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Bell’s inequality was originally derived under the assumption that experimenters are free to select detector
settings independently of any local “hidden variables” that might affect the outcomes of measurements on
entangled particles. This assumption has come to be known as “measurement independence” (also referred to as
“freedom of choice” or “settings independence”). For a two-setting, two-outcome Bell test, we derive modified
Bell inequalities that relax measurement independence, for either or both observers, while remaining locally
causal. We describe the loss of measurement independence for each observer using the parameters M1 and M2,
as defined by Hall in 2010, and also by a more complete description that adds two new parameters, which we
call M̂1 and M̂2, deriving a modified Bell inequality for each description. These “relaxed” inequalities subsume
those considered in previous work as special cases, and quantify how much the assumption of measurement
independence needs to be relaxed in order for a locally causal model to produce a given violation of the standard
Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality. We show that both relaxed Bell inequalities are tight
bounds on the CHSH parameter by constructing locally causal models that saturate them. For any given Bell
inequality violation, the new two-parameter and four-parameter models each require significantly less mutual
information between the hidden variables and measurement settings than previous models. We conjecture that
the new models, with optimal parameters, require the minimum possible mutual information for a given Bell
violation. We further argue that, contrary to various claims in the literature, relaxing freedom of choice need not
imply superdeterminism.
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I. INTRODUCTION

Bell’s theorem remains a hallmark achievement of modern
physics [1–5]. Since Bell derived his inequality more than 50
years ago [1], numerous experiments with entangled parti-
cles have demonstrated clear violations of Bell’s inequality,
including several recent, state-of-the-art tests [6–15], each of
them consistent with predictions from quantum mechanics.
While lending strong empirical support for quantum theory,
these tests more directly imply that at least one eminently
reasonable assumption required to derive Bell’s theorem
must fail to hold in the physical world. These include local
causality—which stipulates that measurement outcomes at
one detector cannot depend on the settings or outcomes at a
distant detector—and experimenters’ ability to select detector
settings freely, independent of any “hidden variables” that
might affect the outcomes of measurements.
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If one or more assumptions used to derive Bell’s theorem
are relaxed, this opens up “loopholes” whereby local “hidden-
variable” models could remain consistent with all previous
Bell-violating experiments [16,17]. It is therefore crucial to
address as many loopholes as possible in a single test.

Some of the best-known loopholes include the possibility
of signaling or communication between the detectors re-
garding the settings or measurement outcomes on each side
of the experiment (the “locality” loophole [18,19]), and the
possibility that some unknown mechanism is taking advan-
tage of detector inefficiency to bias the sample of entangled
particles that are detected (the “detection” or “fair-sampling”
loophole [20,21]). There has been considerable interest in
conducting experiments that close either the locality or de-
tection loopholes [18,19,22–27], culminating in several recent
experimental tests that closed both of these loopholes simul-
taneously [6–10,15].

In addition, Bell’s theorem is derived under the assumption
that observers have complete freedom to choose detector
settings in an experimental test of Bell’s inequality. Relax-
ing this assumption leads to a third, significant loophole.
The “measurement-independence” loophole (also known as
the “freedom-of-choice” or “settings-independence” loop-
hole) has received the least attention to date, though recent
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theoretical work indicates that the use of Bell tests to exclude
local hidden-variable theories is most vulnerable to this partic-
ular loophole [28–34]. This paper builds on recent interest in
theoretical models that relax the measurement-independence
assumption [28–46], as well as recent experiments that con-
strain such models [11,13–15,24,34,42,44].

Even if nature does not exploit the measurement-
independence loophole, addressing the various assump-
tions experimentally has significant practical relevance for
numerous entanglement-based technologies. These include
device-independent quantum key distribution [47–49] along
with random-number generation and randomness expansion
[50–58]. In particular, a malicious adversary with knowledge
of an opponent’s devices could conceivably undermine a
variety of quantum information schemes by exploiting the
measurement-independence loophole [29,36,59–64].

Physicists have constructed theoretical models that can
reproduce the quantum singlet-state predictions for measure-
ments on pairs of entangled particles, while obeying lo-
cal causality, by relaxing the assumption of measurement
independence—that is, by partially constraining or predict-
ing observers’ selections among choices of detector set-
tings [28,30–32,65]. The amount of freedom reduction re-
quired to reproduce the quantum singlet-state correlations
can be quite small, as little as �14% deviation from free
choice, corresponding to just ∼1/15 of a bit of mutual
information between the detector settings and the relevant
hidden variables. By contrast, for locally causal models that
retain measurement independence, 100% of determinism or
locality must be given up to reproduce the singlet-state cor-
relations [28,30,31,66,67], with either generation of one full
bit of indeterminism [66] or transmission of one full bit of
nonlocal signaling [67] being required. Thus the use of Bell
experiments to test quantum mechanics—and, by implication,
all known quantum-encryption protocols [29]—is particularly
susceptible to the measurement-independence loophole.

Whereas previous work has assumed identical relaxation
of measurement independence for all parties [30,31] or 100%
freedom for one observer and some nonzero measurement
dependence for the other [28,32], in this paper we develop
a more general framework that can accommodate different
amounts of freedom for each observer. Our motivation stems,
in part, from recent efforts to address the measurement-
independence loophole experimentally. Some recent experi-
ments have made clever use of human-generated choices [13],
while others have relied upon real-time astronomical ob-
servation of light from distant objects (such as quasars) to
determine detector settings [11,14,15]. Although any estima-
tion of possible measurement dependence for either of these
techniques would be highly model dependent, it is plausible
that they would be susceptible to different amounts of mea-
surement dependence. Future Bell-Clauser-Horne-Shimony-
Holt (Bell-CHSH) tests, in which observers select distinct
methods for determining settings at their detectors, would then
generically fall into the general class we analyze here.

We describe the amount of freedom for each observer
by using the parameters M1 and M2 introduced by Hall in
2010 [30], and we also introduce a more complete, four-
parameter description that includes two new parameters,
which we call M̂1 and M̂2. We consider two-setting, two-

outcome Bell-CHSH tests, and derive upper bounds on the
Bell-CHSH parameter for models that relax measurement
independence but maintain local causality, for both the two-
parameter and four-parameter descriptions. We further show
that previous bounds for situations with relaxed measurement
independence obtained by Hall in Refs. [30,31] and by Banik
et al. in Ref. [32] are special cases of our more general result.
Moreover, we show that both of our new bounds are tight, by
constructing two-parameter and four-parameter locally causal
models that saturate them. These new models have near-
optimal (and conjectured to be optimal) mutual information
properties.

The paper is organized as follows. In Sec. II, we review
the assumptions required for the derivation of Bell’s theo-
rem, and in Sec. III, following Refs. [30,31], we introduce
a measure, in terms of parameters M1 and M2, with which
to quantify each observer’s measurement dependence (and
also M for overall measurement dependence). In Sec. IV, we
derive a corresponding two-parameter relaxed Bell inequality.
In Sec. V we demonstrate that our inequality is tight, by
constructing a local and deterministic model that saturates
it. In Sec. VI, we show that, for a given Bell violation, our
model requires significantly less mutual information between
measurement settings and hidden variables than previous
models, and conjecture that it is in fact optimal in this regard.
In Sec. VII we introduce a more complete description of
measurement dependence that adds two new parameters, M̂1

and M̂2. We generalize our results to a relaxed four-parameter
Bell inequality, and demonstrate that it is tight by presenting
a locally causal four-parameter model that saturates it. Con-
clusions are presented in Sec. VIII. In Appendices A and B
we present a distinct two-parameter model that interpolates
between the models of Refs. [30,32]. We demonstrate that
this interpolating model likewise saturates the upper bound
of the two-parameter inequality of Sec. IV, though it requires
significantly more mutual information between the hidden
variables and measurement settings to reproduce the predic-
tions of quantum mechanics than does the model presented in
Sec. V. Several steps in the derivation of the four-parameter
Bell inequality of Sec. VII are presented in Appendix C, and
the construction of our four-parameter model is described in
Appendix D.

II. BELL’S THEOREM ASSUMPTIONS

Bell inequalities place restrictions on the statistical correla-
tions between measurements made by two or more observers,
under natural assumptions related to local causality and the
selection of measurement settings. For the typical case of two
observers, Alice and Bob, we denote Alice’s measurement
setting on a given run as u and Bob’s as v, and the outcomes
of their measurements as a and b. The statistical correlations
between them are then described by a set of joint probability
distributions {p(a, b|u, v)}. To try to account for the corre-
lations within some hidden-variable model, one parametrizes
the joint probability distributions in the form

p(a, b|u, v) =
∫

dλ p(a, b|u, v, λ) p(λ|u, v), (1)
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where λ is a (possibly multicomponent) hidden variable that
includes among its components any hidden variables that
affect the measurement outcomes. Equation (1) follows from
Bayes’ theorem and the definition of conditional probability.
Note that this equation relies on no assumptions regarding
whether events associated with λ occur in the past and/or
future of various measurements, or even whether λ represents
degrees of freedom associated with specific space-time events
at all [68–71].

One may constrain Eq. (1) based on additional assumptions
regarding locality, determinism, and measurement indepen-
dence. These assumptions lead to restrictions on the form
that the conditional probabilities p(a, b, |u, v, λ) may take
[1–5,31,64,68]. The first assumption concerns local causality:

p(a, b|u, v, λ) = p(a|u, λ) p(b|v, λ). (2)

Equation (2) assumes the probabilities factorize such that
the measurement outcomes on each side depend only on the
detector settings on that side and λ. Equation (2) may be de-
rived from the joint assumptions of “outcome independence”
and “parameter independence” [68], and is motivated by the
theoretical and empirical success of relativity. In an ideal
Bell test, each measurement event is spacelike separated from
the setting choice and outcome on the other side, and hence
cannot be influenced by them if relativistic causality is valid.

The assumption of determinism states that the measure-
ment outcomes a, b ∈ {−1, 1} are given by deterministic
functions a = A(u, λ) and b = B(v, λ) of the detector set-
tings and λ. Models with locally causal, deterministic out-
comes satisfy

p(a|u, λ) = δa,A(u,λ), p(b|v, λ) = δb,B(v,λ), (3)

where δa,A(u,λ) and δb,B(v,λ) are Kronecker delta functions.
Determinism thus requires that the conditional outcome prob-
abilities p(a|u, λ) and p(b|v, λ) must be either 0 or 1. As
demonstrated in Ref. [31], any locally causal model that satis-
fies Eq. (2) for which the outcome probabilities are stochastic
(rather than deterministic) functions of the detector setting and
λ may be written in the form of a deterministic model with
the same degree of measurement dependence M , where M is
defined below, in Eq. (8). Hence we restrict attention here to
deterministic locally causal models without loss of generality.

Lastly, Alice and Bob must select detector settings. The
assumption known variously as measurement independence,
settings independence, or freedom of choice stipulates that the
choice of joint detector settings (u, v) is independent of λ,
which includes in its components all the hidden variables that
affect measurement outcomes:

p(u, v|λ) = p(u, v), (4)

which is equivalent (via Bayes’s theorem) to the expression

p(λ|u, v) = p(λ). (5)

Equations (4) and (5) imply that Alice’s and Bob’s choice of
detector settings will not be affected by the value of λ, and
(conversely) that learning Alice’s and Bob’s detector settings
gives no information about the underlying variable λ [24,28–
33,33–36,38,39,41–44,64,72,73]. In particular, if Eqs. (4)
and (5) hold, then no hidden third party with the power to
affect measurement outcomes can nudge the selections for

u and/or v on a given experimental run, or gain information
about these selections from knowledge or manipulation of λ.
We emphasize that these restrictions on third-party influences
hold regardless of whether we are considering influences that
might be causal, retrocausal [69–71], or represent degrees
of freedom that are not associated with specific events in
space-time [68].

III. QUANTIFYING MEASUREMENT INDEPENDENCE

In this paper we retain the assumption of local causal-
ity (and, without loss of generality, determinism), but
relax the assumption of measurement independence. We
follow the framework established in Refs. [30,31] to quantify
the degree of relaxation. In particular, we use the variational
distance between probability distributions for different set-
tings, u and v.

