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Estimating the effects of interventions in networks is complicated when
the units are interacting, such that the outcomes for one unit may depend
on the treatment assignment and behavior of many or all other units (i.e.,
there is interference). When most or all units are in a single connected com-
ponent, it is impossible to directly experimentally compare outcomes under
two or more global treatment assignments since the network can only be ob-
served under a single assignment. Familiar formalism, experimental designs,
and analysis methods assume the absence of these interactions, and result in
biased estimators of causal effects of interest. While some assumptions can
lead to unbiased estimators, these assumptions are generally unrealistic, and
we focus this work on realistic assumptions. Thus, in this work, we evalu-
ate methods for designing and analyzing randomized experiments that aim to
reduce this bias and thereby reduce overall error. In design, we consider the
ability to perform random assignment to treatments that is correlated in the
network, such as through graph cluster randomization. In analysis, we con-
sider incorporating information about the treatment assignment of network
neighbors. We prove sufficient conditions for bias reduction through both de-
sign and analysis in the presence of potentially global interference. Through
simulations of the entire process of experimentation in networks, we mea-
sure the performance of these methods under varied network structure and
varied social behaviors, finding substantial bias and error reductions. These
improvements are largest for networks with more clustering and data gener-
ating processes with both stronger direct effects of the treatment and stronger
interactions between units.

1. Introduction. Many situations and processes of interest to scientists in-
volve individuals interacting with each other, such that causes of the behavior of
one individual are also indirect causes of the behaviors of other individuals; that is,
there are peer effects or social interactions (Manski, 2000). Likewise, in applied
work, the policies considered by decision-makers often have many of their effects
through the interactions of individuals. Examples of such cases are abundant. In
online social networks, the behavior of a single user explicitly and by design af-
fects the experiences of other users in the network. If an experimental treatment
changes a user’s behavior, then it is reasonable to expect that this will have some
∗Authors are listed alphabetically.
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effect on their friends, a perhaps smaller effect on their friends of friends, and so
on out through the network. In an extreme case, treating one individual could alter
the behavior of everyone in the network.

To see the challenges this introduces, consider what is, in many cases, a pri-
mary quantity of interest for experiments in networks — the average treatment
effect (ATE) of applying a treatment to all units compared with applying a differ-
ent (control) treatment to all units.1 Let Z be a vector of length N giving each
unit’s treatment assignment, so that Yi(Z = z) is the potential outcome of interest
for unit iwhen Z is set to z. Then the ATE is a contrast between two such treatment
vectors,

(1) τ(z1, z0) =
1

N

∑
i

E[Yi(Z = z1)− Yi(Z = z0)],

where N is the number of units and z1 and z0 are two treatment assignments vec-
tors; the prototypical case has z1 = 1 and z0 = 0, the vectors of all ones and of all
zeros. Note that each unit’s potential outcome is a function of the global treatment
assignment vector Z, not just its own treatment Zi. Additional assumptions will
thus be required for τ to be identifiable.2

The standard approach is to assume that each unit’s response is not affected
by the treatment of any other units. Versions of this assumption are sometimes
called the stable unit treatment value assumption (SUTVA; Rubin, 1974) or a
no interference (Cox, 1958) assumption. Combined with random assignment to
treatment, this suffices to identify τ . However, for many processes and situations
of interest the units are interacting, and SUTVA becomes implausible (Aronow and
Samii, 2014; Sobel, 2006).

Rather than substituting other strong assumptions about interference, this pa-
per considers how we can reduce bias for the ATE through both the choice of
experimental design and analysis when interactions among units occur along an
observed network.3 The design of the experiment dictates how each vertex in the

1For example, Bond et al. (2012) consider the effect of a voter mobilization intervention, such
that the aim is to compare voter turnout if everyone (or almost everyone) is assigned to the treatment
with turnout if everyone is assigned to the control. There are other causal quantities that may be of
interest, which we do not treat here. Other authors consider decompositions of effects into various
direct and indirect effects of the treatment (Sobel, 2006; Tchetgen and VanderWeele, 2012; Toulis
and Kao, 2013).

2This is closely connected to what Holland (1988) regards as the fundamental problem of causal
inference — that one can only observe a unit’s response under a single treatment. The difference is
that here we can only observe all units’ responses under a single global treatment.

3While we limit the analysis here to cases where the measured network and the network through
which the interaction occur are the same, the methods examined here may also substantially reduce
bias in when using a network observed with error.
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network (i.e., unit) is assigned to a condition, and the analysis says how the ob-
served responses are combined into estimates of causal quantities of interest. We
study these methods by formalizing the process of experimentation in networks,
proving sufficient conditions for bias reduction through design and analysis, and
running extensive simulations.

We cannot consider all possible designs and analysis, but limit this work to some
relatively general methods for each. We consider experimental designs that as-
sign clusters of vertices to the same treatment; this is graph cluster randomization
(Ugander et al., 2013). Since the counterfactual situations of interest involve all
vertices being in the same condition, the intuition is that assigning a vertex and
vertices near it in the network into the same condition, the vertex is “closer” to
the counterfactual situation of interest. For analysis methods, we consider methods
that define effective treatments such that only units that are effectively in global
treatment or global control are used to estimate the ATE. For example, an estima-
tor for the ATE might only compare units in treatment that are surrounded by units
in treatment with units in control that are surrounded by units in control. The intu-
ition is that a unit that meets one of these conditions is “closer” to a counterfactual
situation of interest.

The rest of the paper is structured as follows. We briefly review some related
work on experiments in networks. Section 2 presents a model of the process of
experimentation in networks, including initialization of the network, treatment as-
signment, outcome generation, and analysis. This formalization allows us to de-
velop theorems giving sufficient conditions for bias reduction. To develop further
understanding of the magnitude of the bias and error reduction in practice, Section
3 presents simulations using networks generated from small-world models and then
degree-corrected blockmodels.

We find that graph cluster randomization is capable of dramatically reducing
bias compared to independent assignment without adding “too much” variance.
The benefits of graph cluster randomization are larger when the network has more
local clustering and when social interactions are strong. If social interactions are
weak or the network has little local clustering, then the benefits of the more com-
plex graph-clustered design are reduced. Finally, we found larger bias and error
reductions through design than analysis: analysis strategies using neighborhood-
based definitions of effective treatments does further reduce bias, but often at a
substantial cost to precision such that the simple estimators were preferable in
terms of error. No combination of design and analysis is expected to work well
across very different situations, but these general insights from simulation can be a
guide to practical real-world experimentation in the presence of peer effects. Fur-
thermore, by identifying sufficient conditions for bias reduction, we can understand
when design and analysis changes will at least not increase bias.
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1.1. Related work. Much of the literature on interference between units fo-
cuses on situations where there are multiple independent groups, such that there
are interactions within, but not between, groups (e.g., Sobel, 2006; Rosenbaum,
2007; Hudgens and Halloran, 2008; Tchetgen and VanderWeele, 2012). Some more
recent work has examined interference in networks more generally (Aronow and
Samii, 2014; Manski, 2013; Toulis and Kao, 2013; Ugander et al., 2013), where
this between-groups independence structure cannot be assumed.

This prior work has largely focused on assuming restrictions on the extent of
interference (e.g., vertices are only affected by the number of neighbors treated)
and then deriving results for designs and estimators motivated by these same as-
sumptions. Aronow and Samii (2014) give unbiased estimators for ATEs under
these assumptions and derive variance estimators.4 Ugander et al. (2013) show that
graph clustered randomization puts more vertices in the conditions required for
these estimators, such that the variance of these estimators is bounded for certain
types of networks. But, as noted by Manski (2013) and as we discuss in Section
2.3.2 below, the very processes expected to produce interference also make these
assumptions implausible. The present work explicitly considers more realistic data
generating processes that violate these restrictive assumptions. That is, in contrast
to prior work, we evaluate design and analysis strategies under conditions other
than those under which they have particular desirable properties (e.g., unbiased-
ness). Instead, we settle for reducing bias and error.5

2. Model of experiments in networks. We consider experimentation in net-
works as consisting of four phases: (i) initialization, (ii) treatment assignment, (iii)
outcome generation, and (iv) estimation. A single run through these phases cor-
responds to a single instance of the experimental process. Treatment assignment
embodies the experimental design, and the estimation phase embodies the analysis
of the network experiment. These same phases, shown in Figure 1, are implemented
in our simulations in which we instantiate this process many times.

