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SUMMARY

Tumor ecosystems are composed of multiple cell
types that communicate by ligand-receptor interac-
tions. Targeting ligand-receptor interactions (for
instance, with immune checkpoint inhibitors) can
provide significant benefits for patients. However,
our knowledge of which interactions occur in a tumor
and how these interactions affect outcome is
still limited. We present an approach to charac-
terize communication by ligand-receptor interac-
tions across all cell types in a microenvironment
using single-cell RNA sequencing. We apply this
approach to identify and compare the ligand-recep-
tor interactions present in six syngeneic mouse tu-
mormodels. To identify interactions potentially asso-
ciated with outcome, we regress interactions against
phenotypic measurements of tumor growth rate. In
addition, we quantify ligand-receptor interactions
between T cell subsets and their relation to immune
infiltration using a publicly available human mela-
noma dataset. Overall, this approach provides a
tool for studying cell-cell interactions, their variability
across tumors, and their relationship to outcome.
INTRODUCTION

The tumor microenvironment is composed of many cell types,

including malignant, stromal, and immune cells. This cellular

complexity of tumors is further increased by the heterogeneity

of each cell type, such as different clones of tumor cells or

the various subsets of immune cells (Jiménez-Sánchez et al.,

2017; McGranahan and Swanton, 2017). These various cell

types all communicate via ligand-receptor interactions, where

the ligand can either be secreted and bind to the receptor in sol-

uble form or bemembrane-bound and require physical proximity

of the two interacting cell types (Ramilowski et al., 2015).

Furthermore, communication between these different cell types

is implicated in mechanisms for tumorigenesis, tumor progres-
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sion, therapy resistance, immune infiltration, and inflammation

(Hanahan and Weinberg, 2011).

Given the importance of ligand-receptor interactions on pa-

tient outcome, therapeutics that target cell-cell interactions

have become a useful tool in clinical practice. For example, the

immune checkpoint inhibitor ipilimumab targets the CD28 or

CTLA4 interaction, and both pembrolizumab and nivolumab

target the PD1 or PDL1 interaction (Pardoll, 2012). Despite the

clear success of these therapeutics in several tumor types, the

response rates are limited. For instance, only about 20%–25%

of patients respond to immuno-oncology drugs (Dempke et al.,

2017; Schumacher et al., 2015). This limited response rate is

likely because of the complex network of cell-cell interactions

present in a tumor microenvironment, our knowledge of which

is still incomplete (Sarkar et al., 2016). To better stratify patients

for existing therapies as well as to discover interactions that

could be targeted, there is a need to more fully understand the

spectrum of cell-cell interactions occurring in tumor microenvi-

ronments and how these interactions affect outcome.

Single-cell RNA sequencing (scRNA-seq) approaches are

increasingly being used to characterize both the abundance

and functional state of tumor-associated cell types and have

provided unprecedented detail of the heterogeneity of the

cellular composition (Lavin et al., 2017; Tirosh et al., 2016; Zheng

et al., 2017). However, beyond characterizing the cellular

composition of a tumor, it is crucial to understand how the

different cellular components interact with one another to give

rise to emergent tumor behavior. Although examples of using

both bulk and single-cell sequencing data to examine cell-cell

communication exist (Camp et al., 2017; Choi et al., 2015; Costa

et al., 2018; Puram et al., 2017; Skelly et al., 2018; Zhou et al.,

2017), techniques for connecting these features to biological

outcomes of interest and understanding how these interactions

quantitatively relate to specific phenotypic outcomes of interest

are still limited.

Here we developed an approach to characterize cell-cell

communication mediated by ligand-receptor interactions across

all cell types in a microenvironment using scRNA-seq data. After

assigning cell types based on the scRNA-seq data using a deci-

sion tree classifier, our approach quantifies potential ligand-re-

ceptor interactions between all pairs of cell types based on their

gene expression profiles. We demonstrated how this approach
thor(s).
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Figure 1. T-SNE Visualization of Single-Cell

Sequencing Data and Cell Type Classification

(A) The percentage of cells positive for a variety of

immune cell markers as measured by either scRNA-

seq (x axis) or flow cytometry (y axis) is consistent

across tumor models.

(B and C) t-distributed scholastic neighbor embed-

ding (t-SNE) plots of cells from six syngeneic

tumor models show distinct clusters predominantly

determined by cell type.

(B) Cells are colored by the tumor model from which

the cell originated.

(C) Cells are colored by the cell type label assigned

at the end of the classification procedure.

(D) Percentages of cell types vary across the

different tumormodels. To reflect the actual cell type

abundances, only data from samples not enriched

for CD45 are shown.

See also Figures S1 and S2.
can assess similarities and differences in cell-cell communica-

tion between six syngeneic mouse tumor models. We then

extended our approach to quantify ligand-receptor interactions

in human metastatic melanoma samples. Importantly, we exam-

ined the association of individual cell-cell interactions with path-

ophysiological characteristics of the tumor microenvironment.

This work advances conceptual and methodological ap-

proaches for gaining insights from single-cell studies of the tu-

mor microenvironment and has applications for discovering

effective therapeutic targets and biomarkers for stratification of

patient treatment.

RESULTS

scRNA-seq of Syngeneic Mouse Tumor Models
Syngeneic mouse tumor models are frequently used to investi-

gate novel immune-oncology therapeutics (Sanmamed et al.,

2016). However, the different models are still incompletely un-

derstood with respect to ligand-receptor interactions. We

performed scRNA-seq on tumors from six treatment-naive syn-

geneic mouse tumor models (B16-F10 melanoma, EMT6 breast

mammary carcinoma, LL2 Lewis lung carcinoma, CT26 colon

carcinoma, MC-38 colon carcinoma, and Sa1N fibrosarcoma;

two samples per tumor model). Because some models are

poorly infiltrated by immune cells, we additionally enriched for
Cell Repo
CD45-positive cells. Notably, measured

cell frequencies were well correlated

(coefficient of determination [R2] = 0.73,

p = 5.6 3 10�7) between sorted and un-

sorted populations, with major differences

only noticeable in the B16-F10 model,

which is poorly infiltrated by immune cells

(Figure S1A; Comparison of scRNA-Seq

and Flow Cytometry). In total, we obtained

mRNAmeasurements of more than 10,000

single cells across all models (557 for B16-

F10 cells, 4,479 from CT26 cells, 780 from

EMT6 cells, 1,677 from LL2 cells, 1,310
fromMC-38 cells, and 1,670 fromSa1N cells). The average num-

ber of reads per cell was approximately 72,000, and a median of

approximately 2,500 genes was detected per cell (scRNA-seq

Data Processing; Table S1).

