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Robust Queueing Theory

Chaithanya Bandi*, Dimitris Bertsimas†, Nataly Youssef‡

We propose an alternative approach for studying queues based on robust optimization. We model the uncer-

tainty in the arrivals and services via polyhedral uncertainty sets which are inspired from the limit laws

of probability. Using the generalized central limit theorem, this framework allows to model heavy-tailed

behavior characterized by bursts of rapidly occurring arrivals and long service times. We take a worst-case

approach and obtain closed form upper bounds on the system time in a multi-server queue. These expressions

provide qualitative insights which mirror the conclusions obtained in the probabilistic setting for light-tailed

arrivals and services and generalize them to the case of heavy-tailed behavior. We also develop a calculus for

analyzing a network of queues based on the following key principle: (a) the departure from a queue, (b) the

superposition, and (c) the thinning of arrival processes have the same uncertainty set representation as the

original arrival processes. The proposed approach (a) yields results with error percentages in single digits

relative to simulation, and (b) is to a large extent insensitive to the number of servers per queue, network

size, degree of feedback, traffic intensity, and somewhat sensitive to the degree of diversity of external arrival

distributions in the network.
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1. Introduction

The origin of queueing theory dates back to the beginning of the 20th century, when Erlang (1909)

published his fundamental paper on congestion in telephone traffic. In addition to formulating and

solving several practical problems arising in telephony, Erlang laid the foundations for queueing

theory in terms of the nature of assumptions and techniques of analysis that are being used to this

day. Given the modeling power of probability theory, a substantial literature of queueing theory

was developed which views queueing primitives as renewal processes. In particular, the Poisson

process has played a privileged role in modeling the arrival process of a queue. When combined with
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exponentially distributed service times, the resulting M/M/m queue with m servers is tractable

to analyze in steady-sate.

While exponentiality leads to a tractable theory, assuming general distributions, on the other

hand, yields considerable difficulty with respect to performing a near-exact analysis of the system.

In fact, the analysis of the GI/GI/m queue with independent and generally distributed arrivals

and services is, by and large, intractable. The most general method, due to Pollaczek (1957),

analyzes the performance of the GI/GI/m queue by formulating a multi-dimensional problem in

the complex plane. Gall (1998) portrays the difficulty of explicitly characterizing the equations

for the GI/GI/m queue given that their “partial solution can only be derived after long and

complex calculations involving multiple contour integrals in a multi-dimensional complex plane”.

When arrival and service distributions have rational Laplace transforms of order p (for example

Coxian distributions with p phases), the GI/GI/m problem becomes intractable for higher order

p values. Bertsimas (1990) reports numerical results for queues with up to 100 servers and p= 2

by finding all h =
(
m+p−1
m

)
complex roots to distinct polynomial equations and solving a linear

system of dimension h. The system’s dimension, however, increases to 4.5 million when p= 5, hence

illustrating the complexity of the problem under these assumptions.

The situation becomes even more challenging if one considers analyzing the performance of

queueing networks. A key result that allows generalizations to networks of queues is Burke’s theo-

rem (Burke (1956)) which states that the departure process from an M/M/m queue in steady-state

is Poisson. This property allows one to analyze queueing networks and leads to product form solu-

tions as in Jackson (1957). However, when the queueing system is not M/M/m, the departure

process is no longer a renewal process, i.e., the inter-departure times are dependent. With the

departure process lacking the renewal property, it is difficult to determine performance measures

exactly, even for a simple network with queues in tandem. The two avenues in such cases are simu-

lation and approximation. Simulation provides an accurate depiction of the system’s performance,

but can take a considerable amount of time in order for the results to be statistically significant,
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especially for heavy-tailed systems in heavy traffic. In addition, simulation models are often com-

plex, which makes it difficult to isolate and understand key qualitative insights. On the other hand,

approximation methods, such as QNA developed by Whitt (1983) and QNET developed by J. G.

Dai and J. M. Harrison (1992), provide a fair estimation of performance, but suffer from a lack of

generalizability to model heavy-tailed behavior.

Given these challenges, the key problem of performance analysis of queueing networks has

remained open under the probabilistic framework. In his opening lecture at the conference entitled

“100 Years of Queueing–The Erlang Centennial”, Kingman (2009), one of the pioneers of queueing

theory in the 20th century, writes, “If a queue has an arrival process which cannot be well modeled

by a Poisson process or one of its near relatives, it is likely to be difficult to fit any simple model,

still less to analyze it effectively. So why do we insist on regarding the arrival times as random

variables, quantities about which we can make sensible probabilistic statements? Would it not be

better to accept that the arrivals form an irregular sequence, and carry out our calculations without

positing a joint probability distribution over which that sequence can be averaged? ”. In practice,

probability distributions are not inherent to the queueing system; they represent a modeling choice

of the modeler that attempts to approximate the actual underlying behavior of the arrival and

service processes.

We propose an alternative framework to model queueing systems based on optimization theory.

The motivation behind our idea stems from the rich development of optimization as a scientific field

during the second part of the 20th century. From its early years (Dantzig (1949)), modern optimiza-

tion has had the objective to solve multi-dimensional problems efficiently from a practical point

of view. Today, many commercial codes are available which can solve truly large scale structured

(linear, mixed integer and quadratic) optimization problems. In particular, Robust Optimization

(RO), arguably one of the fastest growing areas in optimization in the last decade, provides, in our

opinion, a natural modeling framework for stochastic systems. For a review of robust optimization,

we refer the reader to Ben-Tal et al. (2009), and Bertsimas et al. (2011a). The key idea of our

approach is to make the limit laws of probability theory the primitive assumptions and formulate
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the problems arising in queueing systems as robust optimization problems. An initial effort along

these lines includes the work by Bertsimas et al. (2011b) where probabilistic guarantees on the

length of a busy period and the waiting time are provided through robust optimization. Herein,

we build upon this work and present a new approach for modeling the primitives of queueing

systems by uncertainty sets. This framework allows us to derive exact performance analysis of

the underlying stochastic system. The present paper is part of a broader investigation to analyze

stochastic systems such as market design, information theory, finance, and other areas via robust

optimization (see Bandi and Bertsimas (2012a, 2013, 2012b, 2014)).

Our robust optimization approach to queueing theory bears philosophical similarity with the

deterministic network calculus approach which was pioneered by Cruz (1991a,b) (see also Gallager

and Parekh (1994), El-Taha and Stidham (1999), C.S.Chang (2001), Boudec and Thiran (2001)).

Both methods (a) take a non-probabilistic approach by placing deterministic constraints on the

traffic flow and (b) derive bounds on key queueing performance measures via a worst case paradigm.

There has also been a significant literature on what is called stochastic network calculus (see Jiang

and Liu (2008), Jiang (2012), Ciucu et al. (2005), Burchard et al. (2011) for an overview). We

note, however, that the primitives of stochastic network calculus are in fact probabilistic, so the

similarity, even at the philosophical level, is significantly smaller. To a lesser degree, there is also

philosophical similarity (in that it is a deterministic and worst case approach) with adversarial

queueing theory (Borodin et al. (2001), Gamarnik (2003, 2000), Goel (1999)) which was developed

for stability analysis in multi-class queueing networks. In contrast, our aspiration in this work is

to develop a theory of performance analysis, and thus there is no overlap between adversarial and

robust queueing theory beyond the philosophical level. Beyond their deterministic and worst case

paradigms, significant differences can be noted when comparing our framework to the network

calculus approach.

(a) Different Underlying Assumptions: While both methods postulate deterministic con-

straints over the arrival process, the assumptions are different in nature. The deterministic

network calculus bounds the number of external arrivals nt up to time t by nt ≤ λ · t+ B,
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where λ denotes the traffic rate and B is a constant accounting for burstiness. In contrast,

our assumption on the arrival process yields different bounds on the number of arrivals nt.