2.1. Initialization. Initialization is everything that occurs prior to the experi-
ment. This includes network formation and the processes that produce vertex char-
acteristics and prior behaviors. In some cases, we may regard this initialization pro-
cess as random, and so wish to understand design and analysis decisions averaged
over instances of this process; for example, we may wish to average over a distri-
bution of networks that corresponds to a particular network formation model. In

4Aronow and Samii (2014) also consider estimating the effects of peer assignment on ego be-
havior directly, while our primary quantity of interests is the ATE of global treatment versus global
control.

5In this regard, the present work is more similar to Toulis and Kao (2013), which recognizes that
available estimators of the quantities of interest will be biased.
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Treatment
Control

Response Treatment weight
Control weight

Initialization Design Outcome Generation Analysis

FIG 1. Model of the network experimentation process, consisting of (i) initialization, which generates
the graph and vertex characteristics, (ii) design, which determines the randomization scheme, (iii)
outcome generation, which observes or simulates behavior, and (iv) analysis, which constructs an
estimator. We examine the bias and variance of treatment effect estimators under different design
and analysis methods for varied initialization and outcome generation processes.

the simulations later in this paper, we generate networks from small-world models
(Watts and Strogatz, 1998) and degree-corrected blockmodels (Karrer and New-
man, 2011). In other cases, we may regard the outcome of this process as fixed; for
example, we may be working with a particular network and vertices with particular
characteristics, which we wish to condition on in planning our design and analysis.

When initialization is complete, we have a particular network G = (V,E) with
adjacency matrix A.6 In addition to producing a graph, the initialization process
could also produce a collection of vertex characteristics X that may or may not
relate to the structure of the graph, but may play a role in outcome generation.

2.2. Design: Treatment assignment. The treatment assignment phase creates
a mapping from vertices to treatment conditions. We only consider a binary treat-
ment here (i.e., an “A/B” test), so the mapping is from vertex to treatment or con-
trol. Treatment assignment normally involves independent assignment of units to
treatments, such that one unit’s assignment is uncorrelated with other units’ assign-
ments.7 In this case, each unit’s treatment is a Bernoulli random variable

Zi ∼ Bernoulli(q)

with probability of assignment to the treatment q.
The present work evaluates treatment assignment procedures that produce as-

signments with network autocorrelation. While many methods could produce such
network autocorrelation, we work with graph cluster randomization, in which the

6For the purposes of this paper, we assume that the network is fixed over the timescale of the
experiment.

7A normal but minor exception occurs when forcing a specific number of units within a block to
be assigned to each of treatment and control; this produces negative dependence between units in the
same block. This includes global balancing of sample sizes in treatment and control as a special case.
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network is partitioned into clusters and those clusters are used to assign treat-
ments. Let the vertices be partitioned into NC clusters C1, C2, ..., CNC

, and define
C(·) : {1, ..., N} → {1, ..., NC} as mapping vertex indices to cluster indices. Thus
Ci refers to a cluster by its index, while C(i) refers to the cluster containing vertex
i.

In standard graph cluster randomization, as presented by Ugander et al. (2013),
treatments are assigned at the cluster level, where each cluster Cj is assigned a
treatment Wj ∼ Bernoulli(q). Thus the treatments assigned to vertices are simply
those assigned to their clusters,

Zi =WC(i).

For some estimands and analyses, assigning all vertices in a cluster to the same
treatment can make it impossible for some vertices to be observed with, e.g., some
particular number of treated peers. This can violate the requirement that all units
have positive probability of assignment to all conditions. For this reason, it can be
desirable to use an assignment method that allows for some vertices to be assigned
to a different treatment than the rest of its cluster; we describe such a modification
in Appendix A.1.

Graph cluster randomization could be applied to any mapping C(·) of vertices
to clusters. One such mapping, which we use for the simulations reported in this
paper, is formed by ε-net clustering as previously considered by Ugander et al.
(2013). An ε-net in the graph distance metric is a set of vertices such that no two
vertices in the set are less than ε hops of each other, and every vertex outside the
set is within ε hops (in fact, ε − 1 hops) of a vertex in the set. An ε-net can be
formed by repeatedly selecting a vertex and removing it and every vertex within
distance ε − 1 from the network, until all vertices have been removed. Having
completed this step, the population of selected vertices forms an ε-net. An ε-net
clustering can be formed by assigning each vertex to the closest vertex in the ε-
net, and breaking the possible ties through some arbitrary rule. Different selection
and assignment rules and different values of ε correspond to different experimental
designs. We compare clustered random assignment using ε-nets to independent
random assignment, where vertices are independently assigned to treatment and
control.

Other mappings of vertices to clusters of interest include methods developed for
community detection (Fortunato, 2010). Many global community detection meth-
ods, such as modularity maximization (Newman, 2006), have a resolution limit
such that they do not distinguish small clusters (Fortunato and Barthelemy, 2007);
graph cluster randomization with these methods could then introduce too large an
increase in variance for the resulting bias reduction. Therefore, local clustering
methods may be more appealing for graph cluster randomization. Observed com-
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munity membership (e.g., current educational institution) or geography could also
be used as this mapping.

Lastly, it is important to note that independent random assignment can be con-
sidered as clustered random assignment where each vertex is in its own cluster.

2.3. Outcome generation and observation. Given the network (along with ver-
tex characteristics and prior behavior) and treatment assignments, some data gen-
erating process produces the observed outcomes of interest. In the context of social
networks, typically this is the unknown process by which individuals make their
decisions. In this work, we consider a variety of such processes. For our simula-
tions, we use a known process meant to simulate decisions, in which units respond
to others’ prior behaviors. Doing so allows us to understand the performance of
varied design and analysis methods, measured in terms of estimators’ bias and er-
ror, under varied (although simple) decision mechanisms. Before considering these
processes themselves, we consider outcomes as a function of treatment assignment.

2.3.1. Treatment response assumptions. In the following presentation, we use
the language of “treatment response” assumptions developed by Manski (2013)
to organize our discussion of outcome generation. Consider vertices’ outcomes as
determined by a function from the global treatment assignment Z ∈ ZN and an
independent stochastic component U ∈ UN to an outcome vector Y ∈ YN :

f(·) : ZN × UN → YN .

We then observe Y = f(Z,U). We can decompose this function into a function
for each vertex

fi(·) : ZN × UN → Y.

We can, as we have done above, continue to write Yi(Z = z) to refer to the outcome
for vertex i that would be observed under assignment z; by suppressing dependence
on U , this treats Yi(·) as a stochastic function.

If vertices’ outcomes are not affected by others’ treatment assignment, then
SUTVA is true. Perhaps more felicitously, Manski (2013) calls this assumption in-
dividualistic treatment response (ITR). Under ITR we could then consider vertices
as having a function from only their own assignment to their outcome:

fi(·) : Z× UN → Y.

One way for this assumption to hold is if the vertices do not interact.8 This speci-
fication of fi(·) corresponds to the assumption that a vertex’s outcome is invariant

8The vertices might interact without necessarily violating the ITR assumption. This can occur, for
example, when vertices interact in one period, and then are affected by treatment assignment, while
no longer interacting. This is why we define fi(·) as being a function from UN rather than just U.
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to changes in other vertices’ assignments. That is, for any two global assignments
z0, z1 ∈ ZN and any stochastic component U ∈ UN ,

z1,i = z0,i ⇒ fi(z1, U) = fi(z0, U).