To check that our scRNA-seq measurements reflect protein

abundances, we stained the single-cell suspensions from

the same tumors in parallel with antibodies and analyzed ex-

pression of protein marker genes by flow cytometry (Figure 1A;

Table S2). Comparison of the frequencies of single cells positive

for cell surface markers between the scRNA-seq data and

flow cytometry results showed significant correlation between

markers measured using the two approaches (R2 = 0.74,

p = 2.3 3 10�28). In addition, we evaluated the similarity of fre-

quencies of five immune cell populations, each defined by two

or three markers, and again found significant correlation be-

tween scRNA-seq and flow cytometry data (R2 = 0.48,

p = 3.4 3 10�3; Table S2; Figure S1B). Together, these data

indicated that scRNA-seq measurements recapitulate both cell

type abundances and marker expression measured by flow

cytometry.

To aid with visualization of the mouse syngeneic scRNA-seq

data, we used t-distributed stochastic neighbor embedding

(t-SNE), a non-linear dimensionality reduction technique, to

embed the data for all six syngeneic tumor models (Van Der

Maaten and Hinton, 2008; Figure 1B).
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Classification of Cell Types Based on scRNA-SeqData of
Syngeneic Mouse Tumor Models
To begin identifying cell type specific cell-cell communication,

we first identified the cell type of each single cell. Because of lim-

itations in scRNA-seq technology, such as mRNA capture

efficiency, the collected data contained undetected genes (Ko-

lodziejczyk et al., 2015). This phenomenon is collectively called

‘‘zero dropout’’ and makes identification of cell types based on

individual marker genes infeasible for all cells in the dataset.

We therefore refined a previously published supervised classifi-

cation approach for assigning cell types (Schelker et al., 2017).

We first manually defined a list of cell types for which to search

in the dataset and then specified marker genes that define

each cell type (Table S3; Determining Gene Markers for Synge-

neic Tumor Models). To assign individual cells as positive or

negative for each marker gene, we fit Gaussian mixture models

to the expression values of each marker gene and then assigned

each cell in the dataset to one of the mixture components. We

tested Gaussian mixture models containing one through five

components to allow for the possibility of multi-modal gene

expression (Fitting Gaussian Mixture Models to Determine

Marker Expression). However, in all cases except one (Rpl29),

mixture models containing two components best fit the gene

expression profile using the Bayesian information criteria (BIC)

as a metric for model selection (Figure S2C).

After we labeled cells as positive or negative for each marker

gene, we then created a training dataset of high-confidence cells

that matched the specified marker gene profiles for a single cell

type. In this manner, we identified tumor cells from the different

syngeneic models (171 B16-F10 cells, 3,345 CT26 cells, 433

EMT6 cells, 472 LL2 cells, 780 MC-38 cells, and 23 Sa1N cells)

as well as immune and stromal cells (13 B cells, 62 cancer-asso-

ciated fibroblasts [CAFs], 21 endothelial cells, 495 macro-

phages, 23 natural killer [NK] cells, 142 T cells, and 55 dendritic

cells [DCs]). The training data contained roughly two-thirds

(6,035 of 9,232) of all cells and contained cells from all syngeneic

models (220 fromB16-F10 cells, 3,497 fromCT26 cells, 491 from

EMT6 cells, 512 from LL2 cells, 867 from MC-38 cells, and 448

from Sa1N cells). This training dataset was conservative in the

sense that cells affected by zero dropout were excluded. We

then used this ‘‘high-confidence’’ dataset to train a supervised

decision tree classifier that used the full gene expression data

for predicting the cell type of all remaining cells (Figure 1C). To

prevent overfitting, we used only the 500 most variable genes

in the dataset and then performed principal-component analysis

to further reduce the dimensionality of our input data. We kept

only the number of principal components that explained 95%

of the gene expression variance as input features to the classifier

(Training the Decision Tree Classifier). In this way, the classifica-

tion became more robust to zero dropout data and noisy data.

We verified the accuracy of our classifier using 5-fold cross-vali-

dation on the training dataset (Figures S2D and S2E).

Using the trained classifier, we then predicted cell type labels

for all cells present in the dataset. We also computed the prob-

abilities of each assigned label and only retained cells with a

cell type label assigned with more than 95% probability. On

average, about 6% of cells for each model were not assigned

a cell type with more than 95% probability. These unassigned
1460 Cell Reports 25, 1458–1468, November 6, 2018
cells may be doublets or belong to a cell type not specified by

the original set of markers. In line with observations of human

scRNA-seq data (Puram et al., 2017; Tirosh et al., 2016), the sin-

gle cells from murine syngeneic models clustered by model for

the malignant cells and by cell type for the non-malignant cells

(Figures 1A and 1B), with the exception of macrophages. Given

that macrophages exhibit plasticity dependent on tissue context

(Biswas andMantovani, 2010), it is possible that the clustering of

macrophages by tumor model is due to the distinct microenvi-

ronments of each tumor (Figure S1C). Furthermore, the macro-

phages also appeared to separate according to mouse strain

(Figure S1D).

