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1 Introduction

1.1 Challenges for Matched Observational Studies with Bi-
nary Outcomes
Matching is a simple, transparent and convincing way to adjust for overt biases in an
observational study. In a study employing matching, treated subjects are placed into
strata with control subjects on the basis of their observed covariates. In each stratum,
there is either one treated unit and one or more similar control units, or one control
unit and one or more similar treated units (Hansen, 2004; Rosenbaum, 2010; Stuart,
2010). The overall covariate balance between the two groups is then assessed with
respect to the produced stratification, and inference is only allowed to proceed if the
balance is deemed acceptable. This procedure encourages researcher blinding, as both
the construction of matched sets and the assessment of balance proceed without ever
looking at the outcome of interest just as they would in a blocked randomized trial.

Despite our best efforts, observational data can never achieve their randomized
experimental ideal as the assignment of interventions was conducted outside of the re-
searcher’s control. Nonetheless, randomization inference provides an appealing frame-
work within which to operate for matched observational studies. The analysis initially
proceeds as though the data arose from a blocked randomized experiment, with the
strata constructed through matching now regarded as existing before random assign-
ment occurred. Randomization inference uses only the assumption of random assign-
ment of interventions to provide a “reasoned basis for inference” in a randomized study
(Fisher, 1935). In the associated sensitivity analysis for an observational study, de-
partures from random assignment of treatment within each block due to unmeasured
confounders are considered. The sensitivity analysis forces the practitioner to explic-
itly acknowledge greater uncertainty about causal effects than would be present in
a randomized experiment due to the possibility that unmeasured confounders affect
treatment assignment and the outcome (Rosenbaum, 2002b, Section 4).

With binary outcomes, randomization inference and sensitivity analyses in matched
observational studies raise computational challenges that have heretofore limited their
use. When the outcome is continuous rather than binary and an additive treatment ef-
fect is plausible, hypothesis testing and sensitivity analyses for the treatment effect can
be conducted for a simple null hypothesis, and confidence intervals can then be found
by inverting a series of such tests. This is a straightforward task, since the potential
outcomes under treatment and control for each individual are uniquely determined by
the hypothesized treatment effect (Hodges and Lehmann, 1963). Inference under no
unmeasured confounding merely requires a simple randomization test, and a sensitivity
analysis can be performed with ease through the asymptotically separable algorithm
of Gastwirth et al. (2000). When dealing with binary responses, however, an additive
treatment effect model is inapplicable: if an effect exists it is most likely heterogeneous,
as the intervention may cause an event for one individual while not causing the event
for another. As such, confidence intervals are instead constructed for causal estimands
whose corresponding hypothesis tests are composite in nature, meaning there are many
allocations of potential outcomes which yield the same hypothesized value of the causal
estimand; see Rosenbaum (2001, 2002a) for further discussion. To reject a null hypoth-
esis for a causal parameter of this sort, we must reject the null for all values of the
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potential outcomes which satisfy the null. The situation is further complicated when
conducting a sensitivity analysis, as inference must also account for the existence of
an unmeasured confounder with a range of impacts on the assignment of interventions
within a matched set. We now illustrate these points by investigating the causal effect
of one post-hospitalization protocol versus another after an acute care stay on hospital
readmission rates.

1.2 Motivating Example: Effect of Post-Acute Care Pro-
tocols on Hospital Readmission
At the time of discharge after an acute care hospitalization, a fundamental question
arises: to where should the patient be discharged? The long-term goal shared by
providers and patients envisions a transition home and a return to normalcy, yet a pre-
mature discharge home without appropriate guidance could impede a durable recovery.

An important measure of whether a patient has achieved a durable recovery is
whether the patient does not need to be readmitted to the hospital within a certain
period of time. Different avenues for reducing rehospitalization rates have recently gar-
nered significant attention nationwide (Jencks et al., 2009), and post-acute care is one
mechanism through which hospital readmission rates may be improved (Ottenbacher
et al., 2014). For individuals who are not gravely ill, post-acute care entails more inten-
sive discharge options than a simple discharge home without further supervision such
as discharge home while receiving visits from skilled nurses, physical therapy, and other
additional health benefits (referred to henceforth as “home with home health services”);
or discharge to an acute rehabilitation center. Post-acute care use is on the rise in
the United States; however, post-acute care services can be quite costly, sometimes
even rivaling the cost of a hospital readmission (Mechanic, 2014). It is thus of interest
to assess the relative merits of various post-acute care protocols for reducing hospital
readmission rates.

We aim to assess the causal effect of being discharged to an acute rehabilitation
center versus home with home health services on hospital readmission rates through a
retrospective observational study. Hospital records for acute medical and surgical pa-
tients discharged from three hospitals in the University of Pennsylvania Hospital system
between 2010 and 2012 were collected; see Jones et al. (2015) for more details on this
study. Within this data set, there are 4893 individuals assigned to acute rehabilitation
and 35,174 individuals assigned to home with home health services, for 40,067 total
individuals. We would like to assess whether discharge to acute rehabilitation reduces
the causal risk of hospital readmission relative to discharge home with home health ser-
vices. Beyond testing this hypothesis, we would also like to create confidence intervals
for causal parameters that effectively summarize the impact of discharge location on
hospital readmission rates in our study population. Two causal estimands of interest
for this comparison are the causal risk difference, which is the difference in proportions
of readmitted patients if all patients had been assigned to acute rehabilitation versus
that if all patients had been discharged home with home health services; and the causal
risk ratio, which is the ratio of these two proportions.

Through the use of matching with a variable number of controls (Ming and Rosen-
baum, 2000), individuals assigned to acute rehabilitation were placed in matched sets
with varying numbers of home with home health services individuals (ranging from 1 to
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20) who were similar on the basis of their observed covariates. We used rank-based Ma-
halanobis distance with a propensity score caliper (estimated by logistic regression) of
0.2 as our distance metric to perform the matching. We further required exact balance
on the indicator of admission to an intensive care unit to better control for whether an
individual had a critical illness. In Appendix A, we demonstrate that this stratification
resulted in acceptable balance on the basis of the standardized differences between the
groups.

In the stratified experiment that our match aims to mimic, randomization inference
can be readily used to test Fisher’s sharp null of no effect. Under Fisher’s sharp null, the
unobserved potential outcomes are assumed to equal the observed potential outcomes
for each individual. The sharp null can then be assessed by noting that within each
stratum, the number of treated individuals for whom an event is observed follows a
hypergeometric distribution. The total number of treated individuals with events across
all strata is then distributed as the sum of independent hypergeometric distributions,
forming the basis for what has become known as the Mantel-Haenszel test (Mantel and
Haenszel, 1959; Rosenbaum, 2002b).

Testing a null on the causal risk difference or the causal risk ratio presents challenges
not encountered when testing the sharp null, as many allocations of potential outcomes
could yield the same causal parameter. For example, if we are testing the null that the
causal risk difference is 0, the allocation under Fisher’s null is merely one of many choices
(i.e., it is merely one element of the composite null). Conducting a hypothesis test and
performing a sensitivity analysis requires assessing tail probabilities for all elements of
the composite null, both under the assumption of no unmeasured confounding and while
allowing for an unmeasured confounder of a range of strengths. Direct enumeration
of all possible combinations of potential outcomes is computationally infeasible for
even moderate sample sizes. In our motivating example, there are 240,067 possible
combinations of potential outcomes, even without considering values for the unmeasured
confounder.

We instead aim to find the combination of potential outcomes and unmeasured
confounders that results in the worst-case p-value for the test being conducted. If the
null hypothesis corresponding to this worst-case allocation can be rejected, we can then
reject all elements of the composite null. Rosenbaum (2002a) uses a similar approach
for inference on the attributable effect, which is the effect of the treatment on the treated
individuals. There it is shown that under the assumption of a nonnegative treatment
effect (i.e., the treatment may cause an event, but does not preclude an event from
happening if it would have happened under the control) a simple enumerative algorithm
yields an asymptotic approximation worst-case p-value for this composite null. This is
because the impact on the p-value by attributing a given outcome to the treatment can
be well approximated through asymptotic separability (Gastwirth et al., 2000), such
that one can satisfy the null while finding the worst-case allocation by sorting the strata
on the basis of their impact on the p-value and attributing the proper number of effects
by proceeding down the sorted list. Recent works by Yang et al. (2014) and Keele
et al. (2014) discuss how the attributable effect can also be used to define estimands
of interest in instrumental variable studies. See Appendix B for further discussion on
estimands which focus on the treatment effect on the treated versus the treatment effect
on the entire study population.

Unfortunately, with other causal estimands of interest which do not solely focus on
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the treatment’s effect on treated individuals (the risk difference and risk ratio being
two such estimands), and even for estimands focusing on the treated individuals but
not assuming a known direction of effect, finding the worst-case allocation does not
simplify in the same manner. This is because finding the potential outcome allocation
with the largest impact on the p-value on a stratum-wise basis does not readily yield
an allocation that satisfies the composite null. The problem is not separable on a
stratum-wise basic even asymptotically, as the requirement that the composite null
must be true necessarily links the strata together in a complex manner. There are
two non-complementary forces at play in the required optimization problem: for some
strata, the potential outcome allocations should maximize the impact on the p-value,
while in other strata the missing potential outcome allocations should work towards
satisfying the composite null. For our motivating example, there are over 300,000 types
of contributions to the p-value that must be considered in the sensitivity analysis when
we do not assume a known direction of effect (as is shown in Section 6.1). Explicit
enumeration is intractable here, as we must consider which allowed combinations of
these contributions maximize the p-value while satisfying the null in question. As such,
a different approach is required to make the computation feasible.

1.3 Integer Programming as a Path Forward
In this paper, we show that hypothesis testing for a composite null with binary out-
comes can be performed by solving an integer linear program under the assumption
of no unmeasured confounding. When conducting a sensitivity analysis by allowing
for unmeasured confounding of a certain strength, an integer quadratic program is re-
quired. These optimization problems yield the worst-case p-value within the composite
null so long as a normal approximation to the test statistic is justified. We show that
our formulation is strong, in that the optimal objective value for our integer program
closely approximates that of the corresponding continuous relaxation. As we demon-
strate through simulation studies and real data examples, this allows hypothesis testing
and sensitivity analyses to be conducted efficiently even with large sample sizes despite
the fact that integer programming is NP-hard in general, as discrete optimization
solvers heavily utilize continuous relaxations in their search path. Through comparing
our formulation to an equivalent binary program in the supplementary material, we
also demonstrate that recent advances in optimization software (Jünger et al., 2009)
alone are not sufficient for solving the problem presented herein; rather, a thought-
ful formulation remains essential for solving large-scale discrete optimization problems
expeditiously.