To motivate this, note from Eq. (5) that measurement
dependence corresponds to dependence of the hidden-variable
distribution p(λ|u, v) on u and/or v, Alice and/or Bob’s
measurement settings. That is, measurement dependence cor-
responds to p(λ|u1, v1) �= p(λ|u2, v2) for at least some choice
of u1, u2, v1, v2. A well-known way to quantify the difference
between two probability distributions p(λ) and q(λ) is via the
variational or trace distance [74,75], which can be defined as

D(p, q ) ≡
∫

dλ |p(λ) − q(λ)|. (6)

This distance has a simple operational interpretation in terms
of an experiment in which one is given a single sample λ

drawn with equal probability from either the distribution p

or the distribution q, and then asked which probability dis-
tribution was used. The probability that one can successfully
identify the probability distribution, before knowing the value
of λ that was drawn, is given by [74,75]

Pdistinguish = 1
2

[
1 + 1

2D(p, q )
]
. (7)

Thus, measurement dependence corresponds to a nonzero
distance between p(λ|u1, v1) and p(λ|u2, v2) for at least some
settings u1, u2, v1, v2, or, equivalently, to a better than 50:50
chance of distinguishing between the measurement settings
(u1, v1) and (u2, v2) on the basis of learning the value of λ.

We assume that Alice may select her settings from some set
U , and Bob from some set V . Then we may define the overall
degree of measurement dependence by

M ≡ sup
u1,u2∈U,v1,v2∈V

{ ∫
dλ|p(λ|u1, v1) − p(λ|u2, v2)|

}
.

(8)

It follows that M quantifies the dependence of the hidden
variable distribution on the measurement setting via the max-
imum distance that can be achieved by varying the settings.
Further, 1

2 (1 + 1
2M ) determines the maximum probability for

distinguishing between pairs of measurement settings. For
example, if M = 0 then there is no measurement dependence:
p(λ|u1, v1) = p(λ|u2, v2) for all settings (u1, v1), (u2, v2),
and the probability of distinguishing one settings pair from
another, based on a sample of λ, is never better than 1

2 .
Thus, the hidden variable contains zero information about
the measurement settings. Conversely, if M = 2, then there
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are measurement settings (u1, v1) and (u2, v2) which can
be distinguished with probability one, corresponding to a
maximum degree of measurement dependence.

More generally, note that 0 � M � 2. Measurement in-
dependence, with p(λ|u, v) = p(λ) for all u, v, yields M =
0. The maximum violation of measurement independence,
M = 2, corresponds to the case in which two normalized
probability distributions p(λ|u1, v1) and p(λ|u2, v2) have no
overlapping support for any value of λ. In that case, for each
λ, at most one of the pairs of joint settings (u1, v1) and
(u2, v2) may be selected. This implies that if the observers
have decided to consider only the two possibilities of joint set-
tings (u1, v1) or (u2, v2), then their choice will be completely
dictated by the value of λ, leaving them no freedom at all. It is
therefore natural to define a corresponding overall degree of
freedom of choice F by [30]

F ≡ 1 − M

2
. (9)

We may similarly define one-sided degrees of measure-
ment dependence, M1 and M2 [30]:

M1 ≡ sup
u1,u2∈U,v∈V

{ ∫
dλ|p(λ|u1, v) − p(λ|u2, v)|

}
, (10)

M2 ≡ sup
u∈U,v1,v2∈V

{ ∫
dλ|p(λ|u, v1) − p(λ|u,v2)|

}
. (11)

Similarly to the case of the overall measurement dependence
M , discussed above, the one-sided measure M1 quantifies the
degree of measurement dependence corresponding to varia-
tion of Alice’s settings, but with Bob’s setting held fixed.
Thus, for example, a maximum value M1 = 2 implies there
are measurement settings (u1, v) and (u2, v), differing only
in Alice’s local setting, which can be distinguished by a (hy-
pothetical) measurement of λ with probability one. A similar
interpretation holds for M2.

Like M , the one-sided parameters are bounded by 0 �
M1,M2 � 2; the corresponding degrees of individual freedom
of choice are given by F1 ≡ 1 − M1/2 and F2 ≡ 1 − M2/2.
The M quantities obey the inequality chain [30]

max{M1,M2} � M � min{M1 + M2, 2}. (12)

For experiments in which Alice and Bob each select among
two setting choices, we may write u ∈ {x, x ′} and v ∈ {y, y ′},
and the expressions for M,M1, and M2 simplify to

M1 = max

{∫
dλ|p(λ|x, y) − p(λ|x ′, y)|,

×
∫

dλ|p(λ|x, y ′) − p(λ|x ′, y ′)|
}
, (13)

M2 = max

{∫
dλ|p(λ|x, y) − p(λ|x, y ′)|,

×
∫

dλ|p(λ|x ′, y) − p(λ|x ′, y ′)|
}
, (14)

M = max

{
M1,M2,

∫
dλ|p(λ|x, y) − p(λ|x ′, y ′)|,

×
∫

dλ|p(λ|x, y ′) − p(λ|x ′, y)|
}
. (15)

These expressions are useful for calculating the degrees of
measurement dependence for the CHSH scenario in later
sections. We will also consider an alternative measure of cor-
relation, the mutual information between the detector settings
and λ [28,31], in Sec. VI, and two further parameters related
to M1 and M2 in Sec. VII.

IV. RELAXED BELL-CHSH INEQUALITY

In the CHSH correlation scenario, Alice and Bob each
have two possible measurement settings, u ∈ {x, x ′} and v ∈
{y, y ′}, respectively, each with two corresponding measure-
ment outcomes, a, b ∈ {−1, 1}, respectively. Defining the cor-
relation function

〈ab〉uv =
∑

a,b=±1

ab p(a, b|u, v), (16)

the CHSH correlation parameter is given by the linear combi-
nation [2]

S = |〈ab〉xy + 〈ab〉xy ′ + 〈ab〉x ′y − 〈ab〉x ′y ′ |. (17)

Noting that each expectation value can be at most ±1, the
maximum possible value for S is 4. However, under the
assumptions of local causality [Eq. (2)] and measurement in-
dependence [Eq. (5)], one finds the Bell-CHSH inequality [2]:

S � 2. (18)

By contrast, quantum mechanics predicts a maximum value
SQM = 2

√
2 (known as the “Tsirelson bound” [76]) for cer-

tain choices of detector settings. Therefore quantum mechan-
ics is incompatible with the conjunction of local causality and
measurement independence.

Experiments now routinely measure S > 2 to high sta-
tistical significance, in clear violation of the Bell-CHSH
inequality [6–15,24,44]. The experimental correlations are
compatible with quantum predictions. However, alternative
models, distinct from quantum mechanics, can also explain
the experimental results if one or more of the assumptions
leading to Eq. (18) fail to hold.

Here we construct a relaxed Bell-CHSH inequality for
models that satisfy both local causality and determinism, but
relax the assumption of measurement independence for each
observer. For such models, Eqs. (1)–(3) hold but Eqs. (4)
and (5) do not. The correlation function of Eq. (16) then takes
the form

〈ab〉uv =
∫

dλ p(λ|u, v) A(u, λ) B(v, λ). (19)

We parametrize the upper bound for the relaxed CHSH-Bell
inequality as

S � 2 + V, (20)

where the amount of Bell violation, V , will depend on the
degree to which measurement independence has been relaxed
for Alice and/or Bob. The Tsirelson bound for quantum me-
chanics, SQM = 2

√
2, corresponds to a violation

VT = 2(
√

2 − 1) � 0.828. (21)
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We may therefore quantify how much experimental freedom
Alice and/or Bob must forfeit in locally causal models in order
to match the Tsirelson bound, with V = VT .

For models that obey local causality but relax the overall
degree of measurement independence M in Eq. (8), Hall
derived the relaxed Bell-CHSH inequality [30,31]

S � 2 + min{3M, 2} (22)

and constructed models saturating this bound with M =
M1 = M2. Such symmetric models reproduce the Tsirelson
bound for quantum mechanics if M1 = M2 = M = VT /3 �
0.276, corresponding to degrees of experimental freedom F =
F1 = F2 � 86.2%, i.e., to Alice and Bob each losing �13.8%
experimental freedom. Note that neither observer needs to
forfeit 100% freedom in order to reach the Tsirelson bound.

Subsequently, Banik et al. considered one-sided models in
which one observer’s freedom is partially reduced while the
other observer retains complete freedom: either M1 = M �= 0
and M2 = 0 or vice versa [32]. Without loss of generality, we
may consider M2 = 0. (The converse case M1 = 0 follows
upon switching observer labels for Alice and Bob, 1 ↔ 2.)
Then, the relaxed Bell-CHSH inequality

S � 2 + M1 (23)

follows, and is saturated by suitable models with M = M1 and
M2 = 0 [32]. Such 1-sided models reproduce the quantum-
mechanical Tsirelson bound with M1 = M = VT � 0.828
and M2 = 0 (or vice versa), corresponding to one observer
losing M1/2 = M/2 � 41.4% freedom. Though such one-
sided scenarios require one of the observers to forfeit three
times more experimental freedom than in Hall’s symmetric
case, such models similarly require considerably less than
M1 = M = 2 or 100% reduction of freedom in order to reach
the Tsirelson bound.

In this section we derive a general upper bound on S for
models that relax measurement independence, as described
by the parameters M1,M2 ∈ [0, 2], while maintaining local
causality. The general two-parameter bound may be written in
the form

S � 2 + VG(M1,M2), (24)

with

VG(M1,M2) = min{M1 + M2 + min{M1,M2}, 2}. (25)

[In Sec. VII we will define two new parameters related to mea-
surement independence, and will describe a four-parameter
bound that generalizes Eqs. (24) and (25).] The bound VG

includes the scenarios studied by Hall in Refs. [30,31] and
by Banik et al. in Ref. [32] as special cases. In particular,
Eqs. (24) and (25) reduce to Eq. (22) for the case M =
M1 = M2 (Hall), and to Eq. (23) for the case M2 = 0 (Banik
et al.). For the general case, we may visualize the amount of
measurement dependence required of each observer in order
to reproduce the Tsirelson bound of quantum mechanics (V =
VT ), or the maximal CHSH violation (V = 2), as in Fig. 1.

To derive Eqs. (24) and (25), we first recall that we may
assume the model is deterministic as per Eq. (3) without loss
of generality. Using Eq. (19) to rewrite Eq. (17) for the CHSH

FIG. 1. This “freedom square” indicates the minimum degrees
of measurement dependence M1, M2 ∈ [0, 2] required for a lo-
cally causal model to predict a given violation V of the Bell-
CHSH inequality, as per Eq. (25). Within the region of principal
physical interest, with V = M1 + M2 + min{M1, M2} � 2, contours
label the amount of CHSH violation 0 � V � 2. [For M1 + M2 +
min{M1, M2} > 2, i.e., the blank region, Eq. (25) yields V = 2, cor-
responding to S = 4.] Values of M1 and M2 that yield the Tsirelson
bound, with VT = 2(

√
2 − 1), are marked with black dashed lines.

The solid black lines mark the boundary of the region that yields
maximal CHSH violation, V = 2. Symmetric models, like those
analyzed in Refs. [30,31], lie along the blue (solid and dashed)
diagonal line, with M1 = M2 [including the light yellow circle at
(M1, M2) = (VT /3, VT /3)], while one-sided models, with M = M1

and M2 = 0 or vice versa, as studied in Ref. [32], lie along the M1

and M2 axes [including the dark red circles at (M1, M2) = (0, VT )
and (VT , 0)]. The original Bell-CHSH inequality corresponds to V =
0, and is marked by the white circle at M1 = M2 = 0.

parameter S then gives

S =
∣∣∣∣
∫

dλ[A(x, λ)B(y, λ) p(λ|x, y)

+A(x ′, λ)B(y, λ) p(λ|x ′, y)

+A(x, λ)B(y ′, λ) p(λ|x, y ′)

−A(x ′, λ)B(y ′, λ) p(λ|x ′, y ′)]
∣∣∣∣. (26)

We next use a “plus zero” trick to rewrite Eq. (26) by adding
and subtracting identical terms:

S =
∣∣∣∣
∫

dλ{p(λ|x, y)[A(x, λ)B(y, λ) + A(x, λ)B(y ′, λ)]

+p(λ|x ′, y)[A(x ′, λ)B(y, λ) − A(x ′, λ)B(y ′, λ)]

+A(x, λ)B(y ′, λ)[p(λ|x, y ′) − p(λ|x, y)]

−A(x ′, λ)B(y ′, λ)[p(λ|x ′, y ′) − p(λ|x ′, y)]}
∣∣∣∣. (27)
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Upon using the triangle inequality, we conclude that

S � T1 + T2 + T3, (28)

with T1, T2, and T3 given by

T1 =
∫

dλ|p(λ|x, y)[A(x, λ)B(y, λ) + A(x, λ)B(y ′, λ)]

+p(λ|x ′, y)[A(x ′, λ)B(y, λ) − A(x ′, λ)B(y ′, λ)]|,
(29)