The frequencies of the identified cell populations in non-CD45-

enriched samples varied among models, illustrating the well-

known variability of immune infiltration to different tumors

(Figures 1D). Within the immune population, macrophages

were the most abundant immune cell type across all models, ac-

counting for 80%–95% of immune cells. All tumors models

showed T cell infiltration, with T cells representing approximately

2%–12% of immune cells depending on the tumor model. The

percentage of NK cells varied from less than 1% of immune cells

in the B16-F10 and Sa1Nmodels to approximately 5% in the LL2

model. B cells were detected in four of the six tumorsmodels and

represented 1%–2% of the total immune cells. Finally, DCs were

the rarest immune cell population and were detected primarily in

the Sa1N tumor model.

Scoring Cell-Cell Interactions Using Known
Ligand-Receptor Interactions
Having defined cell types, we then quantified potential cell-cell

interactions between all cell types present in the tumor microen-

vironment. We used a reference list of approximately 1,800

known, literature-supported interactions containing receptor-

ligand interactions from the chemokine, cytokine, receptor tyro-

sine kinase (RTK), and tumor necrosis factor (TNF) families and

extracellular matrix (ECM)-integrin interactions (Ramilowski

et al., 2015). In addition, we manually added known B7 family

member interactions (Southan et al., 2016) because of their rele-

vance to cancer immunology.

To identify potential cell-cell interactions that are conserved

across the six syngeneic tumormodels, we screened each tumor

model for cases where both members of a given ligand-receptor

interaction are expressed by cell types present within the tumor

microenvironment (Figure 2). We scored interactions by calcu-

lating the product of average receptor expression and average

ligand expression in the respective cell types under examination

(Calculating Ligand-Receptor Interaction Scores). We used the

average expression of each cell type to prevent false negatives

because of zero dropout. After computing scores for each tumor,

we averaged the interaction score across the tumor models to

identify conserved interactions (Figure 2). Given the number of

cell-cell interactions we screened (approximately 1,500 ligand-

receptor pairs after converting to mouse homologs [Human to

Mouse Homolog Conversion] and 64 pairwise combinations of

cell types), we also assessed the statistical significance of

each interaction score using a one-sided Wilcoxon rank-sum

test and performed Benjamini-Hochberg multiple hypothesis

correction. Although we computed interactions for all identified
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Figure 2. Quantification of Cell-Cell Interactions Occurring in the Tumor Microenvironment

Heatmaps show selected interaction scores calculated as the product of the average ligand expression of the first cell type and average receptor expression of

the second cell type. Cell type labels are written as (cell type expressing the ligand)� (cell type expressing the receptor). Black dots indicate interactions that are

significantly present across all tumor (one-sided Wilcoxon rank-sum test and Benjamini Hochberg false discovery rate [FDR] < 0.33).

(legend continued on next page)
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cell types, we chose to highlight interactions where either CAFs

or macrophages secrete the ligand because these cell types

were the predominant source of many ligands. In addition, we

examined all interactions involving tumor cells.

Many of the highest-scoring interactions were part of the che-

mokine family. The chemokine interactions detected often

involved the same receptors, including Ccr1, Ccr2, Ccr5, and

their shared ligands, including Ccl2, Ccl4, and Ccl12. Although

chemokine ligands were predominantly expressed by macro-

phages, chemokine and cytokine receptors were expressed

broadly by T cells, B cells, macrophages, and NK cells. In addi-

tion to chemokines, we observed many interactions related to

the extracellular matrix. CAFs secreted numerous ECM compo-

nents, including collagens (e.g., Col1a1 and Col1a2) and fibro-

nectin (Fn1), that bind to adhesion receptors such as integrin

receptors (e.g., Itgb1 and Itga5) and CD44, which were

expressed broadly across all cells. We also observed secretion

of metallopeptidases (MMPs), tissue inhibitors of metalloprotei-

nases (TIMPs), and a disintegrin and metalloproteinases

(ADAMs), which are all involved in modulating the extracellular

environment of tumors.

The observation that many of the highest-scoring interactions

involved common ligands and receptors suggested that inter-

actions scored highly by our metric may be driven predomi-

nantly by expression of one component of a ligand-receptor

interaction. We therefore examined cell type-specific receptor

and ligand expression for all interactions (Figures S3A–S3C).

We first calculated pairwise correlations between ligand

expression, receptor expression, and interaction scores (Fig-

ure S3D) for all ligand-receptor interactions. Neither ligand

expression nor receptor expression was strongly correlated

with the interaction score (median correlations, 0.26 and

0.35, respectively). Furthermore, examining the relationship be-

tween ligand expression, receptor expression, and interaction

score (Figure S3E) showed that, in general, strong interaction

scores occurred only when both the ligand and receptor were

expressed.

Associating Cell-Cell Interaction Scores with
Phenotypes of Interest
We next wanted to address how interaction scores may be used

to gain predictive insights into relevant biological phenotypes of

interest (e.g., outcomes such as tumor growth or anti-tumor im-

mune response). In the absence of a treatment condition, we

used the tumor growth rate for each tumormodel as a phenotype

of interest (Figures 3A and 3B; Table S4). We then computed

Spearman correlations between the interaction scores across

all six tumor models with the tumor growth rate (Figure 3C).

Because we focused on tumor growth rate, we only displayed in-

teractions involving tumor cells, although interactions between

non-tumor cells are also expected to be relevant.

We observed many ECM-related interactions positively corre-

lated with tumor growth. Interactions where both CAFs and
(A) Interactions where CAFs secrete the ligand (only interactions with a score gre

(B) Interactions where macrophages secreted the ligand (only interactions with a

(C) Interactions involving tumor cells (only interactions with a score greater than

See also Figure S3.
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endothelial cells expressed collagens that bind to either Cd93

or integrin receptors on tumor cells were positively correlated

with tumor growth rate. Furthermore, additional adhesion-

related interactions, such as the expression of intercellular adhe-

sion molecules (ICAMs) binding to integrins were also positively

correlated with tumor growth rate. Expression of the Adam12

and Adam15 proteases also correlated with tumor growth,

although these proteases appeared to have opposing effects.