In fact, denoting the arrival time of the nth
t job by t, i.e.,

∑nt
i=1 Ti = t, and applying Assump-

tion 1(a) with tail coefficient αa = 2, we obtain nt − λΓa
√
nt ≤ λt ≤ nt + λΓa

√
nt, where Γa

represents the effect of variability. Writing δ2 = nt yields δ2 − λΓaδ ≤ λt ≤ δ2 + λΓaδ. This

implies that δ ≥
(
−λΓa +

√
λ2Γ2

a + 4λt
)
/2, leading to nt ≥ λt− t

1
2λ

3
2 Γa. Similarly, we obtain

nt ≤ λt+ t
1
2λ

3
2 Γa, which results in the following bounds on the number of arrivals by time t

|nt−λ · t| ≤ Γaλ
3/2t1/2. (1)

Note that the way we handle variability is different from the deterministic network calculus,

and is motivated and indeed consistent with the limit laws of probability (see Section 2.2).

(b) Tighter Bounds for single server queues: It is widely believed that the network calcu-

lus approach can provide overly conservative bounds for single-server queues. In the words

of Ciucu and Hohlfeld (2010) “The deterministic network calculus can lead to conservative

bounds because many of the statistical properties of the arrivals are not accounted for,” and

for the stochastic network calculus “in M/M/1 and M/D/1 queuing scenarios where exact

results are available, the stochastic network calculus bounds are reasonably accurate,” (see

also Ciucu (2007)). Our approach, however, provides a bound on the system times for single-

server queues that is qualitatively similar to its probabilistic counterpart (see Section 3.3). Our

computations further show that, by constraining nature via bounding the variability allowed

in our uncertainty sets, we obtain results within often 4-6%, and at most 8% in stochastic

queueing networks (see Section 5).

(c) Generalizability: Our approach extends to more complex queueing systems such as multi-

server queues (see Section 3.2) and queueing networks with feedback (see Section 4). However,

“for GI/GI/m, (m> 1), stochastic network calculus based analysis remains plain blank” and

“feedback analysis is perhaps the most critical open challenge for stochastic network calculus”,

as remarked by Jiang (2012). Furthermore, while the stochastic network calculus has recently
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addressed heavy tails in a single-server setting (see Burchard et al. (2012)), our framework is

capable of providing closed-form upper bounds on the system time, while maintaining deter-

ministic assumptions. In probabilistic queues, Kelly et al. (1998) considers this problem for

markovian processes, and in network calculus setting, Xie and Jiang (2009), Jiang and Liu

(2008) have obtained some preliminary results in queues under priority disciplines. We plan to

investigate such disciplines under our framework in future work.

Specifically, our contributions and structure of the paper are as follows:

(a) In Section 2, we introduce the uncertainty model and propose to replace the renewal process

primitives with uncertainty sets that the arrival and service processes satisfy.

(b) In Section 3, we study single and multi-server queues operating under a first-come first-serve

(FCFS) scheduling policy. Taking a worst case approach, we obtain closed form upper bounds

on the system time, which not only carry the same qualitative insights found via traditional

queueing theory, but also extend the analysis to include heavy-tailed arrivals and services.

(c) In Section 4, we analyze the departure process under the assumption that servers act adver-

sarially so as to maximize the system time in the queue. We show that the departure times

belong to the arrival uncertainty set. This result is asymptotically akin to Burke’s theorem

and therefore forms the cornerstone of the proposed steady-state network analysis.

(d) In Section 5, we develop a calculus describing the three operations which affect the arrival

process in queueing networks: passing through a queue, superposition and thinning. This allows

an analytic characterization of the steady-state performance of queueing networks under the

assumption of adversarial servers.

(e) In Section 6, we present extensions of the results in Sections 3-5 to accommodate the case

where arrival and service times possess different tail behaviors.

(f) In Section 7, we show that the proposed network analysis provides a good approximation for the

analysis of a stochastic queueing network. The computations suggest that the robust approach

can be adapted to be within 4-6% from simulation. We also investigate the sensitivity of the
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results in terms of the number of servers per queue, network size, degree of feedback, traffic

intensity, and the degree of diversity of external arrival distributions in the network.

2. Proposed Framework

In the traditional probabilistic study of queues, the inter-arrival times T = {T1, T2, . . . , Tn} and

service times X = {X1,X2, . . . ,Xn} are modeled as renewal processes. Understanding the behav-

ior of time spent by the nth job in a queueing system entails the understanding of the complex

relationships between the random variables associated with the inter-arrival and service times. For

instance, in a single-server first-come first-serve (FCFS) queue, the system time Sn is given by

(Lindley (1952)) as

Sn =Wn +Xn = max(Wn−1 +Xn−1−Tn,0) +Xn = max
1≤k≤n

(
n∑
`=k

X`−
n∑

`=k+1

T`

)
, (2)

where Wn denotes the waiting time, i.e., the time spent waiting to enter service. The high dimen-

sional nature of the performance analysis problem makes the probabilistic approach by and large

intractable. The study of multi-server queues is even more challenging.

Instead, we assume inter-arrival and service times belong to uncertainty sets. We take a robust

optimization approach and seek the worst case system time experienced by the nth job under the

uncertainty set assumptions. In this section, we present our model of uncertainty, motivated by

the probabilistic limit laws.

2.1. Motivation via the Limit Laws

Motivated by the expression in Eq. (2), we propose to bound the partial sums over the inter-arrival

and service times. We guide our bounding procedure by the conclusions of probability theory,

namely the probabilistic weak convergence theorems. These theorems express the distribution of

the sum of many independent and identically distributed random variables as converging to one of

a small set of stable distributions.
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Light Tailed Distributions: Suppose that the inter-arrival and service times are independent

and identically distributed (i.i.d.) with means 1/λ and 1/µ, and finite standard deviations σa and

σs, respectively. By the central limit theorem, as n→∞, the random variables
n∑

i=k+1

Ti−
n− k
λ

σa(n− k)1/2
and

n∑
i=k+1

Xi−
n− k
µ

σs(n− k)1/2

are asymptotically standard normal. We know that a standard normal Z satisfies P(Z ≤ 2)≈ 0.975,

P(Z ≤ 3)≈ 0.995. We therefore assume that the quantities Ti and Xi take values such that

n∑
i=k+1

Ti−
n− k
λ
≥−Γa(n− k)1/2 and

n∑
i=k+1

Xi−
n− k
µ
≤ Γs(n− k)1/2, (3)

where the variability parameters Γa and Γs can be chosen to ensure that the inter-arrival times

and the service times satisfy the corresponding inequalities with high enough probability.

Heavy Tailed Distributions: Under a probabilistic framework, a sequence of random vari-

ables {Yi}i≥1 whose variance is undefined, are associated with heavy-tailed distributions. Such

random variables satisfy the generalized central limit theorem (Samorodnitsky and Taqqu (1994)).

Theorem 1. Generalized Central Limit Theorem

Let Y1, Y2, . . . be a sequence of i.i.d. random variables, with mean µ and undefined variance. Then
n∑
i=1

Yi−nµ

Cαn1/α
∼ Y, (4)

where Y is a stable distribution with a tail coefficient α∈ (1,2] and Cα is a normalizing constant.

