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Constraint-induced stresses develop during Li-ion battery cycling, because anode and cathode materials expand and contract as
they intercalate or de-intercalate Li. We show in this manuscript that these stresses, in turn, can significantly modify the maximum
capacity of the device at a given cell voltage. All-solid-state batteries impose an external elastic constraint on electrode particles,
promoting the development of large stresses during cycling. We employ an analytic and a finite element model to study this problem,
and we predict that the electrode’s capacity decreases with increasing matrix stiffness. In the case of lithiation of a silicon composite
electrode, we calculate 64% of capacity loss for stresses up to 2 GPa. According to our analysis, increasing the volume ratio of
Si beyond 25-30% has the effect of decreasing the total capacity, because of the interaction between neighboring particles. The
stress-induced voltage shift depends on the chemical expansion of the active material and on the constraint-induced stress. However,
even small voltage changes may result in very large capacity shift if the material is characterized by a nearly flat open-circuit potential
curve.
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During charge and discharge of lithium-ion batteries, anode and
cathode materials expand and contract as they intercalate or de-
intercalate Li. Graphite, the most commonly used negative electrode
material, shows a volume expansion of up to 10%.1 A much larger (up
to 300%) volume change is observed in high capacity anode materials
such as silicon and tin.2,3 Even with moderate values of intercalation-
induced strain, large stresses can develop within the microstructure,
and eventually cause cell degradation.4 Much of the prior work where
lithiation-induced stresses have been addressed in detail consider in-
dividual particles.5–7 This particle fracture exposes new surfaces to
the electrolyte. This leads to the formation of an additional solid
electrolyte interphase, and results in capacity fade especially after
cycling.8 Most real electrodes consist of multi-particle arrays, where
contact stresses can arise if the individual particles are sufficiently
closely packed or jammed together. However, these stresses are local-
ized and probably mitigated by the presence of soft polymer binders.

Loss of connectivity to the current collector through damage of
the binder and loss of pore volume have been also identified as failure
mechanisms.9 The entire cell may also change thickness during charge
and discharge due to the difference in volume expansion between
negative and positive electrodes. Stresses and delamination at the cell
level are generated, and can reduce good electrical contact among the
cell components.

To date, the stress-related phenomena that are outlined above have
been primarily addressed in electrodes with liquid electrolytes. In
these systems, the electrolyte does not substantially constrain the
volume expansion of the individual active particles. As noted above,
some stress buildup at particle contacts is expected to occur, but the
overall average stresses in the active materials will be limited. This
has been confirmed with in-situ stress measurements on particle-based
electrodes in liquid electrolytes, which show overall stress levels that
are below 10 MPa both in tension and in compression.10

In contrast to these conventional electrodes, all-solid-state batter-
ies (ASSBs; i.e., those using solid-state electrolytes SSE) are made
of almost fully dense composite electrodes. Electrode particles are
embedded in a solid matrix made of an electrolyte (conducting Li
ions) mixed with an electronically conducting material. In order to
establish good contact at the particle interface (and maintain it over
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cycling), low levels of porosity are sought in the electrode process-
ing. Therefore, the chemical expansion of electrode particles is highly
constrained by the electrolyte. With stiff ceramic electrolytes, the
constraint-induced stresses that develop during cycling can reach val-
ues on the order of 1 GPa or higher. As shown in this manuscript, these
stresses, in turn, can significantly modify the maximum capacity of
the device at a given cell voltage. Even small stress-induced voltage
shifts will drastically lower the capacity of materials with a nearly
flat intercalation curve. In the case of a silicon composite electrode,
we show that lithiation stresses can reach 2 GPa and the associated
capacity loss is 64% of the theoretical value. Although a variety of
proposed nano-structured electrodes–for instance nano-particles en-
capsulated with a carbon shell 11–15–have been proposed to improve
durability of Si electrodes, these solutions have not considered, yet,
the trade-off between durability and the capacity loss by constraining
the large volume expansion of Si.

The possible advantages of all-solid-state rechargeable lithium-ion
batteries have been described elsewhere (refer to 16–22 for a review of
the field). In one common design of ASSBs, the positive and negative
electrodes are composites of active electrode-particles embedded in a
solid-matrix admixture of ionic and electronic conducting materials.
Cathode electrodes are, in most cases, produced and assembled in the
lithiated state. During the first discharge, the cathode particles tend
to shrink as they de-intercalate Li (the expansion of LiCoO2 is, for
example, an exception).23 If the cathode particles remain bonded to
the SSE, the particles will be put in tension, as well as the surrounding
SSE matrix. The opposite is generally true for the expansion of the
anode particles.

The following simple analogy illustrates many of the concepts pre-
sented in this manuscript. A dry sponge will expand as it is exposed
to water if it is unconstrained. If an unconstrained sponge is exposed
to a humid environment (i.e., a PH2O), it will undergo a strain that is
an increasing function of humidity until the sponge’s water concen-
tration is in chemical equilibrium with its environment. If the sponge
is constrained, it will absorb or desorb water until it comes to a com-
bined chemical and elastic equilibrium with its environment. That the
value of equilibrium concentration differs when it is put under com-
pression is evident when squeezing a sponge under water. Water in a
sponge will tend to flow from regions of compression until it comes
to elasto-chemical equilibrium. The capacity of a sponge to absorb
water depends on the applied elastic stress. Replacing the sponge
with electrode particles and the constraint with a SSE completes the
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analogy, electrode capacity depends on stress. (In solid materials, the
ratio of solute composition to stress-free strain is the Vegard rank-2
tensor coefficient. This paper only treats the isotropic case.)

In principle, a battery could be made with partially lithiated Si24

on both sides of a separator (or partially lithiated Al which can expand
by 100%).25 The battery could be cycled by alternatively compressing
and releasing each side, the side placed under compression becomes
the positive electrode until enough Li+ passes through the separator
to establish equal chemo-mechanical potentials on both sides.

