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Abstract. Performing Bayesian inference via Markov chain Monte Carlo (MCMC) can be exceedingly expensive
when posterior evaluations invoke the evaluation of a computationally expensive model, such as a
system of PDEs. In recent work [J. Amer. Statist. Assoc., 111 (2016), pp. 1591–1607] we described
a framework for constructing and refining local approximations of such models during an MCMC
simulation. These posterior-adapted approximations harness regularity of the model to reduce the
computational cost of inference while preserving asymptotic exactness of the Markov chain. Here
we describe two extensions of that work. First, we prove that samplers running in parallel can col-
laboratively construct a shared posterior approximation while ensuring ergodicity of each associated
chain, providing a novel opportunity for exploiting parallel computation in MCMC. Second, focus-
ing on the Metropolis-adjusted Langevin algorithm, we describe how a proposal distribution can
successfully employ gradients and other relevant information extracted from the approximation. We
investigate the practical performance of our approach using two challenging inference problems, the
first in subsurface hydrology and the second in glaciology. Using local approximations constructed
via parallel chains, we successfully reduce the run time needed to characterize the posterior distri-
butions in these problems from days to hours and from months to days, respectively, dramatically
improving the tractability of Bayesian inference.
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1. Introduction. Markov chain Monte Carlo (MCMC) is a powerful tool for performing
Bayesian inference, but can be computationally prohibitive in many settings, especially when
posterior density evaluations involve a computationally expensive step. For instance, appli-
cations in the physical sciences often require PDE forward models, evaluated using numerical
solvers with nontrivial run times. When these solvers must be invoked with each posterior
evaluation, direct sampling with MCMC can become intractable.
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340 CONRAD, DAVIS, MARZOUK, PILLAI, AND SMITH

To reduce this computational burden, a standard approach is to construct an approx-
imation or “surrogate” of the forward model or likelihood function, and then to sample
from (or otherwise characterize) the posterior distribution induced by this approximation
[45, 27, 41, 46, 36, 35, 2, 25, 29, 6, 15]. Although such approaches can be quite effective at
reducing computational cost, they may be difficult to use in practice—in part because they
separate the construction of the surrogate from the subsequent inference procedure. Approx-
imation of the forward model biases posterior expectations [11] in a way that cannot easily
be quantified. It is then difficult to decide how much computational effort should be devoted
to surrogate construction, and how to balance the resulting biases with the statistical errors
of posterior sampling. Alternatives such as delayed-acceptance MCMC [7, 14] yield asymp-
totically exact sampling but surrender potential speedups by requiring at least one evaluation
of the forward model for each accepted sample. In recent work [9], we demonstrated that
surrogate construction and posterior exploration can instead be joined, yielding a framework
for incrementally and infinitely refining a surrogate during MCMC sampling. This frame-
work allows the approximation to be tailored to the problem—e.g., made most accurate in
regions of high posterior probability—while guaranteeing that the associated Markov chain
asymptotically samples from the exact posterior distribution of interest. Empirical studies on
problems of moderate dimension showed that the number of expensive posterior evaluations
per MCMC step can be reduced by orders of magnitude, with no discernible loss of accuracy
in posterior expectations.

This work describes two key extensions of the framework in [9]. First, we show that our
approximation scheme enables a novel type of MCMC parallelism: concurrent chains can
collaboratively develop a shared approximation. Effectively exploiting parallel computation
in MCMC is often challenging because the core algorithm is inherently sequential, but our
strategy directly deploys parallel resources to address the key performance bottleneck: the
cost of repeatedly running the forward model.

Second, while our previous work showed how to build a convergent approximation of the
target probability density, it did not support the idea of using this approximation to construct a
proposal distribution. MCMC performance is highly dependent on the choice of proposal, but
sophisticated proposals, such as the Metropolis-adjusted Langevin algorithm (MALA) and its
manifold variants [20], can be expensive to apply because they require gradients (and possibly
higher derivatives) of the forward model. This derivative information is often expensive or
impossible to compute directly, but is trivial to extract from an approximation. Intuitively, it
should then be possible to use our approximation framework to greatly reduce the costs of such
proposals. Here we do exactly that, extending our previous theoretical results to show that
the Monte Carlo estimates obtained by our algorithm converge to the correct value, as long
as the convergence of our approximation to the target distribution yields convergence of the
associated approximate Markov transition kernel in a suitably strong norm. As an example,
we show how to use simplified manifold MALA within our local approximation scheme, and
we prove that the resulting stochastic process is convergent in a representative case.

Finally, we construct two inference problems that are representative of interesting scientific
queries, that involve computationally expensive forward models (such that naive use of the
model in sampling would take days or months), and that have nontrivial posterior structure
which must be characterized using MCMC. The first is a problem in groundwater hydrology,D
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where a subsurface conductivity field is inferred from observations of tracer transport; it is a
more complex and realistic version of the linear elliptic PDE inverse problem [16], combining
an elliptic equation for the hydraulic head with another PDE governing tracer dispersion
[17, 37]. The second problem is drawn from glaciology: here we infer the basal friction
parameters of a shallow-shelf ice stream model [31, 32, 33] from observations of surface ice
velocity. Our numerical experiments evaluate MCMC efficiency, accuracy, and wall clock
time, and benchmark the parallel performance of our algorithms. Results demonstrate the
strong performance of our approach; for example, inference in the ice stream model becomes
tractable, with the time needed to characterize the posterior reduced from roughly two months
to just over a day.

The remainder of this paper is organized as follows. Section 2 reviews the basic algorith-
mic framework of local approximation MCMC. Section 3 presents and analyzes the shared
construction of approximations for parallel MCMC. Section 4 describes the use of local ap-
proximations in the proposal scheme, and section 5 describes our numerical experiments.
Proofs of the main convergence results, along with certain algorithmic details, are deferred to
the appendices.

2. Review of local approximation MCMC. We are interested in Bayesian inference prob-
lems with posterior densities of the form

p(θ|d) ∝ `(θ|d, f)p(θ)

for parameters θ ∈ Θ ⊆ Rd, data d ∈ Rn, a forward model f : Θ → Rn, and probability
densities specifying the prior p(θ) and likelihood function `. The forward model may enter
the likelihood function in various ways. For instance, if d = f(θ) +η, where η represents some
measurement or model error with probability density pη, then `(θ|d, f) = pη(d− f(θ)).

Assume that the forward model is both computationally expensive and a black box, so that
we cannot inspect or modify it. In this setting, standard approaches to MCMC are likely to
be limited by the computational expense of evaluating the forward model at every step of the
chain. Our approach addresses this cost by storing the results of each model evaluation in a set
St := {(θi, f(θi))}nti=1 and reusing them. The stochastic process {θt}t≥0 proposed in [9] evolves
by drawing new points from some proposal kernel q and accepting or rejecting the proposed
move according to an approximation of the forward model, f̃t, constructed from the set St.
During the simulation of this process, the algorithm carefully chooses new points at which to
run the forward model, enlarging St and thus improving f̃t; we refer to enlargement of St as
“refinement.” Intuitively, it would seem that if f̃t converges to f in an appropriate sense, then
the sequence {θt}t≥0 might asymptotically behave like the usual Metropolis–Hastings chain
with proposal q and forward model f . Indeed, the algorithm we constructed in [9] has these
properties.

We obtain a converging sequence of approximations f̃t by constructing the approximation
locally—that is, constructing f̃t(θ) using only the elements of St whose input values θi lie within
a distance R of θ. The radius R is selected so that this subset contains a fixed number of
points N . The value of N depends on the functional form of the approximation; for instance, if
f̃t is a local quadratic approximation, we need at least (d+ 1)(d+ 2)/2 =: Ndef points to fullyD
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342 CONRAD, DAVIS, MARZOUK, PILLAI, AND SMITH

determine its coefficients.1 Local approximations are relatively straightforward to analyze
in that they typically converge whenever the sample set St becomes denser, thus allowing
R → 0. (Regularity conditions on f sufficient for convergence in the case of local polynomial
approximations, for example, are given in [8].) These general conditions for convergence allow
us to promote efficiency by aggressively tailoring St during sampling, while still maintaining
asymptotic exactness of the overall MCMC. The resulting algorithm is straightforward to use,
since its adaptivity allows users to treat it much like standard adaptive MCMC algorithms:
the behavior of the chain can be monitored for convergence, which in our case reflects both
the exploration of the posterior and the convergence of the approximation. Our work thus
differs from previous efforts using global approximations to accelerate inference [36, 2, 25, 46],
where the entire set St = S0 is constructed as a preprocessing step and is used to build a
single high-order approximation. In these methods it is difficult to choose how many samples
S0 should contain or how to monitor the accuracy of the overall sampling.

An illustration of the algorithm is given in Figure 1. At early times, the samples are sparse,
leading to local models constructed over large regions, depicted by large balls, rendering them
relatively inaccurate. As MCMC progresses, refinements increase the density of the sample
set in regions of high posterior probability, shrinking the local neighborhoods and increasing
the quality of approximations. Model runs do not lie on any structured grid and are generally
contained within regions of the parameter space that are relevant to the inference problem,
thus enhancing efficiency whenever the posterior is concentrated.

Posterior contours

Prior contours

(a) Early times. (b) Late times.

Figure 1. Schematic of the behavior of local approximation MCMC. The balls are centered at locations
where local approximations might be evaluated, and their radii are chosen to contain the N nearest points, used
to build the approximation. The accuracy of a local approximation generally increases as this ball size shrinks.
At early times, the sample set St is sparse, and thus local approximations are built over relatively large balls,
such that their accuracy is limited. At later times, refinements enrich the sample set in regions of high posterior
probability, allowing the balls to shrink and the approximations to become more accurate.