To illustrate, the normalized sum of a large number of positive Pareto random variables with

common distribution may be approximated by a random variable Y following a standard stable

distribution with a tail coefficient α and Cα = [Γ(1−α)cos(πα/2)]
1/α

, where Γ(·) denotes the

gamma function. For a tail coefficient of α= 1.5, we obtain P (Y ≤ 6.5)≈ 0.975 and P (Y ≤ 19)≈

0.995 via the tail probability approximations given by Nolan (1997). We therefore assume that the

quantities Ti and Xi take values such that the partial sums

n∑
i=k+1

Ti−
n− k
λ
≥−Γa(n− k)1/α and

n∑
i=k+1

Xi−
n− k
µ
≤ Γs(n− k)1/α, (5)
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where the variability parameters Γa and Γs are chosen to ensure that the inter-arrival times and the

service times satisfy the corresponding inequality with high enough probability. Since O
(
n1/α

)
>

O
(
n1/2

)
for 1<α< 2, the scaling by (n− k)

1/α
in Eq. (5) allows the selection of smaller inter-arrival

times and larger service times compared to Eq. (3) with the scaling by (n− k)
1/2

.

2.2. Our Model of Uncertainty

Our model of uncertainty is primarily driven by our desire to analyze the worst case system time.

Guided by the system time’s expression in Eq. (2) for a single-server queue, we lower bound the

partial sums over the inter-arrival times and upper bound the partial sums over the service times.

Assumption 1. (Queueing Primitives Assumptions)

(a) The inter-arrival times {T1, T2, . . . , Tn} belong to the parametrized uncertainty set

Ua =

(T1, . . . , Tn)

∣∣∣∣∣∣∣∣∣∣

n∑
i=k+1

Ti−
(n− k)

λ

(n− k)1/αa
≥−Γa, ∀ 0≤ k≤ n− 1

 ,

where 1/λ is the expected inter-arrival time, Γa is a parameter that captures variability infor-

mation, and 1<αa ≤ 2 models possibly heavy-tailed probability distributions.

(b) The service times {X1,X2, . . . ,Xn} for a single-server queue belong to the parametrized uncer-

tainty set

Us =

(X1, . . . ,Xn)

∣∣∣∣∣∣∣∣∣∣

n∑
i=k

Xi−
(n− k+ 1)

µ

(n− k+ 1)1/αs
≤ Γs, ∀ 1≤ k≤ n

 .

where 1/µ is the expected service time, Γs is a parameter that captures variability information,

and 1<αs ≤ 2 models possibly heavy-tailed probability distributions.

(c) For an m-server queue, m≥ 2, and n being the nth job, we let ν be a non-negative integer such

that ν = b(n−1)/mc. We partition the job indices into sets Ji = {k≤ n : b(k− 1)/mc= i}, for

i= 0,1, . . . , ν, i.e.,

J0 = {1, . . . ,m} , J1 = {m+ 1, . . . ,2m} , . . . , Jν = {νm+ 1, . . . , n} .
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Let ji ∈ Ji denote the index that selects a job from set Ji, for i= 0, . . . , ν. The service times

for a multi-server queue belong to the parameterized uncertainty set

Usm =

(X1, . . . ,Xn)

∣∣∣∣∣∣∣∣∣
∑
i∈I

Xji −
|I|
µ

|I|1/αs
≤ Γs, ∀ ji ∈ Ji, and i∈ I ⊆ {0, . . . , ν}

 .

Note that Us1 ⊂Us.

We present the following remarks regarding the proposed uncertainty set assumptions.

(a) Modeling Dependence: While the uncertainty sets are motivated by i.i.d. assumptions

on the underlying random variables, (T1, T2, . . . , Tn) ∈ Ua does not necessarily imply that

(T1, T2, . . . , Tn) are independent.

(b) Modeling Heavy-Tailed Behavior: Assumption 1 presents another modeling approach for

heavy-tailed behavior, inspired by Theorem 1. Unlike the probabilistic setting where heavy-

tailed distributions imply unboundedness and infinite variance, our assumption implies that the

service times are bounded. Assumption 1 allows, however, the service times to be substantially

large by appropriately selecting the parameter Γs. For instance, for a Pareto distribution with

αs = 1.5, 1/µ= 2.85, and Γs = 19Cα = 35.055, we have P (Xn ≤ 1/µ+ Γs)≈ 0.996, that is, with

high probability the service times are large but bounded.

(c) Richness of the Service Uncertainty Set: In order to illustrate the set Usm, we consider

the example for n= 5 and m= 2:

(|I|= 3)

{
X1 +X3 +X5 ≤ 3/µ+ Γs · 31/αs

X1 +X4 +X5 ≤ 3/µ+ Γs · 31/αs

X2 +X3 +X5 ≤ 3/µ+ Γs · 31/αs

X2 +X4 +X5 ≤ 3/µ+ Γs · 31/αs

}
,

(|I|= 2)


X1 +X3 ≤ 2/µ+ Γs · 21/αs

X1 +X4 ≤ 2/µ+ Γs · 21/αs

X1 +X5 ≤ 2/µ+ Γs · 21/αs

X3 +X5 ≤ 2/µ+ Γs · 21/αs

X2 +X3 ≤ 2/µ+ Γs · 21/αs

X2 +X4 ≤ 2/µ+ Γs · 21/αs

X2 +X5 ≤ 2/µ+ Γs · 21/αs

X4 +X5 ≤ 2/µ+ Γs · 21/αs

 ,

(|I|= 1)

{
X1, X2, X3, X4, X5 ≤

1

µ
+ Γs

}
.

In general, the inequalities associated with the set I involve the sum of |I| service times,

where each service time is selected out of a set Ji, for i∈ I, yielding O
(
m|I|

)
such inequalities.
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Though the number of constraints in the set is exponential, we will show later that the problem

of finding the worst case system time given T ∈ Ua and X ∈ Usm is efficiently solvable and

yields analytic bounds (refer to Section 3.2). Currently, the uncertainty set includes constraints

involving jobs from different sets in the partition J0, J1, . . . , Jν . While we could have also added

constraints with jobs selected from the same set Ji, the set Usm represents a minimal set of

inequalities for our bounds on the worst case system time to be valid.

(d) Limiting the Adversary: Despite taking a worst-case approach, one can obtain accurate

results that compare with simulations of average behavior by bounding the power of the

adversary. Parameterizing the uncertainty sets Ua and Usm by the variability parameters Γa

and Γs allows us to control the degree of robustness of the approach.

In summary, the key data primitives characterizing (a) the arrival process in the queue are

(λ,Γa, αa), and (b) the service process in the queue are (µ,Γs, αs). In Sections 3-5, we assume that

arrival and service processes have symmetric tail behavior, i.e., αa = αs = α. We provide bounds

for the case of asymmetric tail coefficients in Section 6.

3. Optimization-Based Performance Analysis

In this section, we study the worst case behavior of a single queue with an FCFS scheduling

policy and a traffic intensity ρ= λ/(mµ)< 1, where m denotes the number of servers. For a given

sequence of inter-arrival times T = (T1, . . . , Tn), we let

Ŝn (T) = max
X∈Usm

Sn. (6)

We seek the highest system time that the nth job can experience in the queue, assuming the arrivals

are governed by Assumption 1(a), by solving the following optimization problem

Ŝn = max
T∈Ua

Ŝn (T) . (7)

The above optimization problem is tractable given the choice of polyhedral uncertainty sets. In

fact, we show in this section that this problem effectively reduces to one-dimensional nonlinear

optimization problem that can be solved efficiently. We further provide a closed-form upper bound

on the worst case system time, which is particularly tight for large values of n.
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3.1. Worst-Case Performance in a Single-Server Queue

Given a realization T, and using Eq. (2), the worst case system time of the nth job in a single-server

queue is given by

Ŝn (T) = max
X∈Us

max
1≤k≤n

(
n∑
i=k

Xi−
n∑

i=k+1

Ti

)
≤ max

1≤k≤n

(
max
X∈Us

n∑
i=k

Xi−
n∑

i=k+1

Ti

)
(8)

where the second inequality is due to exchanging the order of the maximization. Proposition 1

shows that the bound in Eq. (8) is tight, and that there there exists a sample path which achieves

the worst case value with nondecreasing service times.