The electro-chemo-mechanical literature has mostly focused on the
relationship between tensile stress, fracture and battery performance.
The role of intercalation-induced stress on the mechanical failure of
electrode particles has been treated elsewhere.26–57 Here we consider,
instead, the impact of stress on the electrode capacity, only based on
solution thermodynamics.

The rate of change of the open-circuit potential (OCP) with re-
spect to applied compressive stress has been measured in commercial
lithium-ion pouch cells.58 In Ref. 58 the authors relate the stress-
potential coupling factor to the expansion characteristic of the elec-
trodes, and propose the development of mechanical force sensors
based on intercalation materials.

Because stress is a component that determines the driving force
for Li diffusion, it must play a role in battery behavior even before it
reaches a critical value for fracture or other dissipative phenomena.
The present work treats the role of compressive stress in decreasing
cell capacity. The phenomenon is general, but we will focus on ASSBs.

For the diffusion of a species j , the diffusion potential M j is used
to generalize the driving forces for diffusion when there are multiple
work terms associated with the motion of species j .59,60 The driving
force for diffusion of species j is −∇M j

c The diffusion of species j
stops whenM j is uniform. In this paper, we will assume there are three
contributions to the diffusion potential: a chemical potential, a stress
potential, and an electric potential. For convenience, we combine the
chemical and stress potential into a single term � j which we call the
chemo-mechanical potential: �� j can be measured with an open-
circuit electrochemical cell’s voltage when only an ion of species j
can traverse the separator.

We consider the case of diffusion by vacancy exchange mechanism
in an electrode material with constrained moles of sites cmax available
per unit of reference volume (i.e., limited Li solubility). Larché and
Cahn 59 introduced the diffusion potential which becomesd

M(c, σ) = �Li (c, σ) = RT log
cγ

cmax − c
− �

3
Trσ [1]

under the assumption of constant elastic coefficients and isotropic
chemical expansion. Larché and Cahn did not include electrochemical
terms and so M is equivalent to �.

In Eq. 1, the stress potential coupling term is composed of the trace
of the Cauchy stress (Trσ = σi i ) and of the partial molar volume � of
Li in the host lattice e. The symbol c represents the Li concentration
as the number of moles per unit reference (undeformedf) volume.

cIf the motion of species j requires the motion of another species k, then gradients of Mk

appear in the driving force (see Equations 18 and 19 of Reference 61. In the case treated
in this paper, Li is assumed to exchange with vacancies which have a reference diffusion
potential of zero.
dNotation:

� in the reminder of the paper we will drop the index when referring to �Li
�

γ is defined as the ratio between the activity coefficient of Li and the activity coefficient
of Li vacancies

eWe refer to the chemical expansion as the change in lattice dimension and therefore
volume, that results from changes in chemical composition, and we express it in terms
of the Vegard’s parameters. Assuming a material with isotropic chemical expansion, the
partial molar volume in Eq. 1 can be written in terms of the isotropic Vegard’s parameter
β as � = 3 β

ρh
, with ρh being the molar volume of the hosting compound. In case of

anisotropic chemical expansion the last term in Eq. 1 reads −(1/3)�i i σi i = −(1/ρh )βi i σi i ,
with β11, β22, β33 being the Vegard’s parameters in the three principal directions (see page
1059 of Reference 59).
fWe take the reference configuration to be also stress-free.

A detailed derivation of the diffusion potential in the context of
nonlinear continuum mechanics theory can be found in Ref. 62. The
nonlinear formulation has been employed in the finite element ana-
lyzes presented in Solubility of lithium in a silicon all-solid battery
electrode - Finite element model section.

At equilibrium, the diffusion potential of a species j , � j + z jFE
is constant where F is the faraday constant, E is the voltage difference
with respect to some standard, and z j is charge transfer associated with
the diffusion of the species j . Therefore, the chemo-mechanical poten-
tial can be obtained by measuring changes in the open-circuit potential
under superimposed stresses. The stress-OCP coupling has been esti-
mated to be 62 mV/GPa for sputtered amorphous silicon63 in thin-film
configurations. Stress-OCP coupling in thin-film Si electrodes has
been exploited by mechanical energy harvesters.24 Bending-induced
asymmetric stresses generate chemical-potential difference, driving
lithium ion flux from the compressed to the tensed electrode to gen-
erate electrical current up to 20 μA cm2. In Ref. 64 at 20% of the
initial discharge, the authors measured a variation in the potential of
36 mV and 50 mV, due to an applied pressure of 150 MPa and 230
Mpa respectively. Also, Son et al.65 report a shift (of about 100 mV)
to a lower potential for the Si-alloying reaction plateau. Such a volt-
age shift is due to the compressive stress arising from mechanical
confinement of Si particles, and this shift is consistent with a reduced
equilibrium Li chemo-mechanical potential in the two phases.

Funayama and coauthors designed a four-point bending test to
measure stress-potential coupling in symmetric cells consisting of
two Li0.6CoO2 or Li0.9Mn2O4 electrodes and the Li0.29La0.57TiO3 elec-
trolyte. The measured voltage change was observed to depend linearly
on the applied stress, with the ratios 6.1 × 10−12 V/Pa for Li0.6CoO2

and 1.9 × 10−12 V/Pa for Li0.9Mn2O4–which is a weaker coupling
than silicon.

Eq. 1 implies that two different Li concentrations can be in equi-
librium if their stress states differ. As qualitatively illustrated in Fig.
2, the same value of diffusion potential corresponds to a higher con-
centration in a stress-free material, with respect to a material under
compressive stress (in combination with positive Vegard’s parame-
ters).