Although interactions between Adam12 and its integrin sub-

strates were negatively correlated with tumor growth rate, inter-

actions involving Adam15 and Integrin beta 3 (Itgb3) were

positively correlated with tumor growth rate.

We also observed numerous chemokine and cytokine inter-

actions correlated with tumor growth rate. The expression of

Ccl11 by tumor cells that interacts with either Ccr5 or Cxcr3

receptors expressed on both macrophages and tumors cells

was positively correlated with tumor growth rate. In addition,

the interactions of interleukin 1 alpha (Il1a) expressed by

CAFs with its cognate receptors IL1r1, IL1r2, and IL1rap ex-

pressed on tumor cells were all negatively correlated with tu-

mor growth rate.

Numerous interactions involving RTKs, which did not show up

among the most strongly occurring interactions (Figure 2), were

correlated with tumor growth rate. The autocrine interaction

involving tumor cells that both secrete epidermal growth factor

(EGF) and express Erbb3 receptors was positively correlated

with tumor growth. In addition, interactions between CAFs

secreting platelet-derived growth factor (PDGF) (Pdgfc and

Pdgfd) and vascular endothelial growth factor (VEGF) (Vegfa

and Vegfc) ligands that bind to both PDGF (Pdgfrb) and VEGF

(Kdr/Vegfrr2) receptors on tumor cells were positively correlated

with tumor growth rate.

In general, we observed that many interactions that correlated

strongly with a specific phenotype contain the same receptor but

different ligands. This observation raised the question whether a

specific ligand or receptor drives the correlation rather than the

interaction itself. To examine this possibility, we calculated

Spearman correlations of the receptor expression alone or

ligand expression alone with tumor growth rate. We observed

that interaction scores with a high correlation with phenotype

generally had either a high receptor correlation or high ligand

correlation (Figure 3D). This result is not unexpected given that

interaction scores are a product of receptor expression and

ligand expression and, therefore, are not independent. However,

there were also numerous cases where the interaction score was

strongly correlated with tumor growth rate, but neither the recep-

tor nor the ligand was strongly correlated (i.e., the region in the

center of the plot with ligand and receptor expression between

�0.5 and 0.5). In addition, we observed cases where receptor

expression and ligand expression had opposing strong correla-

tions (top left and bottom right regions of the plot), indicating that

interaction score correlation does not simply reflect ligand and

receptor correlations.
ater than 2.5 across any cell type pair are displayed).

score greater than 2.5 across any cell type pair are displayed).

1.5 across any cell type pair are displayed).
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Figure 3. Interaction Scores Correlate with

Relevant Characteristics of the Tumor

Microenvironment

(A) Tumor volume (y axis) of treatment-naive mice

measured over time (x axis) (Table S4). Dashed

lines indicate the mean of a syngeneic tumor

model, and shaded areas represent 1 SEM (n = 8

for Sa1N, 7 for LL2, 10 for CT26, 9 for EMT6, and 9

for MC38). Instances with no shading result from

only one mouse surviving at the measured time

points. Linear curves were fit to the log-normalized

growth curves, and the slope of fit curveswas used

as a metric for tumor growth.

(B) Quantified growth rates for each model. Each

point represents a singlemouse, and the horizontal

black line indicates the median growth rate used

for correlation with interaction scores.

(C) Heatmap showing the Spearman correlation of

interaction scores (shown in Figure 2) with tumor

growth. Interactions marked with black circles

indicate correlations with p < 0.01. Grey boxes

indicate interactions for which the interaction

score was zero across all models and no correla-

tion could be computed.

(D) Distribution of receptor only, ligand only, and

interaction score correlations. Each point repre-

sents an interaction (only autocrine interactions

between tumor cells are displayed). The x axis

represents the correlation of ligand expression

alone with tumor growth rate, whereas the y axis

represents the correlation of the receptor expres-

sion alone with tumor growth rate. Points are

colored according to the strength of correlation of

the interaction scores with tumor growth rate. Gray

points represent interactions that were not de-

tected across all syngeneic tumor models.
Quantifying Interactions in Human Metastatic
Melanoma
We next applied our approach for quantifying cell-cell interac-

tions to a published human dataset of metastatic melanoma

(Tirosh et al., 2016).We applied the same classification approach

to identify cell types and quantify cell type percentages using

markers identified by Tirosh et al. (2016) (Analysis of Human

Metastatic Melanoma; Figures S4A and S4B). In addition, we

selected cells predicted to be T cells and again applied our clas-
Cell Repor
sification procedure to further categorize

cells into CD8+ cells, T helper cells, or

regulatory T cells (Tregs).

Given the complex interactions be-

tween T cells in the tumor microenviron-

ment and their importance in mounting

a successful immunotherapy response,

we investigated interactions involving

Tregs (Figure 4A). We again observed

many interactions involving members

of the chemokine family. As before,

numerous chemokine interactions shared

the same ligands, including CCL3, CCL4,

and CCL5, secreted by B cells, macro-

phages, as well as all T cell subsets. In
addition, we observed cytokine interactions involving the IL10

and IL15 ligands and the IL10RA and IL2RG receptors, respec-

tively. Because of the known immunosuppressive role of Tregs,

we also examined individual tumors for B7 family interactions

where Tregs expressed the ligand and CD8+ T cells expressed

the receptor (Figure 4B). We observed expression of numerous

inhibitory interactions, including the CD274 (PD-L1)-PDCD1

(PD-1), CTLA4-CD80, and CTLA4-CD86 interactions. However,

although these B7 interactions occurred, on average, across
ts 25, 1458–1468, November 6, 2018 1463
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Figure 4. Assessing Cell-Cell Interactions Occurring in Human Metastatic Melanoma

(A) Cell-cell interactions involving Tregs in human metastatic melanoma averaged across 19 tumor samples. The cell type labels are written as (cell type ex-

pressing the ligand) � (cell type expressing the receptor). Black dots indicate interactions that are significantly present across all tumors (one-sided Wilcoxon

rank-sum test and Benjamini Hochberg FDR < 0.05). Only interactions with a score greater than 0.5 across any cell type pair are displayed.