Proposition 1. In a single-server FCFS queue, there exists a sample path X̂ ∈ Us with non-

decreasing service times achieving

Ŝn (T) = max
1≤k≤n

(
max
X∈Us

n∑
i=k

Xi−
n∑

i=k+1

Ti

)
. (9)

Proof of Proposition 1. We show that there exists a sequence of service times X̂ ∈ Us which

achieves the bound in Eq. (8), such that

n∑
i=k

X̂i = max
X∈Us

n∑
i=k

Xi =
n− k+ 1

µ
+ Γs (n− k+ 1)

1/αs , ∀ k= 1, . . . , n.

Given the triangular structure of the above system of equalities, this solution is unique and can be

computed via backward substitution. Specifically,

X̂i =
1

µ
+ Γs

[
(n− i+ 1)

1/αs − (n− i)1/αs
]
, for all i= 1, . . . , n. (10)

Since the function f(i) = (n− i+ 1)
1/αs−(n− i)1/αs is increasing in i, we conclude that the obtained

service times are nondecreasing, i.e., X̂1 ≤ . . .≤ X̂n. �

Assuming T∈ Ua, and given Eqs. (7) and (9), the worst case system time can be written as

Ŝn = max
T∈Ua

max
1≤k≤n

(
max
X∈Us

n∑
i=k

Xi−
n∑

i=k+1

Ti

)
≤ max

1≤k≤n

(
max
X∈Us

n∑
i=k

Xi− min
T∈Ua

n∑
i=k+1

Ti

)
.

By a similar argument to the one in the proof of Proposition 1, we can show that the above bound

is tight, and that there exists a sequence of interarrival times T̂∈ Ua such that

n∑
i=k+1

T̂i = min
T∈Ua

n∑
i=k+1

Ti =
n− k
λ
−Γa (n− k)

1/αa , for all k= 1, . . . , n− 1, (11)
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which achieves the worst case value. This yields the following exact characterization of the worst

case system time as

Ŝn = max
1≤k≤n

{
n− k+ 1

µ
+ Γs (n− k+ 1)

1/αs − n− k
λ

+ Γa (n− k)
1/αa

}
. (12)

The worst case performance analysis hence reduces to a one-dimensional nonlinear optimization

problem, which can be solved efficiently. Theorem 2 provides a closed form upper bound on the

worst case system time for the case where αa = αs = α.

Theorem 2 (Worst Case System Time in a Single-Server FCFS Queue).

In a single-server FCFS queue with T∈ Ua, X∈ Us, αa = αs = α and ρ< 1,

Ŝn ≤
α− 1

αα/(α−1)
· λ

1/(α−1) (Γa + Γs)
α/(α−1)

(1− ρ)1/(α−1)
+

1

λ
, (13)

Proof of Theorem 2. Since Γa (n− k)
1/α ≤ Γa (n− k+ 1)

1/α
, we can bound Eq. (12) by

Ŝn ≤ max
1≤k≤n

{
(Γa + Γs) (n− k+ 1)

1/α− n− k
λ

+
n− k+ 1

µ

}
= max

1≤k≤n

{
(Γa + Γs) (n− k+ 1)

1/α− 1− ρ
λ

(n− k+ 1)

}
+

1

λ
. (14)

By making the transformation x= n− k+ 1, where x∈N, Eq. (14) becomes of the form

max
1≤x≤n

β ·x1/α− δ ·x ≤ max
x∈R+

β ·x1/α− δ ·x=
α− 1

αα/(α−1)
· β

α/(α−1)

δ1/(α−1)
, (15)

where β = Γa + Γs > 0 and δ = (1 − ρ)/λ > 0, given ρ < 1. Note that the bound in Eq. (15)

is independent of n, and is therefore true for all values of n. The continuous maximizer of the

unconstrained maximization problem in Eq. (15) is given by

x∗ =

(
β

αδ

)α/(α−1)

=

(
λ(Γa + Γs)

α(1− ρ)

)α/(α−1)

, (16)

We obtain Eq. (13) by substituting β and δ by their respective expressions in the optimal objective

function value given in Eq. (15). �
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Tightness of the Bound: We note that the bound in Eq. (13) is nearly tight for heavy-traffic

systems operating under steady state. In the process of obtaining the closed form expressions,

the bounding procedure in the proof of Theorem 2 involved three steps: (1) bounding the term

Γa(n− j)1/α by Γa(n− j+ 1)1/α, (2) relaxing the integer requirement for the index j and treating

it as a continuous variable, and (3) bounding the constrained maximization by an unconstrained

maximization in Eq. (15). We note that under heavy-traffic assumptions (i.e., ρ is close to unity),

steps (1) and (2) produce nearly tight bounds, both in terms of achievability within the uncertainty

sets and numerical accuracy. Specifically, there exist sequences of inter-arrival and service times

that lead to a system time within an error

∆ =O
(

(1− ρ)α/(α−1) +

((
1 + (1− ρ)

α/(α−1)
)1/α

− 1

))
,

from the bound in Eq. (13), where ∆→ 0 as ρ→ 1 (please see the appendix for details). Moreover,

step (3) is tight for values of n exceeding the maximizer value in Eq. (16), i.e.,

n>

(
λ (Γa + Γs)

α(1− ρ)

)α/(α−1)

.

3.2. Worst-Case Performance in a Multi-Server Queue

We now analyze the case of an FCFS queue with m parallel servers and consider job `≤ n, where

` ∈ Jγ . The central difficulty in analyzing multi-server queues lies in the fact that overtaking may

occur, i.e., the `th departure may not correspond to the `th job arriving to the queue. Let C` denote

the completion time of the `th job, i.e., the time the `th job leaves the system (including service),

and C(`) denote the time of the `th departure from the system. In general, the following recursions

describe the dynamics in a multi-server queue (Krivulin (1994))

C` = max
(
A`,C(`−m)

)
+X` and S` =C`−A` = max

(
C(`−m)−A`,0

)
+X`, (17)

where A` =
∑`

i=1 Ti denotes the the time of arrival of the `th job.
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Taking a worst case approach allows us to overcome the challenges of multi-server queue dynamics

and obtain an exact characterization of the worst case system time for the nth job, for any T, as

Ŝn (T) = max
0≤k≤ν

max
X∈Usm

ν∑
i=k

Xr(i)−
n∑

i=r(k)+1

Ti

 ,

where r(i) = n− (ν− i)m. To prove this result, we use the following procedure:

(1) We introduce a set of policies P that do not allow overtaking until some `≤ n, and obtain an

analytic expression of the system time under such policies (see Proposition 2),

(2) Then, for any T, we obtain an exact characterization of the the worst case system time under

P, which can be achieved via a sequence of nondecreasing service times (see Proposition 3),

(3) Last, we show that, for any T, the worst case system time for an FCFS queue is equal to the

worst case system time for a multi-server queue under P (see Proposition 4).

We next present the proofs of Propositions 2-4.

No-Overtaking Behavior: For all policies in P, no overtaking occurs until `. Hence, until `, the

jobs depart in the same order they arrive, i.e., CP(k) =CPk , for all 1≤ k≤ `. Under P, the recursion

in Eq. (17) therefore simplifies to

CP` = max
(
CP`−m,A`

)
+X`, and SP` =CP` −A` = max

(
CP`−m−A`,0

)
+XP` . (18)

Using this recursive formula, Proposition 2 gives an explicit expression of the system time SP` in a

multi-server queue operating under P.