The effect will be accentuated in systems with larger Vegard’s
parameters, such as Li in Si. The stress-OCP coupling is limited by
the value of stress that the material can withstand without fracturing,
or by the characteristic yield stress if the material is ductile. The
magnitude of the stress-OCP coupling for a specific electrode material
depends on the shape of the intercalation curve (i.e., on the derivative
of the potential with respect to Li content). A larger deviation of Li
concentration with stress will occur in systems with a relatively ’flat’
open-circuit potential (OCP) curve. Referring to Fig. 2, the capacity
shift can be estimated as

�c ≈
�

3 Trσ

∂(OC P)/∂c
[2]

Because ∂(OC P)/∂c depends on the enthalpy of mixing, the local
value of the activity coefficient γ(c) affects the stress-induced shift
in Li solubility. The role of γ(c) has been investigated in Ref. 66 in
the context of a thin-film Si electrode. Compressive stresses reaching
1 GPa have been estimated to alter the electrochemical potential by
50 mV. However, the largest stress is attained at a smaller lithiation
state where the OCP curve is steep, and the authors calculated a
decrease in Li content of about 20%.

The stress-OCP coupling is expected to be larger for electrode
materials characterized by large chemical expansions. Silicon is an
extreme case, with about 270% of volumetric expansion with the
insertion of 3.75 moles of Li per mole of Si. The large Vegard con-
stant of Li in Si is known to diminish the durability of Si composite
electrodes.64 Concentration gradients can cause shear stresses suffi-
cient to pulverize the Si particles, ultimately causing loss of electrical
contact.

In general Vegard’s stresses develop in electrode particles depend-
ing on the level of mechanical constraints imposed by the surround-
ing matrix, such as a solid electrolyte, a binder, or an active-particle
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Figure 1. A silicon particle in a solid matrix is modeled in Solubility of
lithium in a silicon all-solid battery electrode - Analytical model of a spher ical
inclusion section as a spherical inclusion in an infinite matrix. As Li diffuses in
the particle, Si chemical expansion is constrained by the surrounding matrix.
Compressive stresses will develop within the particle. The magnitude of the
particle’s compressive stress increases with matrix stiffness.

encapsulating protective-shell (in core-shell topology). Mechanical
confinement provided by an electrochemically inactive matrix or coat-
ing has been proposed64,65 as a viable solution to limit the volume
expansion of Si. Such methods show advantages similar to a vari-
ety of proposed nano-structured electrodes (for instance nano-particle
encapsulation with a carbon shell11–15).

However, stress-OCP coupling should diminish the capacity in
systems where Si particles are not free to expand. Piper et al.64 in-
vestigated a system of Si and glassy solid electrolyte (77.5 Li2S -
22.5 P2S5), and showed that volume confinement of Si particles limits
achievable capacity, and allows for higher capacity retention. The ap-
plication of an external load (150 and 230 MPa) contributes to a larger
compressive stress and consequently to a lower Li solubility. Given
silicon’s large theoretical capacity, confinement creates a compromise
between energy density and durability.

Similarly, Son et al.65 employed melt spinning to embed nano-Si
particles in a Ti4Ni4Si7 matrix, which acts as a mixed conductor. In
such a constrained microstructure, lithiation is limited to 900 mAhg−1

(almost 1/4 of the theoretical capacity), and a coulombic efficiency
of 99.7% is maintained after 50 cycles.

Motivated by the interest in silicon as a high capacity anode
material and by the recent experimental evidence for stress-limited
lithiation,64,65 we analyze the case of Si anode particles embedded in
an infinite solid-electrolyte matrix, taking the electrolyte’s Young’s
modulus as a parameter that we will vary in the model. Analytical
solutions for spherical inclusions in an infinite matrix are known.68

Using an experimental OCP curve for Si, we calculate the effect of
stress on capacity in Solubility of lithium in a silicon all-solid battery
electrode - Analytical model of a spher ical inclusion section. We
also estimate stress-potential coupling effects for a generic spherical
electrode particle as a function of its chemical expansion and its stress
state (assuming no fracture or other irreversible elastic effects).

In Solubility of lithium in a silicon all-solid battery electrode -
Finite element model section, we compare the results from Solubility
of lithium in a silicon all-solid battery electrode - Analytical model of
a spher ical inclusion section with data from a finite element model
(FEM) of a composite microstructure. In the finite element analyses,
we model an assemblage of square particles. In addition to investigat-
ing the effect of a finite matrix, the FEM calculations reveal the effect
of stress concentrations due to jagged interfaces. The stress concen-
trations are likely sites of fracture initiation and its associated loss
of electrical contact. We discuss the conditions for formulating the
diffusion potential within a nonlinear continuum mechanics approach
(Eq. A1).62

Solubility of Lithium in a Silicon All-Solid Battery Electrode -
Analytical Model of a Spherical Inclusion

We consider a Si electrode particle embedded in a matrix, rep-
resenting a composite material made of solid electrolyte and an

Figure 2. The diffusion potential is a generalization of the chemical potential,
in the sense that it includes several driving forces for diffusion, in addition to
chemical composition. The figure above highlight the contribution of com-
pressive stress on the total diffusion potential for a material with positive
Vegard’s parameters. Points characterized by the same diffusion potential (an
equilibrium state), have two different values of concentration. The shift in
concentration �c depends (according to Eq. 2) on pressure and on the tangent
to the open-circuit potential curve (at a certain state of charge). It follows that
a larger overpotential is required to intercalate Li in a particle that is under
compressive stress.

electronic-conductive additive (see Fig 1). In this model, the par-
ticle’s interfacial traction depends on the Young’s modulus of the
matrix region. We will quantify the effect of such confinement by
calculating the maximum capacity that the particle can achieve based
on solution thermodynamics. Electrode and electrolyte materials are
modeled as isotropic. We assume silicon to be amorphous–crystalline
Si turns amorphous by alloying with lithium during the first lithiation
cycle–and to behave isotropically.