1In practice, we often select N =
√
dNdef to improve the conditioning of the associated least squares system.

More details are given in [9].D
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We now review a sketch of our approximate MCMC algorithm, given in Algorithm 1.
Please see Appendix A and Algorithm 3 for a more complete description of the algorithm;
additional details can be found in our previous work [9]. The stochastic process {θt}t≥0 is
produced by the method RunChain, which applies the transition kernel Kt repeatedly. The
transition kernel is provided with the current state of the chain θt; the current set of samples
St; the inference problem, as defined by `, d, p, and f ; and a symmetric translation-invariant
proposal distribution q. The kernel uses the current point of the chain, θ−, to draw a proposal,
θ+. It forms local approximations near these points, f̃+ and f̃−, respectively, based on nearby
samples contained in St. Next, it computes the acceptance probability α in the usual way,
substituting the approximations for the true forward model. Then, the algorithm optionally
refines the sample set by choosing a new point θ∗ and running the forward model at that
location.

Algorithm 1. Sketch of approximate Metropolis–Hastings algorithm.

1: procedure RunChain(θ1,S1, `,d, p, f , q, T )
2: for t = 1, . . . , T do
3: (θt+1,St+1)← Kt(θt,St, `,d, p, f , q)
4: end for
5: end procedure

6: procedure Kt(θ
−,S, `,d, p, f , q)

7: Draw proposal θ+ ∼ q(θ−, ·).
8: Compute approximate models f̃+ and f̃−, valid near θ+ and θ−, respectively.

9: Compute acceptance probability α← min
(
1, `(θ|d,f̃

+)p(θ+)

`(θ|d,f̃−)p(θ−)

)
.

10: if approximation needs refinement near θ− or θ+ then
11: Select new point θ∗ and grow S ← S ∪ (θ∗, f(θ∗)). Repeat from line 8.
12: else
13: Draw u ∼ Uniform(0, 1). If u < α, return (θ+,S); else return (θ−,S).
14: end if
15: end procedure

Choosing when and where to refine St is critical to the performance of the overall al-
gorithm. We combine two criteria to decide when to refine the approximation. First, the
approximation is refined near θ− or θ+ with equal probabilities βt, such that the expected
number of refinements diverges as t → ∞. This criterion is sufficient for convergence of the
algorithm, as detailed in [9]. The sequence (βt) may be difficult to tune in practice, however.
Thus we complement the random refinement criterion with a cross-validation strategy that
triggers refinement whenever the estimated error in the acceptance probability α (due to the
approximation of f) appears too large. This latter threshold for refinement is tightened with
increasing t, pushing the approximation to improve as the chain lengthens. Although the
cross-validation criterion is not sufficient for convergence of the algorithm, it appears efficient
in practice, and we use it in conjunction with the random refinement strategy. When refine-
ment is needed near either θ− or θ+, we do not simply run the model at that point, since doingD
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so would introduce clusters into St, degrading the quality of local approximations. Instead,
we use a local space-filling design strategy to choose a distinct but nearby point θ∗ at which
to run the model.

3. Sharing local approximations for parallel MCMC. The naive approach to parallelizing
MCMC is simply to run several independent chains in parallel. Although running parallel
chains facilitates useful convergence diagnostics [12, 3], practical scaling in highly parallel
environments is limited because of the serial nature of MCMC and the replication of transient
behavior across multiple chains [44].

More sophisticated strategies for parallel MCMC exchange information between the chains,
for example, by proposing moves to states discovered by other chains [13]. Population MCMC
algorithms explore a family of tempered distributions with parallel chains, so that swapping
states between the chains can provide long-range moves [5]. These techniques attempt to
improve the mixing time of the Markov chain and when successful, may provide superior
performance to the naive parallelization [22]. Other constructions, e.g., [4], propose multiple
points in parallel and try to make use of all these points in determining subsequent steps of a
single chain.

Any of these parallel approaches requires repeated evaluations of the forward model, how-
ever, which can dominate the overall cost of the algorithm. If multiple copies of Algorithm 1
are run in parallel, a natural idea is to allow them to collaborate by sharing a common set
of evaluations St. That is, whenever one chains performs refinement, the result is shared
asynchronously with all the chains; hence each chain receives additional model evaluations
“for free.” Since the limiting computational cost in our context lies in constructing St, paral-
lelizing this process should directly impact the real-world performance of the sampler during
the stationary and even the transient phases of the chains. With regard to the latter point,
we note that parallelizing St can reduce the number of model evaluations that are triggered
by each individual chain during its initial transient phase.

Although it should be straightforward to combine the parallel construction of St with the
other parallelization strategies described above, we leave that to future work.

3.1. Convergence of the parallel algorithm. Recall that our local approximation MCMC
algorithm is detailed in Appendix A; see, in particular, Algorithm 3. Below we will show that
the sufficient conditions for convergence of a single-chain version of Algorithm 3, as described
in [9] and reproduced below in Definition 3.1, are also sufficient conditions for the convergence
of the parallel version. The arguments given in [9] are straightforward to extend because we
have chosen conditions where enlarging the sample set St is always helpful; thus the additional
refinements contributed by parallel chains cannot hinder convergence. Rather than repeating
the entire discussion of convergence from that paper, here we merely extend the simplest and
weakest convergence result—for a single chain on a compact state space [9, Theorem 3.4]—to
the case of parallel chains. We refer the reader to [9, Theorem 3.3] for related conditions and
a treatment of noncompact state spaces that can similarly be extended to the parallel case.

We require some notation before stating the result. Let L(X) denote the distribution of a
random variable X. For fixed ε > 0, we say that S ⊂ Θ is an ε-cover of Θ if supθ∈Θ mins∈S ‖θ−
s‖2 < ε. We note that if lines 13–21 and line 23 are removed from Algorithm 3, and all
references to St are replaced by a reference to a single set S, then the sequence {θt}t≥0D
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constructed by running the modified algorithm is a Markov chain. We use the S subscript to
denote all approximate objects associated with this Markov chain (e.g., KS is the associated
transition kernel, rS is the proposal function from line 9 of Algorithm 3 and qS is the associated
proposal density, pS := `(θ|d, f̃)p(θ) is the approximation to `(θ|d, f)p(θ) used in line 11 of
Algorithm 3, and αS is the associated acceptance probability). Similarly, K∞, r∞, q∞, p∞,
and α∞ are the values of these objects for the Markov chain with the same proposal kernel as
in Algorithm 3 and with the correct posterior distribution as its target distribution. Finally,
define π(θ) := p(θ)`(θ|d, f)/Z, where Z is a normalization constant. Our simple result makes
the following assumptions.

Definition 3.1 (sufficient conditions for convergence).
1. The state space Θ is compact.
2. The proposal q(θ, · | f ) = q(θ, ·) does not depend on f , and both the proposal distribution
q(θ, ·) and target distribution p(·|d ) have C∞ densities that are bounded away from
zero uniformly in θ.

3. The sequence of parameters {βt}t∈N used in Algorithm 3 are of the form βt ≡ β > 0;
any sequence {γt}t≥0 is allowed.

4. The approximation of log p(θ|d) is made via quadratic interpolation on the N = (d+
1)(d+ 2)/2 nearest points.

5. The subalgorithm RefineNear is replaced with

RefineNear(θ,S) = return(S ∪ {(θ, f(θ))}).

6. We fix a constant 0 < λ <∞. In line 15 of Algorithm 3, immediately before the word
then, we add “or, for B(θ+, R) as defined in the subalgorithm LocApprox(θ+,S, ∅)
used in line 10, the collection of points B(θ+, R)∩S is not λ-poised.” We add the same
check, with θ− replacing θ+ and “line 8” replacing “line 10,” in line 17 of Algorithm 3.
The concept of poisedness is defined in [8].

The following result extends Theorem 3.4 of [9] to parallel chains.

Theorem 1 (convergence with parallel chains). Let {X(i)
t }t≥0, 1≤i≤n be the n stochastic pro-

cesses obtained in a parallel run of Algorithm 3 with n chains, and assume that the algorithm
parameters satisfy Definition 3.1. Then, for all 1 ≤ i ≤ n,

lim
t→∞
‖L(X

(i)
t )− π‖TV = 0.

Proof. The proof of Lemma B.3 of [9] holds exactly as stated, with the proof as given. The

remainder of the proof of Theorem 3.4 from [9] holds for {X(i)
t }t≥0, for each fixed 1 ≤ i ≤ n,

with the following modifications:

(i) the chain {Xt}t≥0 should be replaced by {X(i)
t }t≥0 wherever it appears, and

(ii) the auxiliary process associated with {X(i)
t }t≥0 is {(St, X(1)

t , . . . , X
(i−1)
t , X

(i+1)
t ,

. . . , X
(n)
t )}t≥0, rather than {St}t≥0.

We emphasize that this proof of the convergence of {X(i)
t }t≥0 is completely indifferent to

the points that are added to St by the other chains {X(j)
t }t≥0, j 6= i.D
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Remark 3.2 (Do parallel chains always work?). Although our sufficient conditions for con-
vergence carry over to the parallel case, it is natural to ask whether there are any problems
that are not covered by our current theory—i.e., where, having departed from the sufficient
conditions of Definition 3.1, the single-chain algorithm still converges, but the parallel algo-
rithm does not. We conjecture that the answer is no, but are unable to prove it.