Proposition 2. Under a set of polices P that do not allow overtaking until job `≤ n, where `∈ Jγ,

the system time of the `th job in an m-server queue is given by

SP` = max
0≤k≤γ

 γ∑
i=k

Xs(i)−
∑̀

i=s(k)+1

Ti

 , (19)

where s(i) = `− (γ− i)m.

Proof of Proposition 2. Utilizing Eq. (18), and since CP`−m = SP`−m +A`−m, we obtain

SP` = max
(
SP`−m +A`−m−A`,0

)
+XP` = max

(
SP`−m +XP` − (A`−A`−m) ,XP`

)
.
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Applying the recursion expression to the term SP`−m above yields

SP` = max

(
max

(
SP`−2m +X`−m− (A`−m−A`−2m) ,X`−m

)
+X`− (A`−A`−m) ,X`

)
= max

(
SP`−2m + (X`−m +X`)− (A`−m−A`−2m)− (A`−A`−m) ,X`−m +X`− (A`−A`−m) ,X`

)
= max

(
SP`−2m + (X`−m +X`)− (A`−A`−2m) , (X`−m +X`)− (A`−A`−m) ,X`

)
Since ` ∈ Jγ = {γm+ 1, . . . , (γ+ 1)m}, we have `≤ (γ+ 1)m, implying 1≤ `− γm≤m. Hence, we

can apply the recursion until SP`−γm and obtain

SP` = max

(
SP`−γm +

γ−1∑
i=0

X`−im− (A`−A`−γm) ,

γ−1∑
i=0

X`−im−
(
A`−A`−(γ−1)m

)
, . . . ,X`

)
.

Note that the first m jobs enter service without waiting, implying that their system time is equal

to their service time. Since `− γm≤m, we have SP`−γm =X`−γm. And expressing the arrival times

Aj as the sum of the interarrival times T1, . . . , Tj, the system time can then be written as

SP` = max

(
X`−γm +

γ−1∑
i=0

X`−im−
∑̀

i=`−γm+1

Ti,

γ−1∑
i=0

X`−im−
∑̀

i=`−(γ−1)m+1

Ti, . . . , X`

)

= max

( γ∑
i=0

X`−im−
∑̀

i=`−γm+1

Ti,

γ−1∑
i=0

X`−im−
∑̀

i=`−(γ−1)m+1

Ti, . . . , X`

)

= max

( γ∑
i=0

X`−(γ−i)m−
∑̀

i=`−γm+1

Ti,

γ∑
i=1

X`−(γ−i)m−
∑̀

i=`−(γ−1)m+1

Ti, . . . , X`

)
.

The compact representation of the above expression becomes

SP` = max
0≤k≤γ

( γ∑
i=k

X`−(γ−i)m−
∑̀

i=`−(γ−i)m+1

Ti

)
.

Substituting s(i) = `− (γ− i)m yields Eq. (19). �

We next introduce some notation that will be used in the remaining part of this section. Let us

fix the vector of service times X`+ = (X`+1, . . . ,Xn). Let T` = (T1, . . . , T`) and X` = (X1, . . . ,X`).

By Assumption 1(c), the vector (X`,X`+)∈ Usm. For some realization of inter-arrival times T` and

service times X`+, we define the worst case system time under P as

ŜP` (T`,X`+) = max
X`

SP` (T`,X`)

s.t. (X`,X`+)∈ Usm.
(20)
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By Proposition 2, the worst case system time under P for a given sequence (T`,X`+) is given by

ŜP`
(
T`,X`+

)
= max

(X`,X`+)∈Usm
max

0≤k≤γ

 γ∑
i=k

Xs(i)−
∑̀

i=s(k)+1

Ti


≤ max

0≤k≤γ

 max
(X`,X`+)∈Usm

γ∑
i=k

Xs(i)−
∑̀

i=s(k)+1

Ti

 , (21)

where s(i) = `− (γ − i)m. Proposition 3 shows that the bound in Eq. (21) is tight and that there

exists a sample path which achieves the worst case value with nondecreasing service times.

Proposition 3. In an m-server queue, under a set of policies P that do not allow overtaking until

job `≤ n, where `∈ Jγ, and given a realization X`+ ∈ Usm, there exists a sample path
(
X̂P1 , . . . , X̂

P
`

)
with non-decreasing service times achieving

ŜP`
(
T`,X`+

)
= max

0≤k≤γ

max
Usm

γ∑
i=k

Xs(i)−
∑̀

i=s(k)+1

Ti

 , (22)

where s(i) = `− (γ− i)m.

Proof of Proposition 3. The index s(i) = ` − (γ − i)m = (` − γm) + im. And, since ` ∈ Jγ =

{γm+ 1, . . . , (γ+ 1)m}, we have γm+ 1≤ `≤ (γ+ 1)m, implying 1≤ `− γm≤m. Therefore,

im+ 1≤ s(i) = (`− γm) + im≤ (i+ 1)m,

yielding s(i)∈ Ji. Since, for i 6= j, the indices s(i) and s(j) belong to different sets in the partition

J0, . . . , Jγ . Hence, we can use Assumption 1(c) for I = {k, . . . , γ}∪I ′, where I ′ ⊆ {γ+ 1, . . . , ν} and

|I|= γ− k+ |I ′|+ 1, to obtain

γ∑
i=k

Xs(i) +
∑
i∈I′

Xji ≤
γ− k+ |I ′|+ 1

µ
+ Γs

[
γ− k+ |I ′|+ 1

]1/αs

.

This implies the following bound the partial sums of the service times in Eq. (21)

γ∑
i=k

Xs(i) ≤
γ− k+ |I ′|+ 1

µ
+ Γs (γ− k+ |I ′|+ 1)

1/αs −
∑
i∈I′

Xji , (23)

for all k= 0, . . . , γ. Since Eq. (23) is true for all I ′ ⊂ {γ+ 1, . . . , ν}, then

γ∑
i=k

Xs(i) ≤ min
I′⊆{γ+1,...,ν}

{
γ− k+ |I ′|+ 1

µ
+ Γs (γ− k+ |I ′|+ 1)

1/αs −
∑
i∈I′

Xji

}
, (24)
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=
γ− k+ |I∗k |+ 1

µ
+ Γs (γ− k+ |I∗k |+ 1)

1/αs −
∑
i∈I∗

k

Xji , (25)

where I∗k is the minimizer in Eq. (24). Eq. (25) implies, for all k= 0, . . . , γ, that

max
(X`,X`+)∈Usm

γ∑
i=k

Xs(i) =
γ− k+ |I∗k |+ 1

µ
+ Γs (γ− k+ |I∗k |+ 1)

1/αs −
∑
i∈I∗

k

Xji .