The hydrostatic pressure P within a spherical inclusion (of Young’s
modulus Ep , Poisson’s ratio νp and Vegard’s parameter β) in an infinite
isotropic matrix region (with the modulus of elasticity Em , Poisson’s
ratio νm and no matrix chemical expansion) is

p = β(c/cmax)
1+νm
2Em

+ 1−2νp

E p

[3]

Eq. 3 has been used to calculate thermal-expansion-misfit stresses
during cooling of a composite material.67 According to Eq. 3, the
pressure is constant within the particle, and is independent of particle
size.

In amorphous silicon thin-film electrodes, the material has been
observed to behave elastically up to a biaxial stress of approximately 1
GPa.63 For a spherical inclusion, the stress state arising from isotropic
volumetric expansion is purely hydrostatic.68 In absence of a devia-
toric component, the von Mises stress is zero and no plastic defor-
mation occurs. For constant elastic properties, Eq. 3 shows a linear
dependence of the pressure on Li concentration as illustrated in Fig. 3.
The pressure is plotted over a limited range of Li concentration, cor-
responding to the Li solubility predicted by the model and explained
below. Eq. 3 tends to overestimate the pressure by assuming the ma-
trix is infinite. We compare these values with stresses predicted by the
finite element model at the end of Solubility of lithium in a silicon
all-solid battery electrode - Finite element model section.

The stress-OCP coupling in the the electrode particle is computed
according to Eq. 1. The stress-dependent term of Eq. 1 is zero in
the matrix region, because the trace of the Cauchy stress (i.e., the
pressure) is zero.67

To illustrate the effect of matrix stiffness, we choose four different
values of the matrix’s Young’s modulus, Ematri x = 5, 10, 15, 20 GPa.
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Figure 3. The pressure developing in a spherical inclusion due to chemical ex-
pansion depends linearly on the concentration (left image in Fig. 3). The stiffer
the surrounding matrix the larger is the pressure in the particle. Compressive
stress in the order of 2 GPa also reduces Li chemical diffusivity (described
in Impact of hydrostatic compressive of stress-free conditions section) by one
order of magnitude. The upper-right plot shows stress-dependent factor which
relates the effective chemical diffusivity to Li mobility according to Eq. 6.
The stress-dependent reducing factor � c

RT
∂p
∂c (represented by the four straight

lines in the right plot) has a negative sign. The enthalpy of mixing of Li in Si
tends to enhance diffusivity, instead. The corresponding thermodynamic factor(

cmax
(cmax −c) + ∂ log γ

∂ log c

)
in Eq. 6 is represented by the blue dashed curve.

The higher end of this range of values is realistic for sulfide solid
electrolytes. The Young’s modulus of Li2S-P2S5 sulfide solid elec-
trolytes has been estimated (by ultrasonic velocity measurements) to
be in the range of 18–25 GPa, for hot pressed pellets, and 14–17 GPa
for pellets pressed at room temperature.69 Such a low stiffness makes
sulfide SSEs an attractive material for the design of bulk-type bat-
teries 70. We identify a strong relationship between the SSE elastic
properties and the capacity extracted from the intercalation material
(see Fig. 4). As highlighted in Fig. 4, the solubility of Li is reduced
even for compliant SSEs. An stiffer solid electrolyte would oppose the
particles’ expansion and reduce Li solubility to impractical values (see
Fig. 5). This would be for instance the case of some promising oxide
SSEs, such as LLZO (E ∼ 150 GPa71) and LLTO (E ∼ 200 GPa72).

Solution thermodynamic parameters such as the free energy of
mixing for Li/Lix Si can be extracted from the potential vs. composi-
tion curves available in literature from experimental measurements74

and ab-initio DFT calculations.73 The open-circuit potential curve
for silicon shows asymmetry between charging and discharging. A
characteristic hysteresis has been reported, but without agreement on
its cause.75 For this study, we consider the OCP curve predicted by
DFT calculations in Ref. 73 as the stress-free intercalation curve (blue
curve in Fig. 4). This curve appears to be intermediate with respect to
observed charge-discharge curves (dotted curves in Fig. 4) 73,74. Fol-
lowing the procedure described in Ref. 76 solution thermodynamic
parameters are determined for the stress-free state. From the stress-
free intercalation curve (blue line in Fig. 4), we derive the three curves
plotted in Fig. 4 by adding the stress-OCP coupling term. Fig. 4 il-
lustrate the results for the three cases: Ematri x = 5, 10, 20 GPa. Table
II summarizes the reduced capacity predicted by both models in the
four cases considered here.

Compressive stress lowers Li solubility for an electrode material
with positive Vegard’s parameters. Capacity decreases with increasing
matrix stiffness. Only 36% of the theoretical capacity is available in
the example with the most compliant solid electrolyte (5 GPa). In the
other cases the capacity reduces from 26%, to 19% as the stiffness
of the solid electrolyte matrix varies from 10 GPa to 20 GPa. This
result is sensitive to the particular choice of the silicon stress-free
intercalation curve. Assuming the experimentally-measured lithiation
curve (dotted curve in Fig. 4), the stress-potential coupling effect
would generate a reduction in Li solubility of the order of 70–80%.
Because stress plays a role in the hysteresis of Si cycling curves, we

Figure 4. The blue curve identifies the Si open-circuit potential (OCP) vs.
Li, as calculated in Ref. 73. Experimental OCP curves differ in charge and
discharge (dotted lines). Increasing compressive stress has the effect of shifting
the potential more and more toward the Li reference value, and decreases the
storage capacity.

consider the intermediate blue curve of Fig. 4 (confirmed by ab-initio
analyses) to be more representative of stress-free conditions.

