of genetically diverse cell
lines simultaneously (DeNicola et al., 2016; Jain et al., 2012;
Timmerman et al., 2013; Kim et al., 2017; Sayin et al., 2017; Gross
et al.,, 2014), for small molecule metabolic inhibitor screening
(Daemen et al., 2015; Viswanathan et al., 2017; McMillan et al.,
2018) and for the use of many labeled nutrient tracers (Jang et al.,
2018). Scalability also enables pooled genetic screens, which
require high representation of RNAi hairpins or CRISPR guide
RNAs (Shalem et al., 2015). However, these model systems lack the
cellular diversity observed in tumors, utilize media conditions that
do not accurately mimic the conditions found in tumors, and the
physical substrate upon which the cells grow is artificial. Thus,
the metabolic phenotypes identified in culture can be different from

the metabolism of cancers in situ (Fig. 1). Nevertheless, extensive
insight has been gained from these models.

Three-dimensional (3D) cultures

To better represent the physical environment of tumors, researchers
can culture cancer cells in a matrix that allows 3D growth either as
organoids or spheroids (Box 1). In this method, researchers seed
cells in an extracellular matrix (ECM) for organoid cultures or grow
cells as floating spheres (spheroids) in suspension. The resulting
cells differ morphologically and physiologically from cells grown in
monolayers (Breslin and O’Driscoll, 2013; Edmondson et al., 2014;
Drost and Clevers, 2018). These culturing methods influence the
spatial organization of cell surface receptors and induce physical
constraints on cells, which cause changes in gene expression and
cellular behavior (Edmondson et al., 2014). Organoid cultures can
also incorporate more than one cell type (Ohlund et al., 2017). In
some cases, 3D culture models have been able to better predict
tumor drug responses in vivo (Vlachogiannis et al., 2018; Lee et al.,
2018); however, 3D cultures still lack the cell and matrix diversity
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« Nutrients levels are physiological

« Physiological interactions with
distant tissues

Pitfalls Pitfalls
« No cellular heterogeneity
« Absence of microenvironmental .
physical factors such as ECM
« Supplied nutrients not
physiological .
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Fig. 1. Advantages and disadvantages of cancer model systems to study metabolism. Cancer models vary in complexity from 2D monolayer cultures to in
vivo systems. The most experimentally tractable cancer models are amenable to many different approaches to study metabolism, but fail to replicate the
complex conditions found in a tumor. On the other hand, more physiologically complex cancer model systems, such as mouse models, are less tractable and
complicate the interpretation of many metabolic assays. Models such as ex vivo cultures of cancer cells in 3D models like organoids or spheroids, or ex vivo
cultures of tumor slices, lay on this continuum between tractability and physiological relevance. Each of these models presents with its own set of advantages and
pitfalls that researchers need to consider when designing cancer metabolism experiments. ECM, extracellular matrix.
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found within the tumor microenvironment. They also rely on media
conditions that might not represent nutrient levels experienced by
cells in tumors. With respect to modeling metabolism, it is not clear
whether 3D models of cancer better predict the metabolism of
cancer cells in tumors than do 2D monocultures, as evidence is
currently lacking. In addition, although 3D cultures provide easy
access to media and cells, allowing for extracellular flux, pool size
and isotope tracing analyses, these models are less scalable than
classical monocultures, which limits their use in small molecule or
genetic screening experiments. Nevertheless, 3D models are still
tractable to study the metabolism of cancer cells in a more relevant
physical environment (discussed in the ‘Which tumor
microenvironmental factors alter cancer metabolism?” section).