We next show that there exists a sequence
(
X̂P1 , . . . , X̂

P
`

)
that achieves

γ∑
i=k

X̂Ps(i) = max
Usm

γ∑
i=k

Xs(i) =
γ− k+ |I∗k |+ 1

µ
+ Γs (γ− k+ |I∗k |+ 1)

1/αs −
∑
i∈I∗

k

Xji , (26)

for all k = 0, . . . , γ. Due to its triangular structure, the above system of equalities yields a unique

solution
(
X̂Ps(0), . . . , X̂

P
s(γ−1), X̂

P
s(γ)

)
, which can be computed via backward substitution. Specifically,

X̂Ps(γ) = X̂P` =

∣∣I∗γ ∣∣+ 1

µ
+ Γs

(∣∣I∗γ ∣∣+ 1
)1/αs −

∑
i∈I∗γ

Xji ,

X̂Ps(k) =
|I∗k | −

∣∣I∗k+1

∣∣+ 1

µ
+ Γs

[(
γ− k+ |I∗k |+ 1

)1/αs−
(
γ− k+

∣∣I∗k+1

∣∣)1/αs

]
−
∑
i∈I∗

k

Xji +
∑

i∈I∗
k+1

Xji ,

for all k = 0, . . . , γ − 1. To complete the sequence, we propose to set the service times of all jobs

belonging to a partition Ji to have the same value as job s(i)∈ Ji, for all i= 0, . . . , γ, i.e.,

X̂Pji = X̂Ps(i), for all ji ∈ Ji, where i= 0, . . . , γ. (27)

(a) We next show that, given X`+, the chosen sequence of service times satisfies the inequalities

of set Usm. Since the service times are nondecreasing, the sum of service times selected from a

set I ′′ ⊆ {0, . . . , γ}, such that |I ′′|= γ− k+ 1, can be upper-bounded by

∑
i∈I′′

X̂Pji ≤
γ∑
i=k

X̂Ps(i).

And given Eqs. (23)-(26), we obtain

∑
i∈I

X̂Pji =
∑
i∈I′

X̂Pji +
∑
i∈I′′

X̂Pji ≤
|I ′|+ |I ′′|

µ
+ Γs

(
|I ′|+ |I ′′|

)1/αs

,

for all I = I ′ ∪I ′′ ⊆ {0, . . . , ν}. The sequence of service times
(
X̂P1 , . . . , X̂

P
`

)
therefore satisfies

the inequalities of the uncertainty set Usm, for any realization X`+, and is hence feasible. As a

result, the bound in Eq. (21) can be achieved with equality.
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(b) The chosen sequence of service times is also nondecreasing.

(1) Given the optimality of set I∗k from Eq. (25), we have

|I∗k |
µ

+ Γs

[
γ− k+ |I∗k |+ 1

]1/αs

−
∑
i∈I∗

k

Xji ≤
∣∣I∗k+1

∣∣
µ

+ Γs

[
γ− k+

∣∣I∗k+1

∣∣+ 1

]1/αs

−
∑

i∈I∗
k+1

Xji .

Rearranging the terms in the above inequality yields

|I∗k | −
∣∣I∗k+1

∣∣
µ

+ Γs

[
γ− k+ |I∗k |+ 1

]1/αs

−
∑
i∈I∗

k

Xji +
∑

i∈I∗
k+1

Xji ≤ Γs

[
γ− k+

∣∣I∗k+1

∣∣+ 1

]1/αs

. (28)

By Eq. (27) and using the characterization of X̂Ps(k), Eq. (28) leads to the following upper

bound on the service times

X̂Pjk ≤
1

µ
+ Γs

[(
γ− k+

∣∣I∗k+1

∣∣+ 1
)1/αs −

(
γ− k+

∣∣I∗k+1

∣∣)1/αs
]
, ∀ jk ∈ Jk. (29)

(2) Moreover, as in Eq. (26), we have

γ∑
i=k+1

X̂Ps(i) =
γ− (k+ 1) +

∣∣I∗k+1

∣∣+ 1

µ
+ Γs

(
γ− (k+ 1) +

∣∣I∗k+1

∣∣+ 1
)1/αs−

∑
i∈I∗

k+1

Xji ,

which simplifies to

X̂Ps(k+1) =
γ− k+

∣∣I∗k+1

∣∣
µ

+ Γs
(
γ− k+

∣∣I∗k+1

∣∣)1/αs−

 γ∑
i=k+2

X̂Ps(i) +
∑

i∈I∗
k+1

Xji

 . (30)

By Assumption 1(c), for {k+ 2, . . . , γ}∪I∗k+1, we obtain

γ∑
i=k+2

X̂Ps(i) +
∑

i∈I∗
k+1

Xji ≤
γ− (k+ 1) +

∣∣I∗k+1

∣∣
µ

+ Γs
(
γ− (k+ 1) +

∣∣I∗k+1

∣∣)1/αs
.

Applying the above bound to Eq. (30), we obtain

X̂Pjk+1
= X̂Ps(k+1) ≥

1

µ
+ Γs

[(
γ− (k+ 1) +

∣∣I∗k+1

∣∣+ 1
)1/αs−

(
γ− (k+ 1) +

∣∣I∗k+1

∣∣)1/αs
]
. (31)

Combining the bounds obtained in Eqs. (29) and (31), we obtain for all k= 0, . . . , γ− 1

X̂jk ≤
1

µ
+ Γs

[(
γ− k+

∣∣I∗k+1

∣∣+ 1
)1/αs −

(
γ− k+

∣∣I∗k+1

∣∣)1/αs
]

≤ 1

µ
+ Γs

[(
γ− (k+ 1) +

∣∣I∗k+1

∣∣+ 1
)1/αs −

(
γ− (k+ 1) +

∣∣I∗k+1

∣∣)1/αs
]
≤ X̂jk+1

,
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where the first and last inequalities are due to Eqs. (29) and (31), respectively, and the second

inequality holds since the function f(i) = (ν− i+ 1)1/αs − (ν− i)1/αs is increasing in i. Hence,

X̂Pj0 ≤ X̂
P
j1
≤ . . .≤ X̂Pjγ .

By the construction in Eq. (27), we conclude that the sequence of service times is nondecreas-

ing. This completes the proof. �

In the special case where `= n, Eq. (22) implies that the worst case system time for the nth job

under P can be written as

ŜPn (T) = max
0≤k≤ν

max
X∈Usm

ν∑
i=k

Xr(i)−
n∑

i=r(k)+1

Ti

 , (32)

where r(i) = n− (ν − i)m. Additionally, there exists a nondecreasing sequence of service times

that achieves the worst case value, such that

X̂Pjk =
1

µ
+ Γs

[
(ν− k+ 1)

1/αs − (ν− k)
1/αs

]
, ∀jk ∈ Jk and k= 0, . . . , ν. (33)

FCFS Behavior: We next relate the worst case behavior under P to the worst case behavior in

a multi-server FCFS queue.

Proposition 4. Given a sequence of inter-arrival times T = {T1, . . . , Tn}, the worst case system

time Ŝn (T) in an FCFS queue is such that

Ŝn (T) = Ŝ Pn (T) = max
0≤k≤ν

max
Usm

ν∑
i=k

Xr(i)−
n∑

i=r(k)+1

Ti

 , (34)

where r(i) = n− (ν− i)m and ν = b(n− 1)/mc.

Proof of Proposition 4. Consider job i. In an FCFS queue, jobs enter service in the order of their

arrival. Hence, job i enters service prior to all future incoming jobs. As a result, the system time

of job i depends on Ti = (T1, . . . , Ti) and Xi = (X1, . . . ,Xi). For some realization of inter-arrival

times Ti and service times Xi+, we define the worst case system time in an FCFS queue as

Ŝi (T
i,Xi+) = max

Xi
Si (T

i,Xi)

s.t. (Xi,Xi+)∈ Usm.
(35)
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We next prove our result using the technique of mathematical induction. We postulate and verify

the following inductive hypothesis: Under an FCFS policy, there exists a sequence of service times

X̂i that achieves the worst case system time Ŝi (T
i,Xi+), with X̂1 ≤ . . .≤ X̂i, for any given T and

Xi+, such that
(
X̂i,Xi+

)
∈ Usm.

Note that, for i ≥ j > k, job k enters service before job j under an FCFS policy. Given the

nondecreasing service times, we have X̂j ≥ X̂k, implying that job j cannot depart the queue before

job k. As a result, under our inductive hypothesis, in an FCFS queue with X̂1 ≤ . . . ≤ X̂i, no

overtaking occurs until job i, yielding Ŝi (T
i,Xi+) = ŜPi (Ti,Xi+).