Impact of hydrostatic compressive stress on diffusivity.—We
quantify here the contribution of Vegard’s compressive stress on the
chemo-mechanical diffusivity (related to the chemical diffusivity 60).
Chemo-mechanical diffusivity is interpreted as the factor coupling Li
flux and its concentration gradient according to Fick’s first law.

We define mobility the coefficient M relating the flux to the chemo-
mechanical potential gradient as follows60,62

JLi = − M

RT
c
∂�

∂x
[4]

The expression above defines the Li flux in the deformed configura-
tion. It includes the gradient of the diffusion potential � (also defined

Figure 5. Due to intercalation-induced stresses, the effective capacity of a Si
electrode particle depends on the stiffness of the SSE matrix. Even with a
relatively compliant sulfide electrolyte (Young’s modulus in the range 15–20
GPa) only 20–30% of the theoretical capacity can be accessed. With typical
oxide SSEs, only 10% of Si storage capacity can be utilized.
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Table I. Material parameters for problems in Solubility of lithium
in a silicon all-solid battery electrode - Finite element model section.

Input value Description

F = 96485.3365 C mol−1 Faraday’s constant
R = 8.314 J K−1 mol−1 gas constant
T = 298 K temperature
MEl = 10−10 m2 s−1 mobility of Li in the electrode

material
MSSE = 10−10 m2 s−1 mobility of Li in the solid electrolyte

material
ρSi = 7.84 · 104 mol m−3 molar density of the hosting material
ρSSE = 208 mol m−3 molar density of the electrolyte
cmaxSi = 3.75 × ρSi maximum relative number of mole of

Li per mole of electrode compound
cmaxSSE = 0.15 × ρSSE maximum relative number of mole of

Li per mole of solid electrolyte
i = 10 A m2 maximum relative number of mole of

Li per mole of solid electrolyte
νSi = 0.22 Poisson’s ratio for Si electrode

particles
νSSE = 0 Poisson’s ratio for solid electrolyte

material
βSi = 0.24 relative lattice constant for Li in Si

electrode material (equivalent to
� = 9cm3/mol

βSSE = 0 relative lattice constant for Li in the
solid electrolyte material

EEl = 100 GPa Young’s modulus of the electrode
material

ESSE = 5/10/15/20 GPa Young’s modulus of the solid
electrolyte material

in the deformed configuration according to Eq. 1), the gas constant R,
and the absolute temperature T . It is convenient to express the chemo-
mechanical potential gradient in terms of the concentration gradient,
and determine the thermodynamic factor that relates the mobility M to
the chemo-mechanical diffusivity D. We present a calculation based
on the stress predicted by the spherical inclusion model introduced in
this sectiong.

Given the diffusion potential in Eq. 1 as the total driving force for
Li diffusion, Li flux can be stated as followsh

J = −M c

(
cmax

c (cmax − c)
+ ∂ log γ

∂ log c

1

c
− �

RT

∂p

∂c

)
∂c

∂x
[5]

D = M

(
cmax

(cmax − c)
+ ∂ log γ

∂ log c
− � c

RT

∂p

∂c

)
[6]

We analyze the relative weight of the terms in Eq. 6. Under the as-
sumption of a material with positive chemical expansion, the pressure
p has the effect of reducing the diffusivity. Conversely, the thermody-

namic factor b =
(

cmax
(cmax −c) + ∂ log γ

∂ log c

)
, enhances Li transport. The factor

b includes the effect of deviation from ideal solid solution conditions
(enthalpy of mixing), and its specific value derives from the interca-
lation curve adopted here for silicon. In Fig. 3 (top right), we plot the
value of the pressure-dependent term � c

RT
∂p
∂c as a function of the matrix

stiffness and Li concentration. In the top-right plot of Fig 3 the value
of the factor b is represented by the blue dashed curve. The overall
negative contribution of pressure on Li diffusion is counterbalanced
by the enhancing effect due to the enthalpy of mixing.

gThe mobility M is itself function of pressure and temperature.77 However, calculating
the effect of pressure on the activation energy for Li transport is beyond the scope of this
paper. The interested reader can find analyses and applications in the literature for solid
oxide fuel cells.78

hIn a stress-free material the relationship between diffusivity and mobility is typically

expressed by the Darken coefficient
(

1 + ∂ log γ

∂ log c

)
60. Given the definition of γ (clarified

in footnote 3) the Darken coefficient is replaced by
(

cmax
(cmax −c) + ∂ log γ

∂ log c

)
.

( )

Figure 6. Contour plot showing changes in open-circuit potential caused by
stress as a function of the material’s chemical expansion and of its stress state.
The volume expansion is related to the Li content (and the state of charge) by
means of the Vegard’s parameters or, equivalently, through the partial molar
volume. The pressure can be caused by a constrained chemical expansion
or due to an external mechanical load (or a combination of both). The gap
between the blue and the green curves of Fig. 2 increases approximately
with the state of charge. For a material with positive Vegard’s parameters, the
volume expansion increases with lithium content. If the material is constrained,
compressive stresses arise proportionally to the stress-free expansion.

The General Case - Estimate of Stress-Potential Coupling for
Electrode Materials

The example of silicon treated above is an extreme case. For other
materials, we can estimate the values of chemical expansion coeffi-
cients at which chemo-mechanical coupling becomes important.