Tissue slice cultures

Cultured microtome (Box 1) slices of tissues and tumors have been
used as a model of cancer that maintains cell diversity and tissue
architecture. In fact, prior to the advent of monolayer cell culture,
tumor slices were commonly used to study cellular metabolism
(Warburg et al., 1927). In this model system, tissues are thinly sliced
and placed in culture dishes. The thin slices allow oxygen and
nutrients from the medium to reach the innermost layers of the
tissue, while minimizing the proportion of damaged cells (Elliott,
1955). Because slice cultures allow access to media, extracellular
flux measurements are possible, in addition to measuring pool sizes
and tracing nutrient fate in the slice itself (Sellers et al., 2015; Fan
et al., 2016). These models maintain the cellular heterogeneity
observed in tumors and some aspects of the physical
microenvironment, but it is important to note that the media used
in tissue slice culture might not be representative of the nutrient
microenvironment found in tumors in vivo. Furthermore, tissue
slices are not genetically tractable and contain a heterogeneous
mixture of metabolically active cells that contribute to metabolite
level measurements. Despite their technical drawbacks, however,
slice models provide a model to study how other cells and the
physical microenvironment of tumors regulate cancer metabolism
(discussed in the “Which tumor microenvironmental factors alter
cancer metabolism?’ section).

Mouse models of cancer

Animal models for studying cancer range from genetically
engineered mouse models, allograft models and xenograft models
derived from human tumors (Day et al., 2015; Gengenbacher et al.,
2017). These in vivo models might better represent the physiological
complexity and heterogeneity of cells observed in human cancers,
and also allow interactions between the tumor and normal host
tissues. However, when using mouse models to study metabolism,
factors such as diet, strain, sex, age, husbandry and environmental
stressors can affect metabolism and should thus be considered
(Alquier and Poitout, 2018). Unfortunately, because the metabolism
of the tumor is intertwined with the metabolism of the host animal,
the ability to interpret many metabolic assays is limited. Intratumor
metabolite levels can be measured, but as with culture slices, the
observed changes in metabolite pool size are an average of the
changes that occur across all the cells in the tissue, including
noncancer cells (Reznik et al., 2018). Extracellular flux analysis of
tumors is also challenging, as afferent and efferent blood vessels in
rodent cancer models are not always accessible. It is possible to use
stable isotope tracers via bolus injection(s) or continuous infusion of
labeled nutrients into the circulation of tumor-bearing animals or
patients (Sellers et al., 2015; Yuneva et al., 2012; Davidson et al.,
2016; Hensley et al., 2016). However, interpretation of such

labeling is complicated, as noncancer cells and tissues can rapidly
consume some nutrients, and this can transfer the isotopic label
from the supplied nutrient to intermediate metabolites that then
supply the label indirectly to the cancer cells. Additionally, as with
pool size measurements, both cancer and stromal cells contribute to
labeling patterns in tumors. Lastly, functional assays of tumor
metabolism are limited, as many inhibitors of metabolic enzymes
cannot be used in animals owing to issues with bioavailability or
toxicity, and functional genomics approaches are limited due to
difficulty in maintaining RNAi or CRISPR library representation in
tumor models (Doench, 2018; Gargiulo et al., 2014).

Thus, any model system utilized to study cancer metabolism has
caveats that will affect the interpretation of the results (Fig. 1).
Therefore, researchers must choose the system and metabolic assay
that will appropriately address their specific experimental questions.
Below, we discuss some recent experiments that assess the
physiological relevance of metabolism in culture model systems
in comparison to tumors in vivo.

Do cancer cells adopt different metabolic behavior in
different model systems?

While tissue culture models allow for tractable experiments to
assess cellular metabolism, an important consideration is whether
these model systems accurately model the disease in question
(Wolpaw and Dang, 2018; Horvath et al., 2016). Thus, although
some metabolic phenotypes of tumors, such as avid glucose uptake
and lactate secretion, are maintained in culture models, several lines
of evidence indicate that the microenvironment in which cancer
cells grow can significantly affect cancer cell metabolism.