T2 =
∫

dλ|A(x, λ)B(y ′, λ)[p(λ|x, y ′) − p(λ|x, y)]|,
(30)

and

T3 =
∫

dλ|A(x ′, λ)B(y ′, λ)[p(λ|x ′, y ′) − p(λ|x ′, y)]|.
(31)

Since the deterministic outcome functions always have mag-
nitude |A(x, λ)| = |B(y ′, λ)| = 1, T2 in Eq. (30) may be
simplified:

T2 =
∫

dλ|p(λ|x, y ′) − p(λ|x, y)| � M2, (32)

upon using Eq. (14) for M2. Similarly,

T3 =
∫

dλ|p(λ|x ′, y ′) − p(λ|x ′, y)| � M2. (33)

Next, Eq. (29) for T1 may be rearranged:

T1 =
∫

dλ|B(y, λ)[A(x, λ)p(λ|x, y) + A(x ′, λ)p(λ|x ′, y)]

+B(y ′, λ)[A(x, λ)p(λ|x, y) − A(x ′, λ)p(λ|x ′, y)]|.
(34)

Again using the triangle inequality and the fact that
|A(x, λ)| = |A(x ′, λ)| = |B(y, λ)| = |B(y ′, λ)| = 1 yields

T1 �
∫

dλ

{∣∣∣∣B(y, λ)A(x, λ)

×
[
p(λ|x, y) + A(x ′, λ)

A(x, λ)
p(λ|x ′, y)

]∣∣∣∣
+

∣∣∣∣B(y ′, λ)A(x, λ)

[
p(λ|x, y) − A(x ′, λ)

A(x, λ)
p(λ|x ′, y)

]∣∣∣∣
}

�
∫

dλ

{∣∣∣∣p(λ|x, y) + A(x ′, λ)

A(x, λ)
p(λ|x ′, y)

∣∣∣∣
+

∣∣∣∣p(λ|x, y) − A(x ′, λ)

A(x, λ)
p(λ|x ′, y)

∣∣∣∣
}
. (35)

The quantity A(x ′, λ)/A(x, λ) is always equal to +1 or −1
for any value of λ. For either choice, one of the absolute-value
arguments in Eq. (35) will be p(λ|x, y) + p(λ|x ′, y), and the
other will be p(λ|x, y) − p(λ|x ′, y). Thus Eq. (35) simplifies
to

T1 �
∫

dλ{|p(λ|x, y) + p(λ|x ′, y)| (36)

+ |p(λ|x, y) − p(λ|x ′, y)|}. (37)

But ∫
dλ|p(λ|x, y) + p(λ|x ′, y)| = 2, (38)

since the function p(λ|x, y) is a normalized conditional prob-
ability distribution, and∫

dλ|p(λ|x, y) − p(λ|x ′, y)| � M1, (39)

upon using Eq. (13). Therefore

T1 � 2 + M1. (40)

Combining Eqs. (28), (32), (33), and Eq. (40), we find

S � 2 + M1 + 2M2. (41)

However, since the formalism makes no distinction between
the first and second observer’s detectors, we can carry out a
parallel set of manipulations, reversing the treatment of x and
y, to similarly obtain

S � 2 + M2 + 2M1. (42)

Finally, since S is less than or equal to the right-hand sides
of Eqs. (41) and (42), then it must be upper bounded by the
minimum of the two, i.e.,

S � 2 + M1 + M2 + min{M1,M2}. (43)

Noting that S � 4 from Eq. (17), we arrive at

S � 2 + min{M1 + M2 + min{M1,M2}, 2}, (44)

which is equivalent to Eqs. (24) and (25), as desired.

V. TIGHTNESS OF THE GENERAL
TWO-PARAMETER BOUND

In this section we demonstrate that Eqs. (24) and (25) yield
a tight upper bound on the CHSH parameter S for hidden-
variable models that obey local causality while relaxing mea-
surement independence, as described by the parameters M1

and M2. To do so, it suffices to show that, for each value of
M1 and M2, at least one model exists that saturates S = 2 +
VG(M1,M2), with VG given by Eq. (25). Hence, similarly to
the approach in Refs. [30–32], we will construct model tables
with values for Alice’s and Bob’s measurement outcomes,
A(x, λi ) and B(y, λi ), and conditional probabilities for var-
ious values of the hidden variable, p(λi |x, y), subject to the
constraint that the p(λi |x, y) are non-negative and properly
normalized. We will nonetheless show in Sec. VII that if
we have additional information about a model, in the form
of two new parameters, then we can derive a more general
four-parameter bound that can sometimes be tighter than the
two-parameter bound of Eqs. (24) and (25).

In particular, we consider a model with a hidden variable λ

that can take on any of 4 discrete values, λ1, λ2, λ3, λ4, as per
Tables I and II. For this model the deterministic measurement-
outcome functions A(u, λi ) and B(v, λi ), for Alice and Bob,
respectively, are of the forms defined in Table I, where the ar-
bitrary constants c, d, e, f may be any values in {−1, 1}. The
conditional probabilities are parametrized by three numbers
p1, p2, and p3 as per Table II, that can be set to allow different
amounts of Bell violation VG(M1,M2) via Eq. (25) consistent
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TABLE I. Deterministic measurement-outcome functions
A(u, λi ) and B(v, λi ) for Alice’s and Bob’s measurements, given
λi with i = 1, . . . , 4. The values of the measurement outcomes
(c, d, e, f ) are selected arbitrarily from {−1, 1}.

λi A(x, λ) A(x ′, λ) B(y, λ) B(y ′, λ)

λ1 c c c c

λ2 d −d d d

λ3 e e e −e

λ4 f −f −f f

with S = 2 + VG(M1,M2) from Eq. (24), for different values
of M1, M2.

The correlations between Alice and Bob’s outcomes can be
determined from Tables I and II via Eq. (19), and we find the
CHSH parameter S of Eq. (17) takes the form

S = 2 + 2p1 + 4p2 − 4p3. (45)

Provided that p1 � p2 � p3, the degrees of measurement
dependence M1 and M2 follow via Eqs. (13) and (14) as

M1 = max{2p1, 2p1} = 2p1, (46)

M2 = max{2p2, 2p2} = 2p2. (47)

(For this model, we also find M = max{M1,M2} = M1.)
For arbitrary M1 � M2 in the range 0 � M1 � 2, 0 �

M2 � 2, it follows that if we choose

p1 = M1/2,

p2 = M2/2,

p3 =
{

0, if M1 + 2M2 � 2,
1
4 (M1 + 2M2 − 2), otherwise,

(48)

in Table II, then the constraints p1 � p2 � p3 are satisfied,
and Eq. (45) simplifies to

S =
{

2 + M1 + 2M2, if M1 + 2M2 � 2,

4, otherwise.
(49)

Furthermore, one can check that for these values of p1, p2,
and p3, all the conditional probabilities in Table II are non-
negative. It follows that, with this choice, the local determin-
istic model corresponding to Table II saturates the relaxed Bell
inequality in Eq. (24) for all values M1 � M2.

TABLE II. Conditional probabilities p(λi |u, v) for the value of
the hidden variable λ to be λi , for M1 � M2. Normalization may by
checked by summing the entries in each column. The probabilities
must be non-negative, and we will see after Eqs. (48) that the entries
are non-negative for the entire range of allowed values of (M1, M2).

λi p(λ|x, y ) p(λ|x, y ′) p(λ|x ′, y ) p(λ|x ′, y ′)

λ1
1+p1+2p3

4
1+p1-2p3

4
1-p1+2(p2-p3 )

4
1-p1-2(p2-p3 )

4

λ2
1+p1-2p3

4
1+p1+2p3

4
1-p1-2(p2-p3 )

4
1-p1+2(p2-p3 )

4

λ3
1-p1+2(p2-p3 )

4
1-p1-2(p2-p3 )

4
1+p1+2p3

4
1+p1-2p3

4

λ4
1-p1-2(p2-p3 )

4
1-p1+2(p2-p3 )

4
1+p1-2p3

4
1+p1+2p3

4

Finally, by symmetry, one may construct equivalent ta-
bles for the case M2 � M1, by switching settings labels
x ↔ y, x ′ ↔ y ′ and subscripts 1 ↔ 2 in Table II. We have
therefore demonstrated that the two-parameter upper bound
derived in Eq. (25) is a tight upper bound, in the sense that no
better bound depending only on M1 and M2 is possible.

It is worth noting that while the model in Tables I and II
saturates the Hall and Banik et al. relaxed Bell inequalities in
Eqs. (22) and (23), for the respective special cases M1 = M2

and M2 = 0, the model of this section is very different from
those in Table I of Ref. [30] and Table 1 of Ref. [32]. An
alternative saturating model for arbitrary M1 and M2, that
interpolates between the Hall and the Banik et al. models,
is given in Appendix A. However, as will be seen below,
the model in Tables I and II has significantly better mutual
information properties.

VI. MUTUAL INFORMATION PROPERTIES
AND COMPARISONS

The degrees of measurement dependence, M1, M2, and
M , quantify the correlation of the hidden variables λ with
Alice’s settings and/or Bob’s settings. One may alternatively
quantify the correlation in terms of the corresponding mutual
information [28,31], which has a more direct interpretation as
the average information that may be obtained about one vari-
able from knowledge of the other. In this section we calculate
the mutual information required to achieve a violation V of
the CHSH inequality for the model in Tables I and II. We
conjecture that this model is in fact optimal in the sense of
requiring the lowest possible mutual information for a given
violation V .

A. Calculating mutual information

The mutual information between the hidden variable λ and
the joint measurement setting (u, v), measured in units of bits,
is given by

I ≡
∑
λ,u,v

p(λ, u, v) log2
p(λ, u, v)

p(λ)p(u, v)

=
∑
λ,u,v

p(λ|u, v)p(u, v) log2
p(λ|u, v)

p(λ)
, (50)

where p(u, v) is the probability distribution of joint measure-
ment settings and p(λ, u, v) ≡ p(λ|u, v)p(u, v). Note that
the mutual information vanishes identically in the case of
measurement independence, for which p(λ|u, v) = p(λ) as
per Eq. (5).

We will calculate the mutual information, using Eq. (50),
for the standard CHSH scenario in which the settings
are chosen randomly and independently of each other
(though not independently of the hidden variable). For this
scenario, p(u, v) = 1/4 for each settings pair, and the mutual
information for the saturating model of the previous section
simplifies to

IG = H� − 1
4 (Hxy + Hxy ′ + Hx ′y + Hx ′y ′ ), (51)
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FIG. 2. “Freedom square” plot for the region VG(M1, M2) =
M1 + 2M2 � 2, M1 � M2, labeled by contours of mutual informa-
tion IG(M1, M2) ∈ [0, 1] in bits from Eq. (54). The dashed line is
the slice corresponding to the Tsirelson bound, VG(M1,M2) = VT ,
and connects the case (M1, M2) = (VT , 0) [dark red circle for the
Banik et al. model (B)] to the case (M1, M2) = (VT /3, VT /3) [light
yellow circle (G)]. Relevant cases are explored further in Fig. 3.
The line M1 = M2 minimizes the mutual information for the general
saturating model in Tables I and II, for each value of Bell violation
V ∈ [0, 2] [see also Eqs. (57)–(58) and Fig. 3].

where

H� ≡ −
4∑

i=1

p(λi ) log2 p(λi ) (52)

and

Huv ≡ −
4∑

i=1

p(λi |u, v) log2 p(λi |u, v) (53)

denote the entropies of the distributions p(λ) and p(λ|u, v),
respectively. Note that for p(u, v) = 1/4, we have
p(λi ) = ∑

u,v p(u, v)p(λi |u, v) = 1
4

∑
u,v p(λi |u, v).

As per Table II, we consider the case M1 � M2, and
restrict attention to the range M1 + 2M2 � 2 with p3 = 0.
Then the CHSH inequality becomes S � 2 + VG(M1,M2) =
2 + M1 + 2M2. This covers the whole range of possible viola-
tions V ∈ [0, 2]. (As before, the case M2 � M1 follows upon
switching observer labels.)

It follows, using Table II and Eq. (51), and taking p1 =
M1/2, p2 = M2/2, p3 = 0 as per Eq. (48), that the mutual
information is given by

IG(M1,M2) = 1

4

{
2h

(
1 + M1

2

)
+ h

(
1 − M1

2
+ M2

)

+ h

(
1 − M1

2
− M2

)}
, (54)

where

h(x) ≡ x log2(x). (55)

Equation (54) for IG(M1,M2) is depicted in Fig. 2.