2 Causal Inference after Matching

2.1 Notation for a Stratified Randomized Experiment
Suppose there are I independent strata, the ith of which contains ni ≥ 2 individ-
uals, that were formed on the basis of pre-treatment covariates. In each stratum,
mi individuals receive the treatment and ni −mi individuals receive the control, and
min{mi, ni −mi} = 1. We proceed under the stable unit treatment value assumption
(SUTVA), which entails that (1) there is no interference, i.e. that the observation of
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one unit is not affected by the treatment assignment of other units; and (2) there are no
hidden levels of the assigned treatment, meaning tha tthe treatments for all individuals
with the same level of observed treatment are truly comparable (Rubin, 1986). Let Zij
be an indicator variable that takes the value 1 if individual j in stratum i is assigned
to the treatment. Each individual has two sets of binary potential outcomes, one un-
der treatment, {rT ij , dT ij} and one under control, {rCij , dCij}. rT ij and rCij are the
primary outcomes of interest, while dT ij and dCij are indicators of whether or not an
individual would actually take the treatment when randomly assigned to the treatment
or control group. The observations for each individual are Rij = rT ijZij + rCij(1−Zij)
and Dij = dT ijZij+dCij(1−Zij); see Neyman (1923) and Rubin (1974) for more on the
potential outcomes framework. In the classical experimental setting, dT ij − dCij = 1
∀i, j, and hence all individuals take the administered treatment. For a randomized
encouragement design, (Holland, 1988), Zij represents the encouragement to take the
treatment (which is randomly assigned to patients), while dT ij and dCij are the actual
treatment received if Zij = 1 and Zij = 0 respectively. Matched observational studies
assuming strong ignorability (Rosenbaum and Rubin, 1983) aim to replicate a classi-
cal stratified experiment, whereas matched studies employing an instrumental variable
strive towards a randomized encouragement design, with Zij being the instrumental
variable.

There are N =
∑I

i=1 ni total individuals in the study. Each individual has ob-
served covariates xij and unobserved covariate uij . Let R = [R11, R12, ...,, RInI

]T ,
Ri = [Ri1, ..., Rini ]

T , and let the analogous definitions hold for D,Di, Z,Zi. Let
rT = [rT11, ..., rTInI

], rT i = [rT i1, ..., rT ini ], and let the analogous definitions hold for
the other potential outcomes and the unobserved covariate. Let X be a matrix whose
rows are the vectors xij . Finally, let Ω be the set of

∏I
i=1 ni possible values of Z under

the given stratification. In a randomized experiment, randomness is modeled through
the assignment vector; each z ∈ Ω has probability 1/|Ω| of being selected. Hence, quan-
tities dependent on the assignment vector such as Z, R and D are random, whereas
F = {rT , rC ,dT ,dC ,X,u} contains fixed quantities. For a randomized experiment,
P(Zij = 1|F ,Z ∈ Ω) = mi/ni, and P(Z = z|F ,Z ∈ Ω) = 1/|Ω|, where the notation |B|
denotes the number of elements in the set B.

2.2 Conducting a Sensitivity Analysis
In an observational study, the I strata are still generated based on pre-treatment covari-
ates, but are only created after treatment assignment has taken place. Furthermore,
the treatment assignment was conducted outside of the practitioner’s control, which
may introduce bias due to the existence of unmeasured confounders. We follow the
model for a sensitivity analysis of Rosenbaum (2002b, Section 4), which states that fail-
ure to account for unobserved covariates may result in biased treatment assignments
within a stratum. This model can be parameterized by a number Γ = exp(γ) ≥ 1
which bounds the extent to which the odds ratio of assignment can vary between
two individuals in the same matched stratum. Letting πij = P(Zij = 1|F), we can
write the allowed deviation as 1/Γ ≤ πij(1 − πik)/(πik(1 − πij)) ≤ Γ. This model
can be equivalently expressed in terms of the observed covariates xij and the unob-
served covariate uij (assumed without loss of generality to be between 0 and 1), as
log (πij/(1− πij)) = ζ(xij) + γuij , where ζ(xij) = ζ(xik), i = 1, ..., I, 1 ≤ j, k ≤ ni.
See Rosenbaum (2002b, Section 4.2) for a discussion of the equivalence between these
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models. The probabilities of each possible allocation of treatment and control are given
by P(Z = z|F ,Z ∈ Ω) = exp(γzTu)/

∑
b∈Ω exp(γbTu), where u = [u11, u12, ..., uI,ni ].

If Γ = 1, the distribution of treatment assignments corresponds to the randomization
distribution discussed in Section 2.1. For Γ > 1, the resulting distribution differs from
that of a randomized experiment with the extent of the departure controlled by Γ.

Consider a simple hypothesis test based on a test statistic of the form T = ZTq,
where q = q(rT , rC ,dT ,dC) is a permutation invariant, arrangement increasing func-
tion. Most commonly employed statistics are of this form; see Rosenbaum (2002b,
Section 2.4) for a detailed discussion. Without loss of generality reorder the elements
of q such that within each stratum qi1 ≤ qi2 ≤ .. ≤ qini . For a given value of Γ and
for fixed values of the potential outcomes, a sensitivity analysis proceeds by finding
tight upper and lower bounds on the upper tail probability, P(T ≥ t), by finding the
worst-case allocation of the unmeasured confounder u. One then finds the value of Γ
such that the conclusions of the study would be materially altered. The more robust a
given study is to unmeasured confounding, the larger the value of Γ must be to alter
its findings.

As is demonstrated in Rosenbaum and Krieger (1990) for strata with mi = 1, for
each Γ an upper bound on P(T ≥ t) is found at a value of the unobserved covariate
u+ ∈ U+

1 × ... × U+
I , where U+

i consists of ni − 1 ordered binary vectors (each of
length ni) with 0 = u+

i1 ≤ u+
i2... ≤ u+

ini
= 1. Similarly, a lower bound on P(T ≥ t) is

found at a vector u− ∈ U−1 × ... ×U−I with 1 = u−i1 ≥ u−i2... ≥ u−ini
= 0. Under mild

regularity conditions on q, T is well approximated by a normal distribution. Large
sample bounds on the tail probability can be expressed in terms of corresponding bounds
on standardized deviates. These results can readily extended to stratifications yielded
by a full match through a simple redefinition of Z and q; see Rosenbaum (2002b, Section
4, Problem 12).

3 Composite Null Hypotheses

3.1 Estimands of Interest
To motivate our discussion, we will focus on three causal estimands of interest with
binary outcomes. Note however that the general framework for inference and sensitivity
analyses presented herein can be applied to any causal estimand for binary potential
outcomes with an associated test statistic that can be written as ZTq for a function
q(·) that satisfies the conditions outlined in Section 2.2. The causal parameters we will
consider are the causal risk difference, causal risk ratio, and the effect ratio, defined as:

Risk Difference δ :=
1

N

I∑
i=1

ni∑
j=1

(rT ij − rCij)

Risk Ratio ϕ :=

∑I
i=1

∑ni
j=1 rT ij∑I

i=1

∑ni
j=1 rCij

Effect Ratio λ :=

∑I
i=1

∑ni
j=1(rT ij − rCij)∑I

i=1

∑ni
j=1(dT ij − dCij)

.
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As mentioned in the introduction, the causal risk difference measures the difference
in proportions of observed events had all the individuals received the treatment and
observed events had all individuals received the control. Similarly, the causal risk ra-
tio measures the ratio of these two proportions. Each of these estimands has merits
and shortcomings relative to the other, owing to the fact that the risk difference mea-
sures an effect on an absolute scale while the risk ratio measures an effect on a relative
scale; see Appendix C for further discussion of these two measures. These estimands
are appropriate under strong ignorability (Rosenbaum and Rubin, 1983); in the corre-
sponding idealized experiment, there are simply treated and control individuals, and
all individuals comply with their assigned treatment regimen.

The effect ratio is a ratio of two average treatment effects, and hence serves as
an assessment of the relative magnitude of the two treatment effects (Baiocchi et al.,
2010; Yang et al., 2014). It is a causal estimand of interest in instrumental variable
studies. In the idealized experiment being mimicked, Zij represents the randomized
encouragement to take the treatment or control, while dT ij and dCij indicate whether
the treatment would be taken if Zij = 1 and Zij = 0 respectively. The effect ratio
then represents the ratio of the effect of the encouragement on the outcome to the
effect of the encouragement on the treatment received. If the encouragement (1) is
truly randomly assigned within strata defined by the observed covariates; and (2) can
only impact the outcome of an individual if the encouragement changes the individual’s
choice of treatment regimen (the exclusion restriction: dT ij = dCij ⇒ rT ij = rCij), Z
is then an instrument for the impact of the treatment on the response (Angrist et al.,
1996). The parameter λ still has an interpretation in terms of relative magnitude of
the two effects even if the exclusion restriction is not met, but the exclusion restriction
coupled with monotonicity (dT ij ≥ dCij , also referred to as assuming “no defiers”) give
λ an additional interpretation as the average treatment effect among individuals who
are compliers, i.e. individuals for which dT ij − dCij ; this is commonly referred to as the
local average treatment effect. While we will not always assume monotonicty holds, we
will make the assumption that the encouragement has an aggregate positive effect, i.e.∑I

i=1

∑ni
j=1 dT ij − dCij > 0, such that the effect ratio is well defined.

3.2 Testing a Composite Null
Note first that a null hypothesis on δ, ϕ, or λ corresponds to a composite null hypothesis
on the values of the potential outcomes, as multiple potential outcome allocations yield
the same value for the causal parameter. Let Θ(rT , rC ,dT ,dC) be a function that
maps a given set of potential outcomes to the corresponding causal parameter value of
interest, θ. We call a set of potential outcomes {rT , rC ,dT ,dC} consistent with a null
hypothesis H0 : θ = θ0 for a causal parameter θ if the following conditions are satisfied:

(A1) Consistency with observed data: ZijrT ij + (1 − Zij)rCij = Rij ; ZijdT ij + (1 −
Zij)dCij = Dij

(A2) Consistency with assumptions made on potential outcomes

(A3) Agreement with the null hypothesis: Θ(rT , rC ,dT ,dC) = θ0

The first condition recognizes that we know the true values for half of the potential out-
comes based on the observed data. The second condition means that if the practitioner
has made additional assumptions on the potential outcomes, those assumptions must
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be satisfied in the allocations of potential outcomes under consideration. Assumptions
could include a known direction of effect, monotonicity, the exclusion restriction, and
combinations thereof. The third condition signifies that when testing a null hypothesis,
we must only consider allocations of potential outcomes where the corresponding causal
parameter takes on the desired value.

Let H(θ0) represent the set of potential outcomes satisfying conditions A1 - A3. As
the size of a composite null hypothesis test is the supremum of the sizes of the elements
of the composite null, to reject the null H0 : θ = θ0 at level α, we must reject the
null for all {rT , rC ,dT ,dC} ∈ H(θ0) at level α. As direct enumeration of H(θ0) is a
laborious (and likely computationally infeasible) task, we instead aim to find a single
worst-case allocation {rT , rC ,dT ,dC}∗ such that rejection of {rT , rC ,dT ,dC}∗ at level
α implies rejection for all {rT , rC ,dT ,dC} ∈ H(θ0).