Biochemical evidence suggesting that the environment alters
metabolism

Direct biochemical examination of central carbon metabolism using
stable isotope-labeled nutrient tracers suggests that the tricarboxylic
acid (TCA) cycle substrates can be utilized differently between
tumors and 2D cultured cells. For example, in 2D culture models of
lung cancer, glutamine is a primary carbon substrate for the TCA
cycle, rendering glutaminase-mediated glutamine catabolism
essential in most 2D culture settings (Davidson et al., 2016; Muir
et al., 2017). In contrast, glutamine tracing experiments in lung
tumors in vivo suggest only a minor contribution of glutamine to the
TCA cycle (Davidson et al., 2016; Muir et al., 2017). Instead, lung
tumors might favor using glucose for TCA cycle anaplerosis
(Davidson et al., 2016; Sellers et al., 2015), and lung tumors are
consequently sensitive to pyruvate carboxylase loss, an enzyme that
allows glucose carbon to be used for TCA cycle anaplerosis (Fig. 2).
Similarly, glioblastoma cells in culture depend on glutamine
catabolism for TCA cycle anaplerosis and cell proliferation (Wise
and Thompson, 2010; Tardito et al., 2015); however, tracing
experiments in animals suggest that glioblastoma tumors utilize
other TCA cycle substrates and can even net produce glutamine,
arguing that these tumors are glutamine autonomous (Tardito et al.,
2015; Marin-Valencia et al., 2012). These results suggest that
tumors in vivo can show distinct nutrient labeling patterns that are
different from what researchers observe in 2D culture models.

Genetic experiments supporting the notion that microenvironment
alters metabolism

Genetic experiments suggest that cancer cells have differential
requirements for specific metabolic enzymes when cultured in vitro
versus in vivo. Interestingly, genetic perturbations of some
metabolic pathways can cause profound phenotypes in vivo, yet
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Fig. 2. The cancer model system chosen can affect metabolic phenotypes. When the same cells are studied in different cancer model systems, the main
carbon source that feeds the TCA cycle changes. Forexample, when cancer cells are implanted to form tumors in mice, an increase in the contribution of glucose-
derived carbon to the TCA cycle, together with a reduced contribution of glutamine carbon, is observed, even though the same cells predominantly rely on
glutamine in less physiological in vitro culture systems. a-KG, alpha-ketoglutarate; OAA, oxaloacetate; TCA, tricarboxylic acid.

cause relatively minor phenotypes in culture and vice versa.
Recycling metabolism such as autophagy or acetate recapture are
striking examples of this phenomenon. Specifically, depletion of
autophagy related 5 (47G5) or autophagy related 7 (ATG7) (loss of
autophagy), or acyl-CoA synthetase short chain family member 2
(ACSS?2) (acetate recapture loss) is well tolerated by most cells in
culture, but can dramatically decrease tumor growth in vivo
(Amaravadi et al., 2016; Comerford et al., 2014; Schug et al.,
2015). Furthermore, genetic screening experiments suggest
extensive differences in metabolic pathway requirements between
2D culture models and tumors in vivo. RNAi and CRISPR screens
to identify essential metabolic enzymes have been performed in
both cell culture and in xenograft tumor models, and there was little
concordance in the essential enzymes these screens identified (Yau
et al., 2017; Alvarez et al., 2017; Possemato et al., 2011). While
differences in oxygenation between in vivo tumors and culture
models might drive some of these differences in metabolic pathway
essentiality (Alvarez et al., 2017), it is likely that additional factors
including the ECM, extracellular fluid and cell types present within
the tumor microenvironment contribute to this differential
metabolic pathway essentiality as detailed in the following section.

Pharmacological evidence suggesting that the microenvironment
alters cancer metabolism

Drugs targeting metabolic pathways also have different effects on
cells in culture and in tumors. As discussed above, most cultured
cells depend on glutamine catabolism, whereas many tumors
formed from the same cells do not (Fig. 2). In line with these
observations, CB-839, a drug targeting glutaminase, inhibits the
proliferation of many cells in culture, but is less efficacious when
the same cells are implanted to form tumors in animals (Davidson

etal., 2016; Muir et al., 2017; Biancur et al., 2017). Similarly, drugs
targeting mechanistic target of rapamycin (mTOR), a protein
involved in nutrient sensing and metabolism regulation, are
antiproliferative for many cancer cell lines, but have limited
efficacy in treating mouse cancer models or patients (Palm et al.,
2015). Drugs can also have antiproliferative effects against tumors
that are not observed in culture models. For example, the
antidiabetic drug metformin slows tumor proliferation (Morales
and Morris, 2015), but supraphysiological doses (above those that
can be achieved in tumors in vivo) are required to have
antiproliferative activity in culture models (Gui et al., 2016).