B. Comparison with previous models

To gain further insight, and to make comparisons with
previous work, it is of interest to consider the behavior of
IG(M1,M2) for a given degree of violation V = M1 + 2M2

(e.g., the maximum quantum violation VT corresponding to
the dashed line in Fig. 2). For example, is the amount of
mutual information minimized by choosing M1 = M2 (the

yellow circle in Fig. 2 for V = VT ), or by choosing M1 =
V,M2 = 0 (the red circle in Fig. 2 for V = VT )? And how
does this minimum mutual information compare with the
corresponding values for the Hall and the Banik et al. models
in Refs. [30,32]?

First, using the relation M1 = V − 2M2 � M2, we express
Eq. (54) in terms of M2 and the amount of violation V :

ĨG(V,M2) ≡ IG(V − 2M2,M2)

= 1

4

{
2h

(
1 + V

2
− M2

)
+ h

(
1 − V

2
+ 2M2

)

+h

(
1 − V

2

)}
, (56)

with M2 restricted to the range 0 � M2 � V/3 � 2/3. It is
then straightforward to minimize this quantity with respect to
M2, for any given value of the violation V , leading to the result

ĨG(V ) ≡ min
M2

ĨG(V,M2) = IG(V/3, V/3)

= 1

4

{
3h

(
1 + V

6

)
+ h

(
1 − V

2

)}
, (57)

where the minimum is achieved for the values

M1 = M2 = M = V

3
. (58)

By comparison, the Hall model from Table I of Ref. [30]
(see also Appendix A) has a corresponding mutual informa-
tion

IH (V ) = V

2
log2

4

3
, (59)

for a given degree of violation V , while the Banik et al.
model from Table 1 of Ref. [32] (see also Appendix A) has
a corresponding mutual information

IB (V ) = 1
4 {6 + 2h(2 − V ) − h(4 − V )}. (60)

Equations (57), (59), and (60) are plotted as functions of V in
Fig. 3, showing that

ĨG(V ) < IH (V ) < IB (V ) (61)

for all V ∈ (0, 2).
As an example, consider the case of the maximum quantum

violation V = VT , depicted by colored circles in Fig. 3. While
the Hall model requires a mutual information IH (VT ) ≈ 0.172
bits [green circle (H )], which is less than the IB (VT ) ≈
0.247 bits required by the Banik model [red circle (B)], the
general model of Table II can achieve the maximum quantum
violation with a substantially smaller mutual information,

ĨG(VT ) = 1

4

{
3h

(
2 + √

2

3

)
+ h(2 −

√
2)

}

≈ 0.0462738 bits, (62)

[yellow circle (G)], corresponding via Eqs. (21) and (58) to

M1 = M2 = VT

3
= 2

3
(
√

2 − 1). (63)

Hence, the model in Table II requires significantly less mutual
information between the settings and hidden variables to
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FIG. 3. Mutual information for the Banik et al. model [IB (V ),
solid red curve], the Hall model [IH (V ), dotted green curve] from
the literature [30,32], and the minimum of the general model [ĨG(V ),
dashed black curve] in bits, plotted as a function of CHSH violation
V ∈ [0, 2]. As in Fig. 2, large filled circles denote VG(M1, M2) =
VT . Note that since ĨG(V ) < IH (V ) < IB (V ) for all violations 0 <

V < 2, the Hall model always requires less mutual information than
the Banik model to produce a given Bell violation, while the min-
imum of the general model requires much less mutual information
than the Hall or Banik models.

simulate violations of the Bell-CHSH inequality than previ-
ously studied locally causal models.

In Appendix A we construct an alternative model which
also saturates the the general two-parameter bound in
Eqs. (24) and (25) for arbitrary values of M1 and M2, which
is a simple mixture of the Hall and Banik et al. models. As is
shown in Appendix B, this mixed model is interesting in that it
requires less mutual information than either the Hall or Banik
models for a given violation V . However, it nevertheless
requires significantly more mutual information than the model
in Table II.

C. An optimality conjecture

Remarkably, the value of ĨG(VT ) ≈ 0.0462738 ∼ 1/22 of
a bit in Eq. (62) is identical to the mutual information reported
in Eq. (37) of Ref. [31], where the latter is for the local deter-
ministic model of general singlet-state correlations given in
Ref. [30] when restricted to the CHSH scenario with detector
angles chosen to maximize the quantum prediction for the Bell
inequality violation. The underlying reason for this agreement
is that the hidden variable λ for the singlet-state model is rep-
resented by a point on the unit sphere, with its relation to the
CHSH measurement settings wholly determined by which one
of four regions of the sphere that it lies in. In particular, these
regions generate four sets of conditional probabilities that
correspond to the rows of Table II for M1 and M2 in Eq. (63).

The full singlet-state model in Ref. [30] has a high degree
of symmetry, and requires the lowest known mutual infor-
mation by far of any such model when arbitrary numbers
of measurement settings are allowed on each side [30,64].
Hence, given that the saturating model in Table II is simi-
larly highly symmetric for all M1 = M2 (and p3 = 0), and
requires significantly lower mutual information than other
known models for general values of V , we conjecture that
ĨG(V ) is in fact the minimum amount of mutual information
required for any locally causal model of a given Bell-CHSH
violation V .

VII. GENERALIZING FROM TWO PARAMETERS
TO FOUR PARAMETERS

So far we have been describing the degree of measurement
dependence of Alice and Bob by the traditional parame-
ters [30] M1 and M2, as defined in general by Eqs. (10)
and (11), and specifically for the CHSH scenario by Eqs. (13)
and (14). There are, however, other interesting variables that
can be defined by

M̂1 ≡ inf
v∈V

{
sup

u1,u2∈U

[∫
dλ|p(λ|u1, v) − p(λ|u2, v)|

]}
,

(64)

M̂2 ≡ inf
u∈U

{
sup

v1,v2∈V

[∫
dλ|p(λ|u, v1) − p(λ|u,v2)|

]}
. (65)

These quantities also have a relevant physical interpretation.
M1 describes the most serious loss of freedom that Alice
(who sets detector 1) might experience, but the actual loss of
freedom that she will experience depends on the value of v,
the setting on the other side. For the general case of Eq. (10),
the probability that she experiences this worst-case scenario
might be extremely small, if the setting v that maximizes the
expression is extremely improbable. For example, a model
might have the property that Alice can make only one choice
if the angle on the far side is between 22 degrees and 22 +
10−500 degrees, but otherwise she is completely unrestricted.
In this case M1 would be equal to its maximal value of 2, even
though the restrictions on Alice’s choices are so rare that they
could never be detected in the lifetime of many universes.

The quantity M̂1, by contrast, describes the inevitable, min-
imum loss of freedom that Alice will experience, no matter
what value the setting v has. For the example just discussed,
M̂1 would equal zero. M̂1 could of course also be misleading,
since again the setting v that minimizes the expression in
Eq. (64) might be extremely improbable. Nonetheless, we
can always count on M̂1 and M1 to bracket the degree of
measurement dependence that Alice will experience. In the
context of our two-setting CHSH Bell test, the difference
between M̂1 and M̂2 and the usual M1 and M2 is the choice
between taking the min or the max of the two quantities on
the right-hand side of Eqs. (13) and (14).

Finally, we may also interpret M̂1 in terms of an experiment
in which one tries to use a measurement of λ to distinguish
between two of Alice’s measurement settings, with Bob’s
setting the same in both cases. Varying over Bob’s setting and
Alice’s two settings, the minimum value of the probability
that one will be able to identify Alice’s setting is given by
1
2 (1 + 1

2M̂1) (see Sec. III). A similar interpretation applies to
1
2 (1 + 1

2M̂2).

A. The general four-parameter bound

If we reexamine the proof of the general two-parameter
bound in Sec. IV, we find that it leads not only to the two-
parameter bound of Eq. (44), but also to a more detailed
four-parameter bound, based on M1, M2, M̂1, and M̂2. To see
this, start by noticing that the quantities T2 and T3, defined
in Eqs. (32) and (33), are identical to the two quantities
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appearing inside the curly brackets in the expression for M2 in
Eq. (14). The larger of these two quantities becomes M2, but
the smaller becomes M̂2, as can be seen from the definition in
Eq. (65). Thus,

T2 + T3 = M2 + M̂2. (66)

From Eqs. (37)–(40), we can conclude that

T1 � 2 + M1[y], (67)

where we introduce the definitions

M1[v] ≡
∫

dλ|p(λ|x, v) − p(λ|x ′, v)|, (68)

M2[u] ≡
∫

dλ|p(λ|u, y) − p(λ|u, y ′)|, (69)

where u ∈ {x, x ′} and v ∈ {y, y ′}. But there is nothing about
this system that makes any absolute distinction between y

and y ′, so one could have constructed a rearrangement of the
derivation shown, in which y ′ would appear in Eqs. (37)–(40),
instead of y. Then, in addition to Eq. (67), we would also have

T1 � 2 + M1[y ′]. (70)

From Eqs. (67) and (70), we conclude that

T1 � 2 + M̂1, (71)

and then finally

S � 2 + M2 + M̂2 + M̂1. (72)

The claim that we can interchange y and y ′ is not com-
pletely obvious, because the definition of S, in Eq. (17), is
not invariant under y ↔ y ′. The change in S, however, can
be compensated by redefinitions of the outcome variables b

and b′, so the result shown in Eq. (70) is correct. Probably
the easiest way to show this clearly is to explicitly construct
the rearrangement of the original derivation, which we do in
Appendix C, to derive Eq. (70).

Now, following the original derivation in Sec. IV, we use
the fact that the formalism makes no distinction between the
first and second observer’s detectors, so we can carry out a
parallel derivation reversing the treatment of x and y, and
hence 1 and 2, showing that

S � 2 + M1 + M̂1 + M̂2. (73)

Since Eqs. (72) and (73) are both valid inequalities, S must be
bounded by the smaller of the two, and of course it must be
bounded by 4. So, finally,

S � 2 + min{M̂1 + M̂2 + min{M1,M2}, 2}. (74)

We will refer to this equation as the general four-parameter
bound.

Note that the general four-parameter bound immediately
implies the general two-parameter bound of Eq. (44), since
M̂1 � M1 and M̂2 � M2. But, for any model where M̂1 �= M1

or M̂2 �= M2, the four-parameter bound will be tighter than
the two-parameter bound. This statement, of course, does
not contradict our previous statement that the two-parameter
bound is tight; it is tight, in the sense that it is not possible
to have a more stringent bound that depends only on the
parameters M1 and M2. But with the additional information

involved in specifying M̂1 and M̂2, the more stringent bound
of Eq. (74) can be established.

B. Saturating the four-parameter bound

Given that the general four-parameter bound is more strin-
gent than the two-parameter bound, we should ask whether the
four-parameter bound is tight. We follow the same procedure
that we used in Sec. V, showing in this case that for each
allowed value of (M1,M2, M̂1, M̂2), at least one consistent
model exists that saturates the bound.

In this case the construction of the model is more com-
plicated. The model described in Tables I and II was found
essentially by trial and error, but it is much harder when there
are four independent parameters. However, by examining the
proof of the bound, step by step, it is possible to list exactly
what properties the conditional probabilities must obey for
the bound to be saturated. These properties do not determine
the conditional probabilities uniquely, but they constrain the
system enough so that we were then able to use trial and error
methods to construct a general four-parameter model, for any
allowed (M1,M2, M̂1, M̂2), which saturates the bound and
thereby proves that the bound is tight: it is not possible to have
a more stringent bound that depends only on the parameters
M1, M2, M̂1, and M̂2. The four-parameter model that we will
present has the property that it reduces to the two-parameter
model of Tables I and II when M̂1 → M1 and M̂2 → M2.
Here we describe the four-parameter model, and in Ap-
pendix D we will summarize the details of the construction.

The allowed range of variables is of course restricted by

M1,M2, M̂1, M̂2 ∈ [0, 2], M̂1 � M1, M̂2 � M2, (75)

but with four parameters there is also a triangle inequality
that limits the amount by which M1 and M̂1 can differ, and
similarly for M2 and M̂2. Specifically,

M1 =
4∑

i=1

|p(λi |x, y) − p(λi |x ′, y)|

=
4∑

i=1

|[p(λi |x, y) − p(λi |x, y ′)]

+ [p(λi |x, y ′) − p(λi |x ′, y ′)]
+ [p(λi |x ′, y ′) − p(λi |x ′, y)]|

�
4∑

i=1

|[p(λi |x, y) − p(λi |x, y ′)]|

+ |[p(λi |x, y ′) − p(λi |x ′, y ′)]|
+ |[p(λi |x ′, y ′) − p(λi |x ′, y)]|

= M2 + M̂1 + M̂2. (76)

There is a parallel identity that can be derived by interchang-
ing 1 and 2, so we have

M1 − M̂1 � M2 + M̂2, M2 − M̂2 � M1 + M̂1. (77)

Equations (75) and (77) define the allowed range of variables,
except that we will also, without loss of generality, adopt the
convention that M1 � M2. (If this is not the case, the labels 1
and 2 can be interchanged.)

