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Abstract

This paper studies efficient and optimal auction design where bid-
ders do not know their values and solicit advice from informed but
biased advisors via a cheap-talk game. When advisors are biased to-
ward overbidding, we characterize efficient equilibria of static auctions
and equilibria of the English auction under the NITS condition (Chen,
Kartik and Sobel (2008)). In static auctions, advisors transmit a coars-
ening of their information and a version of the revenue equivalence
holds. In contrast, in the English auction, information is transmitted
perfectly from types in the bottom of the distribution, and pooling
happens only at the top. Under NITS, any equilibrium of the English
auction dominates any efficient equilibrium of any static auction in
terms of both efficiency and the seller’s revenue. The distinguishing
feature of the English auction is that information can be transmitted
over time and bidders cannot submit bids below the current price of
the auction. This results in a higher efficiency due to better infor-
mation transmission and allows the seller to extract additional profits
from the overbidding bias of advisors. When advisors are biased to-
ward underbidding, there is an equilibrium of the Dutch auction that
is more efficient than any efficient equilibrium of any static auction,
however, it can bring lower expected revenue.
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1 Introduction

In many M&A contests and auctions, potential buyers get advice from bi-
ased advisors about the value of the asset sold. For example, in M&A
contests, bids are submitted and approved by the board of directors that
is advised on the value of the target by the management team and invest-
ment bankers. The management is frequently prone to empire building and
investment bankers get large fees for successfully closing the deal. Hence,
they are more eager to acquire the asset than shareholders. Similarly, in
FCC spectrum auctions, the research team preparing for the auction, and
in particular producing estimates of the value of auctioned frequencies, has
career concerns. Winning the auction gives a positive signal to the market
and helps the research team to attract future business. The unifying theme
of these examples is the misalignment of interests between the party that
submits the bid (board of directors, upper management) and the party that
has the information about the value of the asset (management team and
investment bankers, research team).

This paper studies the auction design in the presence of this imperfect
alignment of interests and answers several important questions: How does
the choice of the auction format affect the informativeness of communication
between bidders and advisors? What are the implications of different auc-
tion formats for allocation efficiency? Which auction format maximizes the
expected revenue? Is there a trade-off between higher revenue and efficiency
in the choice of the auction format?

We depart from the canonical auction model with independent private
values in one aspect. Each bidder does not know her value and consults
an informed advisor. The advisor is biased toward overbidding, that is,
she overvalues the gains from winning the auction. The overbidding bias
captures empire-building motives or career concerns in the examples above.
The communication between the bidder and the advisor is modeled as a
cheap-talk game. The advisor can send messages to the bidder at no cost
at any stage of the auction. In this environment, there is an interesting
interaction between the communication and the auction design. On the
one hand, the amount of information transmitted from each advisor to her
bidder affects bids submitted in an auction and through them the efficiency
and revenue of each auction format. On the other hand, the auction format
affects the incentives of advisors to reveal their information to their bidders.

We analyze equilibria of the model under the NITS (for no incentive
to separate) condition adapted from Chen, Kartik and Sobel (2008). The
NITS condition requires that the weakest type has the option of credibly re-
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vealing herself at any stage of the auction, which puts a lower bound on the
utility that such type gets at any stage of the auction. Chen, Kartik and So-
bel (2008) provides a number of justifications for NITS in general cheap-talk
games including perturbations with nonstrategic players and costly lying and
shows that NITS refines equilibria of the cheap-talk game which in general
exhibit multiplicity. Notice that NITS need not select the unique equilib-
rium. Our analysis does not require any further refinement, and the NITS
condition turns out to be the key property of equilibria for our efficiency
and revenue comparison.

In this paper, we characterize (bidder)-efficient equilibria of static auc-
tions in which the auction is won by a bidder with the highest expected value
conditional on the information transmitted from the advisor. The outcome
of the bidder-efficient equilibria need not be efficient from the point of view
of advisors, as they may communicate only a crude information to bidders.
We also characterize equilibria of the English auction satisfying NITS and
show that the English auction dominates any static auction in terms of
information transmission, efficiency, and revenue.

Communication in efficient equilibria of static auctions takes a partition
form: all types of the advisor are partitioned into intervals and types in each
interval induce the same bid. This result is in line with the communication
in general cheap-talk games characterized by Crawford and Sobel (1982).
Notice however that our model is not reduced to a particular case of the
cheap-talk game in Crawford and Sobel (1982). In our model, the cheap-talk
game between the bidder and her advisor is endogenous. The profitability of
each bid depends on bidding strategies of opponents, which in turn depend
on the equilibrium communication between opponent bidders and their ad-
visors. For the same reason, the analysis of Chen, Kartik and Sobel (2008)
does not immediately apply to show that there is an equilibrium of the static
auction satisfying NITS. Despite the endogenous cheap-talk game, we show
that efficient equilibria of the static auction still have a partition structure
with an upper bound on the number of partition intervals, and that the
most informative equilibrium satisfies the NITS condition.

For static auctions, a version of the revenue equivalence holds: modulo
the existence of efficient equilibria in a particular static auction, all efficient
equilibria of any static auction bring the same expected revenue and generate
the same communication. In other words, in static auctions one cannot
manipulate the rules of the auction to extract extra revenue or induce better
communication and maintain bidder-efficiency. Hence, in static auctions,
communication does not alter the celebrated revenue equivalence (Myerson
(1981) and Riley and Samuelson (1981)).
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Equilibria of the English under the NITS condition are quite different
from equilibria in static auctions. The information transmission is perfect
at the bottom of the type distribution and there is pooling at the top in a
sense that types at the top induce the same bid. Because of the superior
information transmission, the English auction generally outperforms any
static auction both in terms of efficiency and expected revenue. In particular,
the revenue equivalence does not hold between static and dynamic auctions.

The key distinction of the English auction is that the advisor can reveal
information over time. Under the simplest communication protocol, the ad-
visor reveals her information to the bidder right before the advisor’s optimal
quitting time. Under such a communication protocol, perfect information
transmission is possible for types at the bottom of the distribution for the
following reason. If the bidder observes her values, then it is optimal for bid-
ders to quit the auction when the running price equals her value. Because
of the overbidding bias, the advisor prefers to quit the auction later than
the bidder. If the advisor perfectly reveals the value at her optimal quitting
time, then it is optimal for the bidder to immediately quit the auction. In-
deed, at this point the bidder is already past her break-even price and any
further delay will result into a higher chance of winning at a price that brings
negative profit. Because in the English auction the bidder is restricted to
submit only bids higher than the current auction price, types at the bot-
tom of the distribution are able to communicate their private information
perfectly and induce the bidder to quit at their optimal price.

However, even in the English auction, information cannot be transmitted
perfectly for all types when the support of the distribution of values is finite.
As the price of the auction approaches the highest type, the uncertainty of
the bidder about her value decreases. At some point, she can accurately
predict her value as well as the fact that she will overpay for the asset if
she wins, because the advisor waits until the advisor’s optimal price to quit.
Therefore, the bidder will always quit when her uncertainty is sufficiently
reduced before types of the advisor at the top reveal themselves.

The information transmission affects the efficiency of auction formats.
Because of imperfect information transmission, static auctions are necessar-
ily inefficient, as ties occur with positive probability. At the same time, in
the English auction the information transmission for types at the bottom of
the distribution is perfect, hence allocation is more efficient for these types
compared to static auctions. It turns out that even taking into account the
pooling at the top, the English auction is still more efficient than any static
auction, as no static auction makes these types at the top separate even
partially.
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The information transmission also affects the revenue of auction formats.
Under the monotone hazard ratio, the expected revenue of the auction is
higher in the English auction than in any static auction format. Hence, when
advisors are biased toward overbidding, there is no trade-off between revenue
and efficiency. This fact has an important practical implication. While
in M&A contests, the expected revenue is the key objective of the seller,
in FCC auctions and other government auctions, efficiency is the primary
goal, but maximizing the revenue is also a desirable goal. Moreover, the
bias for overbidding is relevant in many applications, because of the empire-
building and career concerns described above. Our results suggest that the
English auction is the preferred method of selling assets in this environment
no matter whether the seller is concerned about efficiency, revenue or both.

The intuition for the higher revenue comes from the fact that the seller
would prefer to sell directly to advisors, as they have a higher willingness to
pay for the asset. However, because bidders are in control of bidding and
advisors can only affect them through the information they provide, the
equilibrium bids reflect a mix of interests of bidders and advisors, and so,
are lower. The English auction is an auction format that allows the seller to
essentially eliminate bidders and sell directly to advisors, as bids are optimal
for advisors.

Perhaps surprisingly, under the bias toward underbidding, the compari-
son of dynamic and static auctions is ambiguous. In this case, if the bidder
knew her value, she would submit a bid that wins with higher probability
than an optimal bid of the advisor. Hence, with bias toward underbidding,
the Dutch auction that restricts bidders to submit bids not higher than the
current price of the auction allows for a better information transmission. We
construct an equilibrium of the Dutch auction that exhibits pooling at the
bottom and perfect information transmission at the top of the distribution.
This equilibrium is more efficient than any efficient equilibrium of any static
auction, but it can bring lower expected revenue to the seller. The reason for
this is that when the advisor is biased toward underbidding, selling directly
to advisors no longer guarantees the highest expected revenue, as advisors
have lower willingness to pay. Because of that, it is possible that the seller
benefits from imperfect communication between the advisor and the bid-
der, as it results into an upward bias of bids relative to the bids submitted
directly by advisors.

Literature Review This paper is related to the literature on cheap-talk,
information acquisition in auctions, and comparison of auction format.
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This paper is related to the literature on auctions with information acqui-
sition in which bidders learn additional information about the values in the
process of bidding. This literature focuses on either exogenous or endoge-
nous information acquisition. With exogenous information acquisition, the
information is revealed to bidders by some exogenous process (refs??). With
endogenous information acquisition, bidders optimally choose how much to
invest into the information acquisition. The information acquisition tech-
nology is fixed in this case. In contrast, in our paper, the information ac-
quisition technology is endogenous: the choice of the auction format, shapes
the incentives of advisors to transmit information to bidders. To the best
of our knowledge, our paper is the first to study the auction design with
endogenous technology of information acquisition.

Compte and Jehiel (2007) shows that the English auction brings higher
revenue than static auctions when bidders can acquire information about
their values. The key conditions for this result are an asymmetry of bidders,
i.e. some bidders may be initially informed, a sufficiently large number of
bidders, and the availability of the information about the number of bidders.
Under these conditions, as bidders drop out of the English auction, infor-
mation acquisition may becomes profitable even when it is not profitable
in the beginning of the auction. Hence, the English auction brings higher
revenue because it induces more information acquisition, and makes unin-
formed bidders stay longer pushing up the price paid by informed bidders.1

The results of our paper also highlight the possibility of the communication
over the course of the auction as the key factor in improving the perfor-
mance of the auction, but the mechanism is quite different. In particular,
our results hold for any number of bidders that do not know their values ini-
tially irrespective of whether the number of remaining bidders is observable
or not. Given that the average number of participants in M&A contests is
relatively small, .

There is an extensive literature on cheap-talk game started by Crawford
and Sobel (1982) (see Sobel (2010) for review). This literature models in
a reduced form the utility of parties from the decision made by the bidder.
This paper considers the cheap-talk game in which utilities of advisors and
bidders from bids are derived from the auction game. In this respect, our
paper is related to Grenadier, Malenko and Malenko (2015) who study a
cheap-talk game in which payoffs are derived from exercising a real option.

1Compte and Jehiel (2004) studies auction efficiency in this environment. Rezende
(2005) shows that under different information acquisition technology, even in secret auc-
tions, dynamic format bring higher revenues than static formats.
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The main difference from their model is that they study a single-advisor
decision problem (exercise of the option), while this paper studies how com-
munication affects bidding behavior in auctions which is a game. In this
respect, the cheap-talk game is endogenous in this paper, as the communi-
cation between opponent bidders and their advisors affects the profitability
of different bids in the auction.

There are several papers that study dynamic aspects of communication.
Aumann and Hart (2003) and Krishna and Morgan (2004) show that multi-
ple rounds of communication can attain a better information transmission.
Their results rely on the finite state space, infinite exchange of messages
and simultaneous actions of both parties. Golosov, Skreta, Tsyvinski, and
Wilson (2014) show that with repeated actions a perfect information trans-
mission is possible even with an infinite state space and finite horizon.2

Sobel (1985), Morris (2001), Ottaviani and Sorensen (2006a, 2006b) study
the role of reputation in communication. In our paper, we provide a novel
mechanism of the partially perfect information transmission when receivers’
actions are bids in an auction.

Our paper is somewhat related to partial and full separation in cheap-
talk with lying costs studied by Kartik (2009) and Kartik, Ottaviani, and
Squintani (2007). In order to ensure a partially separation, one of the sides
needs a commitment not to change her action (inflate message or choose
lower action). With lying costs, such commitment is on the side of the
sender. Costly lying ensures that the sender does not inflate her message too
much. As a result, the sender can perfectly reveal her type. In our paper,
such commitment is on the sider of the receiver. In the English auction,
the bidder has a commitment not to decrease her bid below the current
running price, which in turn, ensures that the advisor reveals her information
truthfully. Because of the commitment being on different sides, in Kartik
(2009) and Kartik, Ottaviani, and Squintani (2007), the receiver chooses her
optimal action, while in our paper, the sender induces her optimal message.
Similarly to their work, the full separation is possible when the type space
is unbounded, while there is necessarily pooling at the top when state space
is bounded. However, the mechanism is quite different. In their work, the
sender runs out of messages at the top, which leads to pooling, while in
our paper it is the receiver (bidder) who stops listening to the advisor once
her uncertainty is sufficiently reduced. In particular, if the bidder were to
deviate and continue following the advisor’s recommendation, the advisor

2Ivanov (2015) shows that perfect information transmission is possible with two rounds
of communication, when the uninformed party can control the signal of the informed party.
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would continue waiting until her optimal price.3

Another related paper is Burkett (2014) that studies a principal-agent
relationship in the auction context where the principal decides on the bud-
get of the biased agent who submits the bid. Similarly to Burkett (2014),
we study the interaction between the principal-agent relationship and the
auction design. Our revenue-equivalence result in static auctions is related
to his result of equivalence between the first- and second- price auctions
with endogenous budget constraints. Kos (2012) studies efficient and op-
timal auction design when bidders can use only a finite set of messages to
communicate with the seller. Our model is effectively a mechanism design
problem of allocating to informed advisors with a restriction on the set of
mechanisms arising from the fact that bids are submitted by biased bidders.
In static auctions, the restriction on the message space arises endogenously
from the communication between the bidder and the advisor. Inderst and
Ottaviani (2013) studies the interaction between mechanism design and com-
munication. In their model, by committing to a return policy, the seller can
credibly convey information about the value of the product to the buyer.

Our paper is related to the auction literature that shows that the revenue-
equivalence result of Myerson (1981) can fail for a number of reasons: cor-
relation of values (Milgrom and Weber (1982)), risk-aversion (Holt (1980)),
asymmetry of bidders (Maskin and Riley (2000)), budget constraints (Che
and Gale (1998)).4 Milgrom and Weber (1982) shows that in the model
with affiliated values, the English auction brings higher revenue than the
first- and second-price auctions. We provide a novel explanation for why
even strategically equivalent auctions, such as the English auction and the
second-price auction or the Dutch auction and the first-price auction, can
bring different revenue.

The structure of the paper is the following. Section 2 introduces the
model and illustrates our main findings with a simple example. Section 3
characterizes equilibria of static auctions and establishes a version of the
revenue equivalence for static auctions. Section 4 characterizes equilibria
of the English auction under the NITS condition when bidders have over-
bidding bias, and shows that the English auction outperforms any static
auction. Section 6 analyzes the case of advisors’ preferences for underbid-
ding. Section 7 concludes. Key proofs are provided in the text and the rest

3A number of papers obtains a perfect information transmission in static model, but
require multiple senders (Battaglini (2002), Eso and Fong (2008), and Ambrus and Lu
(2010), Rubanov (2015)), or certifiable information (Mathis (2008)), which represent an-
other form of commitment on the sender’s side.

4See Milgrom (2004) for a survey.
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of the proofs are relegated to Appendix.

2 Model

Consider the standard auction model with independent private values. There
is a single indivisible asset for sale. There are N ex-ante identical bid-
ders. The valuation of bidder i, vi, is an i.i.d. draw from distribution with
c.d.f. F and p.d.f. f . The distribution F has full support on [v, v] with
0 ≤ v < v ≤ ∞. In the analysis, we will frequently refer to the distribution
of the value of the strongest opponent of a bidder. We denote by v̂ the
maximum of N − 1 i.i.d. random variables distributed according to F and
its c.d.f. by G.5 The seller’s value is common knowledge and is below v. It
is normalized to zero.