We consider test statistics of the form T (θ0) =
∑I

i=1 Ti(θ0) with expectation 0
under the null at Γ = 1. Let ψ(θ0; rT i, rCi,dT i,dCi) = E[Ti(θ0)]. Thus,

∑I
i=1 ψ(θ0; rT i,

rCi,dT i,dCi) = 0 if and only if Θ(rT , rC ,dT ,dC) = θ0. For our three estimands of
interest, the stratum-wise contributions to the test statistic are

Ti(δ0) = −niδ0 + ni

ni∑
j=1

(ZijRij/mi − (1− Zij)Rij/(ni −mi))

Ti(ϕ0) = ni

ni∑
j=1

(ZijRij/mi − ϕ0(1− Zij)Rij/(ni −mi))

Ti(λ0) = ni

ni∑
j=1

(Zij(Rij − λ0Dij)/mi − (1− Zij)(Rij − λ0Dij)/(ni −mi)) ,

with respective stratum-wise expectations

ψ(δ0; rT i, rCi,dT i,dCi) = −niδ0 +

ni∑
j=1

(rT ij − rCij)

ψ(ϕ0; rT i, rCi,dT i,dCi) =

ni∑
j=1

(rT ij − ϕ0rCij)

ψ(λ0; rT i, rCi,dT i,dCi) =

ni∑
j=1

(rT ij − λ0dT ij − (rCij − λ0dCij)).

To express these statistics in the required form for conducting a sensitivity analysis,
define Z̃ such that Z̃ij = Zij if mi = 1 and Z̃ij = 1 − Zij if mi > 1. If mi = 1, define
q(·) as:

(q(δ0; rT i, rCi,dT i,dCi))j = ni

−δ0 + rT ij/mi −
∑
k 6=j

rCik/(ni −mi)


(q(ϕ0; rT i, rCi,dT i,dCi))j = ni

rT ij/mi −
∑
k 6=j

ϕ0rCik/(ni −mi)


(q(λ0; rT i, rCi,dT i,dCi))j = ni

(rTij − λ0dT ij)/mi −
∑
k 6=j

(rCik − λ0dCik)/(ni −mi)
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The analogous definition holds when mi > 1: simply redefine q(·) within stratum i
such that the proper contribution is given to Ti(·) if unit j in stratum i receives the
control (and thus, all other units receive the treatment). The test statistic Z̃Tq(·) then
has the required form for conducting a sensitivity analysis.

Under mild regularity conditions, Lyapunov’s central limit theorem yields that all
three of the test statistics T (θ0) under consideration are well approximated by a nor-
mal distribution for Γ ≥ 1. See Fogarty et al. (2015) for a discussion with regards to
the risk difference (the risk ratio follows through similar arguments), and see Baiocchi
et al. (2010) for a discussion for the effect ratio. Finding the worst-case allocation
{rT , rC ,dT ,dC}∗ at a given Γ can be well approximated by finding the allocation of
potential outcomes and unobserved confounder that results in the worst-case standard-
ized deviate. While this observation simplifies our task, it alone is not sufficient for
making both inference and sensitivity analyses feasible for our estimands of interest;
rather, we must exploit other features of the optimization problem.

4 Symmetric Tables
We now introduce the required framework and notation for our optimization problem.
Though many equivalent formulations are possible, the one we describe has a decision
variable for each unique distribution on a stratum’s contribution to the test statistic.
This is an extension of the formulation of Fogarty et al. (2015), which was catered
towards maximizing the variance of the estimated causal risk difference under no un-
measured confounding. In Section 5.3, we discuss the elements of our formulation which
facilitate solving the corresponding integer program efficiently.

Let T zrdi = {j : Zij = z,Rij = r,Dij = d}, (z, r, d) ∈ {0, 1}3, i ∈ {1, ..., I}, denote
the eight possible partitions of indices of individuals in stratum i into sets based on their
value of the encouraged treatment, observed response, and taken treatment. Within
each set, all members share the same value of either rT ij or rCij , and of either dT ij or
dCij . For example, if j, k ∈ T 011

i , then rCij = rCik = dCij = dCik = 1, yet the values of
rT ij , rT ik, dTij , dT ik are unknown. Note that for the stratifications under consideration∑

(r,d)∈{0,1}2 |T 0rd
i | = ni−mi,

∑
(r,d)∈{0,1}2 |T 1rd

i | = mi, and the minimum of these two
quantities is always 1. |T zrdi | can be thought of as the value in cell (z, r, d) of a 23

factorial table that counts the number of individuals with each combination of (z, r, d)
in stratum i.

Under no assumption on the structure of the potential outcomes, there are 22ni

possible sets of potential outcomes in stratum i that are consistent with the observed
data, each of which results in a particular distribution for the contribution to the
test statistic from stratum i, Ti(θ0). Fortunately, one need never consider all 22ni

allocations. First, without any assumptions on the potential outcomes, the 22ni possible
sets of potential outcomes in stratum i only yield

∏
(z,r,d)∈{0,1}3(|T zrdi | + 1)2 unique

distributions for Ti(θ0). To see this, note that the test statistics under consideration
are permutation invariant within each stratum. Let us examine the set T 000

i as an
illustration. Here, we have dCij = rCij = 0 for all j ∈ T 000

i . Of the 2|T
000
i | pairings

[rT ij , rCij ], there are only |T 000
i | + 1 non-exchangeable allocations of values for {rT ij :

j ∈ T 000
i }: (0, 0..., 0), (1, 0, ..., 0), ..., and (1, 1, ..., 1). Analogous argument shows that

there are only |T 000
i | + 1 non-exchangeable arrangements for dT ij , thus resulting in

(|T 000
i | + 1)2 total non-exchangeable allocations. The same logic yields a contribution
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of (|T zrdi |+ 1)2 for each of the other seven partitions.
Additional structure is often imposed on the potential outcomes on top of con-

sistency with the observed data. For example, in the classical experiment we have
that dTij − dCij = 1 ∀i, j, meaning that all patients comply with their assigned treat-
ment. Hence, the four partitions where Zi − Di 6= 0 are empty, and in the remain-
ing partitions dT ij and dCij are fixed at 1 and 0 respectively. This results in only∏

(z,r)∈{0,1}2(|T zrzi | + 1) allowed non-exchangeable allocations within stratum i; note
the lack of a square in the expression. This is also shown in Rigdon and Hudgens
(2015, Section 3). Other assumptions such as a known direction of effect, monotonic-
ity, and the exclusion restriction can be seen to similarly reduce the set of allowed
non-exchangeable allocations.

It would seem as though we must consider at most
∏I
i=1

∏
(z,r,d)∈{0,1}3(|T zrdi |+ 1)2

different distributions for T (θ0) =
∑I

i=1 Ti(θ0) in our optimization problem. Fortu-
nately, note first that we assume independence between strata, and further note that
we are using a normal approximation to conduct inference. Hence, both the expecta-
tions and variances sum between strata and we do not need to consider covariances
between strata. Further, in the same way that there were a limited number of non-
exchangeable allocations of potential outcomes in each stratum due to repetition, many
observed 23 factorial tables in the data are repeated multiple times. For example, the
matching with multiple controls performed on the data in our motivating example from
Section 1 returned 4893 strata, of which only 234 were unique.

4.1 Expectation, Variance, and Null Deviation
We now introduce the requisite notation to exploit these facts to facilitate inference.
Let Ci = (|T 000

i |, ..., |T 111
i |) be the observed counts of the 23 tables for stratum i.

C = {C1, ..., CI} is a (multi)set, where the number of unique elements equals the number
of unique 23 tables observed in the data, which will typically be much less than its
dimension. Let S be the number of unique tables, and let s ∈ {1, ..., S} index the
unique tables. Define I(i) to be a function returning the index of the unique table
corresponding to the table observed in stratum i. Hence, I(i) = I(`) if and only if
Ci = C`. LetMs = |I−1(s)| be the number of strata where unique table s was observed,
and let ñs = nb for any b ∈ I−1(s) be the number of observations in unique table
s. Finally, let Ps be the number of allowed non-exchangeable potential outcomes for
unique table s, and let {[rT [sp], rC[sp],dT [sp],dC[sp]]}, p ∈ {1, ..., Ps} be the set of allowed
potential outcome allocations that are consistent with unique table s, where tablewise
consistency refers to adherence to conditions A2 and A3 within table s.

Without loss of generality, we assume that the observed statistic, tθ0 , is larger than
its expectation under the null at Γ = 1, 0. In upper bounding the upper tail probability
P (T (θ0) ≥ tθ0), we thus restrict our search to the set of unobserved confounders u+ ∈
U+ as discussed in Section 2.2. The analogous procedure would hold for u− ∈ U− if
tθ0 < 0.

For the sth unique table, and the pth set of allowed potential outcome allocations
consistent within table s, s ∈ {1, ..., S}, p ∈ {1, .., Ps}, form
q(θ0)[sp]j = (q(θ0; rT [sp], rC[sp],dT [sp],dC[sp]))j . Reorder the q(θ0)[sp]j such that q(θ0)[sp]1 ≤
q(θ0)[sp]2 ≤ .. ≤ q(θ0)[sp]ñs

. For a given value of Γ ≥ 1, we define µ(θ0)[sp]a and ν(θ0)[sp]a,
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a ∈ {1, ...ñs − 1}, as

µ(θ0)[sp]a =

∑a
j=1 q(θ0)[sp]j + Γ

∑ñs
j=a+1 q(θ0)[sp]j

a+ Γ(ñs − a)
, (1)

and

ν(θ0)[sp]a =

∑a
j=1(q(θ0)[sp]j)

2 + Γ
∑ñs

j=a+1(q(θ0)[sp]j)
2

a+ Γ(ñs − a)
− (µ(θ0)[sp]a)

2. (2)

This notation is reminiscent of that of Gastwirth et al. (2000). The index a corre-
sponds to the the vector of unmeasured confounders u+ with a zeroes followed by
ñs − a ones. µ(θ0)[sp]a and ν(θ0)[sp]a represent the expectation and variance of the
contribution to the test statistic T (θ0) from a matched set with observed table s,
consistent set of potential outcomes p, and allocation of unmeasured confounders a.
Let µθ0 = [µ(θ0)[11]1, ..., µ(θ0)[SPS ],ñS−1], and let νθ0 = [ν(θ0)[11]1, ..., ν(θ0)[SPS ],ñS−1].
Finally, recalling the definition of ψ(·) from Section 3 as the expectation of the contri-
bution to the test statistic T (θ0) from stratum i, define ψ(θ0)[sp]j = (ψ(θ0; rT [sp], rC[sp],
dT [sp],dC[sp]))j , and define ψθ0 = [ψ(θ0)[11]1, ..., ψ(θ0)[SPS ],ñS−1].