Collectively, these studies argue that the tumor
microenvironment alters cellular metabolism in a way that
influences therapeutic response. This leads to a conundrum for
researchers studying cancer metabolism. The most physiologically
relevant models of cancer limit the experimental capacity to study
metabolism, but experimentally tractable models do not accurately
model all metabolic aspects of the disease (Fig. 1). Thus,
understanding why culture models fail to recapitulate tumor
metabolism will help researchers understand how the environment
regulates cancer cell metabolism. In addition, identifying the
environmental factors that regulate cancer cell metabolism could
allow development of new culture models that are more predictive of
the metabolic behavior of the tumor.

Which tumor microenvironmental factors alter cancer
metabolism?

As discussed above, the microenvironment in which cancer cells
grow can significantly affect their metabolism. Here, we discuss the
recent progress that has identified how some environmental factors
can alter cancer cell metabolism.
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Nutrient levels alter cancer cell metabolism

Cells sense environmental nutrient levels via multiple nutrient-
sensing mechanisms and adjust their metabolism accordingly (Palm
and Thompson, 2017; Torrence and Manning, 2018; Efeyan et al.,
2015), providing a basis for why the nonphysiological nutrient
levels in standard culture media alter cancer cell metabolism. For
example, oxygen is an important nutrient for cells, and low oxygen
levels in tumors affect metabolism (Eales et al., 2016). Indeed,
genetic screens suggest that differences in oxygen tension between
tumors and standard culture models drive many different metabolic
requirements of cancer cells (Alvarez et al., 2017; Keenan et al.,
2015). Other nutrients have also been shown to regulate cancer
metabolism. For example, high pyruvate levels found in cultured
media blunt the antiproliferative effects of metformin, and culturing
cells in media without pyruvate allows metformin to inhibit cell
proliferation at concentrations that can be attained in vivo (Gui et al.,
2016). Mechanistically, pyruvate allows cells to proliferate in the
absence of a functional electron transport chain. Therefore, pyruvate
alters redox metabolism and indirectly affects dependence on the
electron transport chain, explaining why electron transport
inhibitors like metformin (Wheaton et al, 2014) are less
efficacious when pyruvate is available. Differences in pyruvate
availability between organs in vivo can also affect cancer cell
metabolism. Higher pyruvate availability in the lung
microenvironment has been described as a factor that rewires
breast cancer lung metastases to utilize pyruvate via the enzyme
pyruvate carboxylase as a source of TCA cycle carbon (Christen
etal., 2016). Thus, levels of pyruvate can be an important factor that
regulates cancer cell metabolism.

The amino acid cystine is another example of how differences in
nutrient levels between culture models and tumors alter cancer cell
metabolism (Muir et al., 2017). High levels of cystine in standard
culture media promote glutamine catabolism by increasing
glutamate export through the cystine-glutamate antiporter solute
carrier family 7 member 11 (SLC7A411). High glutamate export
causes an increased reliance on glutamine catabolism in cultured
cells. Thus, cystine indirectly affects glutamine catabolism via
transport of glutamate, an intermediate in glutamine catabolism.
Therefore, glutaminase inhibition has a greater antiproliferative
effect in vitro, where cystine is abundant. Importantly, these
examples illustrate that nutrient levels within the microenvironment
alter metabolism in ways that might be distinct from the metabolic
pathways in which these nutrients directly participate.