012121-10



RELAXED BELL INEQUALITIES WITH ARBITRARY … PHYSICAL REVIEW A 99, 012121 (2019)

TABLE III. Conditional probabilities p(λi |u, v) for the value of the hidden variable λ to be λi , for M1 � M2 and M2 + M̂1 + M̂2 � 2.

λi p(λ|x, y ) p(λ|x, y ′) p(λ|x ′, y ) p(λ|x ′, y ′)

λ1 q1 + 1
4 (M2 + M̂1 + q2) q1 + 1

4 (M2 + M̂1 − q2) q1 + 1
2 (−M1 + M̂1 + M̂2 + q2) q1

λ2 q1 + 1
4 (−M2 + M̂1 + 2M̂2 + q2) q1 + 1

4 (−M2 + M̂1 + 2M̂2 + q2) q1 q1 + 1
2 M̂2

λ3 q1 + 1
2 (M2 − q2) q1 q1 + 1

4 (2M1 + M2 − M̂1 − 3q2) q1 + 1
4 (M2 + M̂1 − q2)

λ4 q1 q1 + 1
2 M2 q1 + 1

4 (M2 + M̂1 + q2) q1 + 1
4 (M2 + M̂1 + q2)

Table I can be used again, but we need a new table
of conditional probabilities to replace Table II. In principle
one table of conditional probabilities would suffice, but the
individual entries become rather complicated, so we instead
first introduce Table III, which describes the model only for
the restricted case of M2 + M̂1 + M̂2 � 2.

Here

q1 ≡ 1
8 (2 − M2 − M̂1 − M̂2), (78)

q2 ≡ min(M1 − M̂1,M2). (79)

When M2 + M̂1 + M̂2 > 2, there are additional terms that
need to be added, as shown in Table IV.

The functions q3 and q4 vanish for M2 + M̂1 + M̂2 � 2,
and they are given in general by

q3 =
{

0, if M2 + M̂1 + M̂2 � 2,

1
8 [M2 + M̂1 + M̂2 − 2], otherwise,

(80)

q4 =

⎧⎪⎪⎨
⎪⎪⎩

0, if M2 + M̂1 + M̂2 � 2,

1
4 [−2 − M̂1 − M̂2

+ min(M1 + M̂2, 2)
+ max(M2 + M̂1, 2) − q2], otherwise.

(81)

For M2 + M̂1 + M̂2 > 2, the function q4 can also be writ-
ten as

1
4 [max(R̄ − R,M2) + max(R, M̂2) − max(R̄,M2) − M̂2],

(82)

where

R ≡ M2 + M̂1 + M̂2 − 2, R̄ ≡ M1 + M2 + M̂2 − 2, (83)

TABLE IV. Conditional probabilities p(λi |u, v) for the value
of the hidden variable λ to be λi , for any allowed values of
M1, M2, M̂1, and M̂2, provided that M1 � M2. Here P

(0)
i,j refers to

the corresponding entries of Table III.

λi p(λ|x, y ) p(λ|x, y ′) p(λ|x ′, y ) p(λ|x ′, y ′)

λ1 P
(0)
1,1 + q3 P

(0)
1,2 − q3 − q4 P

(0)
1,3 − q3 + q4 P

(0)
1,4 + q3

λ2 P
(0)
2,1 − q3 + q4 P

(0)
2,2 + q3 + 2q4 P

(0)
2,3 + q3 P

(0)
2,4 − q3 + q4

λ3 P
(0)
3,1 − q3 − q4 P

(0)
3,2 + q3 P

(0)
3,3 + q3 − 2q4 P

(0)
3,4 − q3 − q4

λ4 P
(0)
4,1 + q3 P

(0)
4,2 − q3 − q4 P

(0)
4,3 − q3 + q4 P

(0)
4,4 + q3

from which it can be easily seen that q4 has two significant
properties: (1) when M̂1 = M1 and M̂2 = M2, q4 vanishes,
which allows one to see that the entire solution reduces to
the two-parameter solution in that case; (2) q4 and q3 both
vanish when M2 + M̂1 + M̂2 = 2, which assures that these
function are continuous at M2 + M̂1 + M̂2 = 2. (Continuity
is not required, but is desirable on grounds of simplicity.)

To verify that this model has the required properties, one
must verify that

M1[y] = M1, M1[y ′] = M̂1, M2[x] = M2, M2[x ′] = M̂2,

(84)

where M1[v] and M2[u] were defined by Eqs. (68) and (69),
that

4∑
i=1

p(λi |u, v) = 1 (85)

for all u ∈ {x, x ′} and v ∈ {y, y ′}, that

0 � p(λi |u, v) � 1, (86)

for all i ∈ {1, 2, 3, 4}, u ∈ {x, x ′}, and v ∈ {y, y ′}, and finally
that

S = 2 + min{M̂1 + M̂2 + min{M1,M2}, 2}. (87)

The verification of these properties, which depends on keep-
ing in mind the restrictions of Eqs. (75) and (77) and the
convention M1 � M2, is tedious but straightforward.

C. Mutual information of the four-parameter model

Since the four-parameter model reduces to the two-
parameter model when M̂1 = M1 and M̂2 = M2, it reproduces
the two-parameter solution for M1 = M2 = VT /3, which
gives the quantum violation of the Bell-CHSH inequal-
ity (Tsirelson bound) with a very low mutual information,
≈0.0463 bits, as per Eq. (62). To show one example of how
the mutual information changes when M̂1 �= M1 or M̂2 �= M2,
we show in Fig. 4 a plot of the mutual information of the
four-parameter model as a function of z, where M1 = M2 =
VT /3 + 2z and M̂1 = M̂2 = VT /3 − z, so in all cases S =
2 + VT . In this case, the mutual information I4(z) is given by

I4(z) = 1 + 3z

2
+ h

(
2 − √

2

4

)

+ 2h

(
2 + √

2 − 6z

12

)
+ h

(
2 + √

2 + 12z

12

)

− 2h

(
2 − 3z

8

)
− 1

4
h(1 + 3z). (88)
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FIG. 4. Plot of mutual information I4(z), in bits, for the four-
parameter model in Table III, for M1 � M2 and M2 + M̂1 + M̂2 �
2. I4(z), given by Eq. (88), is calculated for M1 = M2 = VT /3 +
2z, M̂1 = M̂2 = VT /3 − z, so in all cases S = 2 + VT . The mutual
information I4(z) is minimized via Eq. (89) when I4(0) ≈ 0.0463
bits (light yellow circle) and maximized when I4(VT /3) ≈ 0.1423
bits (dark blue circle).

The mutual information in Eq. (88) is minimized (light yellow
circle in Fig. 4) when z = 0, yielding

I4(z = 0) = ĨG(VT ) ≈ 0.0462738 bits, (89)

which is identical to the value of ĨG(VT ) in Eq. (62). I4(z)
grows monotonically with z, to a maximum value of ≈0.1423
bits (dark blue circle in Fig. 4) when z = VT /3 ≈ 0.2761.

VIII. DISCUSSION

As recognized by Bell himself, the measurement-
independence (or freedom-of-choice) assumption is crucial to
the derivation of Bell’s theorem [3,5]. Relaxing this assump-
tion leads to a potent loophole in the theorem, and opens
space for families of locally causal hidden-variable models
that could reproduce the quantum predictions for entangled
states. As experimental efforts to address the measurement-
independence loophole in tests of Bell’s inequality continue
to improve [11,13–15,24,42,44], it is therefore critical to
investigate properties of locally causal models, distinct from
quantum mechanics, that could exploit such a loophole to
remain viable in the face of various tests.

Building on work in Refs. [30–32], we have con-
structed a general framework for relaxing the measurement-
independence assumption for two-particle tests of Bell’s in-
equality, to accommodate arbitrary amounts of reduced ex-
perimental freedom for each observer while satisfying local
causality. This framework allows for interpolation between
previously studied symmetric models, in which each observer
gives up the same amount of freedom [30,31], and one-sided
models, in which one observer gives up some freedom while
the other maintains perfect freedom [32]. We have derived
two new, relaxed Bell-CHSH inequalities for this general
framework, which subsume previously studied models as
special cases of our more general two- and four-parameter
bounds. We show that these bounds are tight by providing
local deterministic models which saturate each bound for all
regimes of measurement dependence for each observer.

We have also calculated the efficiency of these saturating
models for simulating Bell-CHSH violations, as measured by
mutual information between the Bell-test detector settings and
any hidden variables that affect measurement outcomes. Most
interestingly, we find that the two- and four-parameter models
in our Tables II and III are very efficient, capable of achieving
a given violation of the Bell-CHSH inequality with far less
mutual information between the hidden variables and the joint
detector settings than is needed by locally causal models that
had previously been identified in the literature. We conjecture
that our models are optimal in the sense that they achieve
(for M1 = M2 = M̂1 = M̂2) the minimum possible mutual
information for a given Bell-CHSH violation. Although the
interpolating model in Table VI of Appendix A is not optimal
compared to Tables II and III, it too requires less mutual infor-
mation than previously studied models, which it specifically
reproduces as special cases.

For each model in this class, we find that only a compara-
tively small degree of measurement dependence (as measured
in bits of mutual information) must be assumed in order to
reproduce the predictions from quantum theory, compared to
hidden-variable models that exploit other loopholes such as
the locality or communication loophole [67] or models that
relax determinism [31].

Our framework for considering such models is quite gen-
eral. For example, while measurement-dependent models al-
low correlations between the measurement settings and λ, our
framework makes no stipulations about where or when in
space-time the hidden variable λ is created or becomes rele-
vant; indeed, our formalism remains agnostic about whether λ

represents degrees of freedom associated with specific space-
time events at all. For example, λ could, in principle, be asso-
ciated with entire space-time regions or hypersurfaces [68],
or with even more fundamental degrees of freedom from
which classical space-time (consistent with general relativity)
might emerge. Note that the results in this work also apply to
stochastic models, and thus are consistent with—but do not
require the assumption of—determinism.

We note in particular that relaxing the measurement-
independence assumption does not require the additional as-
sumption of “superdeterminism,” although the two have at
times been conflated in the literature [73,77–84]. For con-
creteness, we consider the definition of superdeterminism
used by ’t Hooft [81]: “Superdeterminism may be defined
to imply that not only all physical phenomena are declared
to be direct consequences of physical laws that do not leave
anything anywhere to chance (which we refer to as ‘deter-
minism’), but it also emphasizes that the observers themselves
behave in accordance with the same laws. ...The fact that an
observer cannot reset his or her measuring device without
changing physical states in the past is usually thought not to
be relevant for our description of physical laws.” He further
argues, with regard to the correlations between past physical
states and present measurement choices [81]: “We claim that
not only there are correlations, but the correlations are also
extremely strong.”

Although the phrase “extremely strong” is only a qualita-
tive statement, one might interpret this claim to mean that in
a superdeterministic universe, Alice and Bob would have no
freedom whatsoever to choose Bell-test measurement settings,
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corresponding to M = 2 from Eq. (8) and thus F = 1 − M
2 =

0 in Eq. (9). Such a maximally deterministic model has
been presented by Brans [35]. In contrast to such an “ex-
treme” case of superdeterminism, we note that locally causal
models that exploit the measurement-independence loophole,
of the sort analyzed here, require quite modest amounts of
reduced experimental freedom—as measured by M, M1, and
M2, or by information-theoretic measures such as mutual
information—in order to mimic the predictions from quantum
mechanics. (See also Refs. [30–32,64].) In short, relaxation
of experimenters’ freedom of choice need not be an “all or
nothing” assumption. While superdeterminism represents one
logical possibility for how the measurement-independence
assumption can be relaxed, it is not the only such possibility.

IX. CONCLUSIONS

In this work, we have derived two new, relaxed Bell-CHSH
inequalities within a general framework where the assumption
of measurement independence can be relaxed to independent
degrees for both observers.