(a) Initial Step: We first show that the inductive hypothesis holds for i = 1, . . . ,m. Since we

address the steady-state, we assume, without loss of generality, that the queue is initially

empty. Hence, the first m jobs enter service immediately with Si =Xi, for i∈ J0 = {1, . . . ,m}.

Applying Assumption 1(c) for I = {0}∪I ′, for all sets I ′ ⊆ {1, . . . , ν}, we obtain

Xi +
∑
k∈I′

Xjk ≤
|I ′|+ 1

µ
+ Γs

(
|I ′|+ 1

)1/αs

.

This implies that

Xi ≤
|I ′|+ 1

µ
+ Γs

(
|I ′|+ 1

)1/αs

−
∑
k∈I′

Xjk , ∀ I
′ ⊆ {1, . . . , ν}

≤ min
I′⊆{1,...,ν}

|I ′|+ 1

µ
+ Γs

(
|I ′|+ 1

)1/αs

−
∑
k∈I′

Xjk .

Let I∗ be the minimizer. Thus, to maximize their system time for given (T,Xm+1, . . . ,Xn), it

suffices to set their service time to their highest value, i.e.,

X̂i =
|I∗|+ 1

µ
+ Γs

(
|I∗|+ 1

)1/αs

−
∑
k∈I∗

Xjk , for all i= 1, . . . ,m.

This results in X̂1 = . . .= X̂m, which satisfies the inductive hypothesis for i= 1, . . . ,m.

(b) Inductive Step: We suppose that the inductive hypothesis is true until i= n− 1 and prove

it for i= n. Let ` < n be the last job that was served by the server which is currently serving

job n. Then, the system time Sn is given by

Sn = max(C`−An,0) +Xn = max(S` +A`−An,0) +Xn
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= max

(
S`−

n∑
j=`+1

Tj,0

)
+Xn = max

(
S` +Xn−

n∑
j=`+1

Tj,Xn

)
.

For any given realization T, the worst case system time is bounded by

Ŝn (T) = max
X∈Usm

max

(
S` +Xn−

n∑
j=`+1

Tj,Xn

)

≤ max

(
max
X∈Usm

S` +Xn−
n∑

j=`+1

Tj, max
X∈Usm

Xn

)
. (36)

Let
(
X̃1, . . . , X̃n

)
be some sequence of service times that maximizes S` +Xn, i.e.,

max
X∈Usm

S` +Xn = S`

(
T`, X̃`

)
+ X̃n.

From the induction hypothesis, given a realization T and X̃`+, there a sequence of non -

decreasing service times X̂` that achieves the worst case system time, implying

S`

(
T`, X̃`

)
≤ Ŝ`

(
T`, X̃`+

)
= ŜP`

(
T`, X̃`+

)
.

Hence, we bound the expression in Eq. (36) by

Ŝn (T) ≤ max

{
ŜP`

(
T`, X̃`+

)
+ X̃n−

n∑
i=`+1

Ti, max
Usm

Xn

}

≤ max

max
0≤k≤γ

 γ∑
i=k

X̂s(i)−
∑̀

i=s(k)+1

Ti

+ X̃n−
n∑

i=`+1

Ti, max
Usm

Xn

 ,

where the second inequality expresses ŜP`

(
T`, X̃`+

)
explicitly using Eq. (22). Rearranging the

terms, and since
(
X̂i, X̃i+

)
∈ Usm, we obtain

Ŝn (T) ≤ max

max
0≤k≤γ

 γ∑
i=k

X̂s(i) + X̃n−
∑̀

i=s(k)+1

Ti−
n∑

i=`+1

Ti

 , max
Usm

Xn


≤ max

max
0≤k≤γ

max
Usm

{
γ∑
i=k

Xs(i) +Xn

}
−

n∑
i=s(k)+1

Ti

 , max
Usm

Xn

 . (37)

Recall that s(k) = `− (γ−k)m∈ Jk. Given that no overtaking occurrs until `, at the time job

n enters service, the jobs served by the remaining (m−1) servers should have arrived after job
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` and before job n, i.e., they belong to the set I = {`+ 1, . . . , n− 1}. Since there are (m− 1)

such jobs, we have

m− 1≤ |I |= n− 1− (`+ 1) + 1 = n− `− 1,

yielding n−`≥m. Consider the partition J0, J1, . . . , Jν that we considered in Assumption 1(c).

Since two jobs j and k in the same set satisfy |j− k|<m, jobs n and ` belong to two distinct

sets in the partition J0, J1, . . . , Jν . With `∈ Jγ , and n∈ Jν , this implies ν ≥ γ+ 1. We consider

the following two cases.

(1) If ν = γ+ 1, then by Assumption 1(c),

max
Usm

{
γ∑
i=k

Xs(i) +Xn

}
=
ν− k+ 1

µ
+ Γs (ν− k+ 1)

1/αs ,

max
Usm

{
ν∑
i=k

Xs(i)

}
=
ν− k+ 1

µ
+ Γs (ν− k+ 1)

1/αs ,

where r(i) = n− (ν− i)m. Therefore, we have

max
Usm

{
γ∑
i=k

Xs(i) +Xn

}
= max
Usm

{
ν∑
i=k

Xs(i)

}
. (38)

Also, the index r(k) = n− (ν − k)m = n− (γ + 1− k)m. Given that n ≥ `+m, we have

r(k)≥ `− (γ− k)m= s(k), which results in

n∑
i=s(k)+1

Ti ≥
n∑

i=r(k)+1

Ti, for all 0≤ k≤ γ. (39)

Combining Eqs. (38) and (39), Eq. (37) becomes

Ŝn (T) ≤ max

 max
0≤k≤ν−1

max
Usm

ν∑
i=k

Xr(i)−
n∑

i=r(k)+1

Ti

 , max
Usm

Xn

 . (40)

(2) If ν ≥ γ+ 2, then by Assumption 1(c),

max
Usm

{
γ∑
i=k

Xs(i) +Xn

}
= max
Usm

{
γ+1∑
i=k+1

Xr(i) +Xn

}
≤max
Usm

{
ν∑

i=k+1

Xr(i)

}
. (41)

Also, since s(k)∈ Jk and r(k+ 1)∈ Jk+1, we have s(k)≤ r(k+ 1), which implies

n∑
i=s(k)+1

Ti ≥
n∑

i=r(k+1)+1

Ti, for all 0≤ k≤ γ. (42)
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Applying the bounds in Eqs. (41) and (42), Eq. (37) becomes

Ŝn (T) ≤ max

max
0≤k≤γ

max
Usm

ν∑
i=k+1

Xr(i)−
n∑

i=r(k+1)+1

Ti

 , max
Usm

Xn


= max

 max
1≤k≤γ+1

max
Usm

ν∑
i=k

Xr(i)−
n∑

i=r(k)+1

Ti

 , max
Usm

Xn

 . (43)

Since ν ≥ γ+ 2, we can further bound Eq. (43) to obtain

Ŝn (T) ≤ max

 max
0≤k≤ν−1

max
Usm

ν∑
i=k

Xr(i)−
n∑

i=r(k)+1

Ti

 , max
Usm

Xn

 . (44)

Combining the results in Eqs. (40) and (44) from cases (1) and (2), we conclude that the worst

case system time under FCFS is bounded by the worst case system time under P, i.e.,

Ŝn (T)≤ max
0≤k≤ν

max
Usm

ν∑
i=k

Xr(i)−
n∑

i=r(k)+1

Ti

= ŜPn (T) .