Alternative nutrients present in the tumor microenvironment impact
cancer cell metabolism

Although human plasma is estimated to contain ~4600 circulating
metabolites (Psychogios et al., 2011), only a small fraction of these
are represented in standard culture media. Much of our
understanding of cancer metabolism is limited to how cells
engage with the limited set of substrates provided in standard
media; however, the remaining ‘unexplored’ metabolites might also
impact cellular metabolism. Recently, the metabolite itaconate,
which can be produced by macrophages from TCA cycle
intermediates (Strelko et al., 2011; Michelucci et al., 2013), was
found to rewire metabolism by inhibiting succinate dehydrogenase
(Lampropoulou et al., 2016) and inactivating vitamin B;, (Shen
et al., 2017) in various immune cell types. Thus, in tumors, where
itaconate can potentially accumulate owing to immune infiltration,
itaconate levels can alter tumor metabolism. Additionally, itaconate
affects cellular antioxidant metabolic programs via the activation of
the transcription factor nuclear factor, erythroid 2 like 2 (NRF2; also

known as NFEZ2L2), again potentially altering cancer cell
metabolism (Bambouskova et al., 2018; Mills et al., 2018). In
another example, growing leukemia cells in a culture medium
containing nutrient levels found in the circulation, including many
that are absent from standard culture media formulations, resulted in
alterations in pyrimidine metabolism and in the response to 5-
fluorouracil, a pyrimidine analog used as chemotherapy for several
solid cancers (Cantor et al., 2017). Mechanistically, this effect was
traced to the presence of uric acid, a nucleotide breakdown product
present in human circulation that inhibits pyrimidine biosynthesis.
Sulfur amino acid metabolism is also affected by metabolites that
are not included in standard culture media. Circulating glutathione
can be used by gamma-glutamyl transpeptidase (GGT)-positive
tumors as a source of cysteine (Hanigan, 2014). In fact, GGT is a
commonly elevated enzyme in tumors (Hanigan et al., 1999);
however, the fact that glutathione is not included in standard culture
media eliminates this potential source of sulfur amino acids for thiol
metabolism when cells are studied in vitro.

Cancer cells in tumors are also exposed to metabolites that have
traditionally been considered tumor metabolic ‘waste’ products,
such as lactate (a glycolysis by-product) and ammonia (an amino
acid catabolism by-product). Lactate and ammonia have long been
considered to be metabolic waste products of tumors, as pioneering
tumor metabolism studies found that nearly all tumors net secrete
lactate (Cori and Cori, 1925; Warburg et al., 1927; Kallinowski
et al., 1988; Gullino et al., 1967) and ammonia (Sauer et al., 1982).
In these experiments, researchers measured metabolite levels in
afferent arterial blood (entering the tumor) and in efferent venous
blood (exiting the tumor). Lactate and ammonia levels were higher
in the venous blood, indicating that nearly all tumors studied net
produce and secrete these metabolites. As a result, there has
generally been little interest in how cancer cells could utilize these
metabolites. Recently, however, several groups have found that
infusion of stable isotope-labeled lactate into tumor-bearing animals
or human patients leads to substantial labeling of TCA cycle
intermediates (Faubert et al., 2017; Hui et al., 2017), leading to the
conclusion that tumors consume lactate as a carbon source.
Similarly, tumor-bearing mice injected with isotopically labeled
ammonia incorporate labeled nitrogen into tumor amino acids
(Spinelli et al., 2017), thus leading to the conclusion that tumors can
utilize ammonia. However, many metabolic reactions are rapidly
reversible, allowing for cells to incorporate the isotopic label from a
given metabolite even under conditions in which a metabolite is net
secreted, a phenomenon termed exchange flux (Box 1) (Buescher
etal., 2015; A. M. Hosios, Defining the contributors to mammalian
cell mass, PhD thesis, Massachusetts Institute of Technology,
2017). For example, exchange between pyruvate and lactate occurs
rapidly (Quek et al., 2016). Although these studies have argued that
net consumption of lactate and ammonia can occur in some tumors
(Faubert et al., 2017; Spinelli et al., 2017; Hui et al., 2017),
experiments to measure tumor consumption or production of lactate
and ammonia will provide insight into which subset of tumors
consume or secrete these metabolites. Additionally, it is possible
that a subpopulation of cancer cells within a tumor utilizes ‘waste’
metabolites generated from other parts of the tumor leading to
intratumoral symbiosis. This has been proposed in the case of lactate
(Doherty and Cleveland, 2013). Dissecting how subpopulations of
cancer cells in tumors share metabolites will be informative in
understanding tumor metabolism.