In future work, it would be interesting to investigate models
of the singlet state compatible with our general bound, gen-
eralizing those presented in Refs. [28,30–32], to determine
whether there exist locally causal models that can produce
the same amount of Bell violation for smaller values of the
measurement-dependence parameters M , and/or that would
require less mutual information between joint detector set-
tings and hidden variables. It would be of additional interest
to further explore whether the results in this work could be
generalized to other Bell inequalities beyond Bell-CHSH, for
example, those with more than two measurement settings per
observer, or those which are not symmetric under correlated
flips of the measurement outcomes. The approach we have
developed here could also be generalized to locally causal
models of correlations among N -particle “GHZ” entangled
states (with N > 2) [85,86]. Finally, it would be of interest to
develop a deeper understanding of this family of locally causal
models that relax the measurement-independence assumption
in terms of causal space-time structure (e.g., [87]).
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APPENDIX A: INTERPOLATING BETWEEN CHSH
MODEL TABLES FROM PREVIOUS WORK

In this Appendix we construct another model that satu-
rates the general two-parameter bound of Eqs. (24) and (25),
while at the same time interpolating between the models in

TABLE V. Deterministic measurement-outcome functions
A(u, λi ) and B(v, λi ) for Alice’s and Bob’s measurements, given
λi with i = 1, . . . , 5. The values of the measurement outcomes
(c, d, e, f, g) are selected arbitrarily from {−1, 1}.

λi A(x, λ) A(x ′, λ) B(y, λ) B(y ′, λ)

λ1 c c c c

λ2 d −d d d

λ3 e e e −e

λ4 f −f −f f

λ5 g g g g

Table 1 of Banik et al. [32] and Table I of Hall [30] in
the physically significant region of parameter space corre-
sponding to M1 + M2 + min{M1,M2} � 2. At its optimum
parameters within this region, the interpolating model requires
less mutual information between the hidden variables and
detector settings than either the Hall or Banik et al. models,
although it requires significantly more mutual information
than the two-parameter model of Sec. V. In the region for
which M1 + M2 + min{M1,M2} > 2, where the Banik et al.
model does not exist, the interpolating model generalizes the
Hall model, reducing to Table II of Hall [30] when M1 = M2.

The interpolating model is deterministic and locally causal,
with a hidden variable λ that can take on one of 5 dis-
crete values, λ1, λ2, . . . , λ5. For this model the deterministic
measurement-outcome functions A(u, λi ), B(v, λi ) for Alice
and Bob are of the forms defined in Table V, where the con-
stants c, d, e, f, g may be any values in {−1, 1}. We divide the
square of possible (M1,M2) values into six regions, as shown
in Fig. 5, and for each region we construct a mapping from
the parameters (M1,M2) to a set of conditional probabilities,
using Tables VI, VII, and VIII, as follows.

Consider first the yellow horizontal hatched region in
Fig. 5, which corresponds to M1 � M2, 0 � M1 � 2, 0 �
M2 � 2/3, and M1 + 2M2 � 2. For this region, the mapping
of the interpolating model will be defined by Table VI. Using
Eq. (19) and Tables V and VI, we find that the CHSH
parameter S of Eq. (17) takes the form

S = 2 + 2p1 + 4p2. (A1)

Assuming that p1 � p2, the degrees of measurement depen-
dence M1 and M2, as defined by Eqs. (13) and (14), are found
from Table VI to be

M1 = max{2p1, 2p1} = 2p1,

M2 = max{2p2, 2p2} = 2p2. (A2)

(For Table VI, we also find that M = max{M1,M2} = M1.)
Thus, Table VI with p1 � p2 is a potential model for the
region of parameter space for which M1 � M2, with p1 =
M1/2 and p2 = M2/2. To be a viable model, the conditional
probabilities that it defines must be non-negative. This will
be the case provided that 1 − p1 − 2p2 = 1 − M1

2 − M2 � 0,
so the region of validity is precisely the yellow horizontal
hatched region of Fig. 5. (The total probability for each setting
pair must sum to unity, but this can be seen immediately by
summing each column of Table VI.)
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FIG. 5. We construct an “interpolating” model for p(λi |u, v) for
values of (M1, M2) in the square of side two. Each point in the
square is mapped to a set of conditional probabilities p(λi |u, v).
The yellow horizontal hatched, red vertical hatched, and blue di-
agonal hatched regions, with M1 � M2, are mapped according to
the entries in Tables VI–VIII. Tables corresponding to the green
horizontal hatched, orange vertical hatched, and purple diagonal
hatched regions, with M2 � M1, may be constructed by swapping
Alice’s and Bob’s detector-setting labels, x ↔ y, x ′ ↔ y ′, as well
as the labels 1 ↔ 2. The model saturates the general two-parameter
bound, providing an additional proof that the bound is tight.

Given that p1 = M1/2 and p2 = M2/2, Eq. (A1) implies
that

S = 2 + M1 + M2 + min{M1,M2}, (A3)

saturating the upper bound derived in Eq. (24) for the case in
which M1 + M2 + min{M1,M2} � 2.

We proceed similarly for the red vertical hatched and blue
diagonal hatched regions of Fig. 5, which both satisfy M1 �
M2 and M1 + 2M2 � 2. The red vertical hatched region corre-
sponds to 2/3 � M1 � 2 and 0 � M2 � 2/3, and is described
in the interpolating model by Table VII. Assuming that
p1 � 1, p2 � 1/3, and p1 + 2p2 � 1, we find from Table VII

TABLE VI. Conditional probabilities p(λi |u, v) for the value
of the hidden variable λ to be λi , for M1 + M2 + min{M1, M2} �
2, 0 � M1 � 2, 0 � M2 � 2/3, and M1 � M2 (Fig. 5, yellow hori-
zontal hatched region).

λi p(λ|x, y ) p(λ|x, y ′) p(λ|x ′, y ) p(λ|x ′, y ′)

λ1 p2 p2 p2 0
λ2 p2 p2 0 p2

λ3 p2 0 p1 p1

λ4 0 p2 p2 p2

λ5 1 − 3p2 1 − 3p2 1 − p1 − 2p2 1 − p1 − 2p2

TABLE VII. Conditional probabilities p(λi |u, v) for the
case M1 + M2 + min{M1, M2} � 2, 2/3 � M1 � 2, 0 � M2 � 2/3,
and M1 � M2 (Fig. 5, red vertical hatched region).

λi p(λ|x, y ) p(λ|x, y ′) p(λ|x ′, y ) p(λ|x ′, y ′)

λ1 p2 p2
1
2 (1 − p1) 0

λ2 p2 p2 0 1
2 (1 − p1)

λ3 p2 0 1
2 (1 − p1) 1

2 (1 − p1)
λ4 0 p2 p1 p1

λ5 1 − 3p2 1 − 3p2 0 0

that

M1 = max{2p1, 1 + p1 − 2p2} = 2p1,

M2 = max{2p2, 1 − p1} = 2p2. (A4)

(We again find that M = M1.) In this case no additional
constraints are imposed by non-negativity, but the constraints
that we imposed to evaluate M1 and M2 are precisely the
conditions that delineate the red vertical hatched region of
Fig. 5.

The blue diagonal hatched region corresponds to 2/3 �
M1 � 2, 2/3 � M2 � 2, again with M1 � M2, and is de-
scribed in the interpolating model by Table VIII, with

p1 = 2 − M2

4
+ M1 − M2

12
,

p2 = M1 − M2

6
,

p3 =
{

0, if M1 � 4M2 − 2,
1
8 (M1 − 4M2 + 2), otherwise.

(A5)

When M1 = M2, p2 and p3 vanish, and p1 becomes equal to
the value of p in Table II of Hall [30], making our Table VIII
an exact match for Table II of Hall. Using Table VIII and
Eqs. (A5), one can verify that

M1[y] = M1,

M1[y ′] =
{

2M2 − M1, if M1 � 4M2 − 2,

2 − 2M2, otherwise,
(A6)

M2[x] = M2,

M2[x ′] = M2,

where we are using the definitions in Eqs. (68) and (69).
For the parameter range of the blue diagonal hatched region,
it is easily seen that max(M1[y],M1[y ′]) = M1, as desired.
One can also verify that the probabilities in each column
of Table VIII sum to 1, and that all the entries of the table
are non-negative for (M1,M2) in the blue diagonal hatched
region of Fig. 5. Thus, in the blue diagonal hatched region
Table VIII defines a consistent set of conditional probabilities
that match the Hall model when M1 = M2. (We again find that
M = M1.)

Upon using Tables VII and VIII together with the mea-
surement outcomes in Table V, we find S = 4 for both the red
vertical hatched and blue diagonal hatched regions, saturating
the upper bound in Eqs. (24) and (25). To our knowledge, the
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TABLE VIII. Conditional probabilities p(λi |u, v) for the case M1 + M2 + min{M1, M2} � 2, 2/3 � M1, M2 � 2, and M1 � M2 (Fig. 5,
blue diagonal hatched region).

λi p(λ|x, y ) p(λ|x, y ′) p(λ|x ′, y ) p(λ|x ′, y ′)

λ1 p1 − 2p2
1−p1

2 − 2p2 + p3
1−p1

2 + p2 − p3 0

λ2
1−p1

2 + 4p2 − p3 p1 + p2 0 1−p1
2 + p2 − p3

λ3
1−p1

2 − 2p2 + p3 0 p1 − 2p2 + 2p3
1−p1

2 − 2p2 + 3p3

λ4 0 1−p1
2 + p2 − p3

1−p1
2 + p2 − p3 p1 + p2 − 2p3

λ5 0 0 0 0

model represented by Tables V–VIII has not been described
previously in the literature.

Thus the interpolating model, as defined by Tables V–
VIII, saturates the two-parameter general bound for all values
M1 � M2. By symmetry, one can complete the definition of
the interpolating model by constructing equivalent tables for
M2 � M1, by switching settings labels x ↔ y, x ′ ↔ y ′ and
subscripts 1 ↔ 2. Since the interpolating model saturates the
two-parameter bound of Eq. (25), it provides an additional
proof that Eq. (25) is a tight upper bound on S for hidden-
variable models that obey local causality but do not obey
measurement independence.

To show how the interpolating model is related to the Hall
model of Table I of Ref. [30] and the Banik et al. model
of Table 1 of Ref. [32], we introduce a notation that uses
subscripts to show explicitly the dependence of the condi-
tional probabilities p(λi |u, v) on the parameters p1 and p2.
In particular, we will denote the entries of Table VI by

pV I
p1,p2

(λi |u, v), (A7)

and the entries of the Hall model by

pH
p (λi |u, v). (A8)

Table I of Ref. [32] has only two rows, but they can be
identified with rows 3 and 5 of the other models, with the
remaining rows set to zero. Thus, the conditional probabilities
of the Banik et al. model can be denoted by

pB
p (λi |u, v). (A9)

It is then easily seen that for M1 � M2 and M1 + 2M2 �
2, when Table VI applies, the interpolating model exactly
matches the two previous models in the appropriate limits:

pV I
p,p(λi |u, v) = pH

p (λi |u, v), (A10)

pV I
p,0(λi |u, v) = pB

p (λi |u, v). (A11)

Furthermore, for general values it is simply a linear interpola-
tion:

pV I
p1,p2

(λi |u, v) = wpH
p1

(λi |u, v) + (1 − w)pB
P1

(λi |u, v),

(A12)

where w = p2/p1.

APPENDIX B: MUTUAL INFORMATION FOR THE
INTERPOLATING MODEL

Just as in Sec. VI, we can compute the mutual informa-
tion between the hidden variable λ and the detector settings

for the interpolating model, using Eqs. (50)–(53) and the
measurement outcomes from Table V. Here we consider the
case M1 � M2 and the range M1 + 2M2 � 2 with violations
V ∈ [0, 2], so Table VI applies.

Using Table VI and Eq. (51), and recalling that p1 =
M1/2, p2 = M2/2 in this model, we find that the mutual
information for the interpolating model is given by

II (M1,M2) = 1

4

∑
i,u,v

p(λi |u, v) log2 p(λi |u, v)

−
∑

i

p(λi ) log2 p(λi )

= 1

4

{
2h

(
2 − 3M2

2

)
+ 2h

(
2 − M1 − 2M2

2

)

− 4h

(
2M1 + M2

8

)
− 4h

(
4 − M1 − 5M2

4

)

+ 2h

(
M1

2

)
+ h

(
M2

2

)
+ 9M2

2
log2

4

3

}
.