Results are summarized in the contour plot in Fig. 6. The stress-
induced potential-shift is computed according to Eq. 1, and the values
indicated for the contour line are the differences in voltage with respect
to the stress-free state. We consider two variables:

� the material chemical expansion 3β = ρh� (in the form of
maximum volume expansion achieved within a given range of stoi-
chiometric variation)

� the pressure p (either externally applied or self-generated by
the volume change)

For the input parameters, we made the following assumptions,
consistent with realistic conditions discussed above

� positive, isotropic chemical expansion up to 100% of the initial
volume

� compressive hydrostatic stress up to 1 GPa

These data cover a parameter range of interest for most electrode
materials (experimentally measured Vegard’s strains for many Li-
storage compounds are summarized in Tables 1.1 and 1.2 of Ref. 79,
and in Table I of Ref. 23). We calculate a maximum voltage shift of 0.2
Volts under these conditions. Relatively small changes in cell voltage
may result in very large stress-induced capacity shift, if the material
is characterized by a nearly flat OCP curve. The capacity change with
stress in a single-phase system is proportional to 1/(dV/dC). For two
phase systems, such as lithium iron phosphate, the OCP curve has a flat
region in which two phases have the same electrochemical potential. In
these two-phase regions, the capacity is determined by the miscibility
gap: during cycling the phase fractions change as a function of the
state of charge. It may seem that, because 1/(∂(OC P)/∂c) goes to
infinity, the capacity change would be singular. This is not the case.
A thermodynamic analysis shows that the capacity is proportional
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Figure 7. Geometry, discretization and boundary conditions of a finite ele-
ment model of a composite electrode. Silicon particles are the active material
(blue region) embedded in a mixed conductor (brown region) consisting of a
solid electrolyte and an electronically conductive additive.

to the 1/(∂(OC P)/∂c) values of each single phase evaluated at the
limiting miscibility concentrations; these terms are finite for a first-
order phase transition. However, the voltage of the two-phase region
and the limiting compositions are a function of stress.

Under the effect of chemical expansion and stress the intercalation
curve for an electrode-material (blue curve in the left image of Fig. 6)
is shifted by the amount �E (producing the green curve). The gap
between the blue and the green curve tends to increase with the state of
charge. For a material with positive Vegard’s parameters, the volume
expansion increases with lithium content. An applied external load
also contributes to the stress-induced potential shift.

Solubility of Lithium in a Silicon All-Solid Battery Electrode -
Finite Element Model

A representative microstructural arrangement of a distribution of
particle sizes and its finite element (FE) discretization with linear
quadrilateral elements are represented in Fig. 7. In the set of analy-
ses discussed here, the volume ratio of active material is set to about
25%. Such a low Si volume ratio allows us to compare results from
the finite element analyses with the model illustrated in Solubility of
lithium in a silicon all-solid battery electrode - Analytical model of
a spher ical inclusion section. The spherical inclusion model is in-
dependent of the particle’s size, and does not include any interaction
between neighboring particles. The mechanical interaction between
neighboring particles depends on the relative content of silicon in the
microstructure. The stress field generated by all the particles expand-
ing collectively grows higher as the particles become closer. Also, in
Ref. 64, the authors designed the composite Si electrode with 1:1:5
weight ratio of crystalline Si powder, copper powder and glass solid
electrolyte (77.5 Li2S - 22.5 P2S5); this corresponds to a 1:6 volume
ratio of active material to SSE/carbon matrix. The role of particle
interaction in a dense microstructure is discussed further below.

The finite element mesh is representative of a portion of the com-
posite electrode (square highlighted in Fig. 7). The microstructure
includes randomly oriented square particles in a region of dimensions
11 μm x 11 μm. The average particle size is 1 μm. The particles posi-
tion and size distribution follow from a centroidal Voronoi tessellation
generated from random seeds.

We consider shapes with sharp corners (like the squares chosen
here) to be a more realistic representation of particles than circles (see
for instance Fig. 6 in Ref. 70). Flaws and stresses are more likely to
accumulate around sharp corners and therefore corners are likely be
associated with stress concentration and onset of plastic deformation
and/or damage.

Table II. Predicted capacity extracted from the electrode particles
(as percentage with respect to the theoretical value) in relation
to the stiffness of the solid electrolyte matrix. The comparison
between values computed by mean of a spherical inclusion model
and the finite element model shows very good agreement.

Limit Capacity
Analytic FEM matrix Young’s modulus

36% 30% 5 GPa
26% 26% 10 GPa
21% 24% 15 GPa
19% 22% 20 GPa

19% 20 GPa, displacement BC

The average particle size does not significantly affect the results,
as long as the volume ratio of active material is kept constant and
the system is in equilibrium. The stress field is sensitive to particle
size when the charging rate is high enough (or Li mobility is low
enough) that a diffusion potential gradient arises within the particles
and through the electrode. We compute the maximum capacities by
assuming that the electrode is charged quasi-statically

Analyses are carried out by means of an in-house FE code im-
plemented according the theoretical continuum model described in
full details in Ref. 62. The electrochemical-mechanical problem to be
solved at each iteration of the Newton-Raphson algorithm consists of
three coupled equations with the unknowns: displacements, Li con-
centration and diffusion potential.i The constitutive behavior for the
electrode and the electrolyte material is assumed to be elastically and
diffusively isotropic. No viscoplastic or damage phenomena are taken
into account. The input parameters for this problem are summarized
in Table. II.

Galvanostatic tests are performed by applying a constant uniform
lithium flux (corresponding to a constant current density) at the inter-
face in contact with the solid electrolyte (top edge in Fig. 7). A zero
flux is assumed on the remaining edges as Neumann boundary condi-
tions for the diffusion problem. For the mechanical problem, Dirichlet
boundary conditions are applied on the left and right boundaries by
setting the displacements equal to zero. The displacement of the top
edge is considered fully constrained by the presence of the solid elec-
trolyte. At the bottom edge, three different values (3/150/230 MPa)
of external pressure are held constant during the operation in order to
simulate the conditions in Ref. 64. We observe that varying the me-
chanical load does not appreciably affect the results. On the contrary,
switching from boundary conditions of constant pressure (in the range
3–230 MPa) to a perfectly constrained interface produces an increase
in the particles’ stress level (compare dashed to continuous black line
in Fig. 8).