Beyond metabolites, macromolecules such as the ECM and
circulating proteins are also present in the tumor microenvironment,
but are not included in cell culture media, or present only at low

7

(%]
S
oA
c
©
<
O
o)
=
3
A
0}
g,
o
=
o)
(%]
©
Q
oA
(@]



REVIEW

Disease Models & Mechanisms (2018) 11, dmm035758. doi:10.1242/dmm.035758

levels. In some cases, cancer cells in vivo can consume and utilize
these macromolecules as metabolic substrates. For example,
pancreatic tumors acquire amino acids from circulating proteins
via macropinocytosis (Box 1) (Davidson et al., 2017). Circulating
proteins are not the only alternative nutrient source, as cancer cells
have also been shown to acquire amino acids from the surrounding
ECM proteins (Olivares et al., 2017; Muranen et al., 2017). Protein
availability in the microenvironment can also influence which
nutrient sources a cell uses to grow. Cells cultured in media
with limiting amino acids can proliferate when supplied with
physiological levels of the protein albumin, a condition that might
better reflect the tumor microenvironment (Palm et al., 2015).

mTOR inactivation strongly inhibits cell proliferation in standard
culture models. Surprisingly, when grown under low amino acid/
high protein conditions, cells become resistant to mTOR inhibition.
In fact, cells in low amino acid/high protein conditions grew better
without mTOR activity, as mTOR inhibition either via Torin 1
treatment or via Raptor (also known as Rptor) depletion increased
the autophagic flux required to process albumin (Palm et al., 2015).
This result was recapitulated in mouse pancreatic cancer models, in
which tumors paradoxically grew better upon mTOR inhibition.
Thus, macromolecules such as proteins in the microenvironment
might serve as alternative nutrient sources to support the metabolic
pathways required for growth.

Stromal cells can affect cancer metabolism

The cellular heterogeneity observed in tumors suggests that
cancer cells exist in a metabolic community within the tumor
microenvironment (Morandi et al.,, 2016; Lyssiotis and
Kimmelman, 2017) that is not modeled in traditional cell cultures.
One way in which stromal and cancer cells interact is via
competition for limited nutrients. For example, cancer cells and
infiltrating leukocytes both avidly consume glucose, which can
become a limiting nutrient in the tumor microenvironment (Buck
et al., 2017). Thus, cancer cells outcompete T-cells for glucose
uptake, leading to decreased immune surveillance within the tumor
(Ho et al., 2015; Chang et al., 2015). Cancer cells, by virtue of their
high metabolic rate, not only compete with stromal cells for
nutrients, but also condition the tumor microenvironment. For
example, glucose-avid cancer cells not only compete with stromal
cells for access to glucose, but also alter the tumor
microenvironment by secreting lactate (Brand et al., 2016).
Lactate in the microenvironment can, in turn, affect the behavior
of stromal cells, such as infiltrating lymphocytes and macrophages,
and can contribute to immunosuppression in tumors (Brand et al.,
2016; Colegio et al., 2014).

Different cell populations within tumors can also engage in
communal cell-cell nutrient sharing. Proper assessment of intercell
nutrient sharing with current biochemical and metabolic tracing
approaches is challenging, as these methods are unable to resolve
net nutrient transfer versus exchange flux. Future studies that
address nutrient sharing in co-cultures using chemical engineering-
based analytical methods, such as performing metabolic flux
analysis on co-cultures with appropriate tracers to infer metabolic
phenotypes, or modeling techniques, such as using cell-type
specific reporter proteins to assess cell-type specific labeling data,
could help to unravel intercell nutrient sharing (Gebreselassie and
Antoniewicz, 2015; Ghosh et al., 2014; Rossi et al., 2017; Ruhl
et al., 2011; Shaikh et al., 2008). Thus, although the complex
metabolic interactions between stromal and cancer cells have largely
been unstudied, some insight has been gained into understanding
cancer-stromal nutrient sharing in limited cases in which cancer