ITR is a particular version of the more general notion of constant treatment re-
sponse (CTR) assumptions (Manski, 2013). More generally, a CTR assumption in-
volves establishing equivalence classes of treatment vectors by defining a function
gi(·) : ZN → Gi that maps global treatment vectors to the space Gi of effective
treatments for vertex i (Manski, 2013) such that

gi(z1) = gi(z0)⇒ fi(z1, U) = fi(z0, U)

for any two global assignments z0, z1 ∈ ZN and any stochastic component U ∈
UN . Specifying the functions gi is then a general way to specify a CTR assumption.
Such assumptions can be described as constituting an exposure model (Aronow and
Samii, 2014; Ugander et al., 2013).

Other CTR assumptions have been proposed that allow for some interference.
Aronow and Samii (2014) simply posit different restrictions on this function, such
as that a vertex’s outcome only depends on its assignment and its neighbors’ as-
signments. This neighborhood treatment response (NTR) assumption has that, for
any two global assignments z0, z1 ∈ ZN and any stochastic component U ∈ UN ,

z1,i = z0,i and z1,δ(i) = z0,δ(i) ⇒ fi(z1, U) = fi(z0, U),

where δ(i) are the neighbors of vertex i. Aronow and Samii (2014) and Ugander
et al. (2013) consider further restrictions, such as that a vertex’s response only
depends on the number of treated neighbors.

2.3.2. Implausibility of tractable treatment response assumptions. How should
we select an exposure model? Aronow and Samii (2014, Section 3) suggest that we
“must use substantive judgment to fix a model somewhere between the traditional
randomized experiment and arbitrary exposure models”. However, it is unclear how
substantive judgement can directly inform the selection of an exposure model for
experiments in networks — at least when the vast majority of vertices are in a sin-
gle connected component. Interference is often expected because of peer effects:
in discrete time, then the behavior of a vertex at t is affected by the behavior of its
neighbors at t − 1; if this is the case, then the behavior of a vertex at t would also
be affected by the behavior of its neighbors’ neighbors at t− 2, and so forth. Such
a process will result in violations of the NTR assumption, and many other assump-
tions that would make analysis tractable. Manski (2013) shows how some, quite
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specific, models of simultaneous endogenous choice can produce some restrictions
on fi(·).9

Since many appealing CTR assumptions are violated by the very theories that
motivate the expectation of interference, it is useful to evaluate the performance
of available design and analysis methods — including estimators that would be
motivated by these assumptions — under outcome generating processes consistent
with these theories. In particular, we now consider outcome generating processes
in which vertices respond to their own treatment and the prior behavior of their
neighbors. That is, peer behavior fully mediates the effects of the assignments of an
ego’s peers on the ego. This is notably different from Aronow and Samii (2014) and
Ugander et al. (2013), where ego response is specified in terms of peer assignments
without being mediated through peer behavior.10

We consider a dynamical model with discrete time steps in which a vertex’s
behavior at time t, denoted by the vector Yi,t, is a function h of ego treatment
assignment and it and its neighbors’ prior behaviors Yδ(i),t−1, such that

hi,t(·) : Z× Yki+1 × UN → Y,

where ki is the degree of vertex i and Y·,0 is initialized by some prior process. That
is, hi,t(·) is the nonparametric structural equation (NPSE) for Yi,t.

Together with the graphG, the function hi,t(·) determine the treatment response
function fi(·). Thus, this outcome generating process implies some CTR assump-
tions. After the first time step (i.e., at time 1), the effective treatment for a vertex,
the function gi(·) considered earlier, maps to the space of the vertex’s treatment.
After the second time step, it maps to the space of the vertex’s treatment and its
neighbors treatment. After the third time step (i.e., at time 3), the effective treat-
ment is no finer than the treatment of all vertices within distance 2. At time step t,
the effective treatment is no finer than the treatment of all vertices within distance
t − 1. We see here that under such a dynamic outcome generating process, Man-
ski’s notion of effective treatment, conceived of to limit the scope of dependence,
quickly expands to encompass the full graph.11

9Manski (2013) calls these models of simultaneous endogenous choice a “system of structural
equations”. But because these equations are simultaneous, they are not structural in the sense of cor-
responding to a directed acyclic graph (DAG) given a causal interpretation (Pearl, 2009). However,
we can regard these equations as specifying an equilibrium that arises out of some unknown dynamic
process. We prefer to work with a posited dynamic process, which may or may not be in equilibrium
when we observe it (cf. Young, 1998).

10 Note that this specification in terms of “direct” effect could be compatible with various data-
generating processes that involve “indirect” effects — at least on a short time scale.

11And similarly for the assumed exposure models in Aronow and Samii (2014) and Ugander et al.
(2013).
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2.3.3. Utility linear-in-means. Many familiar models are included in the above
outcome generating process. To make this more concrete, and for our subsequent
simulations, we consider a model in which a vertex’s behavior is a stochastic func-
tion of the mean of neighbors’ prior behaviors, so that behavior at some new time
step t is generated as:

Y ∗i,t = α+ βZi + γ
A
′
iYt−1
ki

+ Ui,t(2)

Yi,t = a
(
Y ∗i,t
)

(3)

where Ai is a row of the adjacency matrix and ki is the degree of vertex i. In the
case of a binary behavior, we work with a(x) = 1{x > 0} and Ui,t ∼ N (0, 1),
which is a probit model. We initialize behaviors with Yi,0 = 0. Here α is the
baseline, where a negative α determines the threshold that must be crossed for Y ∗i,t
to be positive. Setting β determines the strength of the direct effect of the treatment,
while γ is the slope for peer behavior, and therefore determines the strength of the
peer effects. This process is then run up to a maximum time T . As described above,
with a small value of T , this implies CTR assumptions.

This can be interpreted as a noisy best response or best reply model (Blume,
1995), when vertices anticipate neighbors taking the same action in the present
round as they did in the previous round. In particular, we can interpret Y ∗i,t as the
payoff for vertex i to adopt behavior 1 at time t. When γ > 0, then this is a semi-
anonymous graphical game with strategic complements (Jackson, 2008, Ch. 9).

2.4. Analysis and estimation. We focus on the ATE (the average treatment ef-
fect; τ in Equation 1), which is naturally of interest when considering whether a
new treatment would be beneficial if applied to all units.

There are many options available for estimating the ATE. For example, if the
relevant network is completely unknown or if peer effects are not expected, then
one might use estimators for experiments without interference, such as a simple
difference-in-means between the outcomes of vertices assigned to treatment and
control. To clarify the sources of error in estimation, we begin with the population
analogs of these quantities — i.e., the associated estimands — and return to the
estimators themselves in Section 2.4.3. Consider the simple difference-in-means
estimand

(4) τdITR(1, 0) = µdITR(1)− µdITR(0)

where the µdITR are mean outcomes when a vertex is in treatment and control, i.e.,

µdITR(z) =
1

N

N∑
i=1

Ed[Yi |Zi = zi].
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We index these quantities by both the definition of effective treatments (ITR for “in-
dividualistic treatment response”, as in Section 2.3.1) and the experimental design
d, since the former determines the conditioning involved and the latter determines
the distribution of Z over which we take expectations.

When a vertex’s outcome depends on the treatment assignments of others, these
quantities need not equal the quantities of interest. That is, they can suffer from
some estimand bias, such that τdITR(1, 0) − τ(1, 0) is non-zero. Each vertex as-
signed to treatment contributes to this bias through the difference between its
expected outcome when assigned to treatment (given the experimental design)
and what would be observed under global treatment. More generally, for some
global treatment vector z, vertex i contributes to the bias of µdITR(z) through
Ed[Yi − Yi(Z = z) |Zi = zi]. If the treatment assignment of other vertices do
not affect vertex i’s behavior much, then this contribution might be quite small. Or
this contribution could be more substantial.