The novelty of our approach is that each bidder i does not observe vi
directly, but can consult advisor i. Advisor i knows vi, but is biased relative
to the bidder. Specifically, the payoffs from acquiring the asset are

Bidder : vi − p, (1)

Advisor : vi + b− p, (2)

where b is the bias of the advisor. The value that all players get from not
acquiring the asset is zero. Bias b is commonly known.6 Our main focus is
on the case of the preference of advisors for overbidding, b > 0, as it is most
prominent in applications. Later, we will also consider the case b < 0 which
shares several similarities with b > 0, but also differs from it in a number of
important aspects.

Our formulation (1)−(2) captures the empire building motives and career
concerns described in the introduction. For example, in the M&A contest,
suppose that the CEO is compensated by a share in the profit α and has
private benefits B from managing a larger company. Then the payoff of the
CEO is α(vi − p) +B and the shareholders retain (1− α)(vi − p). Normal-
izing payoffs by α and 1 − α, respectively, and denoting b = B

α we obtain
formulation (1)− (2).

In this paper, we compare how different auction formats affect the seller’s
expected revenue and the allocative efficiency. Several auction formats are
commonly used in practice and extensively studied in the academic liter-

5That is, G(v̂) = F (v̂)N−1.
6For most of our results it is sufficient to assume that b is commonly known by bidders

and advisors, but the seller knows only the sign of the bias.
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ature. In all of these auction formats, if ties occur, the winner is drawn
randomly from the set of tied bidders.

1. Second-price auction. All bidders submit bids simultaneously and
the bidder submitting the highest bid wins the auction and pays the
second-highest bid.

2. First-price auction. All bidders submit bids simultaneously and the
bidder submitting the highest bid wins the auction and pays her bid.

3. English auction. The seller continuously increases the price p, which
we refer to as the running price, starting from v. Bidders choose at
what price to quit the auction. Once a bidder quits, she cannot re-
enter the auction. The bidder that quits last gets allocated the asset
at a price at which the last of her opponents quit the auction.

4. Dutch auction. The seller continuously decreases the price p, which
we refer to as the running price, starting from v. Bidders choose the
time at which they stop the auction. The first bidder who stops the
auction wins the assets at the price at the current running price.

We study a rich class of static auctions formally described in Section 3,
but restrict attention to the English and Dutch auctions among dynamic
auctions.

The communication between the bidder and the advisor is modeled as
the cheap-talk game. If the auction consists of a single-round bidding (e.g.,
a first-price or a second-price auction), the timing of the game is as follows:

1. Advisor i sends a message m̃i ∈M to bidder i where M is some infinite
set. The message m̃i is not observed by anyone except bidder i.

2. Having observed message m̃i, bidder i submits bid bi.

3. Given all bids b1, ..., bN , the asset is allocated and payments are made
according to the rule specified by the auction.

If the auction consists of multiple stages of bidding, the advisor sends a
message to the bidder before each stage of bidding. In dynamic auctions,
we index stages of the auction by corresponding running prices p.

A private history at stage p consists of all actions taken by bidders and
the seller, and all messages sent by the advisor in the previous bidding stages.
In static auctions, there is only an empty private history. A private history
in the English auction consists of the set of bidders remaining in the game,
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the current running price of the auction and messages sent by the advisor
up to stage p. A private history in the Dutch auction consists of simply the
current running price of the auction and messages sent by the advisor up to
stage p. Denote by H the set of all histories.

We focus on pure strategies in dynamic auctions, but allow for mixing
by bidders in static auctions. A strategy of the advisor i is a measurable
mapping mi : [v, v]×H → M from the type of advisor and histories into a
message sent after each history. A strategy of the bidder is a mapping ai :
H×M → A from the history and current message into the action chosen by
the bidder. In static auctions, A consists of all possible mixtures over bids.
In the English/Dutch auction, A = {0, 1} consists of a decision to quit/stop
the auction or continue. Posterior belief µi : H × M → ∆([v, v]))N is a
measurable mapping from histories and current messages into the posterior
distribution over types of all advisors. We denote by µij the posterior belief
of bidder i about the value of bidder j. For i 6= j, µij also represents
posterior belief of advisor i about bidder j’s value.

When the running price in the English auction changes continuously,
the outcome of the auction may be indeterminate, which is a common prob-
lem of formulating games in continuous time (see Simon and Stinchcombe
(1989)). For example, consider the following strategy profile. Each advisor
sends message “quit” when p = v + b and each bidder quits immediately
after she receives message “quit”. If there is no such message and there
are N − 1 bidders remaining in the game, the bidder does not wait for a
recommendation and quits immediately, but she continues to wait for the
advisor’s recommendation for any other number of remaining bidders. Take
any two bidders i and i′ and consider an outcome in which bidders i and i′

quit at some price p and other bidders remain in the auction. Such outcome
is consistent with our strategy profile for any choice of i and i′ which leads
to indeterminacy when N ≥ 3. Intuitively, once a first bidder quits, there is
an indeterminacy about who will be the second bidder to quit.

To circumvent this indeterminacy, we focus on equilibria in stationary
strategies in the English auction, i.e. strategies that condition only on the
running price and messages for bidders and types for advisors, but not on the
number of remaining bidders. When all players follow stationary strategies
and at most one player deviates, the outcome of the auction is determined
unambiguously. While stationary strategies are very restrictive in many
environments, such as auctions with interdependent values, with indepen-
dent values, the number of remaining bidders is not informative about the
bidder’s value and can only affect her payoff through the distribution over
auction outcomes. As we will show further, in many instances, this effect of
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the number of bidders (and hence, the way we resolve the indeterminacy) is
not important for the equilibrium analysis, so the restriction to stationary
equilibria is without loss of generality.

Generally, an auction format is a mapping from bidders’ actions into the
probability of allocation for each bidder and the transfer from each bidder:
η : AN → [0, 1]N × RN . We refer to the distribution over probabilities of
allocation and transfers given auction format η and strategies mi, i ∈ N and
ai, i ∈ N as the outcome of strategies mi, i ∈ N and ai, i ∈ N in auction
η. The equilibrium concept is the perfect Bayesian equilibrium defined as
follows.

Definition 1. Stationary strategies mi, i ∈ N and ai, i ∈ N and beliefs
µi, i ∈ N constitute a stationary equilibrium, if and only if the following
hold:

1. strategies are rational given players’ beliefs at any history;

2. beliefs are updated by Bayes rule whenever possible;

3. beliefs of bidders i and i′ about bidder j 6= i, i′ coincide at any history;

4. beliefs of bidder i about bidders j and j′ are independent at every
history;

5. beliefs of bidders do not change after their own actions.

Conditions 1-5 are standard conditions of the perfect Bayesian equilib-
rium (see Fudenberg and Tirole (1991)). Since all bidders are symmetric, we
focus on symmetric equilibria in which strategies mi and ai do not depend
on i and we suppress index i in the notation. We write µp for a posterior
belief of the bidder about her value at stage p.7

We restrict attention to equilibria in which the advisor gives a real-time
action recommendation to the bidder defined as follows.

Definition 2. An equilibrium in the dynamic auction is in online strategies
if m : [v, v] ×H → A and a(h, ã) = ã for all h ∈ H and all ã in the image
of m(·, h).

We want to stress that action recommendations in online strategies hap-
pen in real time. In particular, the strategy m : [v, v] → AH in which
the advisor makes her recommendation in the beginning of the game is not
an online strategy. The following lemma states that it is without loss of
generality to consider equilibria in online strategies.

7Corresponding history is omitted from the notation.
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Lemma 1. For any equilibrium of the static/dynamic auction there is an-
other outcome-equivalent equilibrium in online strategies.

Lemma 1 states that any equilibrium in which the advisor gradually re-
veals information over time is outcome-equivalent to an equilibrium in which
all relevant information is revealed right before the bidder takes an action.
The proof builds on a simple fact that if the action is optimal for a deci-
sion maker in every state of the world, then it is an optimal action without
conditioning on the state. For any history h, let χ(h) be the history which
contains only actions of bidders and the seller, but does not contain any
messages of the bidder. For any equilibrium strategies m and a, we specify
corresponding online strategies, in which the advisor makes an action rec-
ommendation a(h,m(v, h)) after any history χ(h). Under online strategies,
the bidder has cruder information about her value, as she can extract ad-
ditional information about her value from the history of messages and the
current message. However, even given this additional information, she op-
timally chooses action a(h,m(v, h)). Hence, it is optimal for her to choose
action a(h,m(v, h)) even without knowing a particular history of messages
and current message. Moreover, the advisor can induce the same set of ac-
tions using online strategies as in the original equilibrium and so, she does
not have incentives to deviate from new strategies.8

Equilibrium Refinement There is in general a multiplicity of equilibria
both in cheap-talk and auction games. We introduce an equilibrium refine-
ment in order to make meaningful comparison of auction formats. Without
such a refinement, one can immediately see that completely uninformative
messages (m does not vary with v) are always consistent with an equilibrium
irrespective of the auction format.

First, we assume that bidders play weakly dominant strategies if such
strategies exist. This is a standard refinement in the auction literature and
it guarantees in particular, that in the second-price auction bidders submit
their expected values.

Second, we impose the NITS (no incentive to separate) condition adapted
from Chen, Kartik, and Sobel (2008). Define the weakest type vw of advisor
as follows:

vw =

{
v for b > 0,

v for b < 0.

8In Appendix, we specify online strategies off-path that guarantee that the advisor
cannot induce more actions.
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If the bidder asked value v directly and thought that the advisor tells the
truth, then when b > 0 all types of the advisor would tell a value higher
than v to induce a higher probability of winning. In particular, nobody
would prefer to tell v. Symmetrically, when b < 0, all types of the advisor
would bias their reports downwards and nobody would prefer to tell v. In
this sense, it is natural to think of type vw as weak.

Similarly, we can define the weakest types at every stage of the game.
Let vpw be the weakest type of advisor on the equilibrium path at stage p:

vpw =

{
inf{v|v ∈ supp(µp)} for b > 0,

sup{v|v ∈ supp(µp)} for b < 0.

For b > 0, vpw is the lowest type remaining in the game at stage p, and for
b < 0, vpw is the highest type remaining in the game at stage p.

Chen, Kartik and Sobel (2008) introduce the NITS condition in cheap-
talk games that requires that weak types can always separate themselves
from the rest of the types, and hence, in equilibrium they should get a payoff
no lower than the utility they receive from such separation. We additionally
require that this condition holds at every stage of the game.

Definition 3. An equilibrium satisfies the NITS condition if for any p,
type vpw of the advisor weakly prefers her equilibrium strategy to the action
optimally chosen by the bidder at stage p who knows that her value is vpw.

Chen, Kartik and Sobel (2008) shows that NITS can be justified by
perturbations of the cheap-talk game with non-strategic players and costs
of lying.

We refer to an equilibrium of the static auction as the most informative if
it induces the largest number of actions.9 Call an equilibrium of any auction
babbling, if it induces a single action. We show that the most informative
equilibrium satisfies NITS and NITS may rule out the babbling equilibrium.
However, NITS need not select a unique equilibrium. For our results, the
NITS condition is the key property of equilibria and we do not require a
selection beyond NITS.

2.1 Example

We next illustrate main results of the paper and intuition for them with a
simple example. Suppose that advisors are biased toward overbidding, i.e.

9There is a slight abuse of terminology here, as it is not guaranteed that there is a
unique equilibrium with the largest number of actions. Our results hold for any selection
among these equilibria.
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ωk−1 ωkmk mk+1 ωk+1

Bid mk Win Tie Loose

Bid mk+1 Win Win T ie

Loose

Loose

Figure 1: Thresholds in the partition equilibrium of the second-price auctions. Type
ωk is indifferent between pooling with types in [ωk−1, ωk) by bidding mk and types in
[ωk, ωk+1) by bidding mk+1. We depict types against which strategies mk and mk+1

win, loose or tie. The difference between strategies mk and mk+1 is that mk+1 wins
for sure against types in [ωk−1, ωk) and ties against types in [ωk−1, ωk), while mk

ties with types in [ωk−1, ωk) and looses against types in [ωk−1, ωk).

b > 0. There are two bidders (N = 2) and F is exponential with parameter
λ, i.e. F (v) = 1 − e−λv for all v ≥ 0. As we will see the exponential
distribution is in some sense a knife-edge case.

We start with the characterization of the most informative equilibrium of
the second-price auction that will be shown later to always satisfy the NITS
condition. The unique equilibrium in weakly dominant strategies in the
second-price auction is that bidder i submits the bid equal to her expected
value. Hence, by Lemma 1 we can restrict attention to messages which tell
bidders their expected values, i.e. m = E[v|m]. The following propositions
characterizes the most informative equilibria of the second-price auction.

Proposition 1. Under F exponential and b > 0, the following strate-
gies constitute the most informative equilibrium of the second-price auction.
There exists a sequence (ωk)

K
k=0 with ω0 = 0 and K <∞ such that

• for all k = 1, . . . ,K < ∞, the advisor with type v ∈ [ωk−1, ωk) sends
message mk = E[v|v ∈ [ωk−1, ωk)];

• the bidder submits a bid equal to the message received.

For 1
λ > b > 0, (ωk)

K
k=0 are given by the following recursion

ωk−1e
−λωk−1 − ωk+1e

−λωk+1

e−λωk−1 − e−λωk+1
= ωk + b− 1

λ

with the terminal condition ωK+1 = ∞ where K is the maximal length of
recursion possible so that ω1 > 0. For b ≥ 1

λ , there is only a babbling
equilibrium, i.e. ω1 =∞.
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Proof. Theorem 1 shows generally that advisor’s strategy in the static auc-
tion takes a partition form as described in the proposition. Here, we simply
derive this strategy. Given the exponential assumption, we can compute
messages mk explicitly as functions of thresholds ωk−1 and ωk

mk = E [v|v ∈ [ωk−1, ωk)] =
1

λ
+
ωk−1e

−λωk−1 − ωke−λωk
e−λωk−1 − e−λωk

. (3)

Threshold types ωk of advisor should be indifferent between sending mes-
sages mk and mk+1. The probability of winning against types below ωk−1
and corresponding prices paid are the same for messages mk and mk+1 (see
Figure 1) The only difference is when the opponent’s type is above ωk−1.
When the advisor sends message mk, she may tie with the opponent sending
message mk. When the advisor sends message mk+1, she wins against bid
mk for sure, but can tie with an opponent submitting mk+1. For indiffer-
ence of type ωk, the benefits of strategy mk+1 from increasing the chance
of winning against types in [ωk−1, ωk) from 1

2 to 1 and paying mk should
be equal to the costs from paying higher price mk+1 in case the opponent’s
type is in [ωk−1, ωk) and the bidder wins the tie:

1

2
P(v ∈ [ωk−1, ωk))(ωk+b−mk) = −1

2
P(v ∈ [ωk, ωk+1))(ωk+b−mk+1), (4)

which implies the following equation

−1

2

(
e−λωk−1 − e−λωk

)
(ωk + b−mk) =

1

2

(
e−λωk − e−λωk+1

)
(ωk + b−mk+1) .

Together with (3) we get the following recursive equation

ωk−1e
−λωk−1 − ωk+1e

−λωk+1

e−λωk−1 − e−λωk+1
= ωk + b− 1

λ
,

where ω0 = 0 and ωk is an increasing sequence. Whenever b ≥ 1
λ , there is no

solution to the recursion. In this case, the unique equilibrium is a babbling
equilibrium.

Suppose b < 1
λ . Denoting by xk ≡ ωk−ωk−1, we can rewrite the recursion

in terms of xk+1 and xk as follows

xk+1 + xk =

(
1

λ
− b− xk

)(
eλ(xk+xk+1) − 1

)
. (5)

The requirement that ωk is increasing translates into xk being positive.
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xk

xk+1

xk+1 = xk

xk+1 = ψ(xk)

xK−1xK−2x2x1 xK = 1
λ − b

Figure 2: Recursion xk+1 = ψ(xk) for 1
λ > b > 0.