5 Inference and Sensitivity Analysis
Let x[sp]a be an integer variable denoting how many times the set of potential outcomes
p that is consistent with unique table s with allocation of unmeasured confounders
a is observed in the data, s ∈ {1, ..., S}, p ∈ {1, ..., Ps}, a ∈ {1, ..., ñs − 1}, and let
x = [x[11]1, .., x[SPs],ñS−1]. For a given θ0 being tested, µ(θ0)[sp]ax[sp]a and ν(θ0)[sp]ax[sp]a

represent the contribution to the overall mean and variance of the test statistic if the pth

set of potential outcomes in unique table s with allocation of unmeasured confounders
a is observed x[sp]a times, and µTθ0x and νTθ0x represent the overall expectation and
variance across all unique tables, potential outcomes and unmeasured confounders.∑Ps

p=1

∑ñs−1
a=1 x[sp]a then represents how many times the sth unique table was observed

in the data, a number which we defined to be Ms. Hence,
∑Ps

p=1

∑ñs−1
a=1 x[sp]a = Ms.

Note that through our formulation we have restricted optimization to the set of
observations that adhere to conditions A1 (consistency with the observed data) and
A2 (consistency with any other assumptions made by the modeler on the potential
outcomes) of Section 3.2. We enforce condition A3 (that the null must be true in the
resulting allocation of potential outcomes) through adding a linear constraint to our
optimization problem: ψTθ0x = 0. The following integer program facilitates hypothesis
testing and confidence interval construction under no unmeasured confounding (Section
5.1), as well as a sensitivity analysis for any Γ > 1 (Section 5.2).

minimize
x

(tθ0 − µTθ0x)2 − κ(νTθ0x) (P1)

subject to
Ps∑
p=1

ñs−1∑
a=1

x[sp]a = Ms ∀s

ψTθ0x = 0

x[sp]a ∈ Z ∀s, p, a
x[sp]a ≥ 0 ∀s, p, a
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where Z are the integers and κ > 0 is a positive constant to be described. The above
formulation is sufficient for tests on the risk difference and risk ratio. For the effect
ratio, we can impose the constraint of an aggregate positive effect of the intervention,∑I

i=1

∑ni
j=1 dT ij − dCij > 0, through an additional linear inequality.

5.1 Hypothesis Testing and Confidence Intervals Under No
Unmeasured Confounding
For conducting inference under pure randomization (that is, under Γ = 1), the value of
µTθ0x is fixed to the expectation of the test statistic under the null, 0. Hence, (tθ0−µTθ0x)
is constant as well, and (P1) reduces to an integer linear program. This program is
equivalent to finding the largest variance over all feasible x. Call the optimal vector
x∗θ0 , and call the corresponding maximal variance νTθ0x

∗
θ0
. The worst-case deviate for

testing θ = θ0 can then be found by setting zθ0 = tθ0/
√
νTθ0x

∗
θ0
.

To form a 100 × (1 − α)% confidence interval at Γ = 1, we simply invert a se-
ries of tests. Explicitly, we find upper and lower bounds, θu and θ`, such that θ` =

SOLVE
{
θ : tθ/

√
νTθ x

∗
θ = z1−α/2

}
and θu = SOLVE

{
θ : tθ/

√
νTθ x

∗
θ = zα/2

}
, where

zq is the q quantile of a standard normal distribution. These endpoints can be found
through a grid search over θ, or by using the bisection algorithm.

5.2 Sensitivity Analysis through Iterative Optimization
For Γ > 1, (P1) is instead an integer quadratic program. First, note that we reject the
null with a two-sided alternative at size α if (tθ0−µTθ0x)2/(νTθ0x) ≥ χ2

1,1−α for all values
of the potential outcomes that are consistent with the null being tested, where χ2

1,1−α
is the 1−α quantile of a χ2

1 distribution. Equivalently, we need only determine whether
(tθ0 − µTθ0x)2 − χ2

1,1−α(νTθ0x) ≥ 0 for all feasible x. This can be done by minimizing
(P1) with κ = χ2

1,1−α over all feasible x, and checking whether or not the objective
value at x∗θ0 is greater than zero.

One may also be interested in knowing the worst-case deviate itself (equivalently,
the worst-case p-value), rather than simply knowing the result of the test. The optimal
vector x∗θ0 for (P1) at κ = χ2

1,1−α need not result in the worst-case deviate; however, we
now show that we can find the worst-case p-value through an iterative procedure based
on (P1). To proceed, we find the value κ = κ∗ such that the minimal objective value
of (P1) equals 0. As is proved in Dinkelbach (1967), such a value of κ∗ exactly equals
the minimal squared deviate. Interpreted statistically, the value κ∗ is the maximal
critical value for the squared deviate such that the null could be still be rejected,
which is equivalent to the value of the deviate itself. Although finding this zero could
be performed using a grid search, we instead solve for the optimal x∗θ0 through the
following algorithm.

1. Start with an initial value κ(0).

2. In iteration i ≥ 1, set κ = κ(i−1) in (P1).

3. Solve the resulting program, and set κ(i) = (tθ0 − (µTθ0x
∗(i)
θ0

))2/(νTθ0x
∗(i)
θ0

).

4. If κ(i) = κ(i−1) terminate the algorithm: set x∗θ0 = x
∗(i)
θ0

, and set κ∗ = κ(i).
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5. Otherwise, return to step 2. Repeat until convergence.

Note that the sequence {κ(i)} is bounded below by 0. It is also monotone decreasing for
i ≥ 1, as (tθ0 − µTθ0x

∗(i+1)
θ0

)2 − κ(i)(νTθ0x
∗(i+1)
θ0

) ≤ (tθ0 − µTθ0x
∗(i)
θ0

)2 − κ(i)(νTθ0x
∗(i)
θ0

) = 0,

which implies κ(i) ≥ (tθ0 − (µTθ0x
∗(i+1)))2/(νTθ0x

∗(i+1)
θ0

) = κ(i+1). Hence, this algorithm
will converge to a stationary point κ∗. In practice, we find that this is achieved very
quickly, frequently within 2 or 3 steps. At κ∗, note that it must be the case that the
objective value in (P1) equals 0. This means that at the termination of the iterative
procedure, we have converged to the minimal deviate. The maximal p-value is then
Φ(−
√
κ∗) for a one-sided test or 2 × Φ(−

√
κ∗) for a two-sided test, where Φ(·) is the

CDF of a standard normal distribution.

5.3 Computation Time
In the past, researchers have been dissuaded from suggesting methodology that requires
the solution of an integer program, as problems of this sort are NP-hard in general.
In this section, we present simulation studies to assuage fears that our integer linear
(Γ = 1) and quadratic (Γ > 1) programs may have excessive computational burden.
Before doing so, we discuss two properties of an integer programming formulation that
substantially influence the performance of integer programming solvers: the strength
of the corresponding continuous relaxation, and the avoidance of symmetric feasible
solutions (Bertsimas and Tsitsiklis, 1997).

A strong formulation of an integer program is one for which the polyhedron defined
by the constraint set, P = {x : Ax ≤ b,x ∈ R}, is close to the integer hull, PI =
Conv{x : x ∈ P ∩ Z}. In an ideal world, the integer hull and the relaxed polyhedron
would align, meaning that any linear programming relaxation would be guaranteed to
have an integral optimal solution since any linear program has an optimal solution at the
vertex of its corresponding polyhedron. For a quadratic program, having PI = P does
not guarantee coincidence of the true and relaxed optimal solutions, as a quadratic
program may have a solution at an edge. Nonetheless, having P far from PI can
hamper the progress of a mixed integer programming solver, as it increases the number
of cuts required by branch-and-cut algorithms to strengthen the continuous relaxation
(Mitchell, 2002).

A symmetric formulation is one in which variables can be permuted without chang-
ing the structure of the problem. Formulations of this sort can also cripple standard
integer programming solvers even with modest problem size. This is due in large part
to the generation of isomorphic solution paths by branch-and-bound and branch-and-
cut algorithms, which in turn complicates the process by which a given node is proven
optimal or suboptimal. Although methods exist to detect symmetry groups in a given
formulation, formulations that explicitly avoid such groups are strongly preferred; see
Margot (2010) for a discussion of these points.

We now present simulation studies to demonstrate that neither weakness nor sym-
metry of formulation proves inimical to conducting hypothesis testing and sensitivity
analyses using the methodology outlined in this paper, even with large data sets and
large stratum sizes. In our first setting, in each of 1000 iterations we sample 1250
matched sets from the strata in our motivating example from Section 1.2. We assign
treated individuals and control indivduals an outcome of 1 with probability 0.75 and
0.25 respectively. Each iteration thus has strata ranging in size from 2 to 21, and each
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data set has an average of roughly 10,000 individuals within it. Large strata affect
computation time, as they result in larger numbers of non-exchangeable potential out-
come allocations within a stratum and fewer duplicated 2 × 2 tables in the data. In
our data set, 25% of the matched strata had one acute rehabilitation individual and
20 home with home health services patients. This simulation setting thus produces
particularly challenging optimization problems: on average, each iteration had 170,000
variables over which to optimize. As we demonstrate in Appendix D, the number of
variables, itself affected by the number and size of the unique observed tables, is a
primary determinant of computation time for the optimization routine.

We conduct two hypothesis tests in each iteration: a null on the causal risk differ-
ence, δ = 0.2, and on the causal risk ratio, ϕ = 1.75. For both of the causal estimands
being assessed, we test the stated nulls with two-sided alternatives at Γ = 1 (no unmea-
sured confounders, integer linear program) and Γ = 3 (unmeasured confounding exists,
integer quadratic program). We record the required computation time for each data set,
which includes both the time taken to define the necessary constants for the problem
and also the time required to solve the optimization problem. To measure the strength
of our formulation, we also recorded whether or not the initial continuous relaxation
had an optimal solution which was itself integral, and if not the relative difference
in optimal objective function values between the integer and continuous formulations
(defined to be the absolute difference of the two, divided by the absolute value of the
relaxed value). Simulations were conducted on a desktop computer with a 3.40 GHz
processor and 16.0 GB RAM. The R programming language was used to formulate the
optimization problem, and the R interface to the Gurobi optimization suite was used
to solve the optimization problem.

Table 4 shows the results of this simulation study. As one can see, our formulation
yields optimal solutions in well under a minute for both the integer linear and integer
quadratic formulations despite the magnitude of the problem at hand. The strength
of our formulation is further evidenced by the typical discrepancy between the inte-
ger optimal solution and that of the continuous relaxation. For testing the causal risk
difference, we found that in all of the simulations performed assuming no unmeasured
confounding the integer program and its linear relaxation had the same optimal objec-
tive value. When testing at Γ = 3 the quadratic relaxation differed from the integer
programming solution in roughly 2/3 of the simulations; however, the resulting average
relative gap between the two was a minuscule 3×10−4%. For testing the causal risk ra-
tio, the objective values tended not to be identically equal at Γ = 1 or Γ = 3, which has
to do with the existence of fractional values in the row of the constraint matrix enforcing
the null hypothesis; nonetheless, the average gap among those iterations where there
was a difference was 4 × 10−5% for the linear program, and 0.002% for the quadratic
program. This suggests not only that we have arrived upon a strong formulation, but
that one could in practice accurately approximate (P1) by its continuous relaxation.