To explain the difficulty in proving this conjecture, note that all the proofs of sufficient
conditions for convergence given in [9] apply as stated to the parallel version of Algorithm 3
because they proceed by proving the following critical steps:

1. Due to minorization conditions (e.g., the second condition of Definition 3.1), for any
ε > 0 the set St will be an ε-cover of Θ for all t sufficiently large.

2. The distance ‖K∞(θt, ·) −KSt(θt, ·) ‖TV between a single “step” of Algorithm 3 and
the step that would be made by the true transition kernel K∞ can be made arbitrarily
small by making St an ε-cover of Θ for ε sufficiently small.

In particular, under Definition 3.1, adding points to St cannot hurt the convergence of

{X(i)
t }t≥0 very much, because adding points to an ε-cover always results in a set that is

still an ε-cover. For a sufficiently broader class of Metropolis–Hastings chains, however, it is
not true that KS is close to K∞ whenever S is an ε-cover, and in particular it is possible
to add points to S while simultaneously making an approximation worse. This possibility of
maladaption is what makes adaptive algorithms difficult to study and prevents us from making
the stronger claim that the parallel algorithm is convergent under every possible condition
where the single-chain algorithm is.

4. Local approximations and approximating the proposal. We now show how the tran-
sition kernel of our approximate MCMC scheme can use the current approximation not only
to evaluate the acceptance probability, but also to construct a proposal distribution. This
development enables a much wider range of Metropolis–Hastings proposals to be used with
expensive models, and in particular allows gradient- and Hessian-driven proposals to be used
in a setting where derivatives of f cannot be directly evaluated. We proceed by recalling the
Metropolis-adjusted Langevin algorithm (MALA) algorithm and explaining how to adapt lo-
cal approximations to this proposal scheme. Next, we prove a general result that our modified
algorithm is still convergent as long as the good properties of the approximation are trans-
ferred into good approximation of the overall kernel. We conclude by showing that the result
applies in the representative case of manifold MALA.

4.1. Simplified manifold Metropolis-adjusted Langevin algorithm (mMALA). The sim-
plified mMALA [20] is a recent method for constructing proposals adapted to the local ge-
ometry of the target distribution. This method is also closely related to the preconditioning
performed in the stochastic Newton method [34]. The mMALA proposal is derived by explic-
itly discretizing a Langevin diffusion with stationary distribution p(θ|d), leading to

q(θ, θ′|f) = N
(
θ′; θ +

ε

2
M(θ)∇θ log (`(θ|d, f)p(θ)), εM(θ)

)
,(4.1)

for integration step size ε and position-dependent symmetric positive definite (SPD) mass ma-
trix M(θ), which we may treat as a preconditioner. “Preconditioning” in this context amounts
to rescaling the parameter space, e.g., to make the distribution (locally) more isotropic. WeD
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use the notation q(θ, θ′|f) to emphasize the dependence of the proposal on the forward model.
The corresponding acceptance ratio is

α(θ, θ′) = min

(
1,
`(θ′|d, f)p(θ′)q(θ′, θ|f)
`(θ|d, f)p(θ)q(θ, θ′|f)

)
.

We are relatively unconstrained in our choice of preconditioner, as long as it is SPD.
Standard MALA corresponds to choosing the identity matrix, M(θ) = I. Simplified manifold
MALA (mMALA) [20], on the other hand, chooses the mass matrix to reflect a Riemannian
metric induced by the posterior distribution:

M(θ) =
[
−Ed|θ

(
∇2
θ log `(θ|d, f)

)
−∇2

θ log p(θ)
]−1

.

The inverse of this matrix is the expected Fisher information plus the negative Hessian of the
log-prior density. In general, computing the expected Fisher information is not trivial, but it
is relatively simple for Gaussian likelihoods, e.g.,

`(θ|d, f) = N (d; f(θ),Σ`),

with some prescribed covariance matrix Σ` ∈ Rn×n. If we also have a Gaussian prior, p(θ) =
N (θ;µ,Σp), with covariance Σp ∈ Rd×d and mean vector µ ∈ Rd, then

M−1(θ) = J(θ)>Σ−1
` J(θ) + Σ−1

p ,

where J(θ) := ∇θf(θ) ∈ Rn×d. Girolami and Calderhead [20] observe that choosing the
preconditioner in this manner can dramatically improve the performance of MALA. Yet even
standard MALA can be difficult to apply in practice because the necessary derivatives must
be computable and inexpensive; the manifold variant uses Jacobians of the forward model,
which are typically even more challenging to obtain. Adapting mMALA and similar proposals
to use local approximation is therefore particularly interesting, as approximations can cheaply
provide these derivatives.

4.2. Modifying the algorithm. The key challenge in extending Algorithm 1 to mMALA
(and similar proposals) is to allow simultaneous use of the approximation within the proposal
and the acceptance probability. Algorithm 2 shows the three required changes. Two modifi-
cations are trivial: we restore the proposal distribution to its usual place in the acceptance
probability, to account for the nonsymmetric proposal, and we provide the proposal with the
approximate forward model f̃ .

The third step is more subtle, introducing a coupling construction to allow model refine-
ment to proceed safely. Note that in Algorithm 1, refinement only recomputes the acceptance
probability; the proposed point is held fixed. Hence, exactly one proposal is made per step,
even though an inaccurate approximation might cause the algorithm to seek further informa-
tion before deciding whether that proposal can be accepted. Allowing a new proposal to be
generated upon refinement would bias the chain away from regions with inaccurate approxi-
mations (equivalently, towards regions where the approximation appears accurate), which is
clearly undesirable.D

ow
nl

oa
de

d 
02

/0
4/

19
 to

 1
8.

10
1.

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

348 CONRAD, DAVIS, MARZOUK, PILLAI, AND SMITH

This difficulty can be resolved by coupling the approximate kernel Kt to the kernel asso-
ciated with the true model, K∞. We accomplish this coupling by fixing the realization of the
random variable used to generate the proposal, but allowing the proposal to be recomputed if
the model is refined. (See [40, 18] for other algorithms that reuse randomness to avoid bias,
and [48] for a typical use of this idea in a theoretical paper.) Specifically, construct a determin-
istic function r(θ, z, f) such that drawing a random vector z ∼ N (0, I)2 and then computing
θ′ = r(θ, z, f) is equivalent to drawing θ′ ∼ q(θ, ·|f). The modified algorithm holds z fixed
under refinement, recomputing θ+ as needed. In the case of standard Metropolis–Hastings
proposals, this coupling strategy reduces to our original approach. This coupling construc-
tion ensures that the magnitude of any perturbation to the proposed point θ+ induced by
refinement vanishes as t→∞.

In the case of simplified mMALA, the proposal will be a Gaussian distribution, q(θ, θ′|f) =
N (µq(θ, f),Σq(θ, f)), for some position- and model-dependent mean µq and covariance Σq, and

hence r = µq(θ, f) + Σ
1/2
q (θ, f)z. The rest of the algorithm is updated naturally, including

the inclusion of the proposal into the cross-validation criterion. The resulting approach is
summarized in Algorithm 2. For brevity, we defer precise pseudocode to Algorithm 3 in
Appendix A.

Algorithm 2. Sketch of approximate Metropolis–Hastings algorithm with general proposals.

1: procedure Kt(θ
−,S, `,d, p, f , r, q)

2: Draw zt ∼ N (0, I).
3: Construct f̃−.
4: Compute θ+ = r(θ−, zt, f̃

−).
5: Construct f̃+.
6: Compute acceptance probability α← min

(
1, `(θ

+|d,f̃+)p(θ+)q(θ+,θ−|f̃+)

`(θ−|d,f̃−)p(θ−)q(θ−,θ+|f̃−)

)
.

7: if approximation needs refinement near θ− or θ+ then
8: Select new point θ∗ and grow S ← S ∪ (θ∗, f(θ∗)). Repeat from line 3.
9: else

10: Draw u ∼ Uniform(0, 1). If u < α, return (θ+,S), else return (θ−,S).
11: end if
12: end procedure

4.3. Convergence analysis. We now provide a convergence result for Algorithm 3. Some
technical definitions and the proofs from this section may be found in Appendix B.

The general idea is to show that as the sample set St becomes dense, the approximate
kernel KS converges to the kernel using the true model, K∞, and that MCMC converges as a
result. We begin by stating our assumptions precisely. Below W2 denotes the 2-Wasserstein
metric, defined in Appendix B.

2We choose a vector of independent standard Gaussians for convenience and without loss of generality, but
in practice other distributions for z may be more convenient.D
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Definition 4.1 (convergence assumptions). Assume that the following hold:
1. For any δ > 0, there is an ε = ε(δ) > 0 so that any ε-cover S satisfies

sup
θ∈Θ

W2(KS(θ, ·),K∞(θ, ·)) < δ.(4.2)

2. There exist constants 0 < η0 <∞ and 1 < C <∞ such that for any 0 < η < η0,

sup
θ,θ′∈Θ, ‖θ−θ′‖<η

W2(K∞(θ, ·),K∞(θ′, ·)) < Cη.(4.3)

3. For any ϕ0 <∞ and δ > 0, there exists ε > 0 so that any ε-covers S, S ′ satisfy

sup
‖z‖≤ϕ0

sup
θ∈Θ
‖rS(θ, z)− rS′(θ, z)‖ ≤ δ.(4.4)

4. The assumptions in Definition 3.1 hold.

The following theorem states that these assumptions, which we will have to check, are
sufficient for convergence of the approximate Markov chain.