2.4.1. Bias reduction through design. We are now equipped to elaborate on
the intuition that graph cluster randomization puts vertices in conditions “closer”
to the global treatments of interest and thereby reduces bias in estimates of aver-
age treatment effects, even if a vertex’s outcome depends on the global treatment
vector. The result below uses a linear outcome model that has as a special case the
linear-in-means model, as made clear at the end of this subsection.

THEOREM 2.1. Assume we have a linear outcome model for all vertices i ∈ V
such that

EU [Yi(z, U)] = ai +
∑
j∈V

Bijzj(5)

and further assume that Yi(z, u) is monotonically increasing in z for every u ∈ UN
and vertex i such that Bij ≥ 0.

Then for some mapping of vertices to clusters, the absolute bias of τdITR(1, 0)
when the design d is graph cluster randomization is less than or equal to the ab-
solute bias when d is independent assignment, with a fixed treatment probability
p.

PROOF. Using the linear model for Yi and the definition of τ , we have that the
true ATE τ is given by

τ(1, 0) = µ(1)− µ(0) = 1

N

∑
ij

Bij(6)
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for this outcome model. Under graph cluster randomization,

τgcrITR(1, 0) =
1

N

∑
ij

Bij1[C(i) = C(j)].(7)

Then under independent assignment,

τ indITR(1, 0) =
1

N

∑
i

Bii.(8)

Because Bij ≥ 0, together this implies that τ(1, 0) − τgcrITR(1, 0) ≤ τ(1, 0) −
τ indITR(1, 0), where monotonicity dictates that each side of this inequality is positive.

This comparison allows seeing how, at least in this linear model, the magnitude
of bias reduction from graph cluster randomization depends on the “strength” of
the interactions within clusters. That is, this clarifies the intuition that using clusters
formed from more distant vertices will not generally reduce bias as much as clus-
ters formed from closer vertices, as is the aim of using graph partitioning methods
such as ε-net partitioning or community detection methods.12 It also highlights that
when there are mainly non-zero Bij’s, ceteris paribus large clusters result in more
bias reduction; of course, there are corresponding costs to precision.

To clarify this further, let’s consider the relative bias defined by

τgcrITR(1, 0)/τ(1, 0)− 1 =

∑
ij Bij1[C(i) = C(j)]∑

ij Bij
− 1.(9)

Assume that there are O(N) clusters of size O(1) used for the graph cluster ran-
domization.13 Under this condition, the numerator hasO(N) terms and the denom-
inator hasO(N2) terms. So unless there is a judicious choice of clustering, the nu-
merator will be overwhelmed by the denominator and the estimator τgcrITR(1, 0) will
be a dramatic underestimate of the true average treatment effect, and it’s clear that
τ indITR(1, 0) would be even worse. In order for meaningful relative bias reduction to
occur, the clustering must capture the structure of the dependence between units
specified by the matrix of coefficients B.

In Appendix A.2, we derive similar intuitions from an alternative graph cluster
randomization that preserves balance between the sizes of the treatment and control

12Note that in the above treatment, the mapping of vertices to clusters is not random, so any
mapping is bias reducing.

13As shown by Ugander et al. (2013), assuming NTR and that the graph satisfies a restricted
growth condition, this implies that an experimental design with O(N) clusters of size O(1) will
produce NTR-based estimators with bounded variance.
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group. There graph cluster randomization no longer always achieves bias reduction
for every clustering over independent assignment, but meaningful bias reduction is
again possible and depends on how the clustering captures B in an identical way.

This linear outcome model has as special cases some other models of interest. In
particular, it has as a special case the linear-in-means model, which is widely stud-
ied and used in econometrics (e.g., Manski, 1993; Lee, 2007; Bramoulle, Djebbari
and Fortin, 2009; Goldsmith-Pinkham and Imbens, 2013). Consider a(x) = x in
Eq. 2. Then for t ≥ 1 the quantity EU [Yi,t(z)] is

EU [Yi,t(z)] = α+ βzi + γ
A
′
iE
U [Yt−1(z)]

ki
.(10)

The closed form solution for EU [Yt(z)] for any t ≥ 0 is then given by

EU [Yt(z)] = (γD−1A)tEU [Y0] +
t−1∑
q=0

(γD−1A)q(α+ βz)(11)

where D−1 is the diagonal matrix of inverse degrees, A is the adjacency matrix,
and Y0 is the vector of initial states. This is a linear outcome model with ai =
α(1− γt)/(1− γ) + ((γD−1A)tEU [Y0])i and Bij = β

∑t−1
q=0(γD

−1A)qij .

2.4.2. Bias reduction through analysis. Definitions of effective treatments
other than ITR correspond to different estimands. In particular, we can incorpo-
rate assumptions about effective treatments into Equation 1. Let

µdg(z) =
1

N

∑
i

Ed[Yi | gi(Z) = gi(z)](12)

be the mean outcome for the global treatment z when g specifies the effective
treatments and d is the experimental design. Then we have

τdg (z1, z0) = µdg(z1)− µdg(z0)(13)

as our revised estimand for the ATE.14

If the effective treatment assumption corresponding to this estimator is satisfied,
then it is unbiased. As with the ITR assumption, we can again describe the bias
that occurs when effective treatments are incorrectly specified. For some global
treatment vector z, vertex i contributes to the bias of µdg(z) through

Ed[Yi − Yi(Z = z) | gi(Z) = gi(z)],(14)

14It is precisely the effective treatment assumption that allows generalization from a single sam-
pled z to the behavior at z1 and z0.
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where gi(·) is the potentially incorrect (i.e., too coarse) specification of effective
treatments for vertex i.

Considering two or more specifications of effective treatments can allow us to
elaborate on the intuition that using a finer specification of effective treatments will
reduce bias by comparing only vertices that are in conditions “closer” to the global
treatments of interest. For example, the NTR assumption corresponds to finer ef-
fective treatments than the ITR assumption. We also relax the NTR assumption to a
fractional λ-neighborhood treatment in which a vertex is considered effectively in
global treated if a fraction λ of its neighbors are treated (and the same for control)
(Ugander et al., 2013).

Here we analyze functions gi(·) such that gi(Z) = gi(z) just implies that for
some subset of vertices Ji we have that

∑
j∈Ji 1{Zj = zj} ≥ li and that Zi = zi.

These are conditions such that some subset of size li of a set of vertices Ji has
treatment assignment matching that in z, the global treatment vector of interest.
The fractional neighborhood treatment response (FNTR) assumption corresponds
to such a function with Ji = δ(i) and li = dλkie, where ki is vertex i’s degree.
This has both ITR and NTR as special cases with λ = 0 and λ = 1 respectively.15

If we have two such functions gAi (·) and gBi (·) with the same Ji, and gAi (z) =
gAi (z

′) implies gBi (z) = gBi (z
′), then we say that gAi (·) is more restrictive than

gBi (·).

THEOREM 2.2. Let gA(·) and gB(·) be vectors of such functions where gAi (·)
is more restrictive than gBi (·) for every vertex i, and let independent random as-
signment be the experimental design. A sufficient condition for estimand τ ind

gA
(1, 0)

to have less than or equal absolute bias than τ ind
gB

(1, 0), where these estimands
are defined by Equation 13, is that we have monotonically increasing responses or
monotonically decreasing responses for every vertex with respect to z.

PROOF. Given in Appendix A.3.

Note that the utility linear-in-means model in Equation 2 satisfies this mono-
tonicity condition if the direct effect β and peer effect γ are both non-negative.

What about the combination of graph cluster randomization with these neighborhood-
based estimands? As we show in Appendix A.3, similar arguments apply if we
count up matching clusters instead of vertices, but use of the FTNR estimand with
graph cluster randomization is not necessarily bias reducing under monotonic re-
sponses without this modification.