(B) Examination of tumor-specific interactions in the B7 family between CD8+ T cells and Tregs shows that interactions that occur on average in (A) do not occur in

all individual patients.

(C) Example interactions betweenmacrophages and CD8 cells where the receptor and ligand components of an interaction do not individually correlate with Treg

percentage but the interaction score is strongly correlated with phenotype.

(D) Distribution of Spearman correlation coefficients between Treg percentage and randomized ligand-receptor interactions from (C). Red lines indicate the

Spearman correlation of the actual ligand-receptor pair. The p values indicate the probability that a randomized interaction pair has a stronger correlation than the

actual interaction pair.

See also Figure S4.
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all melanoma samples, examination of individual tumors re-

vealed that these interactions are patient-specific (compare Fig-

ures 4A and 4B).

We again wanted to assess the value of interaction scores

compared with analysis of receptors or ligands alone. In addi-

tion to calculating the correlation of interaction scores with

phenotype, we also computed the correlation of receptor

expression or ligand expression with phenotype. Despite the

general correlation between interaction score correlation and

receptor and/or ligand correlation, we again observed cases

where neither the receptor nor the ligand was strongly corre-

lated with phenotype, but the interaction score was strongly

correlated (Figure 4C).

To understand the probability of observing a ligand-receptor

pair correlate with Treg percentage despite neither the receptor

nor ligand correlating with Treg percentage, we re-computed

correlations using randomized ligand-receptor pairs (Computing

Correlations of Randomized Interaction Scores). We assessed

the significance of interactions identified in Figure 4C by using

randomized interactions with one member of the ligand-recep-

tor interaction being the same and randomizing the other mem-

ber of the interaction (i.e., using the same ligand but calculating

the interaction score with a random receptor and vice versa).

We then compared the correlations of these randomized pairs

with the observed correlation for the actual interaction (Fig-

ure 4D). For both interactions identified in Figure 4C, random

interaction pairs did not correlate as strongly as the real inter-

action. In addition, we calculated the probability that an interac-

tion between a ligand and random receptor would correlate

more strongly than the original correlation of the ligand (Fig-

ure S4E). In general, the stronger the ligand correlation, the

less likely a random ligand-receptor pair is to exhibit a greater

correlation. Furthermore, this result demonstrates that ligand-

receptor pairs are not expected to correlate with phenotype

by chance, even when ligand expression alone is strongly

correlated with phenotype.

To examine how interaction scores relate to phenotypes of

interest in the context of human metastatic melanoma, we

used the percentage of Tregs of the number of T cells in the

tumor as a phenotype. Given that we calculated scores for

19 different tumor samples, in addition to using spearman cor-

relation, we also constructed a predictive model using least ab-

solute shrinkage and selection operator (LASSO) regression.

For the human melanoma dataset, we started with 9,408

measured cell-cell interactions as predictors (of a total possible

of 187,000 = 100 cell type pairs 3 1,870 ligand-receptor inter-

actions). We then trained a regression model using 5-fold

cross-validation and identified a set of 11 interactions capable

of predicting Treg percentage (Figures S4C and S4D). Interac-

tions involving the tumor necrosis factor family receptor

TNFRSF25 expressed on Tregs and its ligand TNFSF15, as

well as interactions involving TNFRSF21 receptors expressed

on macrophages, were predictive of the percentage of Tregs.

In addition, the interaction between B cells producing PSEN1,

a proteolytic enzyme required for NOTCH receptor maturation,

and the NOTCH2 receptor expressed on Tregs (Struhl and

Greenwald, 1999) was also predictive of the percentage of

Tregs.
DISCUSSION

In this work, we developed a computational approach for

analyzing scRNA-seq data to screen for ligand-receptor interac-

tions across all cell types present in a tumor microenvironment.

We applied this approach to identify cell-cell interactions com-

mon across six different syngeneic mouse tumor models and

to identify patient-specific interactions in human metastatic mel-

anoma. Furthermore, we demonstrated how these interaction

scores can be used as features in correlative and predictive

models to identify ligand-receptor interactions as biomarkers

or potential therapeutic targets.

Foundational work by Ramilowski et al. (2015) not only cata-

loged known ligand-receptor pairs but also examined 144 cell

types derived from primary tissue for ligand-receptor expres-

sion. The tool provided by Ramilowski et al. (2015), although

providing an excellent draft of ligand-receptor communication,

does not provide a way to examine how interactions might

change in different contexts. When examining malignant tissues,

it is not expected that expression of ligands and receptors in a

tumor will be identical to expression in the primary tissue of

origin. In addition, ourmethodology enables study of interactions

in a data-driven manner when comparing different experimental

perturbations (i.e., treated versus untreated tumors). Beyond the

study by Ramilowski et al. (2015), numerous studies have also

begun to utilize single-cell sequencing data to characterize

cell-cell communication (Camp et al., 2017; Choi et al., 2015;

Costa et al., 2018; Puram et al., 2017; Skelly et al., 2018; Zhou

et al., 2017). The increasing number of these studies examining

cell-cell communication underscores the utility of the approach.

However, a key next step beyond characterizing the interactions

present in a given tissue or tumor microenvironment is to under-

stand how these interactions relate to an outcome of interest

(e.g., tumor growth, response, or resistance to therapy).

In this study, we used correlative and predictive models to

identify cell-cell interactions that may be related to tumor pheno-

types of interest. Recent studies have demonstrated that the

location and abundance of immune cells are predictive of patient

outcome for standard therapies (Ino et al., 2013). For example,

the presence of relevant T cell populations correlates with treat-

ment efficacy for checkpoint inhibitors like anti-PD1, anti-PDL1,

and anti-CTLA4 antibodies (Shang et al., 2015). However, the

limited response rate to current therapeutic approaches under-

scores the fact that cellular abundance alone does not fully pre-

dict patient-specific responses. Explicit consideration of cell-cell

interactions can provide additional insight to improve predicting

response to therapies.