Let ψ be the function that for any xk gives a value of xk+1 = ψ(xk)
such that xk and xk+1 satisfy recursion (5). In Appendix, we show that
function ψ is well defined, and verify that f ′(x) ≥ 1 for x ∈

(
0, 1λ − b

]
,

limx→0 ψ(x) > 0, and limx→ 1
λ
−b ψ(x) =∞. Therefore, ψ(·) is strictly above

the diagonal line for b > 0. The graph of f for the case 1
λ > b > 0 is depicted

in Figure 2.
It is necessary that xK+1 = ∞ for some K (otherwise, eventually xk

becomes negative) and we can construct any equilibrium working backwards:
xK = 1

λ − b, xK−1 = ψ−1(xK) and so on until we reach x1. Then the
most informative equilibrium corresponds to K such that ψ−1(x1) ≤ 0.
Since limx→0 ψ(x) > 0, K is finite. From sequence (xk)

K
k=1 we reconstruct

threshold types ωk = ωk−1 +xk and ω0 = 0, which completes the derivation.

In the next section, we show that all equilibria have the partition form
and in fact recursion (5) allows us to construct any such equilibrium in our
example.

We next characterize equilibria of the English auction and show that
communication is perfect when 0 < b ≤ 1

λ .
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Proposition 2. Suppose 0 < b 6= 1
λ . There the unique stationary equilib-

rium of the English auction satisfying NITS condition is characterized as
follows:

• equilibrium is fully informative when b ∈
[
0, 1λ

)
and the advisor of

type v sends message “quit” when p = v+ b and the bidder follows the
recommendation of the advisor;

• babbling when b ∈
(
1
λ ,∞

)
and the bidder ignores messages from the

advisor and quits when the running price reaches 1
λ .

When b = 1
λ , there is a continuum of equilibria indexed by v∗ ∈ [0,∞] in

which the advisor of type v sends message “quit” when p = v + b and the
bidder follows the recommendation of the advisor until the running price
reaches v∗ + b.

Proof. If the bidder follows the recommendation, then the strategy to quit
when p = v+b is optimal for the advisor, as it is a weakly dominant strategy
in the English auction where the advisor decides when to quit. When the
bidder gets message “quit”, p > v. Since p is increasing over time, it is
optimal for the bidder to quit immediately. To finish the proof, we show
that the bidder does not want to quit earlier. Let vp ≡ p− b for all p. The
expected utility of the bidder i at time t from following the recommendation
of the advisor is

V (vp) = E [(v − v̂ − b)1{v > v̂}|v, v̂ > vp]

=
1

2
(E [max{v, v̂}|v, v̂ > vp]− E [min{v, v̂}|v, v̂ > vp]− b)

=
1

2
(E [max{v, v̂}]− E [min{v, v̂}]− b)

=
1

2

(
1

λ
− b
)
,

where the first equality is by the symmetry of the auction, the second equal-
ity is by the memoryless property of the exponential distribution, and the
last equality is by E [max{vi, vj}] = 3

2λ and E [min{vi, vj}] = 1
2λ . Hence,

when 0 < b ≤ 1
λ , the bidder prefers to wait for a recommendation from the

advisor rather than quit earlier.

The dynamic communication strategy of the advisor attains perfect in-
formation transmission in the English auction. When the bidder learns v,
she prefers a lower bid than the advisor. However, in the English auction
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there is a lower bound on bids equal to the running price that increases
over time. This way if the advisor reveals v late in the auction, then she
can ensure that the bidder will submit advisor’s optimal bid. This is not
possible in the second-price auction where the advisor optimally adds noise
to her message.

When the support of values is finite, there is necessarily a pooling of types
at the top. At some stage, the uncertainty about the value is sufficiently
reduced and the bidder learns that she will likely overpay for the asset if she
wins. Hence, the bidder prefers to quit immediately and does not give the
advisor the opportunity to perfectly reveal her type in subsequent stages.
This possibility is not present in our example because of the memory-less
property of the exponential distribution.10

One can immediately see that the equilibrium in Proposition 2 satisfies
NITS. At any stage p, the lowest type of the advisor sends the recommenda-
tion to quit. This is also an optimal action of the bidder who has the lowest
value at stage p.

In general, the equilibrium of the second-price auction also constitutes
an equilibrium of the English auction. We can specify that all communi-
cation happens at the initial bidding stage where bidders learn their values
mk. However, this equilibrium does not satisfy the NITS condition in the
English auction. Indeed, consider stage p = mk+1. The lowest remaining
type ωk satisfies (4) and so, gets a negative utility from remaining in the
auction, while she gets zero if she persuades the bidder that her type is ωk
and the bidder optimally quits immediately. As we will show later this is a
general phenomenon. All equilibria of static auctions have a partition struc-
ture, while all equilibria of the English auction have at least partial perfect
information transmission.

We next show that the constructed equilibrium of the English auction
dominates the equilibrium of the second-price auction in terms of efficiency
and revenue. First, the English auction is efficient for b ∈

(
0, 1λ

]
. In the

second-price auction, since the communication is imperfect, ties arise in the
auction with positive probability and lead to inefficient allocation. Observe
that for b = 1

λ , there is an equilibrium of the English auction with perfect
communication, but all equilibria are babbling equilibria in the second-price
auction. In Section 4, we show that this is a general phenomenon and
informative communication can be sustained for a larger set of b in the

10Later, we will show that this is also the case for Pareto distribution. In general, one
needs a fat tail of the distribution to guarantee that at every stage the probability of high
values relative to the current running price is high.
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Figure 3: Efficiency and revenue comparison for b > 0: the English auction (solid
line) and the second-price auction (dashed line). Bias b is plotted on the horizontal
axis.

English auction. We also give an example of Pareto distribution, for which
for a non-degenerate interval of b’s all equilibria of the second-price auction
are babbling, while there is an equilibrium with perfect communication in
the English auction.

To explore these effect quantitatively let λ = 1
5 . The left panel of Figure

3 depicts the expected value of the winner in the auction which reflects the
efficiency of different auction formats. Because of the perfect information
transmission, the English auction is efficient for b ≤ 1

λ and so its efficiency
does not vary with b on this interval. The gap in efficiency between the
English auction and the second-price auction increases as b increases up
to 1

λ . This happens because communication in the second-price auction
becomes less and less informative as the bias increases.

To compare the revenue, we can use Myerson (1981), to write the revenue
from different auction formats as follows

2

(
E[ϕ(v)(1{m(v) > m(v̂)}+

1

2
1{m(v) = m(v̂)})]− UA(0)

)
(6)

where ϕ(v) = v + b − 1
λ is the virtual valuation of advisor with value v,

UA(0) is the expected utility of the advisor with type 0 and the suppress
the notation for history in strategy m. We claim that (6) is higher in the
English auctions. Since ϕ is increasing and the English auction is more
efficient than the second-price auction, the first term in (6) is higher for the
English auction (and strictly higher for b ≤ 1

λ). Hence, we need to show
that UA(0) is lower in the English auction.
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In the English auction, UA(0) = 0 as the type 0 is the first to quit the auc-
tion and so, she wins with probability 0. In general, it is not true that UA(0)
is non-negative in the second-price auction. As a simple example, consider
the babbling equilibrium. The type 0 wins the auction with probability
1
2 , as both bidders ignore messages from their advisors and bid their ex-
pected value 1

λ . Hence, in the babbling equilibrium, UA(0) = 1
2

(
b− 1

λ

)
< 0

for 0 < b < 1
λ . The key observation is that the babbling equilibrium fails

the NITS condition. At the same time, the most informative equilibrium
of the second-price auction satisfies the NITS condition which implies that
UA(0) ≥ 0 in this equilibrium and so, the revenue is higher in the English
auction.

In the right panel of Figure 3, we depict the revenue of the seller for
different auction formats for λ = 1

5 . The gap in efficiency and revenue
between two auctions increases with the size of the bias for b < 1

λ . Notice
the discontinuity with respect to b. If b is greater than 1

λ , then all equilibria
are babbling and the seller gets revenue 1

λ . That is, the seller benefits from
having the bias only when this bias is not too large.

3 Static Auctions

When the interests of bidders and advisors are aligned (b = 0) and commu-
nication is perfect, the revenue equivalence (Myerson (1981), and Riley and
Samuelson (1981)) states that the expected revenue does not depend on the
auction format as long as the equilibrium allocation is efficient and the lowest
type gets zero surplus. This section shows that in static auctions a similar
result obtains: any equilibrium of any static auction, in which the asset is
allocated to the bidder with the highest expected value, brings the same ex-
pected revenue and generates the same communication as some equilibrium
of the second price auction. We characterize information transmission in any
efficient equilibrium of any static auction and show that there is necessarily
an efficiency loss due to imperfect communication. In the next sections, we
show that dynamic auctions are quite different from the second-price auction
both in terms of information transmission and generated revenue.

In any static auction, after bidders get messages, they update their in-
formation about their values. A type θi ≡ E[vi|m̃i] ∈ [v, v] of bidder i is her
expected value conditional on message m̃i. Denote by Fθ the distribution
of types of each bidder generated through communication in equilibrium.
Notice that if the communication is imperfect, it can that the support of Fθ
is a subset of [v, v]. In fact, in static auctions that we consider below, the
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support of Fθ is always finite. We extend the strategy a to types that are as-
signed probability zero under Fθ by simply specifying that they best respond
to the the strategies of opponents.11 Given equilibrium bidding strategy a,
let qi(θ1, . . . , θN ) be the expected probability of winning for bidder i given
types of all bidders. In the analysis of static auctions, we focus on auctions
with efficient equilibria, in which type v gets utility zero and the following
holds:

qi(θ1, . . . , θN ) =

{
1
n , if θi ∈ max{θ1, . . . , θN} and n ≡ |{j : θj = max{θ1, . . . , θN}| ,
0, otherwise.

for all i = 1, . . . , N and all (θ1, . . . , θN ) ∈ [v, v]N . Such equilibria are efficient
conditional on the information of bidders, but may fail to be efficient condi-
tional on the information of advisors. An example of an efficient equilibrium
is the truthful equilibrium of the second price auction. The equilibrium of
the first price auction is not an efficient equilibrium if after the communica-
tion, only a discrete set of types of bidder is possible. Indeed, Riley (1989)
shows that bidders use mixed strategies, and one can check that types of
bidders that are not realized (are probability zero under Fθ) do not have
a well-defined best-response and equilibruim cannot be extended to those
types. However, we can slightly adjust the rules of the first price auction
to both guarantee the existence of the extended equilibrium as well as that
such equilibrium is an efficient equilibrium. Specify, that if there are ties,
then tied bidders play the second price auction. This parallels the idea of
Maskin and Riley (2000) to guarantee existence of equilibria in first price
auctions by breaking ties via the second price auction. One can check that
his guarantees that the highest type wins the auction and the best response
of types that are not realized is well defined.

The next lemma states a version of the revenue-equivalence for static
auctions with communication.

Lemma 2 (Revenue Equivalence). Consider an efficient equilibrium of
some static auction. There exists an equilibrium of the second price auc-
tion which generates the same expected revenue and the same distribution of
bidders’ types Fθ.

In this paper, we are interested in whether the auction format affects
information transmission and through it the revenue and efficiency. Lemma
2 tells us that it does not if one restricts attention to static auctions with the

11Since these types have probability zero under Fθ, the extended strategy still constitutes
an equilibrium.
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same allocation rule and rent to the lowest type. For example, one cannot
expect to generate a better information transmission or higher revenue by
switching from the second-price auction to the first-price auction or all-pay
auction.

Lemma 2 provides a useful analytic tool. The second-price auctions are
easier to analyze as they allow for a simple bidding equilibrium in weakly
dominant strategies. At the same time, the equilibrium of the first-price
auction with discrete types of bidders requires mixing by bidders. As we
will see next, discrete types naturally arise in the communication between
the bidder and the advisor.

Lemma 2 states that to characterize equilibria of a rich class of static
auctions and compare their efficiency and revenue to dynamic auctions, one
can simply analyze equilibria of the second-price auction. The next theo-
rem uses this approach to characterize the information transmission in all
efficient direct mechanisms

Theorem 1. Suppose v < ∞. The communication strategy in any effi-
cient equilibrium of any static auction is characterized as follows. There
exists a positive integer K such that for all 1 ≤ K ≤ K, there exists an
equilibrium in which types of advisor v ∈ [ωk−1, ωk) induce the same ac-
tion of the bidder and signal to the bidder that bidder’s value is equal to
mk = E[v|v ∈ [ωk−1, ωk)]. Thresholds (ωk)

K
k=1 are determined as follows:12

G(ωk−1, ωk)(1−Λk)(ωk+b−mk)+G(ωk, ωk+1)Λk+1(ωk+b−mk+1) = 0. (7)

where

Λk =
1

G(ωk−1, ωk)

N−1∑
n=1

(
N − 1

n

)
F (ωk−1, ωk)

nF (ωk−1)
N−1−n 1

n+ 1
.

Theorem 1 shows that in static auctions, the misalignment of interests
on the bidder’s side results into a coarsening of the information transmitted
from the advisor to the bidder. In particular, this implies that with positive
probability the object is allocated inefficiently when b 6= 0. Theorem 1 is
a counter-part of Theorem 1 in Crawford and Sobel (1982). However, our
result does not follow from their result. In our game, the cheap-talk game
is endogenous. Each bidder and advisor play a cheap-talk game in which
actions are bids. The attractiveness of each bid for the bidder and advisor is
endogenous and depends on how opponents bid in the auction. The bidding

12Here and further, when a random variable v is distributed according to F , we use a
short-hand notation F (a, b) for P(v ∈ [a, b]) = F (b)− F (a).
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behavior of opponents depends on the information communicated between
opponent bidders and their advisors. Theorem 1 shows that main insights
from the cheap-talk literature are still true even when the cheap-talk game
is endogenously determined in equilibrium by the communication between
opponents and their advisors.

Equation (7) reflects the incentive of threshold types ωk in the second-
price auction. Notice that Λk is the expected probability of winning a tie
when the bidder submits bid mk. Type ωk is indifferent between sending
message mk and mk+1. In the second-price auction, the bidder pays the
second highest bid. Therefore, strategies bring different payoffs only when
the bidder faces a highest opponent of type in the interval [ωk−1, ωk) or in
the interval [ωk, ωk+1). The first term in equation (7) represents the benefit
from submitting a higher bid. A higher bid mk+1 increases the probability
of winning a tie from Λk to 1. The second term in equation (7) is the
cost associated with a higher bid. Sending message mk+1, the advisor risks
winning the auction at price mk+1. Since the costs and the benefits, should
be equalized for threshold types, the advisor with type ωk prefers not to buy
at a higher price mk+1.

It will be useful to derive the necessary condition for informative com-
munication in static auctions.

Corollary 1. A necessary condition for a non-babbling equilibrium is

b ≤ Ev − v.

It is also sufficient when N = 2.

Chen, Kartik, and Sobel (2008) shows that in the standard cheap-talk
model, NITS always exists and selects equilibria that are sufficiently in-
formative (induce a high number of actions). In particular, under some
conditions, NITS selects the most informative equilibrium of the cheap-talk.
We next verify that this result is also true in our model.

Theorem 2. The most informative equilibrium of the second-price auction
satisfies the NITS condition.

The proof of Lemma 2 adapts the argument in Chen et al. (2008) show-
ing that if there is an equilibrium in the cheap-talk game with K actions
induced in equilibrium that fails to satisfy NITS, then there is also an equi-
librium with K + 1 induced actions. Again we cannot apply their result
directly, as the cheap-talk game between the bidder and the advisor is en-
dogenous. Their result implies that in our model for a fixed equilibrium,
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we can construct a different cheap-talk equilibrium for one bidder and her
advisor that is more informative. However, this need not be an equilibrium
of the model, as once we change the cheap-talk equilibrium of bidders, this
changes the cheap-talk game played and hence, this will not be an equilib-
rium of the model.

4 English Auction

In this section, we characterize stationary equilibria of the English auction
satisfying the NITS condition when advisors are biased toward overbidding.
Equilibirum communication in the English auction takes the following form:
types below some v∗ completely separate over time, while types above v∗

pool and induce the same bid. As a result, the English auction induces
better information transmission than any static auction. We show that the
English auction is preferred to any static auction both in terms of efficiency
and revenue.

4.1 Characterization

This subsection shows that all stationary equilibria of the English auction
satisfying NITS are in delegation strategies defined as follows.

Definition 4. Strategies of players are delegation strategies if for some v∗:

• the advisor sends message “quit” when the running price equals v+ b;

• the bidder quits if either the running price is above v∗+b or she receives
message “quit”.

If the advisor is in control of bids, then it is a weakly dominant strategy
for her to quit when p = v + b. Hence, in delegation strategies, the bidder
essentially delegates bidding to the advisor with the restriction that the
advisor quits before the running price exceeds v∗ + b.