Theorem 2 (convergence of Algorithm 3 on compact state space). Let the assumptions in
Definition 4.1 hold, and let {Xt}t≥0 be the sequence drawn from a run of Algorithm 3. Then

lim
t→∞

W2(L(Xt), π) = 0.(4.5)

Remark 4.2. The proof proceeds by coupling each step of the output of Algorithm 3. Our
coupling construction gives us the important estimate (B.3), which would not hold if the
randomness at each step were resampled upon model refinement. In most cases, including
our application to mMALA, this proof can be extended to give convergence in total variation
distance by using a “one-shot” coupling (see [43]).

Finally, we observe that mMALA often satisfies Definition 4.1. Although our convergence
results apply only to some uses of mMALA, we believe they are representative of the more
general case and suggest the feasibility of analytically transferring the good properties of the
approximation onto the kernel.

Theorem 3 (convergence of approximate mMALA). We consider running Algorithm 3 with
proposal kernel q (equivalently, r) given by the mMALA algorithm. Assume that the following
hold:

• The state space Ω is the d-dimensional hypercube [0, 1]d for some d ∈ N.
• The mass matrix M(θ) and likelihood `(θ|d, f) are both C∞ functions on Ω. Further-

more, the smallest singular value of M(θ) is uniformly bounded away from zero by
some c > 0.
• The posterior density p(·|d) is C∞ and bounded away from zero uniformly on Ω.
• Assumptions 3–6 of Definition 3.1 hold.

Then the output {Xt}t≥0 of Algorithm 3 satisfies

lim
t→∞
‖L(Xt)− π‖TV = 0.
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The proof of Theorem 3, given in Appendix B, merely checks the assumptions in Defi-
nition 4.1. Essentially, these assumptions hold because mMALA uses approximations of the
derivatives of f to construct a Gaussian proposal; the derivative approximations improve as
S grows and the Gaussian proposal is not too sensitive to errors in these approximations, and
hence the entire kernel converges in the necessary sense.

5. Numerical experiments. We present three numerical examples to explore the algorith-
mic ideas developed in the preceding sections. First, we use a simple example to demonstrate
how the improved mixing properties of MALA can successfully be paired with our local ap-
proximation scheme. Then, we turn to two more computationally intensive inference problems,
with forward models drawn from realistic applications. The first of these, a groundwater tracer
transport problem, is the focus of our parallel MCMC explorations. Though posterior evalua-
tions are quite expensive in this problem, we can still compare results with standard MCMC
chains that employ no approximation, and thus verify the accuracy of posterior expectations.
The second application example is even more expensive—such that MCMC is essentially in-
tractable without the use of approximations. Here, our goal is simply to show that with a
particular instantiation of parallel local approximation MCMC, fully Bayesian inference that
previously would not have been feasible (given reasonable computational resources) is now
feasible.

5.1. Quartic example. Consider a target distribution with the following log-quartic den-
sity:

(5.1) log π(x1, x2) = −x4
1 −

(2x2 − x2
1)2

2
,

also illustrated in Figure 2. We simulate from this target distribution in four ways: using
(i) adaptive Metropolis (AM) [23] and (ii) mMALA, each paired with either (a) evaluations
of the exact target density or (b) our local approximation (LA) scheme. In other words, the
combinations (a+i) and (a+ii) are standard MCMC algorithms with two different proposal
schemes, and the combinations (b+i) and (b+ii) pair local approximation MCMC with the
same proposal schemes. We call these simulation approaches “exact+AM,” “exact+mMALA,”
“LA+AM,” and “LA+mMALA,” respectively.

For each of the simulation approaches defined above, we run 20 independent chains, each
of length 6 × 105 steps. (No parallelism is employed in this example.) We then evaluate an
expected squared relative error ε̄2, as a function of the number of target density evaluations,
for each approach. The quantity ε̄2 is defined as follows. Before computing expectations with
respect to the target density, we discard the first 104 samples of each chain as burn-in. Then
we obtain a reference estimate C0 for the target covariance matrix by pooling post-burn-
in samples from all 40 chains that employ exact target density evaluations. Next, for each
independent chain (indexed by i) associated with a given simulation approach, we compute a

running t-sample estimate of the target covariance Ĉ
(i)
t and define a relative squared error as

(5.2) ε
2,(i)
t :=

‖Ĉ(i)
t − C0‖2F
‖C0‖2F

,
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Figure 2. Joint and marginal densities for the quartic target (5.1). We characterize this density with both
exact density evaluations and local approximations, paired with adaptive Metropolis and mMALA.
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Figure 3. Quartic example of section 5.1: Expected squared relative error ε̄2
t as a function of the number

of target density evaluations. Purple lines correspond to AM chains, while gold lines correspond to mMALA.
The circles mark chains that employ exact evaluations of the target density, while diamonds mark chains using
local approximation. In the exact case, mMALA requires evaluations of the target density and its gradient. We
assume gradient evaluations are comparable in cost to density evaluations and, therefore, count them as density
evaluations. Errors are obtained by averaging over 20 independent chains from each simulation approach, each
of length 6× 105 steps.
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Figure 4. Quartic example of section 5.1: Effective sample size for independent MCMC chains, each of
length 6 × 105. As in Figure 3, purple symbols correspond to AM chains, and gold symbols correspond to
mMALA chains. Circles indicate chains using exact target density evaluations, while diamonds indicate the use
of local approximations. The darker dot in each cluster is its expected value. In the mMALA case with exact
evaluations, we count target gradient evaluations as density evaluations.

where ‖ · ‖F denotes the Frobenius norm. Then we average over the 20 independent chains to

obtain ε̄2
t = 1

20

∑20
i=1 ε

2,(i)
t . Figure 3 plots ε̄2

t versus the number of target density evaluations,
for each simulation approach. For the exact+mMALA chains, which require direct evaluation
of the gradients of log π, we count each gradient evaluation as an additional density evaluation.
For large-scale models, gradient evaluations (e.g., via an adjoint solve) might be more expen-
sive than density evaluations, so this accounting is a conservative estimate of computational
cost.

Several trends are apparent in this figure. First, comparing the exact and local approxima-
tion chains, we see that the same level of accuracy is achieved with significantly fewer density
evaluations when using approximations. When target density evaluations are expensive, this
translates to computational savings. We also note that the exact chains show a squared error
decaying at roughly the standard Monte Carlo rate of 1/n, where n is the number of den-
sity evaluations. But the error decays more quickly when using local approximation MCMC.
This is because MCMC steps that do not require refinement of St can still reduce estimator
variance—and thus the overall error—without using a target density evaluation. Since we
expect the refinement frequency to decay as the chain progresses, we also expect the error
decay rate, in terms of the number of target density evaluations, to accelerate.

Another useful measure of sample quality is the effective sample size (ESS) of each chain,
which we compute from each chain’s integrated autocorrelation time [50]. ESS is a measure of
how many “effectively independent” samples have been generated from the target distribution.
In Figure 4, we plot the ESS for each independently realized chain, using each of the four
simulation approaches. In general, the mMALA chains have larger ESS than the AM chains,D
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reflecting their improved mixing for this target distribution. Also, the local approximation
chains achieve nearly the same ESS as their exact counterparts, but with nearly three orders of
magnitude fewer density evaluations. ESS of course varies from realization to realization; the
dark symbols in the middle of the scatter plots illustrate the average ESS and cost of each set of
20 chains. In general, we do not expect that introducing an approximation will improve mixing,
and in this example ESS with exact evaluations (exact+AM or exact+mMALA) provides an
upper bound on sampling performance. Indeed, Figure 4 shows that the ESS is very slightly
lower using local approximations; this is apparent in the MALA cases. Nonetheless, the
local approximation chains achieve nearly the same ESS as their exact counterparts, but with
nearly three orders of magnitude fewer density evaluations. Moreover, the improved mixing
of mMALA in the exact case is preserved when using local approximations.

5.2. Tracer transport problem. Predicting the evolution of groundwater contaminant
concentrations over time is vital to many monitoring and remediation efforts [37]. A contami-
nant is typically modeled as a nonreactive tracer that diffuses and is advected by groundwater
flow. Here we construct an inverse problem that simulates a monitoring configuration: the
tracer concentration is observed at a small number of wells over a short period of time, and
the subsurface conductivity field must be inferred given these data.

The conductivity field is assumed to be piecewise constant in six irregularly shaped ar-
eas, reflecting different subsurface features (e.g., sand, clay, gravel) each with constant but
unknown conductivities. We consider a problem domain with two horizontal coordinates
x, y ∈ [0, 1]2. The true log-conductivity is depicted in Figure 5. The conductivity is parame-
terized as

κ(x, y) = exp θj(x,y),

where j(x, y) ∈ {1, 2, . . . , 6} is the smallest integer j such that xj0 ≤ x ≤ xj1 and yj0 ≤ y ≤ yj1,

where the bounds (xj0, x
j
1, y

j
0, y

j
1) are given in Table 1. The parameters θi are endowed with

uniform priors; the upper and lower bounds for each prior are also given in Table 1.
Modeling tracer evolution requires first computing the hydraulic head, which determines

the groundwater velocity. Under the Dupuit approximation [17], the hydraulic head h obeys
the elliptic equation

(5.3) ∇ · (κh∇h) = −fh,

where κ(x, y) is the conductivity field and fh(x, y) is the hydraulic head forcing. In the
setup of our problem, the forcing is created by pumping at four well locations, (ai, bi) ∈
{(0.15, 0.15), (0.85, 0.15), (0.85, 0.85), (0.15, 0.85)}, such that

fh(x, y) =
4∑
i=1

pi exp

(
(ai − x)2 + (bi − y)2

0.02

)
,

where pi ∈ (10, 50, 150, 50). The model (5.3) assumes homogeneous Dirichlet boundary
conditions at y = 0 and y = 1 and homogeneous Neumann conditions at x = 0 and x = 1.
The Darcy velocity is determined by the hydraulic head gradient

(5.4)

[
u
v

]
= −hκ∇h.
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Figure 5. The “true” log-conductivity field.