(B1)

Equation (B1) is plotted in Fig. 6.
Using the relation M1 = V − 2M2 for models that saturate

the general two-parameter bound, we can also express II in

FIG. 6. “Freedom square” plot labeled by contours of mutual
information II (M1, M2) for the interpolating model, in bits, from
Eq. (B1) derived from Table VI. The Hall and Banik et al. subcases
are denoted by light green (H ) and dark red (B) circles, respectively,
with the light yellow circle (I ) showing where mutual information
is minimized for the interpolating model. The dashed line is the
slice satisfying V (M1, M2) = VT , connecting solutions for the Hall
model (M1,M2) = (VT /3, VT /3), and the Banik model (M1, M2) =
(VT , 0), with minimum mutual information II (M̄1, M̄2) ≈ 0.1616 at
(M̄1, M̄2) ≈ (0.4158, 0.2063). See Fig. 7 (top). The black dots, plus
the light yellow circle (I ), trace the curve that minimizes the mutual
information for each value of Bell violation V ∈ [0, 2]. See Fig. 7
(bottom).
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terms of M2 and the amount of violation V :

ĨI (V,M2) ≡ II (V − 2M2,M2)

= 1

4

{
2h

(
V − 2M2

2

)
+ h

(
M2

2

)
+ 9M2

2
log2

4

3

− 4h

(
2V − 3M2

8

)
− 4h

(
4 − V − 3M2

4

)

+ 2h

(
2 − 3M2

2

)
+ 2h

(
2 − V

2

)}
, (B2)

with M2 restricted to the range 0 � M2 � V/2 � 2. We
denote the minimum of ĨI (V,M2), minimized over M2, by
ĨI (V ).

The mutual information requirements of the Hall model
of Ref. [30] and the Banik et al. model of Ref. [32] were
discussed in Sec. VI. The mutual information required for
each model, to achieve a specified Bell-CHSH inequality
violation V , was specified in Eq. (59) for IH (V ) and Eq. (60)
for IB (V ). These functions were plotted in Fig. 3 in compar-
ison with ĨG(V ), the minimum mutual information for the
two-parameter model of Sec. V. In the top panel of Fig. 7,
the same two functions are shown in comparison with ĨI (V ),
the minimum mutual information for the interpolating model.
ĨI (V ) is less than either of these two comparison models,
but it is nonetheless significantly larger that the mutual infor-
mation required by the two-parameter model of Sec. V. For
the maximum quantum violation VT , the Banik et al. model
requires 0.247 bits of mutual information, the Hall model
requires 0.172 bits, and the interpolating model requires 0.162
bits. The two-parameter model of Sec. V requires only 0.0462
bits, as shown in Eq. (62).

The lower panel of Fig. 7 shows the mutual information
of the interpolating model, ĨI (VT ,M2), for the maximum
quantum violation VT , shown in bits as a function of M2.
The minimum occurs at M1 ≈ 0.416 and M2 ≈ 0.206 [yellow
circle (I )].

Overall, while the interpolating model requires less mutual
information between the settings and hidden variables to
mimic the quantum predictions for violations of the Bell-
CHSH inequality than previously studied locally causal mod-
els, it is significantly less efficient than the two-parameter
model of Sec. V.

APPENDIX C: STEPS IN PROOF OF THE
FOUR-PARAMETER RELAXED BELL-CHSH INEQUALITY

We wish to prove that the inequality

T1 � 2 + M1[y ′] (C1)

from Eq. (70) holds.
Starting with Eq. (26), we replace Eq. (27) with

S =
∣∣∣∣
∫

dλ{p(λ|x, y ′)[A(x, λ)B(y ′, λ) + A(x, λ)B(y, λ)]

−p(λ|x ′, y ′)[A(x ′, λ)B(y ′, λ) − A(x ′, λ)B(y, λ)]

+A(x, λ)B(y, λ)[p(λ|x, y) − p(λ|x, y ′)]

+A(x ′, λ)B(y, λ)[p(λ|x ′, y) − p(λ|x ′, y ′)]}
∣∣∣∣. (C2)

FIG. 7. These plots use the interpolating model with
V (M1, M2) = M1 + 2M2 � 2, M1 � M2. As in Fig. 6, large
colored circles marked with B, H , or I denote V (M1, M2) = VT

for the Banik, Hall, and interpolating models, respectively. The
interpolating model, which for these parameters is defined by
Table VI, requires less mutual information (light yellow circle) to
produce a given Bell violation than the previously studied Hall
and Banik et al. subcases, denoted by light green and dark red
circles, respectively. Top: Mutual information for the Hall model
(dotted green curve), the Banik et al. model (solid red curve), and
the minimum of the interpolating model ĨI (V ) ≡ minM2 ĨI (V,M2)
(black dots, as in Fig. 6), in bits, plotted as a function of CHSH
violation V ∈ [0, 2] (see inset plot). The Hall model always requires
less mutual information than the Banik model to produce a given
Bell violation, while the minimum of the interpolating model
requires even less mutual information than the Hall or Banik models.
Bottom: Mutual information ĨI (VT , M2) required to reach the
Tsirelson bound V (M1,M2) = VT (e.g., dashed black line in Fig. 6),
plotted in bits as a function of M2 ∈ [0, VT /3].

Then

S � T̃1 + T̃2 + T̃3, (C3)

where

T̃1 =
∫

dλ|p(λ|x, y ′)[A(x, λ)B(y ′, λ) + A(x, λ)B(y, λ)]

−p(λ|x ′, y ′)[A(x ′, λ)B(y ′, λ) − A(x ′, λ)B(y, λ)]|,
(C4)

T̃2 =
∫

dλ|A(x, λ)B(y, λ)[p(λ|x, y) − p(λ|x, y ′)]|, (C5)
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and

T̃3 =
∫

dλ|A(x ′, λ)B(y, λ)[p(λ|x ′, y) − p(λ|x ′, y ′)]|.
(C6)

Clearly

T̃2 + T̃3 = M2 + M̂2, (C7)

and T̃1 can be rewritten as

T̃1 =
∫

dλ|B(y, λ)[A(x, λ)p(λ|x, y ′) + A(x ′, λ)p(λ|x ′, y ′)]

+B(y ′, λ)[A(x, λ)p(λ|x, y ′) − A(x ′, λ)p(λ|x ′, y ′)]|

�
∫

dλ

{∣∣∣∣B(y, λ)A(x, λ)

[
p(λ|x, y ′)

+ A(x ′, λ)

A(x, λ)
p(λ|x ′, y ′)

]∣∣∣∣ +
∣∣∣∣B(y ′, λ)A(x, λ)

×
[
p(λ|x, y ′) − A(x ′, λ)

A(x, λ)
p(λ|x ′, y ′)

]∣∣∣∣
}

�
∫

dλ

{∣∣∣∣p(λ|x, y ′) + A(x ′, λ)

A(x, λ)
p(λ|x ′, y ′)

∣∣∣∣
+

∣∣∣∣p(λ|x, y ′) − A(x ′, λ)

A(x, λ)
p(λ|x ′, y ′)

∣∣∣∣
}

� 2 + M1[y ′], (C8)

as we had claimed.

APPENDIX D: CONSTRUCTION OF THE
FOUR-PARAMETER MODEL

The two-parameter model of Sec. V was found by trial
and error, but attempts at finding a four-parameter model
using trial and error did not succeed. But there is a more
systematic way, based on examining the proof of the bound in
Sec. VII, identifying the conditions that are needed to saturate
it. We describe this systematic approach in some detail in this
appendix, as we believe the basic ideas are of general value to
the construction of saturating models.

Without loss of generality we can seek a solution with
M1 � M2, because the opposite case can be treated by in-
terchanging the labels 1 and 2, which is equivalent to inter-
changing (x, x ′) with (y, y ′). Similarly, we can without loss
of generality seek a solution with M1[y] � M1[y ′], because
the opposite case can be treated by interchanging the labels
y and y ′. Thus, our solution will have M1 = M1[y] and
M̂1 = M1[y ′]. Finally, we can without loss of generality seek
a solution with M2[x] � M2[x ′], so the solution will have
M2 = M2[x] and M̂2 = M2[x ′].

The proof involved showing two bounds on T1: T1 � 2 +
M1[y] and T1 � 2 + M1[y ′]. For the conventions adopted in
the previous paragraph, it is the second of these bounds that is
the more stringent, so it is the second that must be saturated.
This means that we must examine the bound that was demon-
strated in Appendix C, Eqs. (C2)–(C8). We initially restrict
ourselves to the case M2 + M̂1 + M̂2 � 2, since it is only in
this case that the bound shown in Eq. (72) is saturated.

Starting with Eq. (C2) for S, we recognize that the integral
over λ reduces for our model to the sum over the four values
of λ: λ1 . . . λ4, as listed in Table I. The bound is established
by rewriting the integrand as the sum of judiciously chosen
pieces, and then bounding the absolute value of the integral by
the sum of the integrals of the absolute values of the pieces.
The bound will therefore be equal to S if each of the pieces is
positive, so the absolute value signs become irrelevant. (The
bound would also be saturated if all the pieces were negative,
but we did not pursue this option.) Thus, we will examine each
piece, and insist that it be positive.

We start with the third line of Eq. (C2), which are the terms
that are bounded by T̃2, as shown in Eq. (C5). The signs are
determined by the product A(x|λi )B(y|λi ), which according
to Table I is equal to 1 for i = 1, 2, 3, and −1 for i = 4. Thus,
if all terms are to be positive, we need

p(λi |x, y) − p(λi |x, y ′)
{
� 0, for i = 1, 2, 3,

� 0, for i = 4.
(D1)

Next, we examine the fourth line of Eq. (C2), which shows
the terms that are bounded by T̃3, as shown in Eq. (C6). In this
case the signs are controlled by the product A(x ′|λi )B(y|λi ),
which according to Table I is equal to 1 for i = 1, 3, 4, and
−1 for i = 2. Thus, we require

p(λi |x ′, y) − p(λi |x ′, y ′)
{
� 0, for i = 1, 3, 4,

� 0, for i = 2.
(D2)

Finally, we examine the first two lines of Eq. (C2),
which are the terms that are bounded by T̃1. Arranging the
terms as in Eq. (C8), the relevant signs are determined by
B(y|λi )A(x|λi ), which is 1 for i = 1, 2, 3, and −1 for i = 4;
by A(x ′|λi )/A(x|λi ), which is 1 for i = 1, 3, and −1 for
i = 2, 4; and by B(y ′|λi )A(x|λi ), which is 1 for i = 1, 2, 4,
and −1 for i = 3. Using these signs, one can write the sum as

T̃1 � |{[p(λ1|x, y ′) + p(λ1|x ′, y ′)]

+ [p(λ1|x, y ′) − p(λ1|x ′, y ′)]

+ [p(λ2|x, y ′) + p(λ2|x ′, y ′)]

+ [p(λ2|x, y ′) − p(λ2|x ′, y ′)]

+ [p(λ3|x, y ′) + p(λ3|x ′, y ′)]

+ [p(λ3|x ′, y ′) − p(λ3|x, y ′)]

+ [p(λ4|x, y ′) + p(λ4|x ′, y ′)]

+ [p(λ4|x ′, y ′) − p(λ4|x, y ′)]}|. (D3)

Thus, the terms will all be positive provided that we insist that

p(λi |x, y ′) − p(λi |x ′, y ′)
{
� 0, for i = 1, 2,

� 0, for i = 3, 4.
(D4)

To enforce these conditions, we parametrize the condi-
tional probability table as in Table IX, which is designed
so that the inequalities of Eqs. (D1), (D2), and (D4) are all
enforced by the conditions fi � 0 for all i.

Since we would like our four-parameter model to reduce
to the two-parameter model of Sec. V when M̂1 = M1 and
M̂2 = M2, it is useful to list the values of the f ’s for the two-
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TABLE IX. Parametrization of the conditional probabilities
p(λi |u, v), with the property that the inequalities described by
Eqs. (D1), (D2), and (D4) are all enforced by the conditions fi � 0
for all i.