An equilibrium in delegation strategies always exists. The advisor in-
duces the bidder to quit either at her optimal price v + b if v ≤ v∗ or at
price v∗ + b if v > v∗, which is still better than quitting at any price below
v∗ + b. Hence, the communication strategy is optimal. On the other hand,
message “quit” at price p implies that the bidder’s value is p − b < p and
the bidder prefers to quit immediately and get utility zero, rather than wait
longer and face the risk of winning the auction at a price that exceeds her
value. Finally, the cutoff v∗ can be chosen so that at stage p∗ = v∗ + b
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the option value to the bidder of staying in the auction and waiting for the
advisor’s recommendation hits zero for the first time.

When players use delegation strategies, the full revelation below v∗ is
possible because of the dynamic nature of the English auction. The advisor
reveals the value to the bidder only when the running price equals her opti-
mal quitting price. Because of the overbidding bias, the bidder gets negative
utility if she wins at the current or any future running price. Therefore, the
bidder prefers to quit immediately after getting the recommendation to quit.
This simple mechanism ensures perfect communication for types below v∗.

However, there are also other stationary equilibria in the English auc-
tion. In particular, for any equilibrium of the second price auction, there
exists an outcome-equivalent stationary equilibrium of the English auction.
To construct such equilibrium, specify that types in [ωk−1, ωk) that send
message mk in the second-price auction, in the English auction, wait until
the running price reaches mk and send message “quit” then and the bidder
follows their recommendations. The next theorem is the main characteriza-
tion result and it shows that the NITS condition rules out these equilibria.

Theorem 3. Suppose b > 0 and v ≤ ∞. Any stationary equilibrium in the
English auction that satisfies the NITS condition is in delegation strategies
with cutoff v∗ characterized as follows:

1. v∗ satisfies
v∗ + b = E[v|v ≥ v∗] (8)

when v < v∗ <∞, and v∗ + b ≥ E[v|v ≥ v∗] when v∗ = v.

2. Let v∗0 = v, v∗K+1 = v and v∗1 < . . . v∗k < · · · < v∗K be all solutions to
equation (8). Then v∗equals to some v∗k ∈ {v∗0, . . . , v∗K+1} such that for
all v∗j , j < k, and all n = 1, . . . , N − 1:

ˆ v∗k

v∗j

(1− F (s))(E[v|v > s]− s− b)dGn(s) ≥ 0, (9)

where Gn is the distribution of the maximum of n random variables
independently, identically distributed according to F .

Theorem 3 shows that equilibria of the English auction are quite different
from equilibria in static auctions: types at the bottom perfectly reveals
themselves over time, while types at the top pool with each other. The NITS
condition effective rules out partition equilibria corresponding to equilibria
of the second price auction. To see this, consider an equilibrium described in
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Theorem 1. In the beginning of the game, type ωk is indifferent between mk

andmk+1. By the recursion (7), ωk+b−mk+1 < 0 and so, when price exceeds
mk, type ωk strictly prefers to separate from other types contradicting NITS.
The intuition is that in the beginning of the game type ωk is willing to
submit price mk+1 as it increases her probability of winning against types
in [ωk−1, ωk), despite the risk of winning at a higher price mk+1. However,
after the running price exceeds mk, the benefits of submitting higher bid
disappear, and only costs remain. Hence, at this stage, type ωk would
prefer to reveal herself and this way induce the bidder to quit immediately
and avoid winning the auction which contradicts the NITS condition.

Conditions (8) and (9) on v∗ reflect the option value to the bidder of
following the advisor’s recommendation. The bidder waits for the recom-
mendation as long as this option value is positive. This option value can
be calculated as follows. Suppose that the current running price is p, the
lowest remaining type is vp and there are n other bidders remaining in the
auction. The bidder wins the auction if for some running price s+ b > p, it
holds v > s = v̂. Then her expected payoff is E[v|v > s]− s− b. Integrating
over all s, we get that the option value to the bidder is equal to

1

(1− F (vp))nF (vp)N−1−n

ˆ v∗

vp

(1−F (s))(E[v|v > s]−s−b)dGn(s) ≥ 0. (10)

Condition (8) ensures that the bidder does not want to stop listening to the
advisor slightly earlier or later. If v∗ + b < E[v|v ≥ v∗], then the bidder
would prefer to quit slightly later, while she would prefer to quit slightly
earlier if v∗ + b < E[v|v ≥ v∗]. Condition (9) ensures that the option value
stays positive up until p = v∗ + b.

For many commonly-used parametric families of distributions this con-
ditions on v∗ can be further simplified. Introduce the mean residual lifetime
function

MRL(s) = E[v|v ≥ s]− s,

which is well studied in statistics (see Bagnoli and Bergstrom (2005)). Many
commonly-used distributions have monotone MRL. Function MRL is de-
creasing for such distribution as normal, logistic, extreme value, Weibull,
gamma, power distribution with power greater than one, as well as their
truncations from above or below.13 For Pareto and log-normal distribution

13Bagnoli and Bergstrom (2005) shows that log-concavity of density f or log-concavity
of reliability function 1−F , which are preserved by truncations, are sufficient for a weakly
decreasing MRL.
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truncated from below at 1, MRL increasing.14 For exponential distribution,
MRL is constant.

We next characterize v∗ for distributions with monotoneMRL that cover
most of the commonly-used distributions. After that we will return to the
general characterization in Theorem 3 to discuss how equilibria look like
for general distributions. We have already considered the exponential dis-
tribution in Section 2 which is a knife-edge case between increasing and
decreasing MRL. The next corollary covers distributions with decreasing
MRL.

Corollary 2. Suppose that v ≤ ∞ and MRL is decreasing. Then for all b >
0 except b = Ev−v, the unique stationary equilibrium of the English auction
satisfying the NITS condition is in delegation strategies. The equilibrium is
informative if and only if Ev ≥ v + b.

Figure 4a illustrates Corollary 2. When MRL is decreasing, there is v∗

solving (8) if and only if Ev − v, and it is unique whenever it exist. Since
MRL crosses b from above, E[v|v ≥ s]− s− b is positive for all s < v∗ and
so, the option value (10) is positive for all vp < v∗.

A new feature that was not present in the exponential example is that
there is always pooling at the top, i.e. v∗ < v.15 The bidder does not wait
until all types of the advisor reveal themselves and at some point quits the
auction before learning perfectly her value. Over the course of the auction,
the bidder learns information about her value even if the advisor does not
send any messages. The fact that there was no message so far indicates that
her value cannot be lower than the running price minus bias b. When v is
finite, after a certain time, the bidder knows that the value is close to v.
If she wins the auction, she will pay a price close to v + b and hence, it is
very likely that she will overpay for the good. As a result, the bidder prefers
to quit earlier and there is an interval of values at the top that she never
learns.

Condition in Corollary 2 for informative equilibria is the same as the
necessary condition for informative equilibria for static auctions (see Corol-
lary 1). In particular, when N = 2, there is an informative equilibrium
in the English auction if and only if there is an informative equilibrium in

14An (1998) shows that log-convexity of the density is sufficient for a weakly increasing
MRL.

15Hence, if we consider a model with an exponential distribution truncated at the top
at some v and let v go to infinity, then in equilibria of the English auction, there will be
pooling at the top for each finite v, but v∗ will go to infinity as v → ∞ and in the limit,
pooling will be degenerate and happen with probability zero.
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Figure 4: Graph of function MRL.

the static auction. Moreover, as b increases, the set of types that pool in
equilibrium increases and equilibria become less informative. This compar-
ative statics is different for distributions with increasing MRL as the next
corollary shows.

Corollary 3. Suppose b > 0, MRL is increasing on [v,∞), and let b be the
largest b for which

ˆ ∞
v

(1− F (s))(E[v|v > s]− s− b)dGn(s) ≥ 0, (11)

for all n = 1, . . . , N−1. Then all stationary equilibria of the English auction
satisfying the NITS condition are in delegation strategies with v∗ character-
ized as follows:

• v∗ =∞ when b ∈ [0,Ev − v);

• v∗ = v or v∗ =∞ when b ∈ [Ev − v, b] ;

• v∗ = v when b ∈ (b,∞).

Figure 4b illustrates Corollary 2. When MRL is increasing, there is at
most one solution ṽ to (8), however, it cannot be an equilibrium cutoff v∗.
The reason is that since E[v|v ≥ s] − s crosses b from below at ṽ, if v∗ = ṽ
the option value to the bidder of waiting for advisor’s recommendation is
negative for v < ṽ. Therefore, the equilibrium is either fully separating
(v∗ =∞) or babbling (v∗ = 0).16 Intuitively, in the beginning of the auction,

16Observe that it is necessary for MRL to be increasing that v =∞. Indeed, if v <∞,
then lims→v E[v|v > s]− s = 0 < Ev − v.
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winning is a bad news, as the bidder gets negative utility if she wins. As the
auction continues, eventually, the bidder gets positive utility from winning,
as E[v|v ≥ vp] increases faster than the price vp + b that the bidder pays in
case she wins. The bidder is willing to follow the advice of the bidder if the
benefits of winning later in the auction outweigh the risk of winning early
in the auction. Hence, the condition on b: when b is sufficiently low, there is
a fully informative equilibrium. As b increases, at some point, the babbling
equilibrium is possible, and a for sufficiently high b, babbling equilibrium is
the only equilibrium. Notice that the babbling equilibrium is an equilibrium
only for sufficiently large b, for which the lowest type v gets positive utility
1
N (v + b− Ev) from winning and so, the NITS condition is satisfied.

Corollary 3 allows the existence of non-babbling equilibria even when
b > Ev − v and all equilibia of the static auctions are babbling as long as

(11) holds. To give a concrete example, suppose N = 2 and F (v) = 1−
(
1
v

)2
is a Pareto distribution on [1,∞). We have E[v]−v = 1 and so all equilibria
in static auctions are babbling whenever b > 1. We can compute (11) as
follows17ˆ ∞

1

2 (v̂ − b)
v̂5

dv̂ = 2

ˆ ∞
1

d

(
1

v̂4
− b

v̂5

)
= 2

ˆ ∞
1

d

(
b

4v̂4
− 1

3v̂3

)
=

4− 3b

6
,

which is positive whenever b < 4
3 . Hence, for b ∈

(
1, 43
)

there exists an
informative equilibrium, even though all equilibria of static auctions are
babbling. The reason is that the term E[v|v > v∗] = 2v∗ grows faster than
v∗ + b so that for b < 4

3 , (11) holds.
Let us now return to the equilibria of the English auction for general

distributions characterized in Theorem 3. For decreasing MRL, there is a
unique candidate for v∗ corresponding to the unique solution to (8), while
for increasing MRL, there are two candidates v∗ = v and v∗ = v. For
general distributions, there can be multiple solutions to equation (8) which
are, together with v and v (when v =∞), are candidates for v∗.

Condition (9) ensures that the option value to the bidder of following
advisor’s recommendation given by (10) is positive for all vp < v∗. The
integral (10) can be split into several integrals with limits of integration
given by (v∗k)

K+1
k=0 . Since (10) should hold for every vp up to v∗, only solutions

to (8), in which MRL crosses b from above are possible candidates for the
equilibrium cutoff. Moreover, the option value (10) is the smallest at the
solutions to (8) where MRL crosses b from below.

As an illustration, consider general function MRL depicted in Figure
4c. There are three solutions v∗1, v

∗
2, and v∗3 to equation (8). By Theorem 3,

17Observe that for Pareto distribution f(v) = 2
v3

and E[v|v > v̂] = v̂2
´∞
v̂

2
v2
dv = 2v̂.
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there can be at most four equilibria satisfying NITS in this situation. First,
v∗0 is not an equilibrium cutoff, as it fails the NITS (Ev > v+ b), and v∗4 = v
is not an equilibrium cutoff, as MRL is below b at v. Neither is v∗2, as MRL
crosses b from below at v∗2. Hence, only candidates for the equilibrium cutoff
are v∗1 and v∗3. There is an equilibrium with cutoff v∗1, as for any vp ≤ v∗1,
the integrand in (10) is positive. There is an equilibrium with cutoff v∗3 if
and only if the integral (10) for vp = v∗2 is positive.

It is interesting to observe how the number of bidders affects commu-
nication and efficiency of the English. First, when MRL is decreasing the
number of bidders does not affect the communication in any way. Perhaps
surprisingly, in a general case, increased competition reduces the scope of
information transmission. Equation (8) for v∗ does not depend on N , but
condition (9) becomes stringent when N increases, as it needs to hold for a
larger set of n. The reduction in the communication happens because the
value of the advice is reduced can depend on how competitive the auction
is. Moreover, this dependence can be non-monotone. When n is larger,
the value of the highest opponent bidder is higher in the sense of first-order
stochastic dominance of distribution Gn. However, the integrand in (9)
need not be a monotone function, and so, the option can both increase and
decrease as n increases.

Discussion Before proceeding with the comparison of auction formats, we
discuss the generality of our results and underlying assumptions.

The dependence of the option value of advice on the competitiveness of
the auction is also linked to whether the focus on equilibria in stationary
strategies is restrictive. When MRL is decreasing, one can show that sta-
tionary strategies are without loss of generality in a sense that if we were to
consider a fine grid for p and analyze limits of equilibria as the grid becomes
arbitrary fine (one way of circumventing the indeterminacy of outcome in
the game with continuous p), then in all of the limits, strategies would not
depend on the number of remaining bidders. This is quite intuitive, as win-
ning is always good news for the bidder when MRL is decreasing. However,
if MRL is increasing or non-monotone, then it can be optimal for the bidder
to condition on the number of remaining bidders, adso other non-stationary
equilibria can exist.

The characterization in Theorem 3 can be extended in several directions.
First, it is more realistic to assume that the seller instead of knowing bias b,
has some prior beliefs Fb about b supported on R+. That is the seller knows
that there is a conflict of interest on the bidder’s side, but does not know the
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scope of this conflict. Our characterization of the English auction still obtain
in this environment, as long as bidders and advisors know b. Importantly, the
efficiency and revenue comparison that we carry out in the next subsections
also hold in this case. Hence, the seller benefits from switching to the English
auction from a static auction, and this does not require knowledge of fine
details about the conflict of interest and only the direction of the bias.
Second, the characterization can be immediately generalized to the case of
heterogeneous bidders. In particular, we can allow for different distributions
Fi of values and different biases bi > 0 and Theorem 3 would still hold with
obvious changes in notation. This is in contrast with the characterization of
equilibria in static auctions in Theorem 1 which becomes more complicated
for asymmetric bidders, as threshold types are different for different bidders
and pinned down by a system of recursive equations.

Finally, the NITS condition has lots of bite in the English auction, often
leading to the unique equilibrium. Chen, Kartik and Sobel (2008) provide
several justification for the NITS condition in a general cheap-talk model.
We next provide an additional justification for the partially separating equi-
libria of the English auction obtained in Theorem 3.

One can think of our model as the model of information acquisition
in which the information acquisition technology is endogenous. The seller
affects how much information can be transmitted between the advisor and
the bidder through her choice of the auction format. However, we can also
make the information acquisition itself endogenous via following auction
with delegation. Suppose that each bidder can commit to a rule that maps
advisor’s type announcements into bids in the English auction. That is,
the bidder can offer the advisor incentives to reveal information and hence,
can choose how much information is transmitted. In the beginning of the
auction, they offer their advisors a contract specifying such mappings and
advisors reveal their private information. The following proposition shows
that in fact, the equilibria in partially separating strategies in Theorem 3
are also equilibria in the auction with delegation.

Proposition 3. Suppose b > 0, MRL is decreasing and infv∈[v,v](ln f(v))′ ≥
−b. Strategies described in Theorem 3 also constitute an equilibrium of the
auction with delegation.

Proposition 3 states that if all bidders in the English auction follow the
advisor’s recommendation up to threshold v∗, then even if each bidder had
a commitment power to offer the optimal contract to the advisor in the
beginning of the game, she would not be able to do better. In particular,
committing to a coarse information transmission is not optimal and the
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bidder prefers to use a finer information of the advisor even though it comes
at cost of implementing an optimal bid of the advisor.

Proposition 3 follows from a general analysis of the delegation problem
in Amador and Bagwell (2013). In the literature on optimal delegation,
strategies in Theorem 3 are called interval delegation. One intricacy in
applying the analysis of Amador and Bagwell (2013) is that they make
concavity assumptions on payoff functions which are not satisfied in the
English auction. Indeed, choosing to quit at price higher than v∗ + b leads
to probability one of winning the auction, but does not change the expected
payment conditional on winning compared to quitting at price v∗ + b. We
augment the argument of Amador and Bagwell (2013) to account for this
possibility.