15Of course, ITR can also be analyzed with any choice of Ji, including the empty set.
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2.4.3. Estimators. We now briefly discuss estimators for the estimands consid-
ered above. First, we can estimate τdITR(1, 0) with the difference in sample means
τ̂I,S(1, 0) = µ̂I,S(1)− µ̂I,S(0) where the µ̂I,S are simple sample means, i.e.,

µ̂ITR,S(z) =
1∑N

i=1 1[Zi = zi]

N∑
i=1

Yi1[Zi = zi].

Note that these estimators are again indexed by the effective treatment I used (i.e.,
ITR), but, unlike the estimands, they are not indexed by the design, though the
design determines their distribution. We additionally distinguish these estimators
by the weighting used (discussed below), identifying the simple (i.e., unweighted)
means with S. If a vertex’s own treatment is ignorable (as it is under random as-
signment, independent or graph clustered), then this estimator will be unbiased for
τdITR(1, 0).

More generally, there is a natural correspondence between the conditioning on
gi(Z) = gi(z) in the estimands and the vertices whose outcomes are used in an
estimator. Given some specification of effective treatments g, one could construct
an estimator of the ATE as a simple difference in the sample means for vertices in
effective treatment and in effective control

τ̂g,S(1, 0) = µ̂g,S(1)− µ̂g,S(0)

where we have

µ̂g,S(z) =

∑N
i=1 Yi1[gi(Z) = gi(z)]∑N
i=1 1[gi(Z) = gi(z)]

.

This estimator will only be unbiased for the corresponding estimand µdg(z) under
certain conditions. To have an unbiased estimate of µdg(z) using the sample mean
requires that Ed[Yi | gi(Z) = gi(z)] be independent of Prd[gi(Z) = gi(z)], the
probability vertex i is assigned to that effective treatment. That is, the effective
treatments must be ignorable. One way for the effective treatments to be ignorable
is if either of these quantities is the same for all vertices. Usually we would not want
to assume that Ed[Yi | gi(Z) = gi(z)] is homogeneous, and Pr[gi(Z) = gi(z)] will
not be homogeneous under many relevant effective treatments, such as neighbor-
hood treatment response (NTR), since the distribution of effective treatments for a
vertex depends on network structure. As Ugander et al. (2013) observe, high degree
vertices will generally have low probability of being assigned to some kinds of “ex-
treme” effective treatments, such as having all neighbors treated, while low degree
vertices have a much higher probability of being in such an effective treatment.

Observed effective treatments can be made ignorable by conditioning on the de-
sign (Aronow and Samii, 2014) or sufficient information about the vertices. The
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experimental design determines the probability of assignment to an effective treat-
ment πi(z) = Pr(gi(Z) = gi(z)). In the case of graph cluster randomization and
effective treatments determined by thresholds, these probabilities can be computed
exactly using a dynamic program (Ugander et al., 2013). These are generalized
propensity scores that can then be used in Horvitz–Thompson estimators or other
inverse-probability weighted estimators, such as the Hajek estimator (Aronow and
Samii, 2014) of the ATE. The Horvitz–Thompson estimator will often suffer from
excessive variance, so we focus on the Hajek estimator:

τ̂g,H(z1, z0) =

(
N∑
i=1

1[gi(Z) = gi(z1)]

πi(z1)

)−1 N∑
i=1

Yi1[gi(Z) = gi(z1)]

πi(z1)
−

(
N∑
i=1

1[gi(Z) = gi(z0)]

πi(z0)

)−1 N∑
i=1

Yi1[gi(Z) = gi(z0)]

πi(z0)
(15)

This estimator provides a nearly unbiased estimate of Equation 13.16

Beyond bias, we also care about the variance of the estimator as well. Estima-
tors making use only of vertices with all neighbors in the same condition will suffer
from substantially increased variance, both because few vertices will be assigned
to this effective treatment and because the weights in the Hajek estimator will be
highly imbalanced. This could motivate borrowing information from other vertices,
such as by using additional modeling or, more simply, through relaxing the defini-
tion of effective treatment, such as by using the fractional relaxation of the NTR
assumption (FNTR).

The most appropriate effective treatment assumption to use for the analysis of
a given experiment is not clear a priori. We will consider estimators motivated by
two different effective treatments in our simulations.

3. Simulations. In order to evaluate both design and analysis choices, we
conduct simulations that instantiate the model of network experiments presented
above. First, graph cluster randomization puts more vertices into positions where
their neighbors (and neighbors’ neighbors) have the same treatment; this is ex-
pected to produce observed outcomes “closer” to those that would be observed
under global treatment. Second, estimators using fractional neighborhood treat-
ment restrict attention to vertices that are “closer” to being in a situation of global
treatment. Third, weighting using design-based propensity scores adjusts for bias
resulting from associations between propensity of being in an effective treatment of
interest and potential outcomes. Each of these three changes to design and analysis

16The bias of the Hajek estimator is not zero, but it is typically small and worth the variance
reduction. See Aronow and Samii (2014).
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is expected to reduce bias, potentially at a cost to precision. Under some conditions,
we have shown above that these design and analysis methods reduce (or at least do
not increase) bias for the ATE. The goal of these simulations then is to characterize
the magnitude of this bias reduction, weigh it against increases in variance, and do
so specifically under circumstances that do not meet the given sufficient conditions.

For each run of the simulation, we do the following. First, we construct a small
world network with N = 1,000 vertices and initial degree parameter k = 10. We
vary the rewiring probability prw ∈ {0.00, 0.01, 0.10, 0.50, 1.00}, thereby produc-
ing both regular powers of the cycle (prw = 0), graphs with “small world” charac-
teristics (prw ∈ {0.01, 0.10}), graphs with many random edges and less clustering
(prw = 0.50), and graphs with all random edges (prw = 1.00). The small world
model of networks (Watts and Strogatz, 1998) is notable for being able to suc-
cinctly introduce clustering into an otherwise complex distribution over random
graphs, all featuring a small diameter. The clustering of the graph, typically mea-
sured by the clustering coefficient, is a measure of the extent to which adjacent
vertices share many common neighbors in the graph, and many social networks,
including online social networks (e.g., Ugander et al., 2011), have been found to
exhibit a high degree of clustering as well as a small diameter.

For graph cluster randomization, we use a 3-net clustering and randomly assign
each cluster in its entirety to treatment or control with equal probability.17 We
compare clustered assignment to independent random assignment.

We generate the observed outcomes using the probit model in Equations 2 and
3, and set the baseline as α = −1.5, making the behavior somewhat rare:

Y ∗i,t = −1.5 + βZi + γ
A
′
iYi,t−1
ki

+ Ui,t, Yi,t = 1{Y ∗i,t > 0}.(16)

We initialize Yi,0 = 0 for all vertices, and then run the process for all combina-
tions of β ∈ {0.0, 0.25, 0.5, 0.75, 1.0} and γ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}, up to a
maximum time T = 3.18 Note that this data generating process does not satisfy the
conditions for graph cluster randomization to be bias reducing given by Theorem
2.1, since the outcome model is not linear.

Finally, for each simulation, we compute three estimates of the ATE. The indi-
vidual unweighted estimator (or difference-in-means estimator) τ̂ITR,S makes no
use of neighborhood information. This is the baseline to which we compare the
neighborhood unweighted estimator τ̂FNTR,S and the neighborhood Hajek estimator

17Simulations for the Louvain method (Blondel et al., 2008) for community detection, not re-
ported here, are qualitatively similar to those for ε-net clustering, but generally resulted in more bias
reduction but also larger variance increases, as expected by this method’s resolution limit.

18We also repeated these simulations with the small-world networks for T = 10. The results were
qualitatively similar.
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Bias reduction from clustering, by rewiring probability
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FIG 2. Change in bias due to clustered random assignment as a function of the direct effect of the
treatment β, the rewiring probability prw (different colors), and the strength of the peer effect γ
(different panels). Random assignment clustered in the network reduces bias, especially when peer
effects are large relative to the baseline (α = −1.5) and when the network is more clustered.