Table 1
True values of the parameters for the tracer problem. The log-conductivity at location (x, y) is θj(x,y), where

j(x, y) is the smallest integer j such that xj0 ≤ x ≤ xj1 and yj0 ≤ y ≤ yj1; each parameter value θj corresponds
to log κj in Figure 5.

Parameter xj0 xj1 yj0 yj1 True value Prior lower Prior upper

θ1 0.6 1 0.15 0.3 −0.75 −1 0

θ2 0 0.4 0.7 0.1 −0.25 −1 1

θ3 0.5 1 0 0.5 −0.5 −1 0

θ4 0.4 1 0.6 1 1 0 2

θ5 0.2 0.25 0 0.3 −0.25 −1 0

θ6 0 1 0 1 3 2 5

The time-dependent tracer concentration c(x, y, t) then evolves, given a flow-dependent dis-
persion tensor, via

(5.5)
∂c

∂t
+∇ ·

((
dmI + dl

[
u2 uv
uv v2

])
∇c
)
−
[
u
v

]
· ∇c = −ft,

where dm = 2.5×10−3 and dl = 2.5×10−3 are dispersion coefficients and ft(x, y) is the tracerD
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Figure 6. Hydraulic head (colormap) h(x, y) computed via (5.3) and corresponding velocities (5.4) (arrows),
given the conductivity field in Figure 5.

forcing. The tracer is forced by injection at each well location. The source term is similar to
the one forcing the hydraulic head

ft(x, y) =
4∑
i=1

ri exp

(
(ai − x)2 + (bi − y)2

0.005

)
,

where ri ∈ (10, 5, 10, 5). The tracer has initial condition c(x, y, 0) = 0, and homogeneous
Neumann conditions are enforced at all spatial boundaries. Since the hydraulic head forcing,
tracer forcing, and dispersion coefficients are known, the forward model simply maps the
conductivity to a time-evolving concentration field. Tracer observations are taken at 25 well
locations: (xi, yj) such that xi = 0.1+ i−1

5 and yj = 0.1+ j−1
5 for i, j ∈ {1, . . . , 5} at successive

times t ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
The forward solver computes the steady state pressure and velocity fields, then simulates

the tracer advection/diffusion. Figure 6 shows the hydraulic head and velocity fields resulting
from the true log-conductivity, and Figure 7 shows the associated tracer concentration field
at t = 0.4. Overall, the parameter-to-observable map, from the log-conductivities to the time-
dependent tracer concentrations, is strongly nonlinear and challenging to approximate. Data
for inversion are generated using a standard finite element scheme on a 200× 200 mesh. The
solver used for inversion (i.e., to evaluate the posterior density at a candidate value of θ) uses
a coarser 100× 100 mesh. In both cases (generating the data and within the inversion), timeD
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Figure 7. The tracer concentration c(x, y, t = 0.4), given the conductivity field in Figure 5. The tracer is
injected from a well in each corner.

integration of the contaminant concentration field uses a Crank–Nicolson scheme. The likeli-
hood assumes additive and i.i.d. errors for each observation of tracer concentration, Gaussian
with mean zero and variance 10−2.

In a serial implementation, each evaluation of the forward model and hence the likelihood
requires roughly 13 seconds of computation. Though we will mitigate this cost using local ap-
proximations, we also wish to compare our approach with chains that employ exact evaluations
of the forward model. To make such comparisons feasible—and also to reflect computational
practice for complex PDE models—we parallelize each forward model evaluation. We use four
processors, which reduces the forward model’s run time to roughly 4 seconds of computation.
Thus our parallel MCMC scheme actually employs two levels of parallelism: an outer level
involving parallel chains, as described in section 3, and an inner level within each forward
model evaluation.

The posterior distribution in this problem has no standard analytical form. To estab-
lish a baseline for accuracy comparisons, we instead run 31 independent exact+AM chains.
Each chain is 105 steps long, which requires several days (per chain) of computation. After
discarding the first 104 samples of each chain as burn-in, the remaining samples are pooled
and used to characterize the posterior distribution. Figure 8a shows a trace plot of one such
exact+AM chain, for all six components of the state. Visually, the transient behavior of the
chain appears exhausted well before 104 steps, justifying our choice of burn-in. One- and two-
dimensional marginals of the posterior distribution, computed using the pooled exact+AMD
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(d) LA+MALA

Figure 8. Tracer transport problem: Trace plots for a single MCMC chain (state versus MCMC iteration)
either using exact density evaluations or employing a local approximation (LA), paired with either an AM or
mMALA proposal.

chains, are shown in Figure 9. The distribution has distinctly non-Gaussian structures, and
the regions of high posterior probability seem to concentrate around the “true” parameters
given in Table 1.

While the AM chains appear to mix well for this problem, mMALA proves far less effective.
Figure 8c shows trace plots of an exact+mMALA chain targeting the same posterior. This
calculation is rather laborious (over 415 hours), as direct evaluations of the gradient of the
forward model are not available; instead we compute the gradients using finite differences.
This simulation is not intended as a practical approach, but rather to assess the performance
of mMALA in the absence of local approximations. We find that the chain mixes quite
poorly; the ESS after 105 MCMC steps is only 80. Based on the results of section 5.1, we
do not expect mMALA paired with local approximations to fare any better and, indeed,
Figure 8d shows that mixing is poor for an LA+mMALA chain. Given these results, we
focus the rest of this section on AM chains, with a goal of exploring the performance of
parallel LA schemes. More broadly, we note that there is no guarantee that MALA schemes
should improve over adaptive Metropolis (or even simple random-walk Metropolis) in low-
dimensional problems such as those considered here. The potential for such improvements
is problem-dependent and sometimes rather delicate, as was recognized almost immediately
when MALA was introduced [42].D
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Figure 9. One- and two-dimensional posterior marginals of the parameters in the hydrologic tracer transport
problem. Bounds on each subplot axis are the upper and lower bounds for the uniform prior on the corresponding
parameter (Table 1).

We first examine the convergence of estimates produced by single LA+AM chains. Al-
gorithm settings are given in Appendix A, and code for this example is provided in the sup-
plementary material (M108408 01.zip [local/web 39.4KB]). We run 51 independent chains,
again discarding the first 104 samples of each chain as burn-in. For consistency, we simply
choose the same burn-in period for the exact chains and LA chains. If anything, this choice is
less favorable to LA—though asymptotically it is immaterial. The mixing of a single LA+AM
chain is visualized by the trace plot in Figure 8b. Initially, the chain does not mix as quickly
as in the exact+AM case, but mixing improves as the approximation is refined, and overall the
chain appears to explore the posterior quite efficiently. We also emphasize that the horizontal
axis in Figure 8b does not reflect computational cost, since the latter is dominated by target
density evaluations rather than MCMC steps.

To assess error versus computational cost, Figure 10 shows, for each individual chain, the
squared relative error in a running posterior covariance estimate versus wall clock time. The

squared relative error ε
2,(i)
t is defined in (5.2), where the reference value C0 of the posterior

covariance is computed by pooling all 2.79×106 available exact+AM samples. For comparison,
we also plot error versus run time for 31 exact+AM chains. When reporting wall clock times
here and below, we include the computational cost of the entire chain, including the cost
of portions discarded as burn-in. Error in the LA chains decreases steadily and reaches an
accuracy comparable to the exact chains, but with significantly shorter run times. We alsoD
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Figure 10. Tracer transport problem: Relative squared error in the posterior covariance estimates produced
by independent single (i.e., not parallel) AM chains, versus run time. The light gray lines correspond to 31
independent exact+AM chains, each of length 105. The dark gray line shows the expected error for this exact
case. The light red lines correspond to 51 single LA+AM chains, each of length 2 × 105. The dark red line
shows the expected error in the approximate case.

notice that decay rate of the expected error (bold red line in Figure 10) in the LA case seems to
accelerate. As noted in the quartic example (where longer chains accentuated this trend), this
acceleration is due to the fact that refinements happen less frequently as the chain progresses,
while additional MCMC steps continue to reduce the error.