Appendix D contains additional simulation studies which serve not only to further
illustrate the strength of our formulation, but also to provide insight into what elements
of the problem affect computation time. We present simulations varying the value of Γ
used, the number of matched sets, the null hypothesis being tested, the magnitude of
the true effect, and the prevalence of the outcome under treatment and control in order
to assess the impact of each of these factors on the time required to define the required
constants and to carry out the optimization. We then compare our formulation to
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Table 1: Computation times for tests of δ = 0.2 and ϕ = 1.75 at Γ = 1 (integer linear
program) and Γ = 3 (integer quadratic program), along with percentages of coincidence of
the integer and relaxed objective values, and average gaps between integer solution and the
continuous relaxation if a difference existed between the two.

Null Hypothesis; Avg. Time (s), Avg. Time (s),
%(objint = objrel)

Avg Rel. Gap
Confounder Strength Integer Relaxation If Different

δ = 0.2; Γ = 1 5.88 5.59 100% NA
δ = 0.2; Γ = 3 9.77 7.14 36.9% 3× 10−4%
ϕ = 1.75; Γ = 1 5.86 5.62 0% 4× 10−5%
ϕ = 1.75; Γ = 3 10.85 7.82 3.2% 0.002%

an equivalent, but highly symmetric, formulation in order to highlight the importance
of avoiding symmetry for achieving a strong formulation with reasonable computation
time. Finally, we present a simulation study akin to the one presented in this section
but using real data for the outcome variables as opposed to simulated outcomes.

6 Data Examples
We employ our methodology in two data examples. In Section 6.1, we present hypoth-
esis testing and a sensitivity analysis for the causal risk difference and causal risk ratio
in our motivating example from Section 1, wherein we compare hospital readmission
rates for two different post-hospitalization protocols after an acute care hospitalization.
In Section 6.2, we reexamine the instrumental variable study of Yang et al. (2014) com-
paring mortality rates for premature babies being delivered by c-section versus vaginal
births. In addition to inference, confidence intervals, and sensitivity analyses, we also
provide point estimators for the causal estimands of interest. These are formed by using
our test statistic, T (θ), as an estimating equation for an m-estimator (Van der Vaart,
2000), i.e θ̂ := SOLVE{θ : T (θ) = 0}; see Appendix E for further discussion.

As will be shown, the findings in both of our examples exhibit varying degrees of
sensitivity to unmeasured confounding: under the strongest assumptions, we fail to
reject the null of no treatment effect after Γ = 1.157 in our first example and after
Γ = 1.67 in our second. To provide context for the levels of robustness possible in a
well designed observational study, Section 4.3.2 of Rosenbaum (2002b) notes that the
finding of a causal relationship between smoking and lung cancer in Hammond (1964)
continued to be significant until Γ = 6, meaning that an unmeasured confounder would
have had to increase the odds of smoking by a factor of six while nearly perfectly
predicting lung cancer in order to overturn the study’s finding.

6.1 Risk Difference and Risk Ratio
We now return to our study of the impact of discharge to an acute rehabilitation cen-
ter versus to home with home health services on hospital readmission rates after an
acute care hospitalization. We use sixty day hospital readmission after initial hospital
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discharge as our outcome of interest. In terms of counterfactuals, we want to compare
sixty day hospital readmission rates if all patients had been sent to acute rehabilita-
tion with readmission rates if all patients had been assigned to home with home health
services. We define Rij = 1 if an individual was readmitted to the hospital, and 0
otherwise. We let Zij = 1 if an individual was assigned to acute rehabilitation. The
marginal proportions of sixty day hospital readmission after accounting for observed
confounders through matching are 0.206 for acute rehabilitation, and 0.243 for home
with home health services. We will analyze this data set with and without the assump-
tion of a known direction of effect. When assuming a direction of effect we assume
that it is nonpositive in this example, meaning that going to acute rehabilitation can
never hurt an individual: an individual who would not be readmitted to the hospital
within sixty days after being discharged to home with home health services could not
have been readmitted to the hospital within sixty days after being discharged to acute
rehabilitation.

The estimated risk difference is δ̂ = −0.0369 (favoring acute rehabilitation) regard-
less of whether we assume a nonpositive treatment effect. We construct confidence
intervals by inverting a series of hypothesis tests on {δ0}. Without assuming a nonpos-
itive treatment effect, we find a 95% confidence interval for δ of [-0.0557; -0.0175].With
the assumption of a nonpositive effect, the 95% confidence interval shrinks to [-0.0535;
-0.0202]. We conduct inference on the risk ratio, ϕ, in a similar manner. The estimated
risk ratio was ϕ̂ = 0.848 (favoring acute rehabilitation); 95% confidence intervals for ϕ
are [0.773;0.927] and [0.780; 0.916] without and with assuming a nonpositive treatment
effect respectively.

The results of a sensitivity analysis for a test of δ = 0 ⇔ ϕ = 1 with a lower
one-sided alternative are shown in Table 2. As one can see, the result is sensitive to
unobserved biases under both scenarios, but far more so when we do not make an
assumption on the direction of effect. To better understand this, it is useful to think
of the corresponding integer programs that result in these worst-case bounds. The
optimization problem with the assumption of a nonpositive treatment effect has 2,830
variables associated with it, with variables only corresponding to a choice of vector u−i
in a given stratum. Without making this assumption, the number of variables grows
to 321,860, as we must consider all non-exchangeable allocations of potential outcomes
and all choices for the vector of unmeasured confounders. The difference in problem size
impacts not only design sensitivity, but also computation time. The computations for
each value of Γ > 1 shown took an average of 1.5 seconds under the assumption of non-
negativity, but 75 seconds without this assumption. See Appendix F for a discussion
of why the assumption of a known direction of effect has such a substantial impact.
Considering the sheer size of the problem, this bears testament to the strength of our
formulation: for all of the Γ values tested, the continuous relaxation had an integer
solution.

6.2 Effect Ratio
Yang et al. (2014) present an observational study comparing the effect of cesarian section
versus vaginal delivery on the survival of premature babies of 23-24 weeks gestational
age, where Rij = 1 if a baby survives. The analysis used whether or not a baby was
delivered at a hospital with “high” rates of c-section as a potential instrumental variable.
We present a sensitivity analysis for these data under combinations of assumptions of
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Table 2: Sensitivity analysis for an one-sided test with alternative hypothesis δ < 0⇔ ϕ <
1. Worst case p-values are shown with (rightmost column) and without (middle column)
assuming a known direction of effect.

Γ rT ij R rCij rT ij ≤ rCij

1.000 1.0×10−4 6.1×10−6

1.080 0.0306 0.0016
1.095 0.050 0.0028
1.157 0.420 0.050

varying strength. In so doing, we aim to assess the impact of various assumptions on
the inference’s perceived sensitivity to unmeasured confounding. 1489 pairs of babies
were formed, with a baby in the “high” group being matched to baby in the “low” group
who was similar on the basis of all other pre-treatment covariates. Let Zij = 1 if the
baby was delivered at a hospital with a high c-section rate, and let Dij = 1 if the baby
was delivered by a c-section. As such, the “randomized encouragement” is the type of
hospital at which the baby was delivered, and the treatment of interest is the actual
method of delivery.

We present inference on the effect ratio under all eight combinations of enforcing
and not enforcing a nonnegative direction of effect (DE) : rT ij ≥ rCij ∀i, j; monotonicty
(MO): dT ij ≥ dCij ∀i, j , and the exclusion restriction (ER): dT ij = dCij ⇒ rT ij = rCij
∀i, j. In the context of this example, the effect ratio is the ratio of the increase in survival
rate to the increase in rate of c-sections for premature babies of 23-24 weeks gestational
age that occurs with being delivered at a hospital with a high rate of c-sections. If we
additionally assume that both monotonicity and the exclusion restriction hold, then
the effect ratio has the additional interpretation of being the effect of delivering at a
hospital with high rates of c-sections among babies who would have been delivered by
c-section if and only if they were delivered at a hospital with a high rate of c-sections.

Under any combination of assumptions, the estimated effect ratio is λ̂ = 0.866.
Assuming none of (DE), (MO), (ER), the 95% confidence interval is [0.50; 1.47], and
there are 256 decision variables in the optimization problem. Assuming all of (DE),
(MO), (ER), the 95% confidence interval shrinks to [0.58; 1], and there are 49 decision
variables in the optimization problem.

In Table 3, we present the values of Γ required to overturn the rejection of the nulls
that λ = 0 and λ = 0.1, both with an upper one-sided alternative at α = 0.05. For
the null of λ = 0, this test boils down to a test on the average treatment effect, but
with a range of restrictions on the potential outcomes. Once a nonnegative direction of
effect is imposed (the bottom four cells of the table), the test of λ = 0 simply becomes
a test of Fisher’s sharp null; see Appendix F for further discussion. Because of this, the
assumptions of monotonicity and the exclusion restriction cannot impact the sensitivity
analysis at λ = 0 unless non-negativity is not enforced. Furthermore, without assuming
a direction of effect, monotonicity can only affect the performed inference if it is enforced
in concert with the exclusion restriction at λ = 0 and vice versa. For λ = 0.1, the test
no longer corresponds exclusively to one of Fisher’s sharp null when non-negativity is
imposed. We thus see that each assumption impacts the study’s robustness against
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Table 3: Minimal value of Γ such that conclusion of the hypothesis test on λ is reversed
under eight combinations of assumptions.

H0 : λ = 0
No (DE) No (DE) Yes (DE) Yes (DE)
No (MO) Yes (MO) No (MO) Yes (MO)

No (ER) 1.292 1.292 1.677 1.677
Yes (ER) 1.292 1.371 1.677 1.677

H0 : λ = 0.1
No (DE) No (DE) Yes (DE) Yes (DE)
No (MO) Yes (MO) No (MO) Yes (MO)

No (ER) 1.213 1.220 1.407 1.409
Yes (ER) 1.225 1.270 1.408 1.410

unmeasured confounding to varying degrees. For all combinations of assumptions and
each value of Γ tested, the corresponding integer quadratic program solved in under 2
seconds.

7 Discussion
Our formulation exploits attributes of the randomization distributions for our proposed
test statistics which are unique to inference after matching. While this is sufficient for
our purposes, one resulting limitation is that our method will likely not be practicable
in observational studies or randomized clinical trials where there either are no strata,
or where each stratum contain a large number of both treated and control individu-
als; see Rigdon and Hudgens (2015) for a discussion of the difficulties of conducting
randomization inference with binary outcomes in these settings. In these settings, the
work of Cornfield et al. (1959) presents a method for sensitivity analysis for the risk
ratio, and Ding and Vanderweele (2014) extend this approach to the risk difference.
Another limitation is that as with any NP-hard endeavor, it is difficult to anticipate
ahead of time how long our method will take on a given data set with a given match
structure; however, through a host of simulation studies presented both in Section 5.3
and Appendix D we have provided further insight into these matters for practitioners
interested in using our methods.