τ̂FNTR,H, both using a fractional neighborhood treatment response (FTNR) speci-
fication of effective treatments with λ = 0.75. That is, these estimators count a
vertex as being in effective treatment or effective control if at least three-fourths of
its neighbors have the same assignment. With independent assignment, the condi-
tions for bias reduction given in Theorem 2.2 from using this estimator are satis-
fied. With graph cluster randomization, it is not immediately obvious whether these
conditions are satisfied (it may depend on details of the network).

We run each of these configurations 5,000 times. We estimate the true ATE with
simulations in which all vertices are put in treatment or control. Each configuration
is run 5,000 times for the global treatment case and 5,000 times for the global
control case.19

We will now present the results of our simulations of the full process of network
experimentation. We describe our observations in order to provide insight into how
the different parts of the network experimentation process interact and contribute

19As a variance-reduction strategy for comparisons between designs and true ATE, we use com-
mon random numbers throughout the simulations where possible. In particular, for generating ob-
served outcomes, the first instance of each configuration uses the same seed s1, the second instance
of each configuration uses the same seed s2, and so on.
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Change in error from clustering, by rewiring probability
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FIG 3. Percent change in root-mean-squared-error (RMSE) from clustered assignment for small
world networks. While in some cases graph cluster randomization increases RMSE, in other cases
(when bias reduction is large), it quite substantially reduces RMSE.

to the bias and precision of our experimental estimates. Our evaluation metrics are
bias and root mean squared error (RMSE) of the estimated ATE.

3.1. Design. First we examine the bias and mean squared error of the esti-
mated ATE for designs using graph cluster randomization compared with indepen-
dent randomization. In both these cases we use the difference-in-means estimator
τ̂ITR,S. As expected, using graph cluster randomization reduces bias (Figure 2), es-
pecially when the peer effects and direct effects are large relative to the baseline
(α = −1.5), and when the network exhibits substantial clustering (i.e., the rewiring
probability prw is small).

Reduction in bias can come with increases in variance, so it is worth evaluating
methods that reduce bias also by the effect they have on the error of the estimates.
We compare RMSE, which is increased by both bias and variance, between graph
cluster randomization and independent assignment in Figure 3. In some cases, the
reduction in bias comes with a significant increase in variance, leading to an RMSE
that is either left unchanged or even increased. However, in cases where the bias
reduction is large, this overwhelms the increase in variance, such that graph cluster
randomization reduces not only bias but also RMSE substantially. For example,
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FIG 4. Relative bias in ATE estimates for different assignment procedures, exposure models, and
estimation methods. The most striking differences are between the assignment procedures, though
the neighborhood exposure model also reduces bias (at the cost of increased variance — see Figure
5). Relative bias is not defined when the true value is zero, so we exclude simulations with the direct
effect β = 0. For all networks, the rewiring probability was prw = 0.01.

with substantial clustering (prw = 0.01) and peer effects (γ = 0.5), we observe
approximately 40% RMSE reduction from graph cluster randomization. While the
RMSE reduction is strongest under substantial clustering, if both the direct effect
strength and peer effect strength are strong, we observe significant universal reduc-
tions in RMSE from clustered randomization (though to varied extents), regardless
of the clustering structure given by prw. It is notable that even with small networks
(recall that N = 1000), the bias reduction from graph cluster randomization is
large enough to reduce RMSE.20

3.2. Design and analysis. In addition to changes in design (i.e., graph cluster
randomization), we can also use analysis methods intended to account for inter-
ference. We utilize the fractional neighborhood exposure model, which means we
only include vertices in the analysis if at least three-quarters of their friends were

20Experimenters will generally want to conduct statistical inference, such as through producing
standard errors for estimated ATEs, which would need to account for the increase in variance from
graph cluster randomization. We do not treat such methods here.
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FIG 5. Percent change in root-mean-squared-error (RMSE) compared with independent assignment
with the simple difference-in-means estimator. Using the neighborhood condition with independent
assignment results in large increases in variance: for the two smaller values of γ, this produces
an almost 400% increase in RMSE. For this reason, the y-axis is limited to not show these cases.
Rewiring probability prw = 0.01.

given the same treatment assignment.21 With this neighborhood exposure model,
we consider using propensity score weighting, which corresponds to the Hajek es-
timator, or ignoring the propensities and using unweighted difference-in-means.
The second estimator has additional bias due to neglecting the propensity-score
weights.

Figure 4 shows several combinations of design randomization procedure, ex-
posure model, and estimator. We see that using a neighborhood-based definition
of effective treatments further reduces bias, while the impact of using the Hajek
estimator is minimal.

The low impact of the Hajek estimator follows understandably from the fact that
small-world graphs do not exhibit any notable variation in vertex degree, which is

21It is possible for no vertices to meet this condition for treatment or for control. In this case, the
estimator is undefined. If this occurs, we expect that experimenters would re-randomize or modify
their analysis plan. For the results shown here, we exclude simulations where this occurred, which
corresponds to re-randomizing. This did not occur for graph clustered randomization. For indepen-
dent assignment, this occurred for one of the 5,000 simulations for rewiring probability p = 0.01
(i.e., the results shown in Figure 4).
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FIG 6. Change in (a) bias and (b) RMSE due to clustered random assignment. Lines are labeled
with the expected proportion of edges that are within a community pcomm. As before, results vary with
the strength of the peer effect γ, and the direct effect of the treatment β. The largest bias and error
reductions here are not as substantial as the largest bias reductions with small-world networks.

the principle determinant of the propensities used by the Hajek estimator. Thus, for
small-world graphs the weights used by the Hajek estimator are very close to uni-
form. With more degree heterogeneity expected in real networks, the weighting of
the Hajek estimator will be more important, especially when these heterogeneous
propensities are highly correlated with behaviors. In general, however, the change
in bias from adjusting the analysis are not as striking as those from changes due to
the experimental design.

Using the neighborhood exposure model means that the estimated average treat-
ment effect is based on data from fewer vertices, since many vertices may not pass
the a priori condition. So the observed modest changes in bias come with increased
variance, as reflected in the change in RMSE compared with independent assign-
ment without using the exposure condition (Figure 5).

3.3. Results with stochastic blockmodels. As a check on the robustness of
these results to the specific choice of network model, we also conducted simu-
lations with a degree-corrected block model (DCBM; Karrer and Newman, 2011),
which provides another way to control the amount of local clustering in a graph
and to produce more variation in vertex degree.

In each simulation, the network is generated according to a degree-corrected
block model with 1,000 vertices and 10 communities. We present results for a sub-
set of the parameter values used with the small-world networks. Instead of vary-
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FIG 7. Relative bias (a) and change in RMSE (b) in ATE estimates for different assignment proce-
dures, exposure models, and estimation method, using the degree-corrected block model with commu-
nity proportion pcomm = 0.8. Analysis using the exposure model provides additional bias reduction
over using graph cluster randomization only — with a cost in variance.

ing the rewiring probability prw to control local clustering, we vary the expected
proportion of edges that are within a community pcomm ∈ {0.2, 0.5, 0.8} where
vertices are assigned to one of the 10 communities uniformly at random. The dis-
tribution of expected degrees is a discretized log-normal distribution with mean 10
(as with the small-world networks) and variance 40. This produces substantially
more variation in degrees than the small-worlds network. Each configuration is
repeated 5,000 times.

Figure 6 displays the change in bias and error that results from graph cluster
randomization in these simulations. The bias and error reduction with the DCBM
networks is not as large, for the same values of other parameters, as with the small
world networks. We interpret this as a consequence of the presence of higher-
degree vertices and of less local clustering, even in the simulations with high com-
munity proportion (i.e., pcomm = 0.8).22 Qualitative features of these results (e.g.,
bias and error reduction increase with increases in peer effects and increases in
clustering) match those from the small-world networks.