The local approximation sampler becomes even more effective in a parallel chain setting,
where concurrent chains are allowed to share posterior density evaluations by building a
common St. The colored lines in Figure 11 show error versus run time for increasing levels of
parallelism k, from 1 to 30 chains. To assess the variability of the error, each k-chain simulation
is repeated several times; each such realization is shown in the figure. Each individual LA+AM
chain (within a group of k) has a fixed length of 105 steps and, as before, the first 104 samples
of each chain are discarded as burn-in. The error plotted on the vertical axis is again the
squared relative error in the posterior covariance. Two trends are visible in the colored lines.
First, as the number of chains increases, the error decreases. In and of itself, this is not
surprising: summing across the chains, we accumulate more MCMC samples and, along the
way, seek more model evaluations to refine the local approximations (this will be quantified
precisely in subsequent figures). But the colored lines also move to the left as the number
of parallel chains increases; in other words, both the error and the run time are reduced.
This trend contrasts with that obtained by simply running exact+AM chains in parallel, an
exercise depicted by the gray lines in Figure 11. Using this naive parallelization, adding more
chains decreases the sampling error but does not affect the run time. Moreover, the run timesD
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Figure 11. Tracer transport problem: Relative squared error in the posterior covariance estimates obtained
from parallel MCMC chains. The gray lines are computed using exact target density evaluations for k ∈
{1, 2, 4, 8, or 16} chains. Darker shades correspond to simulations with more parallel chains. The colored
lines are computed using local approximation MCMC. We use k ∈ {1, 2, 4, 6, 8, 10, 13, 16, 20, 25, or 30}
chains corresponding to light red, red, light orange, orange, light green, green, light blue, blue, light purple,
purple, and brown, respectively. The error is that of a running covariance estimate obtained by pooling samples
from the k concurrent chains. Sharing posterior density evaluations shortens the run time and reduces the
error.

of LA+AM are one to two orders of magnitude smaller for comparable errors.
We can also characterize the behavior of parallel local approximations by evaluating ESS

as a function of computational effort. Figure 12 shows ESS as a function of wall clock time.
First, as a baseline, consider again running exact+AM chains of length 105 in parallel, depicted
by gray and black circles. We certainly expect parallel chains to yield a larger ESS once
their samples are pooled, and indeed the circles jump upwards as we increase the number of
concurrent chains from 1 to 30. Increasing the number of chains in the exact case does not,
however, change the time it takes to simulate each chain; thus the gray and black dots are
vertically aligned at the same run times. In the parallel LA+AM cases, depicted by colored
diamonds, the story is more interesting. As the number of parallel chains increases, the
symbols move upwards and to the left, reflecting decreased run times. Several independent
realizations of each parallel case are presented, since the simulations are not deterministic.
Note that the ESS of a single LA+AM chain (light red) is lower than that of an exact+AM
chain of the same length; this is expected, given the mixing comparison at the top of Figure
8. Similarly, 30 parallel exact+AM chains have a higher combined ESS than 30 parallel
LA+AM chains (the brown diamonds of Figure 12). But the latter entail a vastly smaller
computational effort. Because of the collaboration among chains, we can compute a largerD
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Figure 12. Results of the parallel efficiency study on the tracer transport problem, comparing run time to
the total ESS across parallel chains. Each symbol represents one (parallel) experiment. Light gray circles and
light red diamonds correspond to single chains of length 105 (with 104 burn-in) using exact evaluations and local
approximation, respectively. Each colored diamond represents a different number k of parallel LA+AM chains,
k ∈ {1, 2, 4, 6, 8, 10, 13, 16, 20, 25, or 30}, and the colors are as in Figure 11. The black circle corresponds to
30 parallel exact+AM chains. Using local approximations, running more chains increases ESS and decreases
run time.

number of independent samples in less time.
Our second comparison uses a more stringent measure of parallel efficiency: ESS per chain-

hour, i.e., the total ESS divided by the number of chains and the wall clock time. This measure
removes the intrinsic advantage of having multiple chains. A naive MCMC parallelization
yields no improvement in efficiency according to this metric: the number of independent
samples might grow linearly with the number of chains, but this growth is normalized away.
Figure 13 shows this behavior for exact+AM chains using gray circles. In contrast, the
results of parallel local approximation, depicted by colored diamonds, show steady gains in
ESS/(chain-hour) with additional parallel chains. This gain is the result of collaboration
among the chains in the most computationally expensive element of the inference problem—
evaluating the posterior density—by sharing evaluations from which we construct a shared
surrogate model. We note that the total number of model evaluations performed during
the parallel experiments is still higher than in a single-chain case, but since the additional
evaluations are parallelized, the run time is shorter.

5.3. Shallow-shelf ice stream model. Continental ice sheets are divided into basins that
are drained by fast-flowing river-like ice streams. These ice streams regulate the discharge
of ice mass into the ocean, and hence play a key role in determining the overall behavior of
the ice sheet. The Intergovernmental Panel on Climate Change has identified the AntarcticD
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Figure 13. Results of the parallel efficiency study on the tracer transport problem, comparing run time to the
effective number of samples produced per chain-hour. Each symbol represents one (parallel) experiment. Again,
colors from light red to brown correspond to more parallel chains, k ∈ {1, 2, 4, 6, 8, 10, 13, 16, 20, 25, or 30}.
Using parallel local approximations, ESS per chain-hour increases with the number of chains.

contribution to sea-level rise as an important source of uncertainty in climate projections, and
ice streams have become a widespread topic of study [10, 24].

Ice stream dynamics are not completely understood, nor are the factors governing their
dynamics. Although satellite data provide plentiful observations of topology and surface
velocities [19, 30, 47], basal properties such as the friction between the base of the ice and
the underlying ground—the basal friction—are difficult or impossible to observe directly. The
basal friction varies widely and may be higher if the ice is scraping directly against rough
bedrock or lower if the ice rests on till, a mixture of mud and rock that lubricates the interface.
The basal friction also parameterizes basal lubrication caused by melting basal ice (possibly
due to geothermal or frictional heating). Previous work infers basal friction given surface
velocity observations [32, 39]; quantifying uncertainty in the basal friction, however, requires
considerable computational expense and/or posterior approximations [38]. In this example,
we explore the problem of inferring the basal friction from surface velocities, employing local
approximations to reduce the computational cost of MCMC.

Ice is often modeled as a highly viscous, non-Newtonian, and incompressible fluid. In
particular, the shallow-shelf approximation [31, 32, 33] describes ice stream velocity assuming
that (i) the horizontal extent (O(100 km)) is much larger than the vertical extent (O(1 km)),
and (ii) the vertical velocity is zero. The nondimensionalized shallow-shelf equations for aD
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two-dimensional horizontal domain [0, 1]2 3 (x, y) are

∂

∂x

(
2νh

(
2
∂u

∂x
+
∂v

∂y

))
+

∂

∂y

(
νh

(
∂u

∂y
+
∂v

∂x

))
− β |u|m−1 u = h

∂s

∂x
,

∂

∂x

(
2νh

(
2
∂v

∂y
+
∂u

∂x

))
+

∂

∂y

(
νh

(
∂v

∂x
+
∂u

∂y

))
− β |v|m−1 v = h

∂s

∂y
,

with boundary conditions

u = 0 and v = −1 at x = 0 and x = 1,
∂u
∂y + ∂v

∂x = 0 at y = 0 and y = 1, and 2∂v∂y + ∂u
∂x = 0 at y = 1,

where

ν =
1

2

((
∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

4

(
∂u

∂y
+
∂v

∂x

)2

+
∂u

∂x

∂v

∂y

)−n−1
2n

is the velocity-dependent viscosity [31, 32, 33]. Assuming that the surface elevation s(x, y)
and ice thickness h(x, y) are known and that n = 1

m = 3, the forward model maps realizations
of the basal friction β(x, y) to the horizontal velocities u(x, y) and v(x, y).

To define our Bayesian inference problem, we endow the log-basal friction field log β(x, y)
with a Gaussian process prior, using an isotropic squared-exponential covariance kernel,

C ((x1, y1), (x2, y2)) = σ2 exp

(
−(x1 − x2)2 + (y1 − y2)2

2l2

)
,

with correlation length l = 0.1 and variance σ2 = 25. This field is easily parameterized with
a Karhunen–Loève expansion [1]:

β(x, y; θ) ≈ exp

(
d∑
i=1

θi
√
λiϕi(x, y)

)
,

where λi and ϕi(x, y) are the eigenvalues and eigenfunctions, respectively, of the integral
operator on [0, 1]2 defined by the kernel C, and the parameters θi inherit independent standard
normal priors, θi ∼ N (0, 1). We truncate the Karhunen–Loève expansion at d = 12 modes and
infer the weights (θ1, . . . , θ12) from data. The true basal diffusivity field is shown in Figure 14.

Data arise from observations of the velocity field on a uniform 10 × 10 grid covering the
unit square, (xi, yi) ∈ {(.05, .05), . . . , (.95, .95)}, as depicted in Figure 15. Both the u and v
components of velocity are observed, and observational errors are taken to be independent,
additive, and identically Gaussian, N (0, 0.012). To avoid an “inverse crime” [26], data are
generated with a 25× 25 mesh, but inference uses a coarser 15× 15 mesh.

The posterior distribution of the basal friction field is quite challenging to sample, as
the forward model requires, on average, 26 seconds per evaluation. Using a direct MCMC
approach, a numerical simulation comprising 10 parallel chains of 200,000 steps each would
therefore take nearly two months to run. Using LA+AM on 10 parallel chains, we complete
exactly the same simulation in just over one day, a nearly 60-fold improvement in the runD
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Figure 14. Ice stream inference problem: The true log-basal friction field, log β(x, y).

Figure 15. Ice stream inference problem: The assumed ice height field h(x, y) (shading) superimposed on
the observed velocity field (vectors), given the basal friction in Figure 14. Note the left-right asymmetry in the
velocity field at the top of the domain, induced by the high friction region at the top right.

time. Representative one- and two-dimensional marginals of the posterior (focusing on only
the first 6 of 12 dimensions) are shown in Figure 16. Note that several parameters are strongly
correlated, and that many marginal distributions appear skewed and non-Gaussian. These
2 million samples were produced using only about 35,000 runs of the forward model.