The compressive stresses computed from the FE model and the ap-
proximate analytic calculation can be observed in Fig. 8. The models
can be compared via the thick and thin lines of the same shade (rep-
resenting elastic modulus). The spherical-inclusion model assumes
linear dependence of the pressure on Li content over the entire sto-
ichiometric range. The FE model predicts the same linear behavior
at low concentration values, but with a higher slope. As the state of
charge increases, the incremental pressure with Li content becomes
smaller. For concentration values close to the solubility limit, the ana-
lytic and numerical models predict very similar values of pressure. The
evolution of Si elastic properties with Li concentration does not ap-
preciably affect the results in our analyses. Therefore, we present only
data produced under the assumption of constant elastic properties.

To our knowledge the only set of experiments with conditions
comparable to the system modeled here are the ones reported by
Ref. 64. The large decrease in capacity predicted by our models is in

iWith respect to the finite element model described in the supplementary material of Ref.
62, we take the third unknown to be the entire diffusion potential and not just the stress-
dependent term. This is a more appropriate choice to model diffusion across materials
with different Li solubility.
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Figure 8. Hydrostatic compressive Cauchy stress predicted by the finite ele-
ment model is plotted (in thick solid lines) in comparison with the pressure
(lighter lines in the same colors) predicted by the analytic model discussed in
Solubility of lithium in a silicon all-solid battery electrode - Analytical model
of a spher ical inclusion section. We consider the average stress value inside
the Si particles and away from corners (points of stress localization). No ap-
preciable difference has been found in the values predicted inside different
particles. The dashed black curve refers to the case of Ematri x = 20 GPa, with
a zero displacement condition imposed on all the boundary (see Fig. 7).

qualitative agreement with the low capacity of Si electrodes measured
by Ref. 64. However, a direct comparison of the results is not pos-
sible, because the initial density and stiffness of the solid-electrolyte
region are unknown for the samples of Ref. 64. In Ref. 64, the pres-
sure applied to the composite electrodes during assembly is only 5
ton/meter (about 5 × 10−2 MPa). This assembly pressure is much
lower than the molding pressure of 360 MPa reported in Ref. 69,70
to achieve dense sulfide-glass electrolyte pellets at room temperature
with Young’s moduli of about 20 GPa. By reducing the molding pres-
sure to 180 MPa, Sakuda et al. 69 observed the Young’s modulus had
dropped to 8.8 GPa. We expect the mechanical loading of 150/230

MPa maintained during cell operation in Ref. 64 to have the effect
of increasing the solid electrolyte density. We do not observe any af-
fect of the applied external pressure in our simulations, because we
assume a fully dense composite electrode from the beginning of the
analyses. Piper et al. measured a first cycle capacity of 42% of the
theoretical value when 230 MPa of pressure was applied to the cell.
As our analyses show, a more severe reduction of Li solubility should
be expected if the composite electrode is molded at higher pressure
before cycling.

The presence of particles with sharp corners introduces the possi-
bility of a deviatoric component of the stress to arise, in particular at
the particle corners. An extension of the constitutive model to include
a viscoplastic behavior would bound the stress value to its yield limit
and allow for larger capacity extraction. However, further knowledge
of the constitutive behavior of sulfide solid electrolyte is required to
calibrate the model and make it predictive.

The stress-potential coupling is also located at the value of stress
that the material can withstand without fracturing. For a system mostly
under compressive stress, we expect fracture to be limited at the par-
ticle corners, where tensile stress may arise from particles misalign-
ment. Crack formation allows for stress release in the proximity of
the crack tip.

Finally, we analyzed the effect of active material loading on the
total available capacity. A more densely packed microstructure further
decreases the capacity per unit volume of silicon. Compressive stress
grows quickly as the SSE buffer zone between the particles becomes
thinner. The spherical inclusion problem discussed earlier is based on
the hypothesis of infinitely diluted inclusions. The elastic field due
to a spherical inclusion embedded within a spherical representative
volume has been studied in Ref. 80. Li et al. calculated the Eshelby
tensor under the assumption of homogeneous Dirichelet boundary
conditions on the representative volume (i.e. zero displacements ap-
plied to the external boundary)80. For an isotropic expansion of the
inclusion, this solution relates to the Eshelby tensor for the infinite
domain81 by mean of the factor (1 − (r/R)3), where r and R are the
radii of the inclusion and of the surrounding volume, respectively.
This factor represents the effect of the boundary when the ratio r/R
is non-negligible. The stress cannot be alleviated by reducing particle
size, if the volume ratio of active material is kept constant.

In Fig. 9 we illustrate how the average value of r/R can be extracted
from the construction of the microstructure based on a centroidal
Voronoi tessellation. The plot in the center of Fig. 9 represents the
decrease in capacity per unit of Si volume (expressed in percentage

Figure 9. The left image shows a particle distribution generated from a centroidal Voronoi tessellation. Each particle is embedded in a shell of solid electrolyte
(SSE) material. The boundary effect and the deviation from the classical Eshelby inclusion theory depend on the ratio r/R, i.e., which is roughly the particle
volume-fraction. The plot at the center represents the capacity per unit of Si volume (expressed in percentage of the theoretical value) as a function of r/R (red
marks) and the volume fraction of active material (green marks). A lower capacity per unit volume is available in densely packed microstructures. In the rightmost
plot, the to total capacity of the electrode is represented as a fraction of the theoretical value. The plot clearly shows that increasing the amount of Si beyond
25–30% in volume ration is counterproductive. The total capacity will decrease due to large compressive stresses caused by silicon’s expansion.
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of the theoretical value for Li3.75Si) as the distance between particles
decreases. The level of packing is represented by the ratio r/R (bottom
horizontal axis and red marks) and by the volume ratio of active
material (green marks). The data plotted in Fig. 9 refer to the case of
solid electrolyte having a Young’s modulus of 10 GPa. In the limit of
r/R → 0, the result of 26% is recovered, showing consistency with
the infinitely dilute model of Solubility of lithium in a silicon all-solid
battery electrode - Analytical model of a spher ical inclusion section.
In the finite element model, we assume a 25% of Si volume ratio.
This volume ratio is an average. The ratio varies spatially. Such a low
volume ratio implies a drop of only 3–4% in capacity per unit of Si
volume, caused by neighboring effects.