22Note that with pcomm = 0.8 and the chosen degree distribution, the DCBM networks have
an average clustering coefficient of approximately 0.095 and average transitivity of approximately
0.091. This is similar to that of small-world networks with prw = 0.5. This observed bias and error
reduction is likewise comparable to that observed with those small-world networks.
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Figure 7a displays bias as a function of both design and analysis decisions. As
with the small-world networks, estimators making use of the λ-fractional neighbor-
hood exposure condition reduce bias, whether used with independent or clustered
random assignment. This additional bias reduction comes at the cost of additional
variance, such that, in terms of MSE, estimators using the exposure condition are
worse for many of the parameter values included in these simulations (Figure 7b).

4. Discussion. Recent work on estimating effects of global treatments in net-
works through experimentation has generally started with a particular set of as-
sumptions about patterns of interference, such as the neighborhood treatment re-
sponse (NTR) assumption, that make analysis tractable and then developed esti-
mators with desirable properties (e.g., unbiasedness, consistency) under these as-
sumptions (Aronow and Samii, 2014; Manski, 2013). Similarly, Ugander et al.
(2013) analyzed graph cluster randomization under such assumptions. Unfortu-
nately, these tractable exposure models are also made implausible by the very pro-
cesses, such as peer effects, that are expected to produce interference in the first
place. Therefore, we have considered what can be done about bias from interfer-
ence when such restrictions on interference cannot be assumed to apply in reality.

The theoretical analysis in this paper offers sufficient, but not necessary, con-
ditions for this bias reduction through design and analysis in the presence of po-
tentially global interference. To further evaluate how design and analysis decisions
can reduce bias, we reported results from simulation studies in which outcomes
are produced by a dynamic model that includes peer effects. These results suggest
that when networks exhibit substantial clustering and there are both substantial di-
rect and indirect (via peer effects) effects of a treatment, graph cluster randomiza-
tion can substantially reduce bias with comparatively small increases in variance.
Significant error reduction occurred with networks of only 1,000 vertices, high-
lighting the applicability of these results beyond experiments on large networks.
Additional reductions in bias can be achieved through the specific estimators used,
even though these estimators are based on incorrect assumptions about effective
treatments.

Further work should examine how these results apply to other networks and
data-generating processes. The theoretical analysis and simulations in this paper
used models in which outcomes are monotonic in treatment and peer behavior.
Such models are a natural choice given many substantive theories, but in other
cases vertices will be expected to be less likely to take an action as more peers take
that action. Our simulations did not include vertices characteristics (besides degree)
and prior behaviors, which could play an important role in the bias and variance
for different designs and estimators. Much of the empirical literature that considers
peer effects in networks, whether field experiments (e.g., Aral and Walker, 2011;



DESIGN AND ANALYSIS OF EXPERIMENTS IN NETWORKS 25

Bakshy et al., 2012; Bapna and Umyarov, 2012) or observational studies (e.g.,
Aral, Muchnik and Sundararajan, 2009; Goldsmith-Pinkham and Imbens, 2013)
has aimed to estimate peer effects themselves, rather than estimating effects of in-
terventions that work partially through peer effects; a fruitful direction for future
work would involve directly modeling the peer effects involved and then using
these models to estimate effects of global treatments (cf. van der Laan, 2014).23

This could substantially expand the range of designs and analysis methods to con-
sider.
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APPENDIX A: APPENDIX

A.1. Modified graph cluster randomization: hole punching. We now briefly
present a simple modification of graph cluster randomization that adds vertex-level
randomness to the treatment assignment, such that some vertex assignments may
not match their cluster assignment. We set

Wi ∼ Bernoulli(qC(i))
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Xi ∼ Bernoulli(η)

Zi = XiWC(i) + (1−Xi)(1−WC(i)).

TheXi are independent switching variables that set Zi toWC(i) with probability η,
typically high, and flip the assignment otherwise (“punch a hole”). That is, clusters
are assigned to have their vertices predominantly in one of treatment or control.
We call this modification hole punching, because it inverts the treatment condition
of a small fraction of vertices, placing them in a highly isolated treatment position
within their cluster. This modification could be useful for estimating differences
between direct and peer effects, since it results in many vertices experiencing the
direct treatment without peer effects or the peer effects without the direct treat-
ment. It also has the appealing consequence of avoiding exact zero probabilities of
assignment to some vectors Z. This is important in cases where one might want
to compare outcomes as a function of number of peers assigned to the treatment;
otherwise, many of these comparisons would be between conditions that many ver-
tices could not be assigned to.

A.2. Bias reduction from design: balanced linear case. In this appendix, we
consider the linear outcome model under an alternative graph cluster randomization
that enforces balance (i.e., equal sample sizes in treatment and control) Assume
there is an even number of clusters NC , each with N/NC vertices. Pick NC/2
clusters at random and assign them to treatment; assign the remaining clusters to
control.

THEOREM A.1. Assume we have a linear outcome model for all vertices i ∈ V
such that

EU [Yi(z, U)] = ai +
∑
j∈V

Bijzj(17)

and further assume that Yi(z, u) is monotonically increasing in z for every u ∈ UN
and vertex i such that Bij ≥ 0.

Then for some mapping of vertices to clusters, the absolute bias of τdITR(1, 0)
when d is graph cluster randomization is less than or equal to the absolute bias
when d is independent assignment, with a fixed treatment probability p.

PROOF. Using the linear model for Yi and the definition of τ , we have that the
true ATE τ is given by

τ(1, 0) = µ(1)− µ(0) = 1

N

∑
ij

Bij(18)
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for this outcome model. Under balanced graph cluster randomization,

τbgcrITR (1, 0) =
1

N

∑
ij

Bij

[
1[C(i) = C(j)] + 1[C(i) 6= C(j)]

(
NC/2− 1

NC − 1
− Nc/2

Nc − 1

)](19)

=
1

N

∑
ij

Bij

[
1[C(i) = C(j)]− 1[C(i) 6= C(j)]

NC − 1

]
.

(20)

We can extend this to the case where the mapping of vertices to clusters is random:

τbgcrITR (1, 0) =
1

N

∑
ij

Bij

[
Pr(C(i) = C(j))− Pr(C(i) 6= C(j))

NC − 1

]
.(21)

Separating out Bii:

τbgcrITR (1, 0) =
1

N

∑
i

Bii +
∑
ij;j 6=i

Bij

(
Pr(C(i) = C(j))− Pr(C(i) 6= C(j))

NC − 1

) .

(22)

If we have uniform probability over all cluster assignments with the same number
of vertices per cluster, then for i 6= j,

Pr(C(i) = C(j)) =
N/NC − 1

N
,

so

τbgcrITR (1, 0) =
1

N

∑
i

Bii −
∑
ij;j 6=i

Bij
NC

(NC − 1)N

 .(23)

Under balanced independent assignment, we just have NC = N , so

τbindITR (1, 0) =
1

N

∑
i

Bii −
∑
ij;j 6=i

Bij/(N − 1)

 .(24)

Because Bij ≥ 0, together this implies that τ(1, 0) − τgcrITR(1, 0) ≤ τ(1, 0) −
τ indITR(1, 0), where monotonicity again dictates that each side of this inequality is
positive.



DESIGN AND ANALYSIS OF EXPERIMENTS IN NETWORKS 29

The proof showed that clustering can reduce bias over independent assignment
when preserving balance. The relative bias for graph cluster randomization that
preserves balance is

τgcrITR(1, 0)/τ(1, 0)− 1 =

∑
ij Bij

[
1[C(i) = C(j)]− 1[C(i) 6=C(j)]

NC−1

]
∑

ij Bij
− 1(25)

=

(
1 +

1

NC − 1

)(∑
ij Bij1[C(i) = C(j)]∑

ij Bij
− 1

)
.

which is the same expression as the relative bias for graph cluster randomization
except for the multiplicative factor in the front. For large enough NC , the relative
biases will be identical, and therefore meaningful relative bias reduction occurs
depending only on the clustering’s relationship to the values Bij , and not whether
the sampling scheme preserves balance or not.