Many of the cell-cell interactions that correlated with tumor

growth rate in the syngeneic tumor models have known associ-

ations with tumor growth rate. For example, numerous interac-

tions involving the binding of tumor cells to ECM components

(e.g., collagens and fibronectins) via integrin receptors were

positively correlated with tumor growth rate. This result supports

the well-established role of the ECM in modulating tumor pro-

gression (Pickup et al., 2014; Venning et al., 2015). Similarly, in-

teractions involving the Ccr5 receptor and its ligands as well the

cell type specificity of the interaction are supported by literature

(Halama et al., 2016). For predicting the percentage of Tregs in
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human metastatic melanoma, the LASSO regression model

selected interactions involving the TNFRSF25 receptor ex-

pressed on Tregs and its ligand TNFRSF15 expressed by T

helper (Th) cells as well as an interaction between PSEN1 ex-

pressed by B cells and the NOTCH2 receptor expressed on

Tregs. Previous studies have shown that decreases in Notch2

expression can reduce the proportion of Tregs, whereas agonist

antibodies targeting the TNFRSF25 receptor can help expand

Treg populations (Bittner et al., 2017; Qin et al., 2017; Schreiber

et al., 2010). Altogether, these results suggest that our approach

of linking cell-cell interactions to phenotypes of interest has the

potential to identify biologically relevant interactions.

Although our results suggest that many interactions correlated

with phenotypes of interest are biologically relevant, it often re-

mains a challenge to identify the causal or mechanistic impor-

tance of individual correlates or predictive features. By using

expression data to examine the activation state of intra-cellular

signaling pathways or transcription factors downstream of impli-

cated receptor-ligand interactions, further insights into biological

mechanisms could be obtained (Garcia-Alonso et al., 2017;

Schubert et al., 2018). Examination of interactions across all pair-

wise cell types also showed that the same ligand-receptor inter-

action can have opposite correlations with a given phenotype

depending on the interacting cell types. These opposing effects

highlight the potentially pleiotropic role of any specific ligand-re-

ceptor interaction and the need to account for the effects of dis-

rupting an interaction across all cell types to fully comprehend

the likely effect of a proposed treatment.

Another distinction separating our work from published single-

cell sequencing studies is the classification approach we use for

determining cell types. A common approach for identifying cell

types is to cluster cells based on gene expression data and

then manually assign a cell type label to each cluster. However,

determining the number of clusters is often a subjective process.

Furthermore, there is an implicit assumption with this approach

that clusters will be based predominantly on cell type. However,

when clustering in a high-dimensional space, clusters may form

on a variety of factors (e.g., cell cycle stage), and trying to assign

a cell type label to each apparent cluster can lead to errors. This

can become especially problematic when trying to identify sub-

types with more subtle or continuous transitions (e.g., CD8+, Th,

or Treg cells or M1 orM2-likemacrophages). Although t-SNE is a

powerful visualization tool for single-cell sequencing data, prox-

imity in t-SNE mappings is often used as evidence of belonging

to the same cell type. Although t-SNE predominantly appears to

form clusters based on cell type, the mapping is not guaranteed

to always group cells by cell type, and the ‘‘accuracy’’ of separa-

tion is not well understood. The classification approach pre-

sented in this work provides a more quantitative and less

subjective approach for cell type classification.

Several factors may lead to the identification of false positives

when using our approach to identify potential cell-cell interac-

tions based on expression of both members of a ligand-receptor

interaction. The level of transcripts does not necessarily corre-

late to protein expression for any gene. Furthermore, because

scRNA-seq does not preserve spatial information, identified in-

teractions in which the receptor and the ligand are membrane-

bound may not occur when the corresponding cell types are
1466 Cell Reports 25, 1458–1468, November 6, 2018
not spatially co-localized in a tumor. By using antibodies to

detect protein levels, approaches such as multiplexed immuno-

fluorescence imaging or imaging mass cytometry can validate

that membrane-bound interaction components are spatially

co-localized (Bodenmiller, 2016; Lin et al., 2015; Schapiro

et al., 2017). However, these approaches are not suitable for

high-throughput screening of ligand-receptor interactions. In

addition, studies examining cell-cell interaction in the tumor

microenvironment should consider the specificity of those inter-

actions to the tumor microenvironment. When available, the

approach presented in this paper can also be used to compare

the interaction strengths observed in the tumorwith those in con-

trol tissue from the same donor, such as nearby tissue of the

same type or peripheral blood. In this manner, tumor-specific

cell-cell interactions can be identified.

Our methods provide a screening approach to identify

potential ligand-receptor interactions that occur in a tumor

microenvironment. The ability to examine cell type-specific

communication provided by scRNA-seq enables a broad range

of applications. For example, examining samples from different

locations within the tumor can provide insights into the heteroge-

neity of cell-cell interactions within a given tumor. Experiments

examining tumors from distinct metastatic locations could reveal

how various tissue microenvironments influence which cell-cell

interactions occur. Given that many therapeutics target cell-

cell interactions, this approach can be used to both identify

potential targets or to validate that a target of interest is present.