Theorem 3 shows that in the English auction, the bidder does not need
commitment to implement the optimal contract. However, we show this
under an important restriction. First, other bidders follow strategies in
Theorem 3. It is interesting question whether when bidders follow partial
pooling strategies as in equilibria of the second price auction, the bidder still
benefits from the interval delegation. This requires a more general analysis
of the delegation problem which is beyond the scope of this paper but is an
interesting direction of research.

4.2 Efficiency Comparison

We next compare the efficiency of auction formats. In the exponential ex-
ample, the efficiency comparison was clear, as the English auction always
allocated the asset to the bidder with the highest value. Theorem 3 shows
that in general, there can be pooling at the top which distorts the efficiency.
This leads to a loss of efficiency and depending on the size of this pool-
ing region, it is possible that the equilibrium of the static auction is more
efficient if it generates a more efficient outcomes for types above v∗. The
next theorem shows that this is not the case. More strongly, the superior
efficiency stems from a superior information transmission. We say, that an
equilibrium of an auction is more informative than an equilibrium of po-
tentially different auction, if the partition of advisor types generated by the
former is finer than the partition generated by the latter.

Theorem 4. Suppose b > 0. Then any equilibrium of the English auction
satisfying NITS is more informative and more efficient than any efficient
equilibrium of any static auction.

Theorem 4 shows that there is no partition generated by a static auction

33



that is finer than the partition generated by the English auction. That
is, there is no ωk > v∗ where ωk and v∗ are as in Theorems 1 and 3. This
implies that the English auction generates a finer information partition than
any static auction and hence, is more efficient.

The argument for Theorem 4 can be sketched as follows. Suppose that
there exists an equilibrium of the static auction such that ωk−1 = v∗ <
ωk < ωk+1 = v. For simplicity, also assume that N = 2. Then equation (7)
implies that

1

2
F (ωk−1, ωk)(ωk + b−mk) = −1

2
F (ωk, ωk+1)(ωk + b−mk+1),

or

ωk + b =
F (ωk−1, ωk)

F (ωk−1, ωk+1)
mk +

F (ωk, ωk+1)

F (ωk−1, ωk+1)
mk+1 = E[v|v ≥ v∗].

However, this contradicts the fact that v∗ < ωk solves (8). Intuitively,
if there were a variation in bids among types above v∗, any type above
v∗ would strictly prefer to submit a higher bid and increase her chances of
winning against types below. This happens because v∗ is already sufficiently
close to v and price mk+1 does not vary much from price mk.

Theorem 4 also sheds light on the communication in static auctions. In
static auctions, the dependence of the communication on N is more con-
voluted. The number of bidders N enters recursion (5) in a complicated
way and from it, it is not clear how N affects the communication partition.
However, from Theorem 4, the communication partition in the English auc-
tion is finer than the partition generated by any static auction. This implies
that the communication in static auctions does not become perfect as we
increase the competitiveness of the auction, which is a priori not obvious
from recursion (5).

Finally, for distributions with increasing MRL we can go beyond the
comparison with static auctions.

Corollary 4. Suppose 0 < b < Ev − v and MRL is increasing on [v,∞).
Then the unique stationary equilibrium of the English auction satisfying
NITS is fully efficient.

Corollary 4 solves the problem of efficient mechanism design for distribu-
tions with increasing MRL and moderate bias b. It shows that despite the
conflict of interest, an efficient outcome is implementable as a unique out-
come via the English auction. We conjecture that this holds more generally
for any distribution. In order to show this one needs to show that no other
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auction format either static or dynamic can attain a finer communication
for types above v∗. Theorem 4 guarantees that this is the case when the
comparison is with efficient equilbiria of static auctions.

4.3 Revenue Comparison

We next compare the revenue from different auction formats. Denote by
ϕ(v) ≡ v + b− 1−F (v)

f(v) the virtual valuation of advisor.

Theorem 5. Suppose b > 0 and ϕ is increasing. Then any equilibrium of
the English auction satisfying NITS brings higher revenue than any efficient
equilibrium of any static auction satisfying NITS.

Proof. We can view the problem that the seller faces as an optimal mecha-
nism design problem from informed advisors. The fact that bids are submit-
ted not directly by advisors, but by bidders implies that there is a restriction
on the set of mechanisms that the seller can implement. However, we can
still use Lemma 3 in Myerson (1981) to write the expected revenue of the
seller as follows:

N (E[ϕ(v)p(v)]− UA(0)) , (12)

where p(v) is the probability that type v wins the auction and UA(0) is the
expected utility of type 0 from the auction. In equation (12), only p(·) and
UA(0) depend on the format of the auction. By Lemma 2, it is sufficient
to compare the English auction with the second-price auction. By NITS,
UA(0) ≥ 0 for the second-price auction, while UA(0) = 0 for the English
auction. To prove the comparison, we need to show that the first term
in (12) is larger for the English auction. This is indeed the case, as ϕ is
increasing and the English auction is more efficient by Theorem 2.

The key insight of Theorem 5 is that we can view the problem of the seller
of extracting maximal revenue as the a problem of designing a mechanism
that extracts rents from informed advisors. In this case, the fact that there
is a communication puts a restriction on the set of mechanisms that are the
seller can implement. However, one can still use the envelope formula in
Myerson (1981) to write the revenue in the form (12). The higher efficiency
of the English auction implies that the first term in (12) is higher than in
any static auction, while the NITS guarantees that the rent of the lowest
type is positive in static auctions, while it is zero in the English auction.

While superior efficiency of the English auction because of the better
information transmission is intuitive, it is a priori not clear if the English
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auction should also bring higher expected revenue. If types in some inter-
val pool and induce the same bid in the second-price auction, then it can
potentially increase the revenue of the seller. As we have already seen, at
least some types above ωk get negative utility from winning at price mk+1,
but with positive probability they end up winning the asset at this price.
We show that despite this occasional overpaying, it does not occur often
enough to reduce significantly the information rents of advisors. The key
in ensuring this is the NITS condition. To see this, let us return to our
exponential example and consider a babbling equilibrium in which all types
pool and bidders submit bids 1

λ . The revenue from such equilibrium of the
second-price auction is E[v] = 1

λ . However, the equilibrium of the English
auction brings revenue E[min{v1, v2}] = 1

2λ + b and so for b < 1
2λ , the bab-

bling equilibrium of the second-price auction brings higher revenue. In this
case, a significant amount of low types make a bid that exceeds their value,
as they cannot credibly transmit their value to the bidder. This way the
seller extracts an extra revenue. However, for b < 1

2λ , babbling equilibrium
fails to satisfy the NITS conditions.

A natural next question is whether the revenue can be further improved.
We know from Myerson (1981) that introducing the reservation price in-
creases the revenue whenever the virtual valuation ϕ is negative for some
types. Then introducing a reserve price r = vr + b, where vr is given by the
solution to ϕ(vr) = 0, increases further the revenue. By setting the reser-
vation price at vr + b, the seller does not allocate to types below vr which
contribute negatively into the expected profit (12). In our exponential ex-
ample, vr = 1

λ − b for b < 1
λ . The knowledge of b is important to set the

reservation price optimally as ϕ depends on b. Interestingly, in the family
of distributions with increasing MRL we can go even further and find an
optimal mechanism.

Corollary 5. Suppose 0 < b < Ev − v and MRL is increasing on [v,∞).
Then there exists a reservation price r such that the unique stationary equi-
librium satisfying NITS of the English auction with a reservation price r is
optimal.

Corollary 5 follows from our characterization in Corollary 3. Indeed, My-
erson (1981) shows that generally a second price auction with a reservation
price is an optimal mechanism. In particular, it is an optimal mechanism
from extracting rents from informed advisors and the question is whether
the constraints imposed by the communication between bidders and advisors
prevent us from implementing this outcome. Corollary 3 can be easily mod-
ified to allow for a reservation price by simply assuming that the seller start
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increasing price starting from r. Hence, for distributions with increasing
MRL, the fact that bids are submitted by bidders does not prevent us from
implementing an optimal outcome. We conjecture that this is true more
generally which is related to the general efficiency of the English auction.
If one shows that no mechanism induces finer partition of types above v∗,
then this would imply that the English auction with the reservation price is
an optimal mechanism for general distributions.

While the analysis of the English auction is does not change with the
introduction of the reserve price and one can easily compute an optimal
reserve price, this is not the case in static auctions. Indeed, if the seller
restricts bids in the second price auction to be above some r, then this
affects the equilibrium communication. Essentially, after the introduction
of the reserve price, the distribution of values is F (·|v ∈ [r, v]) and gener-
ally the partition of types generated in equilibrium changes, which in turn
changes which types tie with each other in equilibrium. Hence, determining
the revenue price is less straightforward in the static auction and requires
more knowledge of the strategic environment from the seller, while only the
knowledge of the distribution and b is necessary in the English auction.

5 M&A Contests

This section applies our model to qualitatively study M&A contests. We first
introduce an M&A auction which closely resembles the actual sale procedure
in M&A contests and is a generalization of the English auction. Using the
estimates from the literature of the advisors’ bias, we compare the efficiency
and profitability of different auction formats with and without the conflict
of interest.

5.1 M&A Auction

M&A contests are conducted as follows. The target company approaches
potential buyers. Interested buyers sign confidentiality agreement and the
seller reveals non-public information about the company. The seller elicits
preliminary non-binding bids indicating the interest of bidders and narrows
down the circle of potential bidders. After that, the formal bidding starts
and a smaller circle of bidders submits binding bids. At this stage, the seller
decides whether any bidder wins the auction or the bidding continues, in
which case the seller continues negotiation with bidders and further increases
the price.
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We capture key features of M&A contests with the following auction
format which we call an M&A auction. First, bidders submit initial bids
coming from some discrete set {β1, . . . , βK}. The bidder with the highest
bid wins the auction and pays her bid. If there is tie, then to bidders
who tied proceed to the next stage of bidding which follows the rules of
the English auction. That is, if several bidders tied at bid βk, the seller
continuously increases the price starting from βk and bidders choose when
to quit the auction until only one bidder remains who gets the asset and pays
the price at which the last of her competitors quit. The communication in
the M&A auction happens as follows. In the first stage of bidding, advisors
send recommendations βk. In the formal round, the communication happens
continuously over time and each advisor determines when to send her bidder
a recommendation to “quit” the auction.

The interpretation is that in the first stage of bidding, the seller does not
distinguish between close bids. For example, if the seller gets bids 1m, 2m,
10m, 10.5m, the seller thinks that two highest bids are sufficiently close and
interprets them as a tie and continues the auction with bidders submitting
10 and 10.5 to extract additional revenue. The following theorem constructs
equilibria of the M&A auction.

Theorem 6. Suppose that b > 0. The following strategies constitute an
equilibrium of the M&A auction.

• In the first stage, advisors of type in [ωk−1, ωk) send message βk to
their bidders indicating that the true value v belongs to some interval
[ωk−1, ωk) and bidders submit βk.

• In the formal round, advisors send message “quit” when the running
price is equal to v+b and bidders quit either when they receive message
“quit” from their advisors or when running price equals v∗k.

Cutoffs v∗k are the smallest solutions to

E[v|v ∈ [v∗k, ωk)] = v∗k + b, (13)

belonging to [ωk−1, ωk] and thresholds (ωk)
K+1
k=0 with ω0 = v and ωK+1 = v

satisfy

G(ωk−1)(ωk+b−βk)+
ˆ v∗k

ωk−1

(ωk−v̂)dG(v̂)+Lk(ωk−v∗k) = G(ωk)(ωk+b−βk+1),

(14)
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and

G(ωk)(mk+1 − βk+1) + UB(ωk, ωk+1,mk+1) ≥ G(ωk−1)(mk+1 − βk) + UB(ωk−1, ωk,mk+1)
(15)

G(ωk)(mk+1 − βk+1) + UB(ωk, ωk+1,mk+1) ≥ G(ωk+j)(mk+1 − βk+j+1)
(16)

where

Lk =
N−1∑
n=1

(
N − 1

n

)
F (v∗k, ωk)

nF (v∗k)
N−1−n 1

n+ 1
,

UB(ωk−1, ωk,m) =

ˆ v∗k

ωk−1

(m− v̂ − b)dG(v̂) + Lk(m− v∗k − b).

First, notice that the English auction is an M&A auction in which advi-
sors do not transmit any information in the first bidding stage and hence, all
bidders submit the same bid. In particular, it immediately follows from The-
orem 2, there exists an equilibrium of the M&A auction and it satisfies the
NITS condition. On the other extreme, when in equilibrium, bidders ignore
the information from advisors after the initial bidding stage, the equilibrium
in the M&A auction is the equilibrium of the first price auction. Therefore,
M&A auction is the auction format that is in between the English auction
and the first price auction. However, one can construct an equilibrium in
the M&A auction that differs from the equilibrium in the English auction
and the first price auction. In the Online Appendix we provide details of
such a construction.

5.2 Cost of Conflict of Interest

It is commonly believed that strategic bidders overpay in M&A contests for
the target because of the agency problems. Our theoretical analysis confirms
this point of view. In this subsection, we use our model to give a qualitative
estimate of the amount that shareholders of bidders overpay for the target
because of the conflicting interests of the management.

6 Preference for Underbidding

In this section, we consider advisors biased toward underbidding. This bias
can be explained by the “quiet life” model, incorporating additional busi-
ness requires additional effort from managers and managers prefer not to
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increase the size of the firm. Bertrand and Mullainathan (2003) document
that in manufacturing, under the weakening of the threat of takeover, the
management reduces the creation of new plants with no net effect on firm
size.

In this case, if the bidder knew the value, then she would submit a
higher bid than the advisor. Then the English auction does not have an
advantage over static auctions, as it only restricts the bidder to submit
bids lower than the running price. However, the Dutch auction can allow
for a better information transmission because it restricts the bidder from
submitting bids higher than the running price. In this section, we construct
an equilibrium of the Dutch auction satisfying NITS that is more efficient
than any static auction, however, it can be worse in terms of revenue. As
before, the approach is to illustrate results with an exponential example and
then proceed to more general results.

6.1 Example

We start with an equilibrium of the second-price auction described in the
following proposition.

Proposition 4. Under F exponential and b < 0, the following strategies
constitute an equilibrium of the second-price auction. The bidder submits a
bid m. The advisor with type v ∈ Ik sends message mk = E[v|[ωk−1, ωk)] for
k = 1, 2, . . . where ωk = kx and x ∈

[
−b, 1λ − b

]
is given by the solution to

equation

x
e2λx + 1

e2λx − 1
=

1

λ
− b.

We can use the analysis of the case b > 0 in Proposition 1 to prove
Proposition 4. Indeed, the derivation of the recursion (5) does not depend
on the value of b. Recall the function ψ which is defined implicitly as a value
of xk+1 = ψ(xk) that satisfies (5) for given xk. When b < 0, there is a fixed
point of ψ that gives the stationary equilibrium described in Proposition 4
(see Figure 5).

Since vw = ∞, it is not clear in what sense the stationary equilibrium
in Proposition 4 satisfies the NITS condition. However, we can construct
a sequence of equilibria with v < ∞ that satisfies NITS and converges to
the equilibrium in Proposition 4 as v → ∞. Indeed, fix an integer K.
Let xK+1 = 0 and recursively define xk = ψ−1(xk+1). It is easy to verify
that these strategies constitute an equilibrium when F is the exponential
distribution with parameter λ truncated at v =

∑K
k=1 xk →∞ as K →∞.
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1
λ − b

xk

xk+1

xk+1 = xk

−b

xk+1 = ψ(xk)

xxK+1 xK xK−2xK−1

Figure 5: Recursion xk+1 = ψ(xk) for b < 0.

Since xK+1 = 0, type v perfectly reveals herself and so, this equilibrium
satisfies NITS. Moreover, for any ε > 0 there exists K such that for any K,
x > xk > x−ε for all butK indexes k. This way, even though the equilibrium
in Proposition 4 cannot be verified to satisfy the NITS condition, it is a limit
of equilibria satisfying NITS.

Now, we show that a partial separation is possible in the Dutch auction
similarly to the English auction.