A.3. Bias reduction from analysis. Here we restate and prove Theorem 2.2
from the main text. We also consider two possible extensions of this theorem
to graph cluster randomization (from independent random assignment), giving a
counterexample for one extension and proving an analog of the theorem for the
other extension.

Consider functions gi(·) such that gi(Z) = gi(z) just implies that for some
subset of vertices Ji we have that

∑
j∈Ji 1{Zj = zj} ≥ li and that Zi = zi. These

are conditions such that some subset of size li of a set of vertices has treatment
assignment matching that in the global treatment vector of interest z. The ITR and
NTR assumptions both are of this type, where with ITR Ji is the empty set and
with NTR Ji = δ(i) and li = ki, i’s degree. The fractional relaxation of NTR
(FNTR) is also of this type, with Ji = δ(i) and li = dλkie.

If we have two such functions gAi (·) and gBi (·) with the same Ji, and gAi (z) =
gAi (z

′) implies gBi (z) = gBi (z
′), we say that gAi (·) is more restrictive than gBi (·).

THEOREM 2.2. Let gA(·) and gB(·) be vectors of such functions where gAi (·)
is more restrictive than gBi (·) for every vertex i, and let independent random as-
signment be the experimental design. A sufficient condition for estimand τ ind

gA
(1, 0)

to have less than or equal absolute bias than τ ind
gB

(1, 0), where these estimands
are defined by Equation 13, is that we have monotonically increasing responses or
monotonically decreasing responses for every vertex with respect to z.

PROOF. All expectations are taken with respect to independent random assign-
ment. Assume monotonically increasing responses for every vertex and select an
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arbitrary vertex i. Let

Ỹi(zJi) = EZV/Ji
[Yi(zi = 1, ZV/Ji , zJi)].(26)

This quantity is the expectation of the potential outcome for i when zi = 1 and the
subset of z corresponding to Ji is set to zJi . The monotonicity of Yi carries over to
Ỹi(zJi).

To reduce the notation in what follows, we define Ai to be the event that
gAi (Z) = gAi (1) and Bi to be the event that gBi (Z) = gBi (1). We also define
qi(Z) =

∑
j∈Ji 1{Zj = 1}. Then

E[Ỹi|Ai] =

|Ji|∑
q≥lAi

E[Ỹi|qi(Z) = q]P (qi(Z) = q|Ai),

E[Ỹi|¬Ai ∧Bi] =

lAi −1∑
q≥lBi

E[Ỹi|qi(Z) = q]P (qi(Z) = q|¬Ai ∧Bi).(27)

Due to independent random assignment, conditioning on qi(Z) = q means uni-
formly sampling a zJi that has q ones and |Ji| − q zeroes. Consider the following
process where q < |Ji|. Randomly select a zJi with q ones and |Ji| − q zeroes.
Select at random a 0 element and change it into a 1 to create another vector z′Ji .
Record both Ỹi(zJi) and Ỹi(z′Ji) as a pair of values. Due to the monotonicity of Ỹi,
we have that Ỹi(zJi) ≤ Ỹi(z′Ji).

In this process, zJi is a uniformly sampled vector that has q ones and |Ji| − q
zeroes, and z′Ji is a uniformly sampled vector that has q+1 ones and |Ji|− (q+1)
zeroes. Repeating this process an infinite number of times and using the empiri-
cal average of the Ỹi(zJi)’s computes E[Ỹi|qi(Z) = q]. Similarly, the empirical
average of the Ỹi(z′Ji) computes E[Ỹi|qi(Z) = q + 1]. Due to the per sample in-
equality, this shows that E[Ỹi|qi(Z) = q] ≤ E[Ỹi|qi(Z) = q + 1]. By induction,
E[Ỹi|qi(Z) = q] ≤ E[Ỹi|qi(Z) = q′] when q < q′. Combining this with Eq. 27,

E[Ỹi|¬Ai ∧Bi] ≤ E[Ỹi|Ai].(28)

Since the design is independent random assignment, we have that

E[Yi|Bi] = E[Ỹi|Bi]
= E[Ỹi|Ai]P (Ai|Bi) + E[Ỹi|¬Ai ∧Bi]P (¬Ai|Bi).(29)

where in the second equality we have used that gAi is more restrictive than gBi and
that the set Ji is common to both gAi and gBi . With Eq. 28, this implies

E[Yi|Bi] ≤ E[Ỹi|Ai] = E[Yi|Ai].(30)
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Since this inequality applies for all vertices i, we therefore have that

µindgB (1) ≤ µindgA (1),(31)

from which we immediately conclude that gA has less absolute bias for µ(1) than
gB . An analogous argument applies for µ(0), proving that τ ind

gA
has less absolute

bias for τ(1, 0), the average treatment effect.
The proof for monotonically decreasing responses follows when switching the

inequalities throughout the above.

This proposition demonstrates how using more restrictive exposure conditions
can be helpful in reducing bias, but the proposition just applies to independent
assignment, rather than graph cluster randomization. To show why it does not hold
for graph cluster randomization, we present the following counterexample with
two fractional neighborhood treatment response (FNTR) effective treatments.

Consider some vertex i with no neighbors in its own cluster, and three other
clusters present in its neighborhood: one cluster with 10 neighbors, one cluster
with one neighbor, and another cluster with one neighbor; call this last neighbor
vertex a. Let Yi = 1 when Za = 1 and Zi = 1, and let Yi = 0 otherwise. Let
the less restrictive function gBi (·) require that at least 2 neighbors match the global
treatment vector, and let the more restrictive function gBi (·) require that at least
3 neighbors match; that is, let lBi = 2 and lAi = 3. Then under graph cluster
randomization, we have E[Yi |Ai] ≈ 0.5, but E[Yi |Bi] ≈ 0.6. So using the more
restrictive function actually increases bias in this somewhat extreme scenario.

While this counterexample demonstrates that using more restrictive exposure
conditions of this kind is not always helpful under graph cluster randomization,
we do observe bias reduction in our simulations using graph cluster randomization
without meeting the sufficient conditions of the theorem. In general, we expect that
for bias to increase, there must be heterogeneous effects across heterogeneously
sized clusters as in the counterexample above.

In fact, with a redefinition of the exposure conditions, we can provide a similar
proposition that does include graph cluster randomization and also encompasses
independent assignment as a special case.

COROLLARY A.2. Consider a fixed set of clusters which will be used for
graph cluster randomization. Let function gi(·), for all vertices i, be such that
gi(Z) = gi(z) implies that some subset of clusters Ji which do not include i
we have that

∑
C∈Ji 1{ZC = zC} ≥ li (at least li of the clusters in Ji match

the global treatment vector z exactly), and Zi = zi. Consider two such functions
where gAi (·) is more restrictive than gBi (·) for all i. Then a sufficient condition for
estimand τgcr

gA
(1, 0) to have less than or equal absolute bias than τgcr

gB
(1, 0), where
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these estimands are defined by Equation 13, is that we have monotonically increas-
ing responses or monotonically decreasing responses for every vertex with respect
to z.

PROOF. This proof is essentially the same as for Theorem 2.2 except Ỹi is re-
defined as

Ỹi(zJi) = EZV/Ji
[Yi(zCi = 1, ZV/Ji , zJi)],(32)

expectations are computed with respect to graph cluster randomization instead of
independent treatment assignment, and references to 1’s and 0’s apply to clusters
in Ji.

An important special case of this corollary covers the comparison of FNTR with
ITR under graph cluster randomization, since FNTR and ITR can be written as
cluster-level exposure conditions of this kind.
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