cells are auxotrophic (Box 1) for a given nutrient and obtain that
nutrient from other sources. For example, leukemia cells have
limited ability to take up environmentally available cystine for
cysteine metabolism, and therefore must rely on other
environmental sources of cysteine, which are typically not
supplied in standard culture media (Zhang et al., 2012). Under
these conditions, leukemia cells rely on stromal cells to take up
cystine and secrete reduced cysteine or glutathione, which can then
be used as a source of cysteine. Thus, the presence of stromal cells
alters cysteine and glutathione metabolism in cancer cells, which
can, in turn, alter the sensitivity of these cells to chemotherapy.
Specifically, glutathione can contribute to chemotherapeutic
resistance, and thus stromal supply of cystine promotes leukemia
survival upon drug treatment (Zhang et al., 2012). It is important to
note that multiple cell types can interact in complex ways. For
example, ovarian cancer cells similarly engage in commensal
cystine metabolism with stromal fibroblasts, but tumor-infiltrating
T-cells can compete for the stromal supply of cysteine (Wang et al.,
2016).

Glutamine is another nutrient that is reported to be shared
between stroma and cancer cells. Both glioblastoma and ovarian
cancer cells in culture behave as glutamine auxotrophs, relying on
an external supply of this nonessential amino acid (Yang et al.,
2016; Wise and Thompson, 2010; Tardito et al., 2015). However,
these tumors can synthesize their own glutamine and, in the case of
glioblastoma, are reported to even net produce glutamine (Tardito
et al., 2015; Marin-Valencia et al., 2012). Fibroblasts in ovarian
cancer (Yang et al., 2016) and astrocytes in glioblastoma (Tardito
et al., 2015) have subsequently been shown to locally produce
glutamine from other substrates and supply tumor cells with this
amino acid. Thus, stromal cells can supply nutrients to otherwise
auxotrophic cancer cells, altering their metabolism and response to
chemotherapy. However, the full extent to which cancer cells in
tumors share their metabolism with neighboring cells will require
development of new techniques to probe these intercellular fluxes.

Beyond nutrient sharing, stromal cells in the microenvironment
can themselves serve as alternative sources of nutrients. For
example, exosomes shed by fibroblasts contain metabolites that
can sustain nutrient-starved cancer cells (Zhao et al., 2016). Stromal
fibroblasts can also undergo autophagy to supply nutrients to cancer
cells (Sousa et al., 2016). Stromal cells can even become nutrition
for other cells via a process termed entosis (Box 1), which has been
found to supply macrophages and cancer cells with nutrients in
nutrient-deprived conditions (Hamann et al., 2017; Krajcovic et al.,
2013).

Physiochemical aspects of tumors can impact cancer metabolism
The tumor microenvironment also displays chemical and physical
properties that are distinct from normal tissues and the circulation.
Outside of animal models, cancer models commonly miss these
aspects, which can play an important role in regulating cellular
metabolism. For example, although it has long been appreciated that
tumors are more acidic than the circulation (Tannock and Rotin,
1989), recent work suggests that environmental acidity profoundly
affects metabolic gene expression (Chen et al., 2008), and leads to
large changes in amino acid, fatty acid and antioxidant metabolism
in cells (Lamonte et al., 2013; Corbet and Feron, 2017; Corbet et al.,
2016). Additionally, large-scale genetic experiments in acidic
media suggest different metabolic gene requirements in acidic
conditions compared with standard culture media (Keenan et al.,
2015). Thus, the chemical properties of the tumor environment
affect cancer cell metabolism.
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It is also increasingly apparent that the physical properties of the
ECM within the tumor alter cancer cell metabolism (Tung et al.,
2015; DelNero et al., 2018). Although it is unclear how the ECM
modulates tumor metabolism, recent data suggest that the physical
substrate upon which cancer cells grow contributes to differences in
cancer cell metabolic phenotypes. Compared with cells growing as
monolayers on stiff plastic, detached cells alter their glutamine
(Jiang et al., 2016) and redox (Schafer et al., 2009) metabolism. In
another example, breast cancer cells cultured in spheroid models
show a dependence on proline catabolism that is not observed in
standard 2D culture (Elia et al., 2017). These experiments argue
that attachment to a physical substrate can affect metabolism.
Furthermore, analysis of vascular cell metabolism on matrices of
different stiffnesses suggests that matrix stiffness suppresses
oxidative phosphorylation while activating glutamine catabolism
(Bertero et al., 2016). Thus, additional studies are needed to
elucidate how the physical properties of the tumor influence cellular
metabolism and the extent to which the ECM explains differences in
metabolism between tumors and cultured cancer cells.