We have framed hypothesis testing and sensitivity analyses for composite null hy-
potheses with binary outcomes in matched observational studies as the solutions to
integer linear (Γ = 1) and quadratic (Γ > 1) programs. An interesting consequence of
our formulation is that it readily yields a method for performing a sensitivity analysis
for simple null hypotheses under general outcomes without reliance on the asymptoti-
cally separable algorithm of Gastwirth et al. (2000); see Appendix G for details and a
data example. We have shown that our method can be practicable even with large data
sets and large stratum sizes. We have further demonstrated through simulation studies
and real data examples that our formulation explicitly avoids issues known to hinder
the performance of integer programming algorithms such as looseness of formulation
and symmetry. In so doing, we hope to shed further light on the usefulness of integer
programming for solving problems in causal inference.
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APPENDIX

A Balance on Observed Covariates in Our Moti-
vating Example

Standardized Differences Before and After Matching

Standardized Differences

Penn Presby. Med. Center
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Figure 1: Covariate Imbalances Before and After Matching. The dotplot (a Love plot) shows the
absolute standardized differences without matching, and after conducting a matching with a variable
number of controls. The vertical dotted line corresponds to a standardized difference threshold of
0.2, which is often regarded as the maximal allowable absoute standardized difference (Rosenbaum,
2010). As one can see, marked imbalances existed between the two populations before matching.
All standardized differences were below 0.2 after matching, and most covariates saw substantial
improvements in balance through matching.

B Treatment Effects and Treatment Effects on
the Treated
In determining whether interest should lie in the attributable effect of Rosenbaum (2001,
2002a) rather than the risk difference or risk ratio, one must decide whether the question
of interest concerns the treatment effect on the entire study population, or rather only
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concerns the effect of the intervention for those individuals who were treated. The
attributable effect is itself a treatment effect on the treated, in that it is defined as
A =

∑I
i=1

∑ni
j=1 Zij(rT ij − rCij), whereas the risk difference and risk ratio concern the

effects of the treatment for the entire study population. While the group of treated
individuals will look the same as the overall study population in a randomized clinical
trial, these two groups of individuals can be quite different in observational studies due
to self-selection. Thus, these estimands speak to different sets of individuals in the
study population.

In the example presented in Section 1.2 on hospital readmission rates, if we define
the treatment group as the individuals who went to acute care rehabilitation and as-
sign a response of 1 (a “success”) to individuals did not require hospital readmission, the
attributable effect then compares the number of individuals assigned an acute rehabil-
itation center who were not rehospitalized to what that number would have been if all
the individuals who went to acute rehabilitation actually used home with home health
services for their rehabilitation. If we additionally assume a nonnegative treatment
effect, the attributable effect would have an additional interpretation as the number
of individuals assigned to an acute rehabilitation center who avoided rehospitalization
because of the acute rehabilitation center (i.e., who would have been rehospitalized
had they instead utilized home with home health services for their rehabilitation). The
risk difference, on the other hand, would compare the proportion of individuals in the
entire study population who would have avoided rehospitalization if all individuals had
been assigned to acute rehabilitation to the proportion avoiding rehospitalization if all
individuals utilized home with home health services.

The determination of which target population (the entire study population versus
only the individuals who received the treatment) is most relevant often depends on
the research question being investigated. Austin (2010) notes that “applied researchers
should decide whether the [average treatment effect] or the [average treatment effect
on the treated] is of greater utility or interest in their particular research context.”
He then provides two examples to illustrate why the estimand of greatest relevance
dependence is not uniform across applications. He notes that if one where investigating
the effectiveness of an intensive and structured smoking cessation program, the treated
individuals alone may be of greater interest as many smokers may not be interested in
the program due to its intensive nature. On the other hand, if the program instead
involved physicians giving brochures to patients, then the effect on the entire population
of smokers (both those receiving and those not receiving the brochure) may be of
greater interest as there are minimal barriers to a patient receiving the treatment (the
brochure). Heckman and Robb (1985) and Heckman et al. (1997) further argue that
the treated units themselves are often of more interest than the overall population if
the intervention is narrowly targeted (e.g., if it is such that most controls would never
consider undergoing the intervention).

Investigation of the average treatment effect (risk difference) has long been a pur-
suit of great interest in randomized experiments (Neyman, 1923), and this interest
has carried over to the analysis of observational studies. For example, Imbens (2004)
notes that the average treatment effect is the most commonly studied causal estimand
in econometric literature. Investigating the attributable effect while also assuming a
known direction of effect can remove the need for integer programming in conducting
inference and sensitivity analyses (Rosenbaum, 2002a); however, one must be sure that
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the attributable effect is the most appropriate estimand for the problem at hand before
pursuing inference on it. This determination should not be made solely on the basis
of computational complexity. In many cases the risk difference and risk ratio may be
more appropriate, and in these instances the methodology presented in this work can
facilitate inference and sensitivity analyses.

C Usage of Risk Differences and Risk Ratios
The risk difference and risk ratio are two measures of the causal effect of an intervention
on a binary outcome. A common viewpoint taken in the statistics literature is that
the appropriateness of using the risk ratio (also called the relative risk) versus the risk
difference depends on the scale of the problem, with certain measures being appropriate
for certain inferences. This is discussed in Hernán and Robins (2016) in the following
paragraph:

Each effect measure may be used for different purposes. For example, imag-
ine a large population in which 3 in a million individuals would develop the
outcome if treated, and 1 in a million individuals would develop the out-
come if untreated. The causal risk ratio is 3, and the causal risk difference
is 0.000002. The causal risk ratio (multiplicative scale) is used to compute
how many times treatment, relative to no treatment, increases the disease
risk. The causal risk difference (additive scale) is used to compute the abso-
lute number of cases of the disease attributable to the treatment. The use
of either the multiplicative or additive scale will depend on the goal of the
inference. (Hernán and Robins, 2016, pages 7-8)

Of course, the converse can be true: if 85% develop the outcome if treated and
80% develop the outcome if not treated, the risk ratio is then 1.0625 while the risk
difference is 0.05. Grieve (2003) provides additional discussion of these two estimands,
noting that in deciding which estimand to use one must consider “whether interest is
centered on absolute or relative effects, and the extent to which those who are to use
them understand them” (Grieve, 2003, page 88).

The summary measure chosen can also affect the extent to which a study’s findings
influence future action. Misselbrook and Armstrong (2001) note that when deciding
whether or not to take a proposed treatment the percentage of individuals who end
up agreeing to take the treatment can vary substantially depending on whether the
benefits of a treatment are presented in the form of a risk ratio or a risk difference.
Forrow et al. (1992) note that the manner in which information on a causal effect is
presented can affect not only how likely patients are to take a recommended treatment,
but also how likely a doctor is to prescribe a treatment in the first place.

Poole (2010) states that in epidemiology, it has been treated as a seemingly self-
evident truth that “relative effect measures should be used to assess causality and that
absolute measures should be used to assess impact.” (Poole, 2010, page 3). An early
defense of this stance can be found in the work of Cornfield et al. (1959) on smoking
and lung cancer:

Both the absolute and the relative measures serve a purpose. The rela-
tive measure is helpful in (1) appraising the possible noncausal nature of an
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agent having an apparent effect; (2) appraising the importance of an agent
with respect to other possible agents inducing the same effect; and (3) prop-
erly reflecting the effects of disease misclassification or further refinement of
classification. The absolute measure would be important in appraising the
public health significance of an effect known to be causal. (Cornfield et al.,
1959)

Both Poole (2010) and Ding and Vanderweele (2014) refute the superiority of the
risk ratio to the risk difference in making causal claims, presenting examples where
the use of evidence presented by the risk difference exhibits much stronger robustness
to unmeasured confounding than evidence presented by the risk ratio, thus aiding in
discovering causal effects.

In the clinical trials literature, both effect measures are viewed as having their own
relative merits and downsides. Schechtman (2002) take a pragmatic approach and
suggest that in order to paint a clearer picture of the treatment effect, one should
report both the estimated risk difference and risk ratio. See Cook and Sackett (1995),
Jaeschke et al. (1995), Sinclair and Bracken (1994) for further discussion of this matter.

D Simulation Studies for Computation Time
Our methodology can, for the purposes of computation time, be thought of as containing
three components with worst case complexities as follows:

1. Defining groups of symmetric tables: O(I2)

2. Defining constants and constraints for unique tables:
O
(
S +

∑S
s=1(ñs − 1)

∏
(z,r,d)∈{0,1}3(|T zrds |+ 1)2

)
3. Solution of integer program: NP-hard

For the first component, the total number of matched sets plays a role in determining
computation time as in formulating the problem, we must sort the individual matched
sets into symmetry groups corresponding to uniquely observed tables. The second
component is affected not only by the number of uniquely observed tables, but also the
number of observations in a table and the cells of said table. As discussed in Section
4, each table s yields at most

∏
(z,r,d)∈{0,1}3(|T zrds |+ 1)2 unique distributions, while for

a sensitivity analysis there are ñs − 1 alignments of the unmeasured confounders to be
considered for each distribution. These unique contributions correspond to variables in
our optimization problem. The number of variables is also influenced by assumptions
made on the potential outcomes, as assumptions eliminate the need to consider certain
possible values for the unobserved potential outcomes.

The simulation studies presented herein provide further insight into various aspects
of problem (P1) which can affect the solution of the integer program itself (component
3), as this is the only NP-hard endeavor and hence may, in theory, lead to unpre-
dictable computation time. Unless otherwise stated, all of the simulations presented
are modifications of the same basic set up. In each of 1000 iterations we sample I
matched sets from the strata in our motivating example from Section 1.2. Each itera-
tion has strata ranging in size from 2 to 21, and each data set has an average of roughly
8×I individuals within it. Large strata affect computation time, as they result in larger
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numbers of non-exchangeable potential outcome allocations within a stratum and fewer
duplicated 2 × 2 tables in the data. In our data set, 25% of the matched strata had
one acute rehabilitation individual and 20 home with home health services patients.
Treated and control individuals are assigned an outcome of “1” with probability pT and
pC respectively.

In each iteration, we test a null on the causal risk difference, δ = δ0. We test
the stated null with a two-sided alternative at level of unmeasured confounding Γ.
We record the required time for the optimization problem itself for each simulation.
Simulations were conducted on a desktop computer with a 3.40 GHz processor and
16.0 GB RAM. The R programming language was used to formulate the optimization
problem, and the R interface to the Gurobi optimization suite was used to solve the
optimization problem.

D.1 Increasing the Number of Matched Sets
In this simulation, we fix pT = 0.75, pC = 0.25,Γ = 2, δ0 = 0.2, and conduct 1000
iterations at I = 7, 13, 65, 125, 625. As Figure 2 demonstrates, the time for the opti-
mization routine itself appears to increase with I, the number of matched sets. Figure
2 also demonstrates that time is increasing with the average number of variables in the
corresponding optimization problem.