Proposition 5. Suppose b < 0. There exists an equilibrium of the Dutch
auction described by a tuple {v∗, σ(·)} as follows. Types of advisor v ≤
v∗ send message “stop” when p = v∗ + b. Any type of advisor v ≥ v∗

sends message “stop” at time t when p = σ(v). The bidder follows the
recommendation of advisor when the running price is above v∗+ b and stops
the auction if the running price is v∗ + b. Threshold v∗ is the solution to

v∗

1− e−λv∗
=

1

λ
− b (17)

and bidding strategy σ(·) is given by

σ(v) = E[max{v∗, v̂}+ b|v̂ < v], for v ≥ v∗. (18)

In the equilibrium constructed in Proposition 5, the advisor perfectly
reveals her type to the bidder at a price σ(v) that is optimal for her. Be-
cause of the underbidding bias of the advisor, the optimal price of stopping
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Figure 6: Efficiency and revenue comparison for b < 0: the Dutch auction (solid
line) and the second-price auction (dashed line). Bias b is plotted on the horizontal
axis.

the auction for the bidder is higher. Hence, it is optimal for her to stop
immediately after she gets a recommendation from the advisor. However,
information transmission is perfect only up to some cutoff v∗ and all types
below v∗ pool with each other. The reason for this is that at a certain stage,
the uncertainty of the bidder about her value is sufficiently reduced. Then
the bidder prefers stopping the auction immediately to guarantee the vic-
tory, rather than trying to win at a lower price, but facing the risk of loosing
the auction.

We now compare the efficiency and revenue of the Dutch auction and the
second-price auction. In the Dutch auction for b < 0, one can show that18

v∗ < x and so, the equilibrium partition of the Dutch auction is finer than
the equilibrium partition of the second-price auction. This implies that the
equilibrium in Proposition 5 is more efficient than the stationary equilibrium
of the second-price auction.

The revenue comparison is ambiguous for b < 0. We can use again the
argument in Myerson (1981) to derive the expression (6) for the revenue.
Because of the higher efficiency the first term in (6) is higher in the Dutch
auction. On the other hand, the second term is higher in the second-price
auction. Indeed, UA(0) = 1

2

(
1− e−λx

)
(b−m1) for the second-price auction

and UA(0) = 1
2

(
1− e−λv∗

)
(−v∗) for the Dutch auction. By v∗ < x, 1 −

e−λx > 1 − e−λv∗ and so the probability of winning is smaller for type 0

18One needs to show that

v
eλv

eλv − 1
> v

e2λv + 1

e2λv − 1
,

which clearly holds.
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in the Dutch auction. At the same time, b −m1 < −v∗ < 0.19 Therefore,
the second-price auction may bring higher revenue than the Dutch auction
if the second term in (6) dominates the first term.

To explore the difference between auctions quantitatively take λ = 1
5 .

The left panel of Figure 6 depict the expected value of the winner in the
auction and it shows that the Dutch auction is more efficient than the second-
price auction and the gap in the efficiency increases as the size of the bias
increases. In the right panel of Figure 6, we depict the revenue of the seller
for different auction formats. For b < 0, the Dutch auction brings lower
revenue than the second-price auction and so the effect of a lower second
term auction in (6) dominates. This implies that in our example, there is a
trade-off between efficiency and revenue when the advisor is biased toward
underbidding.

6.2 General Results

This subsection generalizes the insights from the analysis of the exponential
example. Theorems 2 and 1 do not depend on the sign of b and so, in static
auctions, we still obtain revenue equivalence and crude information trans-
mission in case of preference for underbidding. The next theorem generalizes
the equilibrium constructed in Proposition 5.

Theorem 7. Suppose b < 0 and let v∗ be the largest solution to

E[v|v < v∗] = v∗ + b, (19)

where v∗ = v if equation (19) does not have a solution. There exists an
equilibrium of the Dutch auction satisfying the NITS condition characterized
by {σ(·), v∗} as follows. The advisor of type v > v∗ sends message “stop”
when running price p reaches σ(v) ≡ E[max{v̂, v∗} + b|v̂ < v]. and the
advisor of type v < v∗ sends “stop” when price p reaches σ(v∗). The bidder
immediately stops the auction after she receives the message “stop” or when
price p reaches σ(v∗).

The equilibrium of the Dutch auction in Theorem 7 is similar to equilibria
in the English auction. There is an interval of types at the bottom that pool
with each other, and types at the top perfectly reveal themselves over time.

19Indeed,

b−m1 = b− 1

λ
+x

e−λx

1− e−λx = b− 1

λ
+x

eλx

eλx − 1
−x > b− 1

λ
+x

e2λx+

e2λx − 1
−x = −x < −v∗ < 0.
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Function σ(v) in Theorem 7 is the equilibrium bidding strategy in the Dutch
auction if bids were submitted directly by advisors. The following theorem
shows that the equilibrium of the Dutch auction that we constructed is more
efficient than any equilibrium of any static auction.

Theorem 8. Suppose b < 0. The equilibrium of the Dutch auction in The-
orem 7 is more efficient than any efficient equilibrium of any static auction.

As we have seen in the example, the revenue comparison does not carry
over to the case of bias toward underbidding.

7 Conclusion

This paper studies the interaction between the information transmission
and bidding in auctions. In static auctions, the revenue-equivalence result
holds giving in particular equivalence of the first- and second- price auctions.
However, dynamic auctions, such as the English and the Dutch auctions, are
generally more efficient than static auctions. This happens because in dy-
namic auctions the set of bids available to the bidder shrinks. Therefore, by
sending the information later in the game, the advisor can induce the bidder
to choose a more favorable action and hence, would provide a more refined
information to the bidder. Moreover, the English auction also dominates
static auctions in terms of revenue when advisors are biased toward overbid-
ding, the case most relevant empirically. This paper characterize equilibria
in different auction formats and show the efficiency/revenue comparison.

8 Appendix

Proofs for Section 2

Proof of Lemma 1. Specify new online strategies m′ and a′ as follows. Let
m′(v, h) = a(h,m(v, h)) and a′(h, ã) = ã for all h ∈ H and all ã in the image
of m′(·, h). For any h, fix an action ã(h) in the image of m′(·, h). For any
recommendation that does not belong to the image of m′(·, h), the bidder
interprets this deviation as a recommendation of action ã(h). Hence, it
is sufficient to guarantee that advisors do not deviate to recommendations
that happens with positive probability on-path. Clearly, strategy profiles
m′ and a′ generate the same outcome. The proof that they constitute an
equilibrium is provided in the text.
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Details of Proof of Proposition 1. First, we show that f is well-defined. Since
xk > 0, we car rewrite (5) as

xk+1 + xk

eλ(xk+1+xk) − 1
=

1

λ
− b− xk.

Let h(x) be the function implicitly defined by the solution to the equation

h

eλh − 1
=

1

λ
− b− x. (20)

Left-hand side of (20) is decreasing in h and it takes values in
(
0, 1λ

]
for

h ≥ 0. Therefore, the solution h(x) always exists whenever x ∈
(
0, 1λ − b

]
.

Now, we show that ψ′(x) ≥ 1 for x ∈
(
0, 1λ − b

]
. The derivative of h

h′(x) =
(eλh(x) − 1)2

1− eλh(x) + λh(x)eλh(x)
≥ 0.

Then ψ(x) = h(x)− x. Moreover,

ψ′(x) =
(eλh(x) − 1)2

1− eλh(x) + λh(x)eλh(x)
− 1 =

eλh(x) − 1− λh(x)

e−λh(x) − 1 + λh(x)
≥ 1,

where to show the inequality we need to show that eλh− e−λh− 2λh ≥ 0 for
h ≥ 0. This is implied by the fact that eλh − e−λh − 2λh is increasing in h
and equals zero at 0.20

Finally, from (5) it follows that

lim
x→0

(1− λb) e
λψ(x) − 1

λψ(x)
= 1

and so, limx→0 ψ(x) > 0. Also from (5) it follows that ψ(x) → ∞ as
x→ 1

λ − b.

Proofs for Section 3

Proof of Lemma 2. Denote by qi(θi) = E[qi|θi] the expected probability of
allocation for type θi and by ti(θi) = E[ti|θi] the expected transfer from
type θi given that other bidders use their equilibrium strategies. Necessary
conditions for qi and ti to be part of equilibrium are the following for all
i = 1, . . . , N :

qi(θi)θi − ti(θi) ≥ qi(θ′i)θi − ti(θ′i) for all θ′i ∈ [v, v], (21)

qi(θi)θi − ti(θi) ≥ 0 for all θi ∈ [v, v]. (22)

20Its derivative λeλh + λe−λh − 2λ = λe−λh(eλh − 1)2 ≥ 0.
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Denote Ui(θi) ≡ q(θi)θi − ti(θi). Lemma 2 in Myerson (1981) gives the
following integral formula for Ui.

Lemma 3 (Myerson (1981)). Conditions (21) and (22) imply that for all
i = 1, . . . , N and all θi ∈ [v, v]:

Ui(θi) = Ui(v) +

ˆ θi

v

(ˆ
[v,v]N−1

qi(θ, θ−i)dFθ(θ−i)

)
dθ.

Consider a strategy mi of the advisor i in the efficient equilibrium of
a static auction A and corresponding probability distribution Fθ generated
by strategy mi. The expected probability of allocation from following the
equilibrium strategy for type θi is

´
[v,v]N−1 qi(θi, θ−i)dFθ(θ−i), and by Lemma

3, the expected transfer from reporting type θi is P (θi)θi−Ui(M, θi). Both
quantities depend only on function qi and Ui(v) and hence are the same for
the auction A and the second price auction. This implies that the strategy
mi is also constitutes equilibrium in the second-price auction.

Proof of Theorem 1. Clearly, the second-price auction is an efficient mecha-
nism. By Theorem 2 it is sufficient to analyze equilibria of the second-price
auction.

To any profile of bids ā = (ai)i∈N corresponds an allocation (q1(ā), . . . , qN (ā))
such that

∑N
i=1 qi(ā) = 1 and transfers (t1(ā), . . . , tN (ā)). Denote by q(ai) ≡

E[qi(ai, a−i)] and t(ai) ≡ E[ti(ai, a−i)] the expected probability of allocation
and transfer, respectively, from action ai, where expectations are taken fix-
ing strategies of other bidders and advisors m−i and a−i. Bidder i chooses
a bid from A given that her expected value is θi = E[vi|ai]. Let where
Q = {q(ai), ai ∈ A} and t(q) = minai:q=q(ai) t(ai). Then the bidder and the
advisor play the cheap-talk game with payoffs given by

Bidder : qv − t(q), (23)

Advisor : q(v + b)− t(q). (24)

Since the mixed derivatives of (23) and (24) are positive, the set of types of
the advisor that induce the same probability of allocation q is an interval.
Therefore, to characterize equilibria of the second-price auction, we need to
determine incentives of threshold types of the advisor ωk. Consider any such
type ωk. In the second-price auction, a message is simply an expected value
of the bidder mk. Let m̂ be the message of the highest bidder among N − 1
opponents of the bider. From submitting a message mk, type ωk gets utility

E[ωk + b− m̂|v̂ < ωk−1] +G(ωk−1, ωk)Λk(ωk + b−mk).
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From submitting a message mk+1, type ωk gets utility

E[ωk+b−m̂|v̂ < ωk−1]+G(ωk−1, ωk)(ωk+b−mk)+G(ωk, ωk+1)Λk+1(ωk+b−mk+1).

Type ωk should be indifferent between the two which gives equation (7).

Claim 1. If ωk+1 = ωk, then either k = 0 or k = K.

Proof: Suppose to contradiction that for some 0 < k < K, ωk+1 =
ωk. This implies that H(ωk, ωk+1) = 0 and so, from (7), H(ωk−1, ωk)(1 −
Λk−1)(ωk + b − mk) = 0 and H(ωk+1, ωk+2)Λk+2(ωk+1 + b − mk+2) = 0.
This implies that ωk + b = mk and ωk+1 + b = mk+2. But only the first
equality can hold if b < 0 and only the second equality can hold if b > 0,
contradiction. q.e.d.

Claim 2. There exists ε > 0 such that for all k, either ωk+1 − ωk > ε for
0 < k < K.

Proof: It follows from (7) that whenever ωk−1 < ωk < ωk+1, we have

ωk + b > E[v|v ∈ [ωk−1, ωk)] (25)

and
ωk + b < E[v|v ∈ [ωk, ωk+1)]. (26)

First, consider b > 0. If for any ε > 0, there exists and equilibrium such
that ωk+1 − ωk < ε, then for such equilibrium E[v|v ∈ [ωk, ωk+1)] ≤ ωk + ε
which contradicts (26) for sufficiently small ε. Now, consider b < 0. If for
any ε > 0, there exists and equilibrium such that ωk − ωk−1 < ε, then for
such equilibrium E[v|v ∈ [ωk−1, ωk)] ≥ ωk − ε which contradicts (25) for
sufficiently small ε. q.e.d.

The fact that there exists K such that there is an equilibrium with K
segments for any 1 ≤ K ≤ K, but not for K > K can be proven by the same
argument as in the proof Theorem 1 in Crawford and Sobel (1982).

Proof of Corollary 1. Sine there is an equilibrium partition for any K ≤ K,
it is sufficient to show that there is an equilibrium with two intervals in the
partition. For K = 2, we can use the same argument as in the proof of
Theorem 4 to show that (7) implies

ω1 + b− E[v|v ∈ [ω0, ω2)] ≤ 0. (27)

Since in the equilibrium with K = 2, ω0 = v and ω2 = v, and ω1 ≥ v, we
get the desired conclusion. It is easy to check that for N = 2, the inequality
in (27) is an equality and an equilibrium with two segments exists whenever
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equation ω1 + b− E[v] = 0 has a solution. Since b > 0 ≥ E[v]− v, whenever
b ≤ E[v]− v, such solution exists by continuity which proves the sufficiency
of condition in the corollary.

Proof of Theorem 2. In this proof, it is useful to introduce the following
notations:

Φ(ωk−1, ωk) ≡
N−1∑
n=1

(
N − 1

n

)
F (ωk−1, ωk)

nF (ωk−1)
N−1−n 1

n+ 1
,

Ψ(ωk−1, ωk) ≡
N−1∑
n=1

(
N − 1

n

)
F (ωk−1, ωk)

nF (ωk−1)
N−1−n n

n+ 1
,

m(ωk−1, ωk) ≡ E[v|v ∈ (ωk−1, ωk)].

Define function

H(ωk−1, ωk, ωk+1) ≡ Ψ(ωk−1, ωk)(ωk+b−m(ωk−1, ωk))+Φ(ωk, ωk+1)(ωk+b−m(ωk, ωk+1)).
(28)

It is easy to check that function H coincides with the left-hand side of
equation (7). By Theorem 1, any equilibrium of the second-price auction
is outcome-equivalent to an equilibrium having the partition structure with
thresholds (ω̃k)

K
k=1 solving the recursion

H(ω̃k−1, ω̃k, ω̃k+1) = 0 (29)

with ω̃0 = v and ω̃K+1 = v. We show that if the NITS condition fails, then
for any such solution, there exists a different solution to the recursion (29)
with K+1 partition cells. Since there are at most K partition cells, this im-
plies that there exists an equilibrium satisfying NITS, and in particular, the
most informative equilibrium satisfies NITS. We consider separately cases
b > 0 and b < 0.

Case b > 0. If type v reveals herself to the bidder, then the bidder
prefers to submit a loosing bid. Suppose to contradiction that NITS fails
and v + b < m(v, ω̃1). We show by induction that for any k ≤ K + 1, there

exists another solution (ωkj )
Kj
j=1 to (29) such that ωk0 = v, ωkk > ω̃k−1, and

ωkk+1 = ω̃k. Theorem 2 follows from the claim applied to k = K + 1.
For k = 1, the failure of NITS implies that H(v, v, ω̃1) = Φ(v, ω̃1)(v +

b − m(v, ω̃1)) < 0. At the same time, H(v, ω̃1, ω̃1) = Ψ(v, ω̃1)(ω̃1 + b −
m(v, ω̃1)) > 0, as ω̃1 = m(ω̃1, ω̃1) ≥ m(v, ω̃1). By continuity, there exists
x ∈ (v, ω̃1) such that H(v, x, ω̃1) = 0 proving the claim for k = 1.
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Suppose the statement is true for k and we next prove it for k+ 1. Since
ω̃k solves (29), H(ω̃k−1, ω̃k, ω̃k+1) = 0 or

Ψ(ω̃k−1, ω̃k)(ω̃k + b−m(ω̃k−1, ω̃k)) + Φ(ω̃k, ω̃k+1)(ω̃k + b−m(ω̃k, ω̃k+1)) = 0.
(30)

Let ωkk > ω̃k−1 and ωkk+1 = ω̃k as in the inductive hypothesis and consider

H(ωkk , ω̃k, ω̃k+1):

Ψ(ωkk , ω̃k)(ω̃k + b−m(ωkk , ω̃k)) + Φ(ω̃k, ω̃k+1)(ω̃k + b−m(ω̃k, ω̃k+1)),

which differs from (30) only in the first term. Since ωkk > ω̃k−1, m(ωkk , ω̃k) >
m(ω̃k−1, ω̃k). Moreover, the binomial distribution with probability of success
F (ω̃k−1,ω̃k)
F (ω̃k)

first-order stochastic dominance the binomial distribution with

probability of success
F (ωkk ,ω̃k)

F (ω̃k)
. Hence,

Ψ(ωkk , ω̃k)

F (ω̃k)N
=

N−1∑
n=1

(
N − 1

n

)(
F (ωkk , ω̃k)

F (ω̃k)

)n(
F (ωkk)

F (ω̃k)

)N−1−n
n

n+ 1

<

N−1∑
n=1

(
N − 1

n

)(
F (ω̃k−1, ω̃k)

F (ω̃k)

)n(F (ω̃k−1)

F (ω̃k)

)N−1−n n

n+ 1
=

Ψ(ω̃k−1, ω̃k)

F (ω̃k)N
,

as and n
n+1 is increasing in n. Therefore, H(ωkk , ω̃k, ω̃k+1) < 0.