Using this approach in experimental studies that examine

patient-specific responses can identify interactions that are pre-

dictive biomarkers of response to therapy for use in patient

stratification.
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FITC-CD45 Biolegend 103107
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AF700-CD8 BD PharMingen 557959

PE-CF594-CD44 Biolegend 103007

BV421-CD127 Biolegend 135027

BV510-CD3 Biolegend 100353

BV570-CD4 Biolegend 100542

BV605-KLRG1 Biolegend 138419

BV650-CD25 Biolegend 102038

PECy7-CD11b Biolegend 101216

AF700-CD86 Biolegend 105023

APC-Cy7-Ly6C BD PharMingen 560596

PE-CF594-CD40 BD PharMingen 562847

BV421-CD11c Biolegend 117343

BV570-Ly6G Biolegend 127629

BV650-HLA-DR Biolegend 307649

PECy7-CD317 eBioscience 25-3172-80

APC-CD206 Biolegend 141707

APC-Cy7-GR1 Biolegend 108411

BV421-F4/80 Biolegend 123137

BV605-NKp46 Biolegend 137619

BV650-B220 Biolegend 103241

Critical Commercial Assays

Chromium Single Cell 30 v2 reagent kit 10x Genomics PN-120237

Deposited Data

Mouse sygeneic data NCBI GEO GSE121861

Tirosh et al. Melanoma scRNA-seq NCBI GEO GSE72056

Experimental Models: Cell Lines

CT26 cancer cell line ATCC CRL-2638

MC-38 cancer cell line NCI/NIH

EMT6 cancer cell line ATCC CRL-2755

LL2 cancer cell line ATCC CRL-1642

Sa1N cancer cell line ATCC CRL-2543

B16-F10 cancer cell line ATCC CRL-6475

Experimental Models: Organisms/Strains

BALB/c inbred mouse Charles River Laboratories BALB/cAnNCrl

C57B6/J inbred mouse Charles River Laboratories C57BL/6NCrl

A/J mice inbred mouse Charles River Laboratories A/JCr

Software and Algorithms

MATLAB The Mathworks R2016b

Other

Mouse Tumor Dissociation Kit Miltenyi 130-096-730
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andreas

Raue (araue@merrimack.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal models
In our study we used three different types of immuno-competent inbred mouse strains: BALB/c (Charles River Laboratories, BALB/

cAnNCrl), C57B6/J (Charles River Laboratories, C57BL/6NCrl), and A/J (Charles River Laboratories, A/JCr). All animals enrolled in our

study were 6-8 weeks old female mice that were housed in vivarium under specific pathogen free conditions in cages of up to 5 an-

imals and receiving special rodent diet (Teklad). Studies were approved byMerrimack’s Institutional Animal Care andUseCommittee

(IACUC) under animal protocol MAP#013. IACUC guidelines on the ethical use and care of animals were followed.

Cell lines
For our tumor models, we used six different syngeneic mouse tumor cell lines. The CT26 cancer cell line was obtained from ATCC,

maintained in RPMI-10%FBS at 37�C, and implanted into BALB/cmice subcutaneously at 1x106 cells permouse. TheMC-38 cancer

cell line was obtained from NCI/NIH, maintained in RPMI-10% FBS at 37�C, and implanted into C57B6/J mice subcutaneously at

2x105 cells per mouse. The EMT6 cancer cell line was obtained from ATCC, maintained in RPMI-10% FBS at 37�C, and implanted

into BALB/c mice subcutaneously at 2x105 cells per mouse. The LL2 cancer cell line was obtained from ATCC, maintained in RPMI-

10% FBS at 37�C, and implanted into C57B6/J mice subcutaneously at 2x105 cells per mouse. The Sa1N cancer cell line was ob-

tained from ATCC, maintained in Eagle’s Minimum Essential Medium (EMEM, ATCC 30-2003) at 37�C, and implanted into A/J mice

subcutaneously at 1 x106 cells per mouse. The B16-F10 cancer cell line as obtained from ATCC, maintained in RPMI-10% FBS at

37�C, and implanted into C57B6/J mice subcutaneously at 2x105 cells per mouse.

METHOD DETAILS

scRNA-seq of mouse syngeneic tumor models
We implanted two mice for each syngeneic model resulting in a total of 12 samples. Each mouse tumor was harvested when the tu-

mor size reached 100 – 200mm3. Each sample wasminced and digested with reagents fromMouse Tumor Dissociation Kit (Miltenyi)

according to the manufacturer’s instructions. Cells were resuspended at 2x105 cells/mL in PBS-0.04% BSA. Each sample was pro-

cessed individually and run in technical duplicates. For each sample (except CT26 and MC-38) one replicate was enriched for CD45

positive cells. Live CD45 positive cells were sorted with BD Aria after staining with FITC-CD45 (Biolegend) and 7-AAD. Single cell

suspensions of all samples were resuspended in PBS-0.04% BSA at 5x105 cells/mL and barcoded with a 10x Chromium Controller

(10x Genomics). In total, this procedure resulted in 24 samples. RNA from the barcoded cells for each sample was subsequently

reverse-transcribed and sequencing libraries were constructed with reagents from a Chromium Single Cell 30 v2 reagent kit

(10x Genomics) according to the manufacturer’s instructions. Sequencing was performed with Illumina HiSeq according to the

manufacturer’s instructions (Illumina).

Comparison of scRNA-seq and flow cytometry
Each of the 24 single cell suspensions was stained for with the following antibodies to quantify the frequencies of various live immune

cell populations. Panel one included FITC-CD45, 7-AAD, AF700-CD8, PE-CF594-CD44, BV421-CD127, BV510-CD3, BV570-CD4,

BV605-KLRG1 and BV650-CD25. Panel two included FITC-CD45, PECy7-CD11b, 7-AAD, AF700-CD86, APC-Cy7-Ly6C, PE-

CF594-CD40, BV421-CD11c, BV570-Ly6G and BV650-HLA-DR. Panel three included FITC-CD45, PECy7-CD317, 7-AAD, APC-

CD206, AF700-CD86, APC-Cy7-GR1, PE-CF594-CD40, BV421-F4/80, BV605-NKp46 and BV650-B220. CD317 antibody was

purchased from eBiosciences. CD8, Ly6C and CD40 antibodies were obtained from BD PharMingen. All other antibodies were pur-

chased from Biolegend. Flow cytometry data were obtained on BD Fortessa and analyzed with FlowJo. After gating, the percentage

of marker-positive cells was compared to the percentage of cells with at least one transcript detected in the scRNA-seq data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell RNA sequencing data processing
FASTQ files were processed with the CellRanger software (10x Genomics, Inc., version 2.0). Mouse genome 10-1.2.0 was used as

the reference genome (10x Genomics, Inc.) to generate the matrix files containing cell barcodes and transcript counts. Statistics on

the sequencing results are available in Table S1. The total number of readswas 532,180,635. To distinguish true cells fromdead cells,

debris or background, we used a cut-off of 1,500 on the number of genes detected per barcode, resulting in 10,573 true cells. The

mean number of reads per cell was 72,182, the median detected genes per cell was 2,423 (after cut-off), and the median unique

molecular identifiers (UMIs) per cell was 10,051. After conversion to transcript-per-million (TPM) values, we computed expression
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levels as Ei,j = log2(TPMi,j+1), where TPMi,j refers to the TPM for gene i in sample j.We then normalized each cell to its average expres-

sion level of 3559 housekeeping genes by adding the average log-normalized housekeeping expression value (equivalent to scaling

first) (Eisenberg and Levanon, 2013).