To demonstrate that the role that I plays is only indirect (through its effect on the
number of variables in the optimization problem), we also present a simulation study
with matched sets of size three. We will focus on the effect ratio in this simulation
study. Each set consists of three individuals, one encouraged to take the treatment and
the other two encouraged to take the control. For each individual, the probability of
compliance with the assigned treatment is set to 0.9. We set pT = 0.75 and pC = 0.25
based on which treatment the individual actually received. We set Γ = 2 and λ0 = 0.2,
and conduct 1000 iterations with I = 25, 50, 250, 500, 2500, 5000, 25000, 50000, 250000.
In the corresponding inference, we do not assume that the exclusion restriction holds.
We also do not assume monotonicity holds, nor do we assume a known direction of
effect.

Figure 3 shows that as I increases the time required for only solving the optimiza-
tion problem initially increases, but then begins to level off. The reason for this is
also demonstrated in the figure: as I increases, the average number of variables in the
optimization problem appears to be approaching an asymptote, rather than continually
increasing. This is because under the assumptions used for the performed inference,
the maximal number of unique allocations of unobserved potential outcomes and un-
measured confounders that must be considered is 4384, calculated using the formula∑S

s=1(ñs−1)
∏

(z,r,d)∈{0,1}3(|T zrds |+1)2 = 2×(4×32×22 +32×26). This illustrates one
of the key advantages of our formulation: by expressing the problem in terms of unique
contributions to the test statistic we greatly enhance the scalability of our method, par-
ticularly when the matched sets are of limited size. In fact, the average computation
time for the optimization problem was under a tenth of a second for all values of I in
this simulation setting.
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Figure 2: (Top-left) Optimization time and the number of matched sets; (top-right) optimization
time and the number of optimization variables; and (bottom) log number of matched sets and
log-number of optimization variables.
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Figure 3: (Top-left) Optimization time and the number of matched triples; (top-right) optimization
time and the average number of variables; and (bottom) average number of variables and the number
of matched triples.
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D.2 Increasing the Value of Γ

In this simulation we fix pT = 0.75, pC = 0.25, I = 125, δ0 = 0.2, and conduct 1000
iterations at each of Γ = 1, 1.5, , ..., 3.5, 4. We see in Figure 4 that while there is a
substantial increase in solution time when going from Γ = 1 to Γ > 1, the solution time
is roughly constant at all values of Γ > 1 tested. Γ = 1 corresponds to an integer linear
program while any Γ > 1 is an integer quadratic program, which accounts for the initial
jump. Increasing Γ further does not change the fact that it is an integer quadratic
program, nor does it increase the average number of variables in the optimization
problem; rather, it changes the values of the constants associated with each of the
variables in the objective function.

D.3 Altering the Hypothesized Risk Difference
In this simulation we fix pT = 0.5, pC = 0.5, I = 125,Γ = 2, and conduct 1000 iterations
at each of δ0 = −0.4,−0.3, ..., 0.3, 0.4. As we see in Figure 5, average solution time is
shortest when the true risk difference is closest to the hypothesized risk difference,
and increases as the hypothesized risk difference moves away from the truth in either
direction. Note that both the number of variables and the number of constraints in the
optimization problem remain constant on average as the hypothesized risk difference
varies, meaning that neither can explain the difference in solution times. As δ0 moves
further away from the true risk difference the average number of feasible solutions
decreases, as the discrepancy between the observed potential outcomes and the null
hypothesis affords less and less flexibility to the allocation of the unobserved potential
outcomes. This can, in turn, make the corresponding integer program more difficult to
solve.
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Figure 5: Optimization time and null hypothesis being tested. The true risk difference was set to
zero throughout

D.4 Jointly Altering the Outcome Prevalence Under Treat-
ment and Control
In this simulation we fix I = 125,Γ = 2, δ0 = 0, and conduct 1000 iterations at each
of [pC , pT ] = [0.05, 0.15], [0.15, 0.25], ..., [0.85, 0.95]. Hence, the distance between the
null hypothesis and the true risk difference remains constant at 0.1. In Figure 6, we
see that simulation time is greatest when the outcomes have the highest variance (i.e.,
when the treated and control prevalences are closest to 0.5), but drop off when the
outcome becomes either rarer or highly prevalent. Figure 6 also shows the relationship
between the number of variables and the outcome prevalence. The number of unique
contributions to the overall test statistic from a given unique table (i.e. the number of
variables) is maximized when the outcome prevalences are closest to 0.5, which accounts
for the observed computation time pattern.

D.5 Separately Altering the Outcome Prevalence Under
Treatment and Control
In our first simulation, we fix pC = 0.1, I = 125,Γ = 2, δ0 = 0, and conduct 1000
iterations at each of pT = 0.1, ..., 0.9. In Figure 7, we see that the outcome prevalence
under treatment affects computation time by increasing the number of variables in the
optimization problem.

Next, we fix pT = 0.9, I = 125,Γ = 2, δ0 = 0, and conduct 1000 iterations at each of
pC = 0.1, ..., 0.9. In Figure 8, we see that the outcome prevalence under control affects
computation time by increasing the average number of variables in the optimization
problem. Note that altering the prevalence under control has a more drastic effect on
the number of variables (and thus, on the overall computation time) than altering the
prevalence under treatment, as the matched sets used in our simulation study each have
one treated unit and one or more (up to 20) control units. In turn, heterogeneity among
control units within a given matched set allows for many more possible contributions
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Figure 6: (Left) Optimization time and overall outcome prevalence; and (right) number of variables
and outcome prevalence.
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Figure 7: (Left) Optimization time and outcome prevalence under treatment; and (right) number
of variables and outcome prevalence under treatment.
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Figure 8: (Left) Optimization time and outcome prevalence under control; and (right) number of
variables and outcome prevalence under control.

to the overall test statistic (variables), particularly in matched sets with large numbers
of control units. When altering the prevalence for the treated units, since there is only
one treated unit per matched set an event prevalence for treated units closer to 0.5 only
increases the number of variables in the optimization problem by making it less likely
that two matched sets with the same observed table for the control units also have the
same observed response for their respective treated unit.

D.6 Assessing Avoidance of Symmetry
At Γ = 1, we compare computation time of our formulation, formulation (P1), for the
causal risk difference with that of an equivalent binary programming formulation. We
first present this alternate formulation. Let vij be the unobserved potential outcome for
each individual. That is, vij = rCij if Zi = 1, and vij = rTij if Zi = 0. When conducting
inference assuming no unmeasured confounders (Γ = 1), we aim to find the worst-case
variance among the set of unobserved potential outcomes such that the null is satisfied, a
problem which can be expressed as a quadratic form involving the unobserved potential
outcomes and other constants known at the time of the optimization. Using the methods
of Glover and Woolsey (1974) for converting a quadratic binary program into a linear
binary program, we can express the problem as:

maximize
I∑
i=1

ni∑
j=1

pijvij + 2
I∑
i=1

∑
j<k≤ni

pijkwijk + c (AP1)

subject to
I∑
i=1

ni∑
j=1

(2Zij − 1)vij = −Nδ0 +
I∑
i=1

ni∑
j=1

(2Zij − 1)Rij

vij ∈ {0, 1} ∀i, j
wijk ≤ vij , vik ∀i, j, k
vij + vik − wijk ≤ 1 ∀i, j, k
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We now define pij , pijk and c. Let H(i) be an ni × ni symmetric matrix with diagonal
elements (n2

i − ni)/N2 and off diagonal elements are −ni/N2, and define the following
vectors. Let A(i) be an ni × ni diagonal matrix with diagonal entries 1/(Zi,ni(2 −
ni) + ni − 1), and let B(i) be an ni × ni diagonal matrix with diagonal entries 1/((1−
Zi,ni)(2 − ni) + ni − 1). We can then write var(T (δ0)) as a sum of stratum-specific
quadratic forms:

var(T (δ0)) =
I∑
i=1

(
[A(i)Ri + B(i)vi]

TH(i)[A(i)Ri + B(i)vi]
)

=
I∑
i=1

(
vTi B

(i)H(i)B(i)vi + 2vTi B
(i)H(i)A(i)Ri + RT

i A
(i)H(i)A(i)Ri

)

Let pij = (B(i)H(i)A(i)Ri)j + (B(i)H(i)B(i))jj , pijk = (B(i)H(i)B(i))jk, and
c =

∑I
i=1 R

T
i A

(i)H(i)A(i)Ri, we recover the required constants for finding the maximal
variance of the causal risk difference.

Rather than having decision variables for each possible variance contribution, this
formulation has binary decision variables for the missing potential outcome for each
individual. A formulation of this sort yields a highly symmetric problem, as any pair
of individuals in a given stratum with [Zij , Rij ] = [Zik, Rik] are exchangeable. For
example, if individual j and k in stratum i both received the control and had an
outcome of 0, then rT ij = 1, rT ik = 0, uij = 1, uik = 0 results in the same objective
value as rT ik = 1, rT ij = 0, uik = 1, uij = 0. We randomly sample 125 strata from the
full match described in Fogarty et al. (2015). This full match yielded strata of maximal
size 8, representing a substantially easier optimization problem than the one presented
in Section 5.3 of the manuscript. The resulting data sets had roughly 500 patients
on average. Rather than randomly sampling outcomes, we use the observed outcomes
in the randomly sampled matched sets, hence basing this simulation study entirely
on real data. In each iteration, we terminated the simulation if either program took
longer than 5 minutes to solve in a given iteration. Here, we report total computation
time including grouping into unique tables, formulating constants and constraints, and
solving the optimization problem.

For formulation (AP1), we found that 29.6% of simulations exceeded the five minute
computation limit. Of those that did not, the average computation time was 34.9 sec-
onds for the pure binary program, but was 0.68 seconds for the linear relaxation. The
average relative gap between the optimal binary solution and optimal linear relaxation
in the simulations taking under five minutes was 23.5%, representing a marked discrep-
ancy between the linear relaxation and the integer hull of formulation (AP1). Under
formulation (P1), all simulations terminated in under five minutes. In fact, the average
computation time for our integer program was 0.129 seconds, and the maximal com-
putation time was 0.223 seconds. Among the simulations where alternate formulation
(AP1) exceeded our computation time limit, the average computation for our formula-
tion was 0.130 seconds, indicating that our formulation avoids the computational issues
due to symmetry that cripple formulation (AP1). The average computation time for
the linear relaxation of (P1) was 0.122 seconds. 84.7% of simulated data sets resulted
in the optimal integer objective value being equal to that of the linear relaxation. In
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those iterations where there was a difference, the average relative gap between objec-
tive values was a mere 0.003%. Hence, our formulation is markedly stronger than this
alternate formulation, as evidenced by reduced computation time even when using the
same optimization software: our formulation is over 250 times faster than formulation
(AP1) among iterations that solved before computation time ran out, and is thus even
faster overall.

D.7 Simulation Using Actual Data
In each of 1000 iterations we sample 1250 matched sets from the strata in our motivating
example from Section 1.2. Each iteration thus has strata ranging in size from 2 to 21,
and each data set has an average of roughly 10,000 individuals within it. Large strata
affect computation time, as they result in larger numbers of non-exchangeable potential
outcome allocations within a stratum and fewer duplicated 2× 2 tables in the data. In
our data set, 25% of the matched strata had one acute rehabilitation individual and 20
home with home health services patients. Rather than randomly sampling outcomes,
we use the observed outcomes in the randomly sampled matched sets, hence basing
this simulation study entirely on real data. This simulation setting thus produces
particularly challenging optimization problems: each iteration resulted in over 200,000
variables over which to optimize on average.