Conclusions and future directions

As discussed in this article, various components of the tumor
microenvironment affect the metabolic behavior of cancer cells, and
thus noncell-autonomous factors play a major role in dictating
cellular metabolism. Importantly, this affects cancer cell response to
some therapies, including those that target metabolism (Zhang et al.,
2012; Muiretal., 2017; Palm etal., 2015; Cantor et al., 2017). Thus,
it is important to consider these factors when studying cancer
metabolism, which might not always be modeled in traditional cell
culture. Animal cancer models provide an alternative, but have
limited experimental tractability to probe metabolism. We suggest
that these issues could be addressed by developing new techniques
to better study cancer cell metabolism in vivo, and by better
characterizing the tumor microenvironment to design new ex vivo
models of cancer that better represent the tumor microenvironment
and remain experimentally tractable.

Towards the first goal, emerging technologies such as imaging
MS will allow spatial examination of metabolite levels in tumors
(Aichler and Walch, 2015; Spengler, 2015), and could begin to
resolve metabolite differences between stromal and cancer cells in
tumors. New theoretical and computational tools to measure
intercell metabolite sharing between different cell types using
stable isotope tracing (Gebreselassie and Antoniewicz, 2015; Ghosh
etal., 2014; Rossi et al., 2017; Ruhl et al., 2011; Shaikh et al., 2008)
might also facilitate the study of metabolic commensalism in
tumors. New developments in CRISPR-based genetic screening
approaches could make the functional screening of metabolic
pathway requirements possible in mouse cancer models (Michlits
et al,, 2017; Chow and Chen, 2018; Schmierer et al., 2017).
Furthermore, revisiting old techniques with new analytical
technologies could also provide new insight into tumor
metabolism. For example, extracellular fluxes of many
metabolites could be quantitated in tumors by using new
analytical platforms coupled with existing techniques to isolate
tumor afferent and efferent blood.

Toward the second goal, a better understanding of how
microenvironmental variables influence tumor metabolism is
needed. There is increasing knowledge of which cell populations
are present in a tumor (Lee et al., 2017; Heindl et al., 2015; Yuan,
2016; Carmona-Fontaine et al., 2017) and the physical matrix in
which these cells reside (Naba et al., 2017; Pearce et al., 2018).
However, less is known about the soluble environment of tumors,

such as the nutrients that are present in the extracellular compartment
within tumors. Combining old techniques with new analytical
capabilities could again prove useful. Methods for harvesting the
interstitial fluid from tissue and tumors have long existed (Wiig and
Swartz, 2012). Combining these methods with new MS-based
techniques to measure metabolite levels will provide new insight
into the ‘nutritional microenvironment’ of tumors. New tumor-on-a-
chip microfluidic devices (Sleeboom et al., 2018) will also make
incorporating newly emerging microenvironmental information
into ex vivo cancer models possible. We anticipate that this will
provide new insight into the metabolism of cancer and stromal
cells in tumors, and the microenvironmental variables that
constrain metabolism. This information will ultimately provide
insight into the metabolic processes that should be targeted for
cancer therapy and the contexts in which the therapies will be most
efficacious.

This article is part of a special subject collection ‘Cancer metabolism: models,
mechanisms and targets’, which was launched in a dedicated issue guest edited by
Almut Schulze and Mariia Yuneva. See related articles in this collection at http:/
dmm.biologists.org/collection/cancermetabolism.
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