6. Conclusions. This work has extended our previous development of asymptotically ex-
act MCMC algorithms that employ local approximations of expensive models. We lifted
restrictive assumptions on the type of MCMC kernel that could be used—in particular, allow-
ing the proposal distribution to extract derivatives, and hence geometric information, from the
approximation. Doing so enables a wide variety of more sophisticated proposal distributions,D
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Figure 16. One- and two-dimensional posterior marginals of the first six parameters in the ice stream
inference problem.

such as manifold MALA, to be applied in settings where they would otherwise be intractable
(e.g., when forward model derivatives cannot be directly evaluated) or unaffordable. Addition-
ally, we showed that using approximations allows the most computational intensive element
of many MCMC simulations—the forward model or likelihood evaluations—to be directly
parallelized through the shared and online construction of a posterior-adapted set of samples.
Sharing this set of model evaluations among multiple MCMC chains drives the construction
of local approximations on each chain, providing a novel and effective means of reducing the
run time of MCMC simulations. Our shared local approximation scheme can readily be paired
with other MCMC parallelization schemes, e.g., methods that use the presence of multiple
chains to improve mixing; this is a natural avenue for future work.

To demonstrate the practical utility of these developments, we presented two challenging
inference problems that we believe reflect scientifically interesting settings where forward
models are necessarily expensive. Using parallel computing resources, we demonstrated a
nearly two-orders-of-magnitude improvement in the run time of a groundwater hydrology
inference problem, and a roughly 60-fold reduction in the run time of an ice stream inference
problem. These results suggest that our approach may help make a range of challenging
Bayesian inference problems feasible. A reusable and open source implementation of this
algorithm is available as part of the MIT Uncertainty Quantification (MUQ) library (http:
//muq.mit.edu).

Appendix A. Complete algorithm description. This appendix provides a complete de-
scription of the local approximation MCMC algorithm from [9], extended here to MCMC
proposals that also employ the approximation f̃ . We replicate necessary subroutines from
[9]; for a full discussion and derivation of these methods, please see that paper. The sketchD
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given in Algorithm 2 of section 2 is expanded here into Algorithm 3, which takes additional
parameters βt and γt that determine when refinement is performed according to random or
cross-validation criteria, respectively. The choice of γt is arbitrary, but

∑
t βt must diverge;

based on the parameter study in [9], the numerical experiments in section 5 are performed
with βt = 0.01t−0.2 and γt = 0.1t−0.1. These numerical experiments employ local quadratic
approximations, as described below. Code used to run the examples, in conjunction with
MUQ, is provided in the supplementary material (M108408 01.zip [local/web 39.4KB]).

Algorithm 3. Metropolis–Hastings with local approximations and general proposals.

1: procedure RunChain(f , r, q, θ1,S1, `,d, p, T, {βt}Tt=1, {γt}Tt=1)
2: for t = 1 . . . T do
3: (θt+1,St+1)← Kt(θt,St, `,d, p, f , r, q, βt, γt)
4: end for
5: end procedure

6: procedure Kt(θ
−,S, `,d, p, f , r, q, βt, γt)

7: Draw proposal zt ∼ N (0, I).
8: f̃− ← LocApprox(θ−,S, ∅).
9: θ+ ← r(θ−, zt, f̃

−).
10: f̃+ ← LocApprox(θ+,S, ∅).
11: α← min

(
1, `(θ

+|d,f̃+)p(θ+)q(θ+,θ−|f̃+)

`(θ−|d,f̃−)p(θ−)q(θ−,θ+|f̃−)

)
. . Compute nominal acceptance ratio

12: Compute ε+ and ε− as in (A.1)–(A.2).
13: if u ∼ Uniform(0, 1) < βm then . Refine with probability βm
14: Randomly, S ← RefineNear(θ+,S) or S ← RefineNear(θ−,S).
15: else if ε+ ≥ ε− and ε+ ≥ γm then . If needed, refine near the larger error
16: S ← RefineNear(θ+,S)
17: else if ε− > ε+ and ε− ≥ γm then
18: S ← RefineNear(θ−,S)
19: end if
20: if refinement occurred then repeat from line 8.
21: else . Evolve chain using approximations
22: Draw u ∼ Uniform(0, 1). If u < α, return (θ+,S), else return (θ−,S).
23: end if
24: end procedure

Algorithm 4 provides several subroutines. The first, LocApprox, gathers the N nearest

neighbors from St to use in constructing the approximation; for quadratics, N =
√
d(d+1)(d+2)

2 .

The operator A∼jB(θ,R) constructs the local approximation; in this work, it fits a quadratic (a

degree-two polynomial) with least squares. The input j facilitates cross-validation and, unless
j = ∅, designates that the jth neighbor should be omitted. The second routine, RefineNear,
solves a local optimization problem to choose a new point θ∗ that is near θ but space-filling
overall; this point is used to enrich St.

Cross-validation is used to estimate the error in the acceptance probability evaluated usingD
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Algorithm 4. Supporting algorithms.

1: procedure LocApprox(θ,S, j)
2: Select R so that |B(θ,R)| = N , where
B(θ,R) := {(θi, f(θi)) ∈ S : ‖θi − θ‖2 ≤ R}. . Select ball of points

3: f̃ ← A∼jB(θ,R). . Fit local approximation

4: return f̃
5: end procedure

6: procedure RefineNear(θ,S)
7: Select R so that |B(θ,R)| = N . . Select ball of points
8: θ∗ ← arg max‖θ′−θ‖≤R minθi∈S ‖θ′ − θi‖. . Optimize near θ
9: S ← S ∪ {θ∗, f(θ∗)}. . Grow the sample set

10: return S
11: end procedure

the approximations. Define the nominal and leave-one-out variants of the approximations, for
j = 1, . . . , N , as

f̃+ = LocApprox(θ+,S, ∅), f̃+
∼j= LocApprox(θ+,S, j),

f̃− = LocApprox(θ−,S, ∅), f̃−∼j= LocApprox(θ−,S, j).

Then compute the approximate posterior ratio and all the leave-one-out variants (here, slightly
modified from our original work to include the proposal densities):

ζ :=
`(θ+|d, f̃+)p(θ+)q(θ+, θ−|f̃+)

`(θ−|d, f̃−)p(θ−)q(θ−, θ+|f̃−)
,

ζ+,∼j :=
`(θ+|d, f̃+

∼j )p(θ
+)q(θ+, θ−|f̃+

∼j )

`(θ−|d, f̃−)p(θ−)q(θ−, θ+|f̃−)
,

ζ−,∼j :=
`(θ+|d, f̃+)p(θ+)q(θ+, θ−|f̃+)

`(θ−|d, f̃−∼j )p(θ−)q(θ−, θ+|f̃−∼j )
.

Finally, find the maximum difference between the α values computed using ζ and those com-
puted using the leave-one-out variants ζ+,∼j and ζ−,∼j , averaging over the forward and reverse
directions. These are the error indicators:

ε+ := max
j

(∣∣min (1, ζ)−min
(
1, ζ+,∼j) ∣∣+

∣∣∣∣min

(
1,

1

ζ

)
−min

(
1,

1

ζ+,∼j

)∣∣∣∣) ,(A.1)

ε− := max
j

(∣∣min (1, ζ)−min
(
1, ζ−,∼j

) ∣∣+

∣∣∣∣min

(
1,

1

ζ

)
−min

(
1,

1

ζ−,∼j

)∣∣∣∣) .(A.2)

Appendix B. Proofs of the main results. Throughout this section, we use the notation
f(x) = O(g(x)) to mean that there exists some constant 0 < C <∞ so that f(x) ≤ Cg(x). If
the constant C depends on an important parameter, we sometimes use that parameter as aD
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subscript for emphasis; for example, x2

p = Op(x
4) for all fixed p > 0, but there is no constant

C <∞ so that x2

p ≤ Cx
4 uniformly in p > 0.

For any pair of measures µ, ν on a metric space (X , d), denote by Π(µ, ν) the collection
of all pairs of random variables (X,Y ) ∈ X 2 that have marginal distributions L(X) = µ,
L(Y ) = ν. Recall that the Wasserstein metric on measures on a metric space (X , d) is given
by

Wd(µ, ν) = inf
(X,Y )∈Π(µ,ν)

E[d(X,Y )].

We also use the shorthand Wp ≡W‖·‖p when 1 ≤ p ≤ ∞. The total variation distance between
two probability measures µ, ν is given by ‖µ − ν‖TV = Wρ(µ, ν), where ρ(x, y) ≡ 1x 6=y. The
mixing time of a Markov chain {Zt}t≥0 with stationary distribution π on state space Ω is

τmix = inf

{
t : sup

Z0=z∈Ω
‖L(Zt)− π‖TV <

1

4

}
.

Proof of Theorem 2. Denote the diameter of Ω by DΩ and the mixing time of K∞ by
τmix; by assumptions 1 and 2 of Definition 3.1, respectively, DΩ, τmix < ∞. For ε > 0, let
τε = inf{t > 0 : St is an ε-cover of Θ}. By substituting τε for τ everywhere that it is used,
the proof of Lemma B.4 of [9] shows that

P[τε <∞] = 1(B.1)

for all ε > 0.
Next, fix S, T ∈ N and ψ, δ, ϕ0 > 0, and let ε = ε(δ) be the smaller of the values of ε(δ)

from inequalities (4.2), (4.4). Let FT be the σ-algebra σ({Xt,St}0≤t≤T ). We will let {Yt}t≥T
be a Markov chain with transition kernel K∞ started at YT = XT , and we will let {Zt}t≥T
be a Markov chain with transition kernel K∞ started at the distribution L(ZT ) = π. We
now describe a coupling of the three stochastic processes {Xt}T≤t≤T+S , {Yt}T≤t≤T+S , and
{Zt}T≤t≤T+S . We couple {Yt}T≤t≤T+S , {Zt}T≤t≤T+S so that

P[YT+S = ZT+S |YT , ZT ] = ‖L(YT+S |YT )− L(ZT+S |ZT )‖TV.(B.2)

At least one coupling with this property exists by the definition of the total variation distance;
choose one such coupling arbitrarily. We then couple {Xt}T≤t≤T+S to {Yt}T≤t≤T+S iteratively
in t. Denote by X̃ the value that would be returned in the tth iteration of Algorithm 3 if line
21 were ignored, and let z be the value obtained in line 7. Then, (Xt+1, Yt+1) can be coupled
conditional on (Xt, Yt,St) so that

E[‖Xt+1 − Yt+1‖2] ≤ E[‖Xt+1 − X̃‖] + E[‖X̃ − Yt+1‖] ≤ δ +DΩP[‖z‖ > ϕ0] +
ψ

S + 1
(B.3)

+ sup
θ,θ′∈Θ, ‖θ−θ′‖<‖Xt−Yt‖

W2(KSt(θ, ·),K∞(θ′, ·)).