On the other hand, since ωkk+1 = ω̃k,

H(ωkk , ω̃k, ω
k
k+1) = Ψ(ωkk , ω̃k)(ω̃k + b−m(ωkk , ω̃k)) > 0.

By continuity, there exists x ∈ (ω̃k, ω̃k+1) such that H(ωkk , ω
k
k+1, x) = 0. By

continuity, we can find solution (ωk+1
j )

Kk+1

j=1 to (29) with ωk+1
k+1 > ω̃k and

ωk+1
k+2 = ω̃k+1, which completes the proof of the inductive step.

Case b < 0. If type v reveals herself to the bidder, then the bidder
prefers to submit a bid that is guaranteed to win. Type v does not want to
reveal herself if and only if v + b−m(ω̃K , v) ≤ 0. Suppose to contradiction
that NITS fails and v + b > m(ω̃K , v). We show by induction that for any

k ≤ K+1, there exists another solution (ωkj )
Kj
j=1 to (29) such that ωkKj+1 = v,

ωkKj−k < ω̃K−k+1, and ωkKj−k−1 = ω̃K−k. Theorem 2 follows from the claim
applied to k = K.

For k = 1, the failure of NITS implies that H(ω̃K , v, v) = Ψ(ω̃K , v)(v +
b −m(ω̃K , v)) > 0. At the same time, H(ω̃K , ω̃K , v) = Φ(ω̃K , v)(ω̃K + b −
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m(ω̃K , v)) > 0, as ω̃K satisfies (29). By continuity, there exists x ∈ (ω̃K , v)
such that H(ω̃K , x, v) = 0 proving the claim for k = 1.

Suppose the statement is true for k and we next prove it for k+ 1. Since
ω̃k solves (29), H(ω̃K−k−1, ω̃K−k, ω̃K−k+1) = 0 or

Ψ(ω̃K−k−1, ω̃K−k)(ω̃K−k + b−m(ω̃K−k−1, ω̃K−k))+

Φ(ω̃K−k, ω̃K−k+1)(ω̃K−k + b−m(ω̃K−k, ω̃K−k+1)) = 0. (31)

Let ωkKj−k < ω̃K−k+1 and ωkKj−k−1 = ω̃K−k as in the inductive hypothesis

and consider H(ω̃K−k−1, ω̃K−k, ω
k
Kj−k):

Ψ(ω̃K−k−1, ω̃K−k)(ω̃K−k + b−m(ω̃K−k−1, ω̃K−k))+

Φ(ω̃K−k, ω
k
Kj−k)(ω̃K−k + b−m(ω̃K−k, ω

k
Kj−k)),

which differs from (31) only in the second term. Since ωkKj−k < ω̃K−k+1,

m(ω̃K−k, ω
k
Kj−k) < m(ω̃K−k, ω̃K−k+1). Moreover,

Φ(ω̃K−k, ω
k
Kj−k) =

N−1∑
n=1

(
N − 1

n

)
F (ω̃K−k, ω

k
Kj−k)

nF (ω̃K−k)
N−1−n 1

n+ 1
+G(ωkKj−k, ω̃K−k) · 0

<
N−1∑
n=1

(
N − 1

n

)
F (ω̃K−k, ω̃K−k+1)

nF (ω̃K−k)
N−1−n 1

n+ 1

= Φ(ω̃K−k, ω̃K−k+1).

Hence, H(ω̃K−k−1, ω̃K−k, ω
k
Kj−k+1) > 0. On the other hand, since ωkKj−k−1 =

ω̃K−k,

H(ω̃K−k, ω̃K−k, ω
k
Kj−k+1) = Φ(ω̃K−k, ω

k
Kj−k+1)(ω̃K−k+b−m(ω̃K−k, ω

k
Kj−k+1)) < 0.

Therefore, there exists x ∈ (ω̃k, ω̃k+1) such that H(x, ω̃K−k, ω
k
Kj−k+1) = 0.

By continuity, we can find solution (ωk+1
j )

Kk+1

j=1 to (29) with ωkKj−k−1 < ω̃K−k

and ωkKj−k−2 = ω̃K−k−1, which completes the proof of the inductive step.

Proofs for Section 4

By Lemma 1, the strategy of the advisor can be described by a function m(v)
which specifies at what price the advisor sends message “quit” to the bidder.
The following lemma shows that in the English auction, types of advisor
either perfectly reveal themselves to the bidder or pool with neighboring
types.
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Lemma 4. Function m(v) is increasing on a subset of [v, v] of Lebesgue
measure v − v.

Proof of Lemma 4. Suppose to contradiction that m(v) is strictly decreasing
on a set of positive measure I. Let v = inf I and v′ = sup I. Then m(v) >
m(v′) and G(v′)−G(v) > 0. Let q and t be the probability of winning and
expected price paid conditional on using strategy m(v) and q′ and t′ be the
probability of winning and expected price paid conditional on using strategy
m(v′). Then

qv − t ≥ q′v − t′,
q′v′ − t′ ≥ qv′ − t,

implies that q′ ≥ q. By quitting at price m(v) instead of m(v′), the advisor
increases the probability of winning by at least G(v′) − G(v) > 0 and so,
q > q′ which is a contradiction.

Lemma 5. m is strictly increasing on [v, v∗) and is constant almost every-
where on [v∗, v] where v∗ satisfies (8) when v∗ > v and v∗ + b ≥ E[v|v ≥ v∗]
when v∗ = v.

Proof of Lemma 5. Any equilibrium generates a partition Π of [v, v] satis-
fying for any π ∈ Π, v, v′ ∈ π ⇐⇒ m(v) = m(v′). We say that types in
π ∈ Π pool if m(v) is constant on π, i.e. these types send message “quit”
at the same price. We say that types in [v′, v′′] separate, if m(v) is strictly
increasing on [v′, v′′], i.e. all these types send message “quit” at different
prices. Define by ΠP the closure of the set of all types that pool with some
other type. Then ΠS = [v, v]\ΠP is the set of all types that separate and
denote by ∂ΠP the boundary of ΠP .

Notice that the babbling equilibrium is an equilibrium of the English
auction and it satisfies NITS if and only if E[v] ≤ v + b. So we focus on the
case when there is a non-trivial information transmission in equilibrium, i.e.
ΠS 6= ∅.

We first show that whenever an interval of types perfectly reveals their
value to the bidder in the auction, then these types quit at the optimal time.

Claim 3. If m is strictly increasing on a subset S of (v′, v′′) of (Lebesgue)
measure |v′′ − v′|, then m(v) = v + b on (v′, v′′).

Proof: There exists at most countable number of discontinuities of m
on S. Consider a type v at which m is continuous, i.e. there exist sequences
v−j → v−0 and v+j → v+0 such thatm(v−j )→ m(v)−0 andm(v+j )→ m(v)+
0. We show that m(v) = v+ b. Suppose to contradiction that m(v) < v+ b.

51



Choose j large so that m(v) < m(v+j ) < v + b. If type v sends “quit” at

price m(v+j ) instead of m(v), then she can additionally win against types

in [v, v+j ) and pay at most m(v+j ) < v + b. Therefore, her utility is higher
contradicting the rationality of type v. Now, suppose to contradiction that
m(v) > v+ b. Choose j large so that v+ b < m(v−j ) < m(v). If type v sends

“quit” at price m(v) instead of m(v−j ), then she additionally wins against

types in [v−j , v) and pays at least m(v−j ) > v+b. Therefore, she strictly gains

from sending “quit” at price m(v−j ) contradicting the rationality of type v.
Therefore, m(v) = v + b for all continuity points of S. Since m(v) = v + b
on a dense subset of S, it is also true on the whole S. Since S has measure
|v′′ − v′|, set S is dense in (v′, v′′) and so, m(v) = v + b on (v′, v′′). q.e.d.

Claim 4. ΠP = [v∗, v] for some v∗ ≥ v.

Proof: Consider v ∈ ∂ΠP . Type v is indifferent between pooling with
some interval of types π 3 v and separating. Indeed, since π ∈ ∂ΠP and
ΠS 6= ∅, there exists a sequence vj → v such that m(vj) = vj + b by Claim
1. Type v can mimic type vj and for large j get utility arbitrarily close to
her maximal utility. Therefore,

m(v) = v + b = E[v|v ∈ π]. (32)

Suppose to contradiction to Claim 2 there exists a sequence vj → v such
that vj ∈ ΠP and vj < v. Then E[v|v ∈ π] < v + b which is a contradiction.
q.e.d.

Next, we show that all types in ΠP send “quit” at the same price.

Claim 5. ΠP = π for some π ∈ Π.

Proof: Suppose to contradiction that there are two adjacent intervals
of types π and π′ such that types in π send “quit” at price m and types in
π′ send “quit” at price m′ > m. Consider type v that is at the boundary
of π and π′. By continuity, type v is indifferent between sending “quit” at
price m and m′. The benefit of quitting at m′ rather than m is that type v
wins against types in π, but there is a risk that she will tie with types in π′.
The indifference of type v implies that m′ > v+ b. But then consider a time
when the running price reaches m′. Type v is the lowest type. However, she
gets a negative utility from pooling with types in π′. This contradicts the
NITS condition. q.e.d.

Finally, equation (8) follows from (32) and Claim 3.

Proof of Theorem 3. By Lemma 5 condition (8) is a necessary condition.
For any v∗ satisfying in addition (11), we construct an equilibrium in online
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strategies satisfying NITS for dynamic auctions. Then we show that if v∗

fails (11), then it cannot be part of equilibrium.
Consider strategies described in the theorem. The optimality of the ad-

visor and the bidder after she receives the message “quit” is verified in the
text. Let us check the optimality of the bidder. Let Np be the number of
bidders remaining in the game at price p and vp be the lowest type remain-
ing in the game at price p. The utility of the bidder from following the
recommendation of the advisor starting from running price p is equal to

V (Np, vp) =
1

(1− F (vp))NpF (vp)N−1−Np

(ˆ v∗

vp

(1− F (s))(E[v|v > s]− s− b)dGNp(s)

)
+

1

(1− F (vp))NpF (vp)N−1−Np

Np−1∑
n=1

(
Np − 1

n

)
(1− F (v∗))n+1 (F (v∗)− F (vp))

Np−1−n 1

n
(E[v|v ≥ v∗]− v∗ − b) .

(33)

By the definition of v∗, the last term is zero and so,

V (Np, vp) =
1

(1− F (vp))NpF (vp)N−1−Np

(ˆ v∗

vp

(1− F (s))(E[v|v > s]− s− b)dGNp(s)

)
.

(34)
The bidder prefers to quit immediately at the first time V (Np, vp) becomes
negative. Moreover, (11) implies for all vp ≤ v∗, V (Np, vp) ≥ 0 which proves
the optimality of the bidder’s strategy.

Proof of Corollary 2. To show that v∗ < v, notice that the left-hand side of
(8) is greater than the right-hand side for v∗ sufficiently close to v. Therefore,
v∗1 < v and for ṽ ∈ (v∗1, v

∗
0), E[v|v > ṽ] − ṽ − b < 0. This implies that

v∗ < v.

Proof of Proposition 3. Given that all other bidders follow advisor’s recom-
mendations up to p∗ = v∗ + b, all bids above p∗ lead to probability one
of winning and the same expected payment E[v̂]. We can equivalently for-
mulate the choice problem in terms of the expected probability of winning
q = G(p− b). Let q = limp→p∗−0G(p− b) and q∗ be the probability of win-
ning from submitting bid p∗. Then q is chosen from the set [0, q) ∪ {q∗, 1},
and the preferences over q’s of the bidder and the advisor are

Bidder : qv − t(q), (35)

Advisor : q(v + b)− t(q), (36)
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where t(q) = qE[v̂+b|v̂ ≤ G−1(q)]. The bidder designs a contract q : [v, v]→
[0, q) ∪ {q∗, 1} that solves the program A

max
q∈([0,q)∪{q∗,1})[v,v]

´ v
v (q(v)v − t(q(v))) dF (v) subject to:

v ∈ arg maxv′{(v + b)q(v′)− t(q(v′))} for all v

Denote by qA the solution to program A. The proof proceeds as follows. We
extrapolation t(q) to all q in [0, 1] and solve program B where we maximize
over contracts q : [v, v]→ [0, 1]. Then we show that the solution to program
B is also a solution to the program A. As a preliminary step, we show that
function t is strictly convex on [0, q).

Claim 6. t(q) is strictly convex and twice differentiable on [0, q).

Proof: For any q < q, in the English auction type v = G−1(q) of the
advisor wins with probability q. Consider any q, q′ < q and types v and
v′ that win in the English auction with probabilities q and q′, respectively.
Since in the English auction bidding v+b is strictly optimal for advisor type

v, qv − t(q) > q′v − t(q′). This implies that v > t(q)−t(q′)
q−q′ whenever q > q′

and v < t(q′)−t(q)
q′−q whenever q < q′, which in turn, implies strict convexity of

t on [0, q). Differentiability of t is implied by t(q) = qE[v̂ + b|v̂ ≤ G−1(q)].
q.e.d.

Notice that function t cannot be extrapolated to a strictly convex func-
tion to the whole interval [0, 1] because of the following claim.

Claim 7. Points (q, limq↗q t(q)), (q
∗, t(q∗)), and (1, t(1)) lie on the same line

with slope limq↗q t
′(q) = v∗ + b.

Proof: In the English auction, the bidder with expected value E[v|v >
v∗] gets expected profit 0 from winning at price p∗. Therefore, he is indiffer-
ent between (q, limq↗q t(q)), (q

∗, t(q∗)), and (1, t(1)) and so, they lie on the
same line (her indifference curve) with slope E[v|v > v∗] = v∗ + b . Since
t(q) is differentiable at q < q, for every v < v∗, v+b = t′(q(v)) which implies
that limq↗q t(q) = v∗ + b. q.e.d.

Claim 7 implies that t(q) cannot be extrapolated to a strictly convex
function on the whole [0, 1], and it has a linear piece above q (see Figure
7). In order to apply Amador and Bagwell (2013), we perturb function t on
[q, 1] so that the perturbation tε is strictly convex and twice differentiable.21

21For example, we can consider perturbation tε(q) = t(q) + εmax{0, (q − q)3}.
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t(q)

q∗0 q 1
q

Figure 7: Function t

Then we solve program B:

max
q∈[0,1][v,v]

´ v
v (q(v)v − tε(q(v))) dF (v) subject to:

v ∈ arg maxv′{(v + b)q(v′)− tε(q(v′))} for all v,

and show that the solution of program A cannot be different from the limits
(as ε→ 0) of solutions of programs B.

Claim 8. An interval delegation with cutoff v∗ is a solution to program B.

Proof: We verify that conditions (c1), (c2), (c3’) of Proposition 1 in
Amador and Bagwell (2013) as well as convexity and differentiability as-
sumptions are satisfied when we fix that other bidders follow their equilib-
rium strategies.

First, Claim 6 verifies the differentiability and convexity assumptions
in in Amador and Bagwell (2013). Second, in program B, κ in Amador
and Bagwell (2013) is equal to 1. Let qf (v) be the optimal choice of q of
advisor of type v. Since F (v) − (v − t′(qf (v)))f(v) = F (v) − bf(v) which
is nondecreasing if and only if (ln f(v))′ ≥ −1

b by the assumption of the

proposition, which verifies (c1). Third, ṽ − v∗ −
´ v
ṽ (v − v∗ − b) f(v)

1−F (ṽ)dv =

ṽ+ b−E[v|v ≥ ṽ] ≤ 0 for ṽ > v∗by the decreasing MRL, which verifies (c2).
Finally, v − t′(qf (v)) = −b < 0 which verifies (c3’). Therefore, the interval
delegation is optimal and v∗ is the only candidate for cutoff. q.e.d.