We conduct two hypothesis tests in each iteration: a null on the causal risk differ-
ence, δ = 0.05, and on the causal risk ratio, ϕ = 1.10. For both of the causal estimands
being assessed, we test the stated nulls with two-sided alternatives at Γ = 1 (no un-
measured confounders, integer linear program) and Γ = 1.05 (unmeasured confounding
exists, integer quadratic program). We record the required computation time for each
data set, which includes the time for grouping into unique tables, the time taken to
define the necessary constants for the problem and also the time required to solve the
optimization problem. To measure the strength of our formulation, we also recorded
whether or not the initial continuous relaxation had an optimal solution which was itself
integral, and if not the relative difference in optimal objective function values between
the integer and continuous formulations (defined to be the absolute difference of the
two, divided by the absolute value of the relaxed value).

Table 4 shows the results of this simulation study. As one can see, our formulation
yields optimal solutions in well under a minute for both the integer linear and integer
quadratic formulations despite the magnitude of the problem at hand. The strength
of our formulation is further evidenced by the typical discrepancy between the integer
optimal solution and that of the continuous relaxation. For testing the causal risk
difference, we found that in nearly all of the simulations performed the integer program
and its linear relaxation had the same optimal objective value. For testing the causal
risk ratio, the objective values tended not to be identically equal, which has to do
with the existence of fractional values in the row of the constraint matrix enforcing the
null hypothesis; nonetheless, the average gap among those iterations where there was
a difference was 0.005% percent for the linear program, and 0.01% for the quadratic
program. This suggests not only that we have arrived upon a strong formulation, but
that one could in practice accurately approximate (P1) by its continuous relaxation.
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Table 4: Computation times for tests of δ = 0.05 and ϕ = 1.10 at Γ = 1 (integer linear
program) and Γ = 1.05 (integer quadratic program), along with percentages of coincidence
of the integer and relaxed objective values, and average gaps between integer solution and
the continuous relaxation if a difference existed between the two.

Null Hypothesis; Avg. Time (s), Avg. Time (s),
%(objint = objrel)

Avg Rel. Gap
Confounder Strength Integer Relaxation If Different
δ = 0.05; Γ = 1.00 9.26 8.81 99.8% 0.001%
δ = 0.05; Γ = 1.05 12.69 8.20 89.5% 0.002%
ϕ = 1.10; Γ = 1.00 9.74 8.45 9.0% 0.005%
ϕ = 1.10; Γ = 1.05 13.40 8.38 8.1% 0.011%

E Point Estimates for θ Through M-Estimation
While our focus in this work is on inference both assuming and not assuming un-
measured confounding, we briefly describe point estimation for θ. Under the null
at Γ = 1, T (θ0) has expectation 0. We propose an m-estimator (also referred to
as a z-estimator) for θ by using T (θ0) as an estimating function; see Van der Vaart
(2000) for more on m- and z- estimators and their corresponding properties. Explic-
itly, θ̂ := SOLVE{θ : T (θ) = 0}. This is in keeping with the estimator suggested by
Baiocchi et al. (2010) for the effect ratio. For our three causal estimands of interest,
these estimators are:

δ̂ =
1

N

I∑
i=1

ni∑
j=1

ni (ZijRij/mi − (1− Zij)Rij/(ni −mi))

ϕ̂ =

∑I
i=1

∑ni
j=1 niZij

Rij

mi∑I
i=1

∑ni
j=1 ni(1− Zij)

Rij

ni−mi

λ̂ =

∑I
i=1

∑ni
j=1 ni

(
Zij

Rij

mi
− (1− Zi) Rij

ni−mi

)
∑I

i=1

∑ni
j=1 ni

(
Zij

Dij

mi
− (1− Zi) Dij

ni−mi

) .
While useful as indications of effect magnitude size, these estimators do not play a

direct role in conducting inference or performing sensitivity analyses; rather, our focus
lies in understanding the randomization distribution of T (θ0) at any particular value
of θ0. Confidence intervals under no unmeasured confounding are then constructed by
inverting tests for a sequence of null hypotheses. Constructing intervals in this manner
avoids certain issues associated with intervals directly based on m-estimators, such as
small sample bias and heavy dependence of the estimator’s variance on the estimand
of interest; see Fogarty et al. (2015) for a discussion of the latter point as it pertains to
constructing confidence intervals for the risk difference within a matched observational
study.
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F Assuming a Known Direction of Effect Impacts
Reported Sensitivity
In both examples in Section 6, we perform inference under a host of assumptions on the
potential outcomes. As is demonstrated therein, the assumption of a known direction of
effect has a particularly strong impact on the corresponding sensitivity analysis. Note
that when testing the null of δ = 0 ⇔ ϕ = 1 ⇔ λ = 0 under the assumption of a
direction of effect, the only allocation of rT , rC that satisfies the null hypothesis is the
allocation of Fisher’s sharp null: rT ij = rCij ∀i, j. This results in testing a simple,
rather than composite, null hypothesis. At Γ = 1, the necessary hypothesis test can
be performed using the permutation distribution (or a normal approximation thereof)
of the test statistic under Fisher’s sharp null. For Γ > 1 the potential outcomes are
still fixed at those of Fisher’s sharp null, but we must consider the possible vectors of
unmeasured confounders. Without the assumption of a direction of effect, there are
many possible allocations of potential outcomes satisfying this null. This additional
flexibility in the optimization problem results in more extreme worst-case allocations
for the inference being conducted.

As a simple illustration of why this is the case, consider testing this null with two
pairs of individuals. In strata 1, suppose R11 = R12 = 1, while in strata 2 suppose
R21 = R22 = 0, where without loss of generality the first individual in each matched set
received the treatment. If we assume a nonnegative treatment effect, rT12 = 1, since
rC12 = 1. Similarly, rC21 = 0 since rT21 = 0. Finally, the constraint that the null is
true forces rC11 = 1 and rT22 = 0. For any Γ, these strata contribute expectation and
variance 0. Without the assumption of a direction of effect, we can also satisfy the null
hypothesis by setting rC11 = 1, rT12 = 0, rC21 = 0, rT22 = 1. Not only would we then
have positive variance contribution from each of these strata at any Γ, but also setting
u1 = [1, 0] and u2 = [0, 1] results in an aggregate expected value of (Γ−1)/(1+Γ) ≥ 0.
These choices allow one to find a less significant deviate under no constraints on the
direction of effect than is possible under a model with a known direction of effect.

G Sensitivity Analysis for a Simple Null
While the methodology presented herein was motivated by conducting sensitivity anal-
yses for composite null hypotheses with binary outcomes, we note that a simplified
version can be used to conduct a sensitivity analysis for a simple null hypothesis for
general types of outcome variables without invoking asymptotic separability (Gastwirth
et al., 2000). With a simple null hypothesis, qij are fixed for each individual i and each
strata j. In the notation of Section 4, S represents the number of strata with unique
sets of values for the vector qi. With continuous outcomes S will often equal I, but
for other types of outcomes there may be repeated strata. For each s, Ps (the number
of possible allocations of potential outcomes within unique set s) equals 1 as both sets
of potential outcomes are fixed under a simple null. Hence, the subscript [sp] in our
original formulation can be replaced by a single subscript s, Define µsa and νsa by
replacing [sp] with s in the notation of Section 4.1 in the manuscript, and make the
analogous substitution of xsa for x[sp]a. Let Ms again represent the number of times
unique stratum s occurred, and let ñs be the number of observations within unique
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stratum s. Define µ = [µ11, .., µS,ñS−1] and let the analogous definitions hold for ν and
x. Finally, note that the constraint that the null must be true in formulation (P1) can
be removed entirely as qij are defined under this assumption. A sensitivity analysis at
a given Γ > 1 can be conducted by solving the following optimization problem:

minimize
x

(t− (µTx))2 − κ(νTx) (P2)

subject to
ñs−1∑
a=1

xsa = Ms ∀s

xsa ∈ Z ∀s, a
xsa ≥ 0 ∀s, a

As described in Section 5.2, we can conduct a sensitivity analysis for a given Γ > 1 by
minimizing (P2) with κ = χ2

1,1−α. To find the actual minimal deviate, we can follow
the iterative procedure outlined in Section 5.2 until converging to a stationary κ∗.

The constraint matrix corresponding to the above optimization program is totally
unimodular. As a consequence, the polyhedron of the continuous relaxation equals the
integer hull (Bertsimas and Tsitsiklis, 1997). Hence, if one were solving an integer
linear program, the solution of the continuous relaxation would be guaranteed to be
integral. When finding the worst-case deviate we are minimizing a constrained convex
quadratic function; as such, the solution need not be at the vertex. Nonetheless, strong
formulations of integer quadratic programs are essential for efficiently finding optimal
solutions.

G.1 Example: Dropping Out of High School and Cognitive
Achievement
As an exposition of their methodology, Gastwirth et al. (2000) consider conducting a
sensitivity analysis for comparing cognitive achievement of US high-school drop-outs
with that of non-dropouts; see Rosenbaum (1986) for more details on the study. They
conducted inference on 12 drop-outs in the study, where each drop-out was matched to
two students who did not drop out, yet were similar on the basis of all other observed
covariates. Using an aligned rank test, the test statistic for these 12 matched sets
was t = 296, with expectation and variance at Γ = 1 of 222 and 1271, yielding a
standardized deviate of 2.07 and approximate one sided p-value of 0.019.

Table 3 of Gastwirth et al. (2000) shows the results of the asymptotically separable
algorithm on this data set for Γ = 2. At this strength of unmeasured confounding,
the separable algorithm yields a bounding normal deviate with a mean of 257.40 and
a variance of 1177.23, resulting in an approximation to the worst-case deviate of 1.125
and a one sided p-value of 0.129. We also explicitly minimized the deviate by solving
(P2). This yields a bounding random variable with a mean of 256.60 and a variance
of 1228.145, yielding a worst-case deviate of 1.124 and a worst-case p-value of 0.130.
Investigating further, the worst-case allocations of u for each strata were in agreement
for all of the matched sets except for matched set 11. There, the asymptotically sepa-
rable algorithm chooses u11 = [0, 1, 1], contributing a mean of 24.80 and a variance of
139.76. The correct value for u11 for minimizing the deviate is u11 = [0, 0, 1], which
has slightly lower expectation (24.24) but larger variance (173.19).
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This demonstrates that for I even moderately large, the asymptotically separable
algorithm can produce a bounding random variable that very closely approximates the
true upper bound on the p-value. That being said, given our formulation the worst-case
deviate can be explicitly found. Furthermore, one need not worry about computation
time: for conducting the sensitivity analysis on this problem, an optimal solution was
found in 0.15 seconds.
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