The rightmost plot in Fig. 9 shows the total storage capacity as a
function of the volume ratio of active material. The optimal Si loading
appears to be around 25%. Increasing the content of silicon beyond
25–30% becomes counterproductive, as the stress in a densely packed
microstructure reduces the total effective capacity. At the optimal 25%
loading, the total capacity is only slightly larger than the capacity in
the limit of a dilute system. This near-equivalence is consistent with
the agreement of the FEM calculation and the spherical-inclusion
model.

Conclusions

Compressive stresses reduce cell capacity. The amount of capacity
loss can be quantified through a simple model which is in agreement
with a finite element model of a battery electrode microstructure. We
have showed an example of intercalation-induced compressive stress
limiting the capacity of a Si electrode to 20% of its theoretical value.
Solid-state electrolytes (SSE) provide an elastic constraint to electrode
particles and constraint-induced stresses develop during cycling. The
focus of our study was for all-solid-state batteries, however the result
is applicable to any electrochemical system where stresses arise or
are applied. We analyze the case of Si anode particles embedded in a
solid-electrolyte matrix, taking the electrolyte’s Young’s modulus as a
variable of the problem. Both analytic and a finite element model pre-
dict that storage capacity decreases with increasing matrix stiffness.
According to the spherical-inclusion model discussed in Solubility of
lithium in a silicon all-solid battery electrode - Analytical model of
a spher ical inclusion section, only 36% of the theoretical capacity is
available in the example with the most compliant solid electrolyte (5
GPa). In the other cases the capacity reduces from 26%, to 19% as the
stiffness of the solid electrolyte matrix varies from 10 GPa to 20 GPa.
This range of elastic stiffness is realistic for sulfide SSEs. Less compli-
ant solid electrolyte materials would further limit Si lithiation. Higher
loading fractions of Si particles do not necessarily lead to higher en-
ergy density. This surprising conclusion underscores the importance
of accounting for electro-chemo-mechanical coupling. We determine
the optimal volume ratio of silicon to be around 25%, as this leads
to the highest total capacity. Given Si large theoretical capacity, this
value is still of practical interest as it also leads to improved reliability.

The stress-induced voltage shift is accentuated in systems with
large chemical expansion, such as Li in Si. However, even a small
change in the cell voltage may result in a large capacity shift if the
active material is characterized by a nearly flat open-circuit potential
curve.
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Appendix A. Stress-Potential Coupling in Linear vs Nonlinear
Kinematics

The stress-dependent component of the diffusion potential derived in Ref. 62 has the
following form

�M (
c, Ce) = − �

3
Tr(FeT P) [A1]

Figure 10. Correction factor between the linear approximation of stress over-
potential (Eq. 1) and its nonlinear form (Eq. A1), plotted as function of the
material volumetric-expansion rate and the state of charge. For silicon, the
correction factor can be as large as 3.5. However, in the examples analyzed
here, large compressive stresses limit Si lithiation to 20-30% of the theoretical
capacity. Therefore, the correction factor only varies within the highlighted
green region where it reaches at most the value of 1.25.

where P is the first Piola-Kirchhoff stress tensor, j and Fe is the recoverable (i.e., elastic)
lattice distortion, and tsCe = FeT Fe . We have assumed a multiplicative decomposition
of the total deformation gradient as F = FeFa . The deformation that arises from Vegard’s
law is the anelastic deformation Fa = Fa (c) and is function of the local concentration.

P = JσF−T [A2]

We restrict the examples herein to the case of an isotropic volumetric expansion

Fa (c) =
(

1 + β

ρh
c
)

I [A3]

where I is the identity matrix. By susbstituting the form of Fa (Eq. A3) in Eq. A1 we
obtain

�M (
c, Ce) = − �

3
Tr

(
FeT P

) = − β

ρh
P : Fe =

= − β

ρh
JσF−T : Fe = − β

ρh

(
1 + β

ρh
c
)2

T rσ

�M (c, σ) = − �

3

(
1 + �

3
c

)2

Trσ [A4]

The stress overpotential in Eq. A4 tends to the linear Larché and Cahn overpotential of
Eq. 1 as the factor (1 + � c/3)2 = (1 + β c/ρh )2 approaches the unity.

For intercalating compounds characterized by low partial molar volume (or, equiv-
alently small Vegard’s lattice misfit parameters), the diffusion potential is accurately
represented by Eq. 1. The nonlinear model 62 is suitable to capture the transport properties
of materials with large chemical expansions such as silicon. Fig. 10 shows a contour plot
of the values the correction factor (1 + β c/ρh )2 takes as a function of the characteristic
volumetric expansion rate and the state of charge. For silicon, the correction factor can be
as high as 3.5, when Si is close to its fully lithiated state (relative concentration close to
1). However, in the analyses presented herein, Si state of charge remains limited to about
20–30% of its theoretical capacity. Within this range (green mark in Fig. 10) the correc-
tion factor does not raise above 1.25 and the two forms of diffusion potential produce
equivalent results.

jThe Piola-Kirchhoff stress tensor P is related to the Cauchy stress tensor σ via the Piola
transformation with J = det(F) being the determinant of the deformation gradient. The
Cauchy stress is defined in the current (or deformed) configuration, while the Piola-
Kirchhoff stress is defined with respect to a reference state. We make use of the Piola-
Kirchhoff stress in compatibility with the other quantities expressed in the reference
configuration. In classical linear mechanics there is no distinction between the reference
and Eulerian configuration and the Cauchy stress is the most commonly used stress
quantity.
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