λi p(λ|x, y ) p(λ|x, y ′) p(λ|x ′, y ) p(λ|x ′, y ′)

λ1 f1+f5+f6 f1+f5 f1+f7 f1

λ2 f2+f8+f9+f10 f2+f8+f9 f2 f2+f8

λ3 f3+f13 f3 f3+f11+f12 f3+f11

λ4 f4 f4+f14 f4+f14+f15+f16 f4+f14+f15

parameter model (for M2 + M̂1 + M̂2 � 2):

f1 = (2 − M1 − 2M2)/8, f2 = (2 − M1 − 2M2)/8,

f3 = (2 − M1 − 2M2)/8, f4 = (2 − M1 − 2M2)/8,

f5 = (M1 + M2)/4, f6 = 0, f7 = M2/2,

f8 = M2/2, f9 = (M1 − M2)/4, f10 = 0,

f11 = (M1 + M2)/4, f12 = 0, f13 = M2/2,

f14 = M2/2, f15 = (M1 − M2)/4, f16 = 0. (D5)

The requirement that the model saturate the bound that S �
2 + M2 + M̂1 + M̂2 can be expressed using Eq. (26) for S,
with Table I. The result can be written most simply if one also
uses the normalization of probabilities, which gives

S = 4 − 2[p(λ1|x ′, y ′) + p(λ2|x ′, y)

+p(λ3|x, y ′) + p(λ4|x, y)]

= 4 − 2(f1 + f2 + f3 + f4), (D6)

so saturation implies that

f1 + f2 + f3 + f4 = 1 − 1
2 (M2 + M̂1 + M̂2). (D7)

Using this equation, the normalization equations are found to
be equivalent to

f6 + f10 + f13 = f14, (D8)

f7 + f12 + f16 = f8, (D9)

f5 + f8 + f9 + f14 = 1
2 (M2 + M̂1 + M̂2), (D10)

f8 + f11 + f14 + f15 = 1
2 (M2 + M̂1 + M̂2). (D11)

We next calculate

M1 = M1[y] = f8 + f9 + f10 + f14 + f15 + f16

+ |f11 + f12 − f13| + |f5 + f6 − f7|, (D12)

M2 = M2[x] = f6 + f10 + f13 + f14, (D13)

M̂1 = M1[y ′] = f5 + f9 + f11 + f15, (D14)

M̂2 = M2[x ′] = f7 + f8 + f12 + f16. (D15)

By combining Eq. (D8) with Eq. (D13), and Eq. (D9) with
Eq. (D15), one has immediately

f14 = 1
2M2, (D16)

f8 = 1
2M̂2, (D17)

and then Eqs. (D8)–(D11) become

f6 + f10 + f13 = 1
2M2, (D18)

f7 + f12 + f16 = 1
2M̂2, (D19)

f5 + f9 = 1
2M̂1, (D20)

f11 + f15 = 1
2M̂1. (D21)

To make use of Eq. (D12) for M1, one needs to evaluate the
two expressions inside absolute value signs. From Eq. (D5),
we see that each expression is non-negative in the two-
parameter model. Since we would like the four-parameter
model to reduce to the two-parameter model, we will assume
that these expressions are non-negative here:

f11 + f12 − f13 � 0, (D22)

f5 + f6 − f7 � 0, (D23)

in which case Eq. (D12) simplifies to

f7 + f13 = 1
2 [M2 + M̂2 − (M1 − M̂1)]. (D24)

From Eqs. (D5), we see that for the two-parameter solution,
f6 = f10 = f12 = f16 = 0. At this point we will assume that
the four-parameter solution we seek maintains the property
that

f10 = f16 = 0, (D25)

although we will see that it will not be possible to also require
f6 and f12 to vanish. We will find such a solution, which is our
goal, and we make no claims that we will find all solutions.
Then Eqs. (D18) and (D19) can be solved for f13 and f7,
which allows us to rewrite Eqs. (D22)–(D24) as

f11 � 1
2 (M2 − M1 + M̂1), (D26)

f5 � 1
2 (M̂2 − M1 + M̂1), (D27)

f6 + f12 = 1
2 (M1 − M̂1), (D28)

and the constraints f13 � 0 and f7 � 0 become

f6 � 1
2M2, (D29)

f12 � 1
2M̂2. (D30)

Consider first the values of f6 and f12. Equations (D28)–
(D30) specify the sum of these two quantities, and upper
limits for each. The limit for f6 is greater than or equal to
the limit for f12. The sum may or may not be smaller than
the individual limits, but Eq. (77) guarantees that the sum
is always less than or equal to the sum of the limits, so the
equations can always be satisfied. A simple solution is to
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assign the full sum to f6, if the sum is less than the upper limit,
and otherwise to set f6 equal to its upper limit, and assign the
balance of the sum to f12:

f6 = 1
2 min(M1-M̂1,M2), (D31)

f12 = 1
2 [M1 − M̂1 − min(M1-M̂1,M2)]. (D32)

Given that we have chosen to set f10 = f16 = 0, Eqs. (D18)
and (D19) can now be used to show that

f7 = 1
2 [M̂1 + M̂2 − M1 + min(M1 − M̂1,M2)], (D33)

f13 = 1
2 [M2 − min(M1 − M̂1,M2)]. (D34)

Now consider the values of f5 and f9, where the sum is
given by Eq. (D20) and a lower bound on f5 is given by
Eq. (D27). Both f5 and f9 must be non-negative, which may
or may not be a more stringent bound for f5 than Eq. (D27),
depending on parameters. In addition, Eq. (D5) shows the
values we would like these functions to have when M̂1 = M1

and M̂2 = M2. A reasonably simple solution satisfying all
these properties is given by

f5 = 1
4 [M̂1 + M2 − min(M1 − M̂1,M2)], (D35)

f9 = 1
4 [M̂1 − M2 + min(M1 − M̂1,M2)]. (D36)

The discussion of f11 and f15 is almost identical to that of
f5 and f9, except that the first terms on the right-hand sides
of Eqs. (D26) and (D27) are different. But the same solution
satisfies all the conditions:

f11 = 1
4 [M̂1 + M2 − min(M1 − M̂1,M2)], (D37)

f15 = 1
4 [M̂1 − M2 + min(M1 − M̂1,M2)]. (D38)

Finally, we need to choose values of f1–f4 consistent with
the sum in Eq. (D7). Following the two-parameter expressions
in Eq. (D5), we choose them to be equal, so

f1 = f2 = f3 = f4 = 1
8 (2 − M2 − M̂1 − M̂2). (D39)

All of the f ’s have now been specified, and putting it all
together leads to Table III.

To extend the model into the region M2 + M̂1 + M̂2 > 2,
as is shown in Table IV, there is again a systematic method,
but again it involves some arbitrary choices, so the answer is
not unique.

Suppose that we are given an arbitrary allowed set of pa-
rameter values, (M1,M2, M̂1, M̂2), consistent with Eqs. (75)
and (77), and the labeling convention that M1 � M2. Our goal
is to construct a table of conditional probabilities consistent
with these parameters.

If M2 + M̂1 + M̂2 � 2, then we of course just use the
solution already constructed. But if the same table is used
when M2 + M̂1 + M̂2 > 2, one sees immediately that the
terms on the diagonal running from lower left to upper right
(hereafter, the main diagonal) all become negative. Saturation
for M2 + M̂1 + M̂2 > 2 implies S = 4, which with Eq. (D6)
implies that the sum of the main diagonal terms must vanish,
which in turn implies that each term on the main diagonal
must vanish, since they cannot be negative. It is thus clear that

TABLE X. Definition of the matrix Gi,j , where the matrix of
conditional probabilities for the four-parameter model, when M2 +
M̂1 + M̂2 > 2, is written as Pi,j = P

(0)
i,j + Gi,j , where P

(0)
i,j is the

matrix in Table III.

λi p(λ|x, y ) p(λ|x, y ′) p(λ|x ′, y ) p(λ|x ′, y ′)

λ1 g1 + g2 −g3 − h −g5 − h 2h

λ2 −g1 − h g3 + g4 2h −g7 − h

λ3 −g2 − h 2h g5 + g6 −g8 − h

λ4 2h −g4 − h −g6 − h g7 + g8

for M2 + M̂1 + M̂2 > 2, the terms on the main diagonal of
Table III must be adjusted by adding a quantity 2h, given by

h = 1
2q3 = 1

16 (M2 + M̂1 + M̂2 − 2), (D40)

where q3 is defined in Eq. (80). We initially allow arbitrary
variation of the other entries, requiring however that the sum
for each row remain equal to 1. Such an arbitrary variation can
be parametrized by the matrix Gi,j shown in Table X, where
the full conditional probabilities for M2 + M̂1 + M̂2 > 2 will
be given by

Pi,j = P
(0)
i,j + Gi,j , (D41)

where P
(0)
i,j is the matrix defined by Table III.

To prevent the calculations of M1[v] and M2[u] from
becoming prohibitively complicated, we will insist that the
g’s be chosen so that the ordering of any two terms that are
subtracted in the calculations of M1[v] and M2[u] is fixed.
Since we are trying to construct a four-parameter model that
reduces to the two-parameter model, we choose the ordering
to match that of the two-parameter model. From Table II, we
see that

P1,1 − P1,2 � 0, P1,3 − P1,4 � 0,

P2,1 − P2,2 � 0, P2,3 − P2,4 � 0,

P3,1 − P3,2 � 0, P3,3 − P3,4 � 0,

P4,1 − P4,2 � 0, P4,3 − P4,4 � 0,

P1,2 − P1,4 � 0, P1,1 − P1,3 � 0,

P2,2 − P2,4 � 0, P2,1 − P2,3 � 0,

P3,2 − P3,4 � 0, P3,1 − P3,3 � 0,

P4,2 − P4,4 � 0, P4,1 − P4,3 � 0.

(D42)

Note that in two cases (P2,1 − P2,2 and P4,3 − P4,4) these
inequalities are inconsistent with Eqs. (D1), (D2), and (D4),
but that is expected. Equations (D1), (D2), and (D4) are
the conditions to saturate S � 2 + M2 + M̂1 + M̂2, but for
M2 + M̂1 + M̂2 > 2, the bound to be saturated is S � 4. For
these two cases, Table III shows that, for M2 + M̂1 + M̂2 �
2, P2,1 = P2,2 and P4,3 = P4,4, so the orderings specified in
Eq. (D42) do not require any changes in ordering as M2 +
M̂1 + M̂2 crosses the borderline at 2.

The other crucial requirement on the g’s is the positivity of
the conditional probabilities,

Pi,j � 0. (D43)
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With the orderings specified in Eq. (D42), it is straightfor-
ward to find

M1[y] = M1 + 2(g2 + g5 − 2h),

M2[x] = M2 + 2(g1 + g3 − 2h),

M1[y ′] = M̂1 + 2(g4 + g7 − 2h),

M2[x ′] = M̂2 + 2(g6 + g8 − 2h).

(D44)

A successful model requires that the second term on the right-
hand side of each line should vanish, which allows us to solve
for g5, g3, g7, and g8 in terms of the other g’s.

The problem now is to find values for the independent
gi’s—g1, g2, g4, and g6—which are consistent with all the
constraints in Eqs. (D42) and (D43).

When the 32 constraints are written out, one finds that each
of the four independent gi’s appears in 8 of them, with 4 in
the form of upper limits, and 4 in the form of lower limits. In
every case there is one redundant pair, so each independent
gi has three upper bounds and three lower bounds. One of
the upper bounds and one of the lower bounds involves a
second independent g, so we put those bounds aside for later
consideration. This leaves two upper bounds and two lower
bounds for each independent gi . Depending on parameters,
either one of the upper bounds and either one of the lower
bounds can be the most restrictive. One can then construct a
function equal to the minimum of the two upper bounds and
a function equal to the maximum of the two lower bounds,
so now one has one upper bound and one lower bound for
each independent gi . It can then be shown that if these bounds
are all satisfied, then the inequalities that we put aside—those
that involve more than one independent gi—are automatically
satisfied.

By comparing the bounding functions for the different gi’s,
one finds that there are some simple regularities. g1,max is for
all parameters at least as stringent as g6,max, so we can take

g1,max as the upper bound for both g1 and g6, where

g1,max = 1
16 [R + 4(2M̂1 + M̂2 + 2)

− 8 max(M2 + M̂1, 2) + 4q2], (D45)

where R and q2 were defined in Eqs. (83) and (79), respec-
tively. Similarly, we can take g6,min as the lower bound for
both g1 and g6, where

g6,min = 1
16 [R + 4(2 + M̂2)

− 8 min(M̂2 + M1, 2) + 4q2)]. (D46)

Since g1 and g6 now have the same upper and lower
bounds, we can choose to satisfy these relations by setting
them equal to each other, and equal to the mean of the upper
and lower bounds:

g1 = g6 = 1
2 [g1,max + g6,min]. (D47)

A similar analysis of g2 and g4 shows that they can also be
described by common bounds, with

g2,max = 1
16 [−3R + 8(M2 − 2) (D48)

+ 8 min(M1 + M̂2, 2) − 8q2), (D49)
g4,min = 1

16 [8 max(M̂1 + M2, 2) − 3R − 16]. (D50)

We choose the solution

g2 = g4 = 1
2 [g2,max + g4,min]. (D51)

The final notation was chosen to simplify the appearance
of the solution, defining

g1 = g6 = h − q4, (D52)

g2 = g4 = h + q4, (D53)

where q4 was defined in Eq. (81).
When the matrix Gi,j is rewritten in terms of q3 and q4,

one finds the conditional probabilities given in Table IV, thus
completing the construction of the four-parameter model.
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