Determining gene markers for syngeneic tumor models
To assign markers for the malignant cell types, we took advantage of the observation that malignant cells tend to form distinct clus-

ters in t-SNE plots (Tirosh et al., 2016). We first performed density-based clustering (DBSCAN) on the result of our t-SNE mapping

(Figure S2A). We then assumed that cells in clusters predominantly containing cell types from only one tumor model were malignant

cells of that tumor model. For each tumor cluster, we then tested all genes in our dataset as univariate predictors of cluster mem-

bership (i.e., a one-versus-rest classifier) and calculated AUC values as a metric for predictive ability. Finally, we manually selected

top-ranking genes based on biological relevance to the tumor model. For example, in the case of the B16-F10 melanomamodel, top

rankingmarkers included bothMlana, a tumor antigen expressed on the surface of melanoma cells, and Tyrp1, amelanocyte specific

gene related to melanin synthesis.

Fitting Gaussian mixture models to determine marker expression
To identify cells positive for a specified marker gene, we fit Gaussian mixture models (GMMs) to the log-normalized expression

values. For eachmarker gene, we testedmodels containing one through fiveGaussian components. For eachmarker gene and num-

ber of components, we fit models on five randompartitions of the gene expression data.We then computed the Bayesian information

criterion (BIC) of theGMM for eachmodel. To select the number ofmixture components for eachmarker gene, we selected themodel

with the fewest number of components that had an average BIC value within one standard error of the minimum BIC value

(Figure S2C).

Training the decision tree classifier
To create the training dataset used for cell type classification, we used a pre-defined set of 45 marker genes (Schelker et al., 2017).

Each marker gene is labeled as either an AND gene, which should be present in the cell type or a NOT gene, which should be absent

from the cell type. We then created the training dataset by selecting cells that express all AND markers and do not express all NOT

markers. To train the classifier, we used the full gene expression data as an input to predict the assigned training label. We first select

the 500 most variable genes and then perform PCA to further reduce the input dimensionality. We keep the number of principal com-

ponents that explain 95%of the input variance as features for the classifier. Decision trees were fit using theMATLAB fitctree function

using the default parameters, except for theMaxNumSplits parameter that was set to 100. To evaluatemodel accuracy, we used only

cells that have a posterior probability of prediction greater than 95%. We then calculated the overall and cell type specific accuracy

rates using 5-fold cross-validation.

Calculating ligand-receptor interaction scores
To identify potential cell-cell interactions we scored a given ligand-receptor interaction between cell type A and cell type B as the

product of average receptor expression across all cells of cell type A and the average ligand expression across all cells of cell

type B.

Interaction scoreðreceptor; ligand; cell type 1; cell type 2Þ= 1

ncelltype1

X

i˛cell type 1

ei;receptor 3
1

ncelltype2

X

j˛cell type 2

ej;ligand

ei;j = expression of gene j in cell i

nc = number of cells of cell type c

To identify significant interactions, we performed a one-sidedWilcoxon rank-sum test to test the hypothesis than themedian inter-

action score across all tumors is greater than 0. We also used the Benjamini Hochberg method to correct for multiple hypothesis

testing.

Human to mouse homolog conversion
We converted between human and mouse homologous genes using HomoloGene IDs provided in the Mouse Genome Informatics

database (Blake et al., 2017).

Analysis of human metastatic melanoma
Markers for cell type identification were taken from directly from Tirosh et al. (2016). We applied the same pre-processing and clas-

sification approaches as described for the mouse syngeneic studies. To identify T cell subsets, we first predicted T cells from the full

dataset, and then further categorized cells predicted as T cells into either CD8+ positive cells (CD8A+, CD8B+, CD4-), T-helper cells

(CD8-+, CD8B-, CD4+, FOXP3-, CD25-), or Tregs (CD8A-, CD8+, CD4+, FOXP3+, CD25+) using the same classification approach

described above. We then calculated interaction scores and significance using the approach described above.
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LASSO regression models
Human metastatic interaction scores were normalized across tumors to range [0,1] for use as predictors in LASSO regression

models. LASSO regression models were fit using the MATLAB lasso function and 5-fold cross-validation. After screening a range

of regularization values, we selected the value with mean-squared error (MSE) within one standard error of the minimum MSE.

Computing correlations of randomized interaction scores
Our list of ligand-receptor interactions contained 645 unique ligands and 589 receptors, which resulted in a total of 379,905 possible

random ligand-receptor pairs. With 10 different cell-types identified in the human metastatic melanoma analysis, this resulted in a

total of 37,990,500 cell type specific random interactions. For each possible cell-type specific randomized interaction pair, we calcu-

lated the spearman correlation between Treg percentage with the interaction score of the random pair. To calculate p values, we

divided the number of random interactions pairs with stronger correlation than the true interaction by the total number of random

pairs.

DATA AND SOFTWARE AVAILABILITY

The accesion number for accessing the syngeneicmouse single-cell expression data reported in this paper is GEO: GSE121861. The

accession number for the single-cell sequening data from Tirosh et al. (2016) reported in this paper is GEO: GSE72056. All analysis

code is available on Github at https://github.mit.edu/mkumar/scRNAseq_communication.
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