We now use Claim 8 to show that the interval delegation is a solution
to program A as well. Indeed, suppose that this is not the case and there
exists a qA that brings higher value to program A than qB. For any ε > 0,
we can find ε small enough so that there exists qAε that is ε-close to qA in
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the sup-norm and satisfies constraints of program B and in particular the
maximized function is at most ε away from the value of program A. But
this contradicts optimality of the interval delegation in program B.

Proof of Theorem 4. We will show that for any equilibrium of the second-
price auction, there is no ωk ∈ (v∗, v). This implies that the partition
generated by the second-price auction is cruder, and so the English auction
is more efficient. Suppose to contradiction that there is ωk ∈ (v∗, v) such that
ωk−1 ≤ v∗. Notice that in equation (7) Λk+1 ≤ 1

2 ,1−Λk ≥ 1
2 , ωk+b−E[v|v ∈

[ωk−1, ωk]] ≥ 0 and ωk + b−E[v|v ∈ [ωk, ωk+1]] ≤ 0. Therefore, equation (7)
implies

G(ωk−1, ωk)(ωk+b−E[v|v ∈ [ωk−1, ωk)])+G(ωk, ωk+1)(ωk+b−E[v|v ∈ [ωk, ωk+1)]) ≤ 0

or

ωk+b−
G(ωk−1, ωk)

G(ωk−1, ωk+1)
E[v|v ∈ [ωk−1, ωk)]−

G(ωk, ωk+1)

G(ωk−1, ωk+1)
E[v|v ∈ [ωk, ωk+1)] ≤ 0.

Observe that22
G(ωk, ωk+1)

G(ωk−1, ωk+1)
≥ F (ωk, ωk+1)

F (ωk−1, ωk+1)
.

Since E[v|v ∈ [ωk, ωk+1)] ≥ E[v|v ∈ [ωk−1, ωk)],

ωk+b−
F (ωk−1, ωk)

F (ωk−1, ωk+1)
E[v|v ∈ [ωk−1, ωk)]−

F (ωk, ωk+1)

F (ωk−1, ωk+1)
E[v|v ∈ [ωk, ωk+1)] ≤ 0

or
ωk + b− E[v|v ∈ [ωk−1, ωk+1)] ≤ 0.

Then

ωk − b− E[v|v ∈ [ωk−1, ωk+1]] ≥ ωk − b− E[v|v ∈ [v∗, ωk+1]]

≥ ωk − b− E[v|v ≥ v∗]
= ωk − v∗ > 0,

which is a contradiction.

22Indeed
FN−1(ωk+1)− FN−1(ωk)

FN−1(ωk+1)− FN−1(ωk−1)
≥ F (ωk+1)− F (ωk)

F (ωk+1)− F (ωk−1)

if and only if
γFN−1(ωk+1) + (1− γ)FN−1(ωk−1) ≥ FN−1(ωk)

for γ satisfying γF (ωk+1) + (1− γ)F (ωk−1) = F (ωk) which holds by Jensen’s inequality.
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Proofs for Section 5

Proof of Theorem 6. Let us verify that no player wants to deviate from de-
scribed strategies. In the formal round, the value of each bidder is dis-
tributed according to F (·|v ∈ [ωk−1, ωk)). By Theorem 2 specified strategies
constitute an equilibrium in the formal round.

In the formal round, it is a weakly dominant strategy of bidders to
truthfully reveal the interval to which their values belong and announce
mk. Indeed, by misreporting bidders affect whether they win or lose against
opponents announcing m, but do not affect price at which they win. If a
bidder reports m > mk, then she faces a risk of winning at a price that
is higher than her expected value if she wins against an opponent bidding
mk+j . At the same time, if all opponents bid weakly below mk and some
opponents bid exactly mk, then the bidder wins against them and pays mk.
In this case, her expected payoff is 0. Notice that if instead she bid mk,
then she would tie with opponents bidding mk and her payoff would be at
least 0, as in the formal round, there is an option to quit in the beginning
of the round and get 0. If the bidder reports m < mk, then she misses an
opportunity to win and pay a price lower than her expected value which is
profitable. To complete the verification, we need to show that advisors do
not have incentives to deviate. This is ensure by an appropriate choice of
thresholds ωk specified in equations (14). In particular, threshold type ωk
is indifferent between messages mk−1 and mk.

Proofs for Section 6

Proof of Proposition 5. First, observe that (17) is the equation E[v|v <
v∗] = v∗ + b for the exponential distribution. The left-hand side of (17)
is a strictly increasing function23 which is 1

λ at v∗ = 0 and converges to in-
finity as v∗ →∞, while the right-hand side is greater than 1

λ . Hence, there
is a unique solution to (17).

We first verify that the advisor does not have incentives to deviate from
her strategy. As a preliminary step, we derive the equilibrium of the first-
price auction where bids are submitted directly by advisors and the lowest
participating bidder has type v∗ and simply bids her value v∗ + b. The

23Indeed, its derivative is equal to

e−λv

(1− e−λv)2
(eλv − (1 + λv)) > 0
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advisor with type v solves the following problem

max
σ

(v + b− σ)F (σ−1(σ)), (37)

for which the first-order condition is

f(v)(v + b) = (F (v)σ(v))′ (38)

with the initial condition σ(v∗) = E[v|v < v∗] = v∗ + b. From (38),

σ(v) = σ(v∗)
F (v∗)

F (v)
+

1

F (v)

ˆ v

v∗
f(v̂)(v̂+ b)dv̂ = E[v̂|v̂ < v] +

F (v)− F (v∗)

F (v)
b,

(39)
which gives equation (18). Let p∗ = σ(v∗). The utility of the advisor from
winning the auction is

v − E[v̂|v̂ < v] + b
F (v∗)

F (v)
≥ v + b− E[v̂|v̂ < v].

Since v∗ solves (17), the advisor gets a positive utility from the auction for
v > v∗.

If the bidder follows the recommendation of the advisor, then the strat-
egy to stop when p = σ(v) is optimal for the advisor when v > v∗, as it is an
equilibrium strategy in the Dutch auction where the advisor decides when
to stop. For v ≤ v∗, the advisor gets utility 1

N (v− v∗) ≤ 0 if she follows the
strategy and v + b− σ(vp) if she stop at a price above p∗. Since

v + b− σ(vp) ≤ v + b− σ(v∗) = v − v∗ ≤ 1

N
(v − v∗),

sending the message “stop” at price p∗ is optimal for the advisor.
Notice that the mixed derivative in b and σ of the maximized function

(37) is positive. Hence, if the bidder submits the bid, then she chooses a
higher bid. Therefore, it is optimal for her to stop when she gets the message
from the advisor with type v > v∗.

To finish the proof, we show that the bidder does not want to stop the
auction earlier. Let vp ≡ σ−1(p) for all p > p∗. Denote by v̂ the value of the
opponent bidder. The expected utility of the bidder at time t from following
the recommendation of the advisor is

E [(v − σ(v))1{v > v̂}|v, v̂ < vp] = E [(v − σ(v))1{v > v̂}|v∗ < v < vp; v̂ < vp]
F (vp)− F (v∗)

F (vp)
,
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where we used the fact that at stage p∗, the bidder gets utility zero from
winning. We need to compare this utility with the utility that the bidder
gets if she quits before the advisor’s message

E[v|v < vp]− σ(vp) = −bF (vp)− F (v∗)

F (vp)
,

which boils down to showing that

E [(v − σ(v))1{v > v̂}|v∗ < v < vp; v̂ < vp] + b (40)

is non-negative. Using (39) and E[v̂|v̂ < v] = 1
λ

(
1− vf(v)

F (v)

)
for the expo-

nential distribution, we can re-write (40) as follows

ˆ vp

v∗

(
−b− 1

λ
+
v + bF (v∗)

F (v)

)
F (v)

F (vp)

dF (v)

F (vp)− F (v∗)
+ b

or rearranging terms

ˆ vp

v∗

(
F (v)

(
−b− 1

λ

)
+ v + bF (v∗)

)
dF (v)+bF (vp)(F (vp)−F (v∗)). (41)

We will show that (41) is increasing in vp. Since (41) is zero at vp = v∗, this
would imply that (41) is non-negative for all vp > v∗. The derivative of (41)
is equal to

f(vp)

(
F (vp)

(
−b− 1

λ

)
+ vp + bF (v∗) + b(2F (vp)− F (v∗))

)
= f(vp)F (vp)

(
b− 1

λ
+

vp
F (vp)

)
> 0

where the inequality follows from the fact that v∗ is the unique solution to
(17).

Proof of Theorem 7. We first show that strategies described in Theorem 7
constitute an equilibrium of the Dutch auction.

Indeed, the left-hand side of equation (19) is greater than v and bounded
from above by E[v]. The right-hand side of equation (19) is less than v for
small v∗ and is greater than E[v] for sufficiently large v∗. By continuity,
equation (19) has a solution.

To prove that conjectured strategies constitute an equilibrium, we need
to show that the advisor sends the message “stop” at the optimal time
given that bidder follows her recommendation, and that the bidder prefers
to follow recommendations of the advisor.
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Optimality of the advisor First, we show that strategy σ(·) is opti-
mal for the advisor. The advisor of type v solves the following problem

max
σ

(v + b− σ)G(σ−1(σ)), (42)

for which the first-order condition is

g(v)(v + b) = (G(v)σ(v))′ (43)

with the initial condition σ(v∗) = v∗ + b. From (43),

σ(v) =
G(v∗)

G(v)
(v∗ + b) +

1

G(v)

ˆ v

v∗
g(v̂)(v̂ + b)dv̂ =

G(v∗)

G(v)
(E[v|v < v∗]) +

G(v)−G(v∗)

G(v)
(E[v̂|v̂ ∈ [v∗, v]] + b) =

b
G(v)−G(v∗)

G(v)
+ E[v̂|v̂ < v]− (E[v̂|v̂ < v∗]− E[v|v < v∗])

G(v∗)

G(v)
=

b+ E[v̂|v̂ < v] + (v∗ − E[v̂|v̂ < v∗])
G(v∗)

G(v)
. (44)

The equilibrium bid is equal to expectation of max{v∗, v̂} + b conditional
on v̂ < v. Given (44), the utility of the advisor from winning the auction
equals

v − E[v̂|v̂ < v]− (v∗ − E[v̂|v̂ < v∗])
G(v∗)

G(v)
=

1

G(v)
(G(v)v −G(v∗)v∗ − E[v̂ : v̂ ∈ [v∗, v]]) =

ˆ v

v∗

G(ω)

G(v)
dω > 0. (45)

Hence, if the bidder follows her strategy, then it is optimal for the advisor
to follow her strategy.

Optimality of the bidder By the single-crossing property of payoffs,
when the bidder knows v, the bidder prefers to stop the auction earlier.
Hence, having received the message “stop” from the advisor, the bidder
prefers to stop immediately. It remains to check that the bidder does not
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want to quit the auction before she gets a recommendation from the advisor.
By (44), if the bidder quits at time t, then her payoff equals

E[v|v < vp]−σ(vp) = E[v|v < vp]−b−E[v̂|v̂ < vp]−(v∗ − E[v̂|v̂ < v∗])
G(v∗)

G(vp)
.

(46)
On the other hand, if the bidder follows her equilibrium strategy, then her
expected utility is given by

E [(v − σ(v))1{v > v̂}|v̂, v < vp] =

E [(v − σ(v))1{v > v̂}|v∗ < v < vp, v̂ < vp]
F (vp)− F (v∗)

F (vp)
=

1

F (vp)2

ˆ vt

v∗

(
v − b− E[v̂|v̂ < v]− (v∗ − E[v̂|v̂ < v∗])

G(v∗)

G(v)

)
F (v)dF (v),

(47)
where the first equality is by the fact that E [(v − σ(v))1{v > v̂}|v < v∗, v̂ < vp] =
0, the second equality is by (44). We need to show that (46) is less than(47).
We evaluate the difference

ˆ vp

v∗

(
v − b− E[v̂|v̂ < v]− (v∗ − E[v̂|v̂ < v∗])

G(v∗)

G(v)

)
F (v)dF (v)−

F 2(vp)

(
E[v|v < vp]− b− E[v̂|v̂ < vp]− (v∗ − E[v̂|v̂ < v∗])

G(v∗)

G(vp)

)
. (48)

The derivative of (48) divided by f(vp)F (vp) is equal to

vp − b− E[v̂|v̂ < vt]− (v∗ − E[v̂|v̂ < v∗])
G(v∗)

G(vp)
−

2

(
E[v|v < vp]− b− E[v̂|v̂ < vp]− (v∗ − E[v̂|v̂ < v∗])

G(v∗)

G(vp)

)
−

F (vp)

(
1

F (vp)
(vt − E[v|v < vp])−

(N − 1)FN−2(vp)

G(vp)

(
vp − E[v̂|v̂ < vp]− (v∗ − E[v̂|v̂ < v∗])

G(v∗)

G(vp)

))
=

vp − 2E[v|v < vp] + b+ E[v̂|v̂ < vp] + (v∗ − E[v̂|v̂ < v∗])
G(v∗)

G(vp)
−(

vp − E[v|v < vp]− (N − 1)(vp − E[v̂|v̂ < vp]) + (v∗ − E[v̂|v̂ < v∗])
G(v∗)

G(vp)
(N − 1)

)
=

(N−1)(vp−E[v̂|v̂ < vp])+(E[v̂|v̂ < vp]−E[v|v < vp])+b−(v∗ − E[v̂|v̂ < v∗])
G(v∗)

G(vp)
(N−2) =
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vp−E[v|v < vp]+b+(N−2)

(
vp − E[v̂|v̂ < vp]− (v∗ − E[v̂|v̂ < v∗])

G(v∗)

G(vp)

)
(49)

In (49) vp−E[v|v < vp] + b > 0 by the fact that v∗ is the largest solution to
(19). The remaining term in (49) is positive by (45). Hence, the derivative
of (48) is positive. Therefore, since at vp = v∗, the expression (48) is equal
to zero by (19), for ≥ v∗ the expression (48) is non-negative. This proves
that the bidder prefers to follow recommendations of the advisor rather than
stop the auction earlier.

Proof of Theorem 8. We want to show that there is no partition (ωk)
K
k=1

induced by the equilibrium of the second-price auction such that ωk ∈ [v, v∗].
Since v∗ is the unique solution to (19) and v + b − E[v|v ≤ v] = b < 0,
ωk + b− E[v|v ≤ ωk] < 0. Therefore,

ωk + b− E[v|v ∈ [ωk−1, ωk)] ≤ ωk + b− E[v|v < ωk] < 0,

which contradicts the fact that the first term in (7) should be positive.

9 Online Appendix (Not for Publication)

Analysis of the M&A Auction

We provide calculations that for the M&A auction under the log-normal

specification of values. Let y∗k =
ln v∗k−µ√

2σ
and yk = lnωk−µ√

2σ
. Then

E[v|v ∈ [v∗k, ωk)] =

´ ωk
v∗k

v
vσ
√
2π
e−

(ln v−µ)2

2σ2 dv

1
2erfc

(
ln v∗k−µ√

2σ

)
− 1

2erfc
(
lnωk−µ√

2σ

)
=

2√
π

´ yk
y∗k
e−y

2+
√
2σy+µdy

erfc
(
y∗k
)
− erfc (yk)

= eµ+
σ2

2

2√
π

´ yk
y∗k
e
−
(
y− σ√

2

)2

dy

erfc
(
y∗k
)
− erfc (yk)

= eµ+
σ2

2

erfc
(
y∗k −

σ√
2

)
− erfc

(
yk − σ√

2

)
erfc

(
y∗k
)
− erfc (yk)

,

62



and equation (13) becomes

e
√
2σy∗k−

σ2

2 + be−µ−
σ2

2 =
erfc

(
y∗k −

σ√
2

)
− erfc

(
yk − σ√

2

)
erfc

(
y∗k
)
− erfc (yk)

Construction of an equilibrium To construct an equilibrium with com-
munication in both stages of bidding, fix an equilibrium of the English auc-
tion characterized by cutoff v∗. Then we can start with some v∗1 and ω1 that
satisfy (13) and get β2 from equation (14). Indeed, β1 can be chosen arbi-
trary as no bidder wins and pays price β1 and ωk−1 = v. Given β2, we can
try to choose ω2 (and hence m2) so that inequalities (15) and (16). Knowing
ω2 we determine v∗2 from equation (13) and proceed this way until we reach
ωK+1 exceeding v∗. At this point, we need to check whether there is a price
βK that types of advisor in [ωK , v] recommend so that inequalities (15) and
(16) are satisfied. If not, we check if they are satisfied for some βK−1 and
types of advisor in [ωK−1, v] and proceed this way until we construct an
equilibrium.
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