Such a coupling exists by inequality (4.4) and the definition of the Wasserstein distance. By the
“gluing” lemma (Chapter 1 of [49]), it is possible to combine the couplings of {Xt, Yt}T≤t≤T+SD
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and {Yt, Zt}T≤t≤T+S into a single coupling {Xt, Yt, Zt}T≤t≤T+S that satisfies both inequality
(B.2) and also inequality (B.3) for all T ≤ t < T + S. Under this coupling,

W2(YT+S , ZT+S) ≤ DΩP[ZT+S 6= YT+S ](B.4)

≤ DΩ2
−b S

τmix
c
.

Let η0 be as in the requirements for (4.3). By inequalities (4.2) and (B.3), we have for
T ≤ t < T + S that

E[‖Xt+1 − Yt+1‖2 |FT ] = E[‖Xt+1 − Yt+1‖21T≥τε |FT ] + E[‖Xt+1 − Yt+1‖21T<τε |FT ]

≤ δ +DΩP[‖z‖ > ϕ0] +
ψ

S + 1
+ E

[
sup

θ,θ′∈Θ, ‖θ−θ′‖<‖Xt−Yt‖
W2(K∞(θ, ·),K∞(θ′, ·))|FT

]
+ E

[
sup
θ∈Θ

W2(KSt(θ, ·),K∞(θ, ·))1T≥τε |FT
]

+DΩ1T<τε

≤ δ +DΩP[‖z‖ > ϕ0] +
ψ

S + 1
+ CE[‖Xt − Yt‖2 |FT ] +DΩP[‖Xt − Yt‖ ≥ η0|FT ]

+ δ +DΩ1T<τε

≤ DΩP[‖z‖ > ϕ0] +
ψ

S + 1
+ 2δ +

(
C +

DΩ

η0

)
E[‖Xt − Yt‖2 |FT ] +DΩ1T<τε .

Iterating this inequality over T ≤ t < T + S and recalling that ‖XT − YT ‖2 = 0,

E[‖XT+S − YT+S‖2 |FT ] ≤
(

2δ +
ψ

S + 1
+DΩP[‖z‖ > ϕ0]

)(
C +

DΩ

η0

)S+1

(B.5)

+DΩ1T<τε .

Combining inequalities (B.4) and (B.5),

W2(XT+S , π) ≤ E[‖XT+S − ZT+S‖2]

≤ DΩ2
−b S

τmix
c

+

(
2δ +

ψ

S + 1
+DΩP[‖z‖ > ϕ0]

)(
C +

DΩ

η0

)S+1

+DΩP[T < τε].

Letting ψ go to 0,

W2(XT+S , π) ≤ DΩ2
−b S

τmix
c

+ (2δ +DΩP[‖z‖ > ϕ0])

(
C +

DΩ

η0

)S+1

(B.6)

+DΩP[T < τε].

For α ∈ N, define δ(α) = 1
α2 , ϕ0(α) = inf{ϕ : P[‖z‖ > ϕ] ≤ α−2}, S(α) = b − log(α)

log(C+
DΩ
η0

)
c−1, and

T (α)′ = inf{t : P[t < τε(δ(α))] ≤ 1
α}. It is easy to check that limα→∞ S(α) = limα→∞ T (α)′ =

∞, and so for any sequence T (α) > T (α)′, inequality (B.6) implies

lim
α→∞

W2(XT (α)+S(α), π) ≤ lim
α→∞

(
DΩ2

−b S(α)
τmix

c
+

4DΩ

α

)
= 0.
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Since this holds for any sequence T (α) > T (α)′, inequality (4.5) follows.3

Proof of Theorem 3. It is enough to check that the conditions of Theorem 2 hold. Go
through the elements of Definition 4.1 in order as follows:

1. To check that inequality (4.2) holds, fix δ > 0. By results in [8],4 there exists a
constant ε1 = ε1(δ, λ) > 0 so that for all ε < ε1,

sup
θ∈Θ
|pS(θ)− p(θ|d)| < δ

2DΩ
(B.7)

if S is an ε-cover and the points B(θ,R) chosen in line 2 of Algorithm 4 are λ-poised.
The same discussion in [8] implies that there exists a constant ε2 = ε2(δ, λ) > 0 so
that for all ε < ε2,

sup
θ∈Θ
|MS(θ)−M∞(θ)|, |∇θ(πS)−∇θ(π∞)| < δ(B.8)

if S is an ε-cover and the points B(θ,R) chosen in line 2 of Algorithm 4 are λ-poised.
Since the smallest singular value of M(θ) is bounded below uniformly in θ, this implies
that there exists a constant ε3 = ε3(δ, λ) > 0 so that for all ε < ε3 (see [21, Prop. 7]),

sup
θ∈Θ

W2(qS(θ, ·), q∞(θ, ·)) < δ

2
(B.9)

as long as S is an ε-cover and the points B(θ,R) chosen in line 2 of Algorithm 4 are
λ-poised.
Combining inequalities (B.7) and (B.9), we have for all 0 < ε < min(ε1, ε3) that

sup
θ∈Θ

W2(KS(θ, ·),K∞(θ, ·)) ≤ sup
θ∈Θ

W2(qS(θ, ·), q∞(θ, ·)) +DΩ sup
θ∈Θ
|pS(θ)− p(θ|d)|

≤ δ

2
+
δ

2
= δ.

This completes the proof of inequality (4.2).
2. By the assumption that the mass matrix M(θ) and likelihood `(θ|d, f) are both C∞

functions on Ω, and that the smallest singular value of M and the likelihood ` are
both uniformly bounded away from zero, we have

‖q∞(θ, ·)− q∞(θ′, ·)‖TV =
∥∥∥N (θ +

ε

2
M(θ)∇θ log (`(θ|d, f)p(θ)), εM(θ)

)
(B.10)

− N
(
θ′ +

ε

2
M(θ′)∇θ log

(
`(θ′|d, f)p(θ′)

)
, εM(θ′)

)∥∥∥
TV

≤
∥∥∥N (θ +

ε

2
M(θ)∇θ log (`(θ|d, f)p(θ)), εM(θ)

)
3Since the convergence to stationarity under the Wasserstein distance may not be monotone, this flexibility

in the choice of T (α) is necessary to obtain the desired convergence result.
4The required result is a combination of Theorems 3.14 and 3.16, as discussed in the text after the proof of

Theorem 3.16 in [8].D
ow

nl
oa

de
d 

02
/0

4/
19

 to
 1

8.
10

1.
8.

12
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

PARALLEL LOCAL APPROXIMATION MCMC 371

− N
(
θ′ +

ε

2
M(θ′)∇θ log

(
`(θ′|d, f)p(θ′)

)
, εM(θ)

)∥∥∥
TV

+
∥∥∥N (θ′ + ε

2
M(θ′)∇θ log

(
`(θ′|d, f)p(θ′)

)
, εM(θ)

)
− N

(
θ′ +

ε

2
M(θ′)∇θ log

(
`(θ′|d, f)p(θ′)

)
, εM(θ′)

)∥∥∥
TV

= Oc(‖θ − θ′‖),

where the bound on the first term in the last line is standard, and the second term in
the last line is bounded by an application of [28, Lem. 4.8]. By a similar calculation,

|α∞(θ, z)− α∞(θ′, z)| = Oc(‖θ − θ′‖).(B.11)

Inequalities (B.10) and (B.11) imply that

sup
θ,θ′∈Θ, ‖θ−θ′‖<η

W2(K∞(θ, ·),K∞(θ′, ·))

≤ DΩ sup
θ,θ′∈Θ, ‖θ−θ′‖<η

‖K∞(θ, ·)−K∞(θ′, ·)‖TV

≤ DΩ

(
sup

θ,θ′∈Θ, ‖θ−θ′‖<η
‖q∞(θ, ·)− q∞(θ′, ·)‖TV

+ sup
θ,θ′,z∈Θ, ‖θ−θ′‖<η

|α∞(θ, z)− α∞(θ′, z)|
)

= O(‖θ − θ′‖).

This completes the proof of inequality (4.3).
3. Inequality (4.4) follows immediately from (B.7) and (B.8).
4. Assumption 1 in Definition 3.1 holds by our assumption that Θ is the d-dimensional

hypercube.
5. Assumption 2 in Definition 3.1 has two parts. The first part, that q(θ, ·|f) has a C∞

density that is bounded away from zero uniformly in θ, f , follows from the form of
the mMALA proposal and the fact that the state space is compact. The second part,
that p(·|d) has a C∞ density that is bounded away from zero uniformly in θ, is an
assumption of our theorem.

6. Assumptions 3–6 in Definition 3.1 are assumed in the statement of the theorem.
This completes the proof of the theorem.
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