This bound is in fact tight and can be achieved under a scenario where the service times are

chosen such that
(
X̂1, . . . , X̂n

)
=
(
X̂P1 , . . . , X̂

P
n

)
∈ Usm (see Eq. (33)). Note that this optimal

solution consists of nondecreasing service times, hence proving the inductive hypothesis. �

Given Propositions 3 and 4, the worst case system time of the nth job is given by

Ŝn = max
T∈Ua

Ŝn (T) = max
T∈Ua

max
0≤k≤ν

max
Usm

ν∑
i=k

Xr(i)−
n∑

i=r(k)+1

Ti


≤ max

0≤k≤ν

max
X∈Usm

ν∑
i=k

Xr(i)− min
T∈Ua

n∑
i=r(k)+1

Ti

,
where r(i) = n− (ν− i)m. The above bound is in fact tight, as it can be achieved for the sequence

of interarrivals presented in Eq. (11). As a result, by applying Assumption 1, we obtain an exact

characterization of the worst case system time as

Ŝn = max
0≤k≤ν

{
ν− k+ 1

µ
+ Γs (ν− k+ 1)

1/αs − m(ν− k)

λ
+ Γa [m (ν− k)]

1/αa

}
. (45)

The worst case performance analysis problem reduces to a one-dimensional nonlinear optimization

problem, which can be solved efficiently. Theorem 3 provides a closed form upper bound on the

worst case system time for the case where αa = αs = α.
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Theorem 3 (Worst Case System Time in a Multi-Server FCFS Queue).

In an m-server FCFS queue with T∈ Ua, X∈ Usm, αa = αs = α and ρ< 1,

Ŝn ≤
α− 1

αα/(α−1)
·
λ1/(α−1)

(
Γa + Γs/m

1/α
)α/(α−1)

(1− ρ)1/(α−1)
+
m

λ
, (46)

Proof of Theorem 3. The maximization problem in Eq. (45) can be written in the same form as

in Eq. (15) by substituting x= ν − j+ 1, with β =m1/αΓa + Γs > 0 and δ =m(1− ρ)/λ > 0, given

ρ< 1. Substituting β and δ by their respective values in Eq. (15) yields the desired bound. �

Similarly to the single-server queue, the closed form bound on the system time is nearly tight

for heavy-traffic systems operating in steady state (please see the appendix for details).

3.3. Implications and Insights

To summarize, we obtain closed form upper bounds on the system time in an FCFS queue, with

Ŝn ≤



α− 1

αα/(α−1)
· λ

1/(α−1) (Γa + Γs)
α/(α−1)

(1− ρ)1/(α−1)
+

1

λ
(single-server queue)

α− 1

αα/(α−1)
·
λ1/(α−1)

(
Γa + Γs/m

1/α
)α/(α−1)

(1− ρ)1/(α−1)
+
m

λ
(multi-server queue)

These bounds are nearly tight for heavy-traffic systems operating under steady-state. We present

next the implications and insights that follow from the analysis.

(a) Qualitative Insights: Our approach leads to the same qualitative conclusions as stochastic

queueing theory with respect to the behavior of the system time in terms of the traffic intensity

and uncertainty on the inter-arrival and service times. In fact, the classical i.i.d. arrival and

service processes with finite variance can be modeled by setting α= 2. Eq. (13) becomes

Ŝn ≤
λ

4
· (Γa + Γs)

2

1− ρ
+

1

λ
and Ŝn ≤

λ

4
·
(
Γa + Γs/m

1/2
)2

1− ρ
+
m

λ
, (47)

for single server and multi-server queues, respectively. Kingman (1970) provides insightful

bounds on the expected waiting time in steady state for the GI/GI/1 and GI/GI/m queues.

Given that E [Sn] = E [Wn] +E [Xn], where E [Xn] = 1/µ, the bounds on the expected system

times translate to

E [Sn]≤ λ

2
· σ

2
a +σ2

s

1− ρ
+

1

µ
and E [Sn]≤ λ

2
· σ

2
a +σ2

s/m+ (1/m− 1/m2)/µ2

1− ρ
+

1

µ
. (48)
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The bounds in the proposed framework share the same functional dependence on λ/(1−ρ) and

on the variability parameters Γ2
a, Γ2

s/m, (correspondingly σ2
a, σ

2
s/m) as probabilistic bounds.

Note that the bounds in Eq. (47) depend on the magnitude of the variability parameters.

(b) Heavy Tails Behavior: Our approach allows a closed-form expression for the steady-state

system time for all values of α∈ (1,2), which include heavy tailed random variables. We observe

that heavier the tail, i.e., the smaller the tail coefficient α, the higher the order of the waiting

time and the system time, given its dependence on 1/(1−ρ)1/(α−1). To illustrate, a decrease in

the tail coefficient from α= 2 to α= 1.5 increases the waiting time by one order of magnitude.

This is in agreement with the stochastic queueing theory literature, where it is known that

the waiting time exhibits a heavy-tailed distribution under heavy tailed services (see Whitt

(2000), Crovella (2000)).

4. The Departure Process with Adversarial Servers

In this section, we study the output of a single queue under the assumption that servers act

adversarially to maximize the time spent in the queue. Specifically, we show that, with adversarial

servers, the inter-departure times D = {D1,D2, . . . ,Dn} belong to the arrival uncertainty set Ua.

The characterization of the departure uncertainty set Ud as a subset of the arrival uncertainty set

Ua is increasingly tighter with larger values of n. This result is akin to the Burke theorem and

forms the cornerstone of our network analysis.

4.1. Adversarial Servers

Fixing the value of n, we view the queueing system from an adversarial perspective, where the

servers act so as to maximize the system time of the nth job, for all possible sequences of inter-arrival

times. This assumption is reminiscent of the service curves approach of the stochastic network

calculus, see Jiang and Liu (2008). In other words, the servers choose their adversarial service

times X̂ =
(
X̂1, . . . , X̂n

)
to achieve Ŝn (T), for all T. Given the results of Propositions 1, and 4,

the servers choose their service times according to Eqs. (10) and (33), respectively, i.e.,
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X̂i =
1

µ
+ Γs

[
(n− i+ 1)

1/αs − (n− i)1/αs
]
, for all i= 1, . . . , n. (49)

X̂ji =
1

µ
+ Γs

[
(ν− i+ 1)

1/αs − (ν− i)1/αs
]
, for all ji ∈ Ji and i= 0, . . . , ν. (50)

and achieve the worst case system time

Ŝn (T) =



max
1≤k≤n

(
max
X∈Us

n∑
i=k

Xi−
n∑

i=k+1

Ti

)
= max

1≤k≤n

(
n∑
i=k

X̂i−
n∑

i=k+1

Ti

)
,

max
0≤k≤ν

max
Usm

ν∑
i=k

Xr(i)−
n∑

i=r(k)+1

Ti

= max
0≤k≤ν

 ν∑
i=k

X̂r(i)−
n∑

i=r(k)+1

Ti

,
(51)

for all T, for single-server and m-server queues, respectively. Note that the adversarial service times

are nondecreasing, implying X̂1 ≤ X̂2 ≤ . . .≤ X̂n. In a multi-server setting, the monotonicity of the

adversarial service times ensures no overtaking can occur, and as a result, jobs leave in the same

order of their arrival. We note that the adversarial service times depend on the value of n, i.e.,

X̂ = X̂(n). We dropped the superscript n in our analysis, for ease of notation. We next study the

departure process in a multi-server queue with adversarial servers.

4.2. Departure Times

For a multi-server queue, the time between the kth and nth departures is the difference between

C(n) and C(k). Assuming servers act adversarially, no overtaking is allowed to occur. As a result,

the kth and nth departures correspond to the kth and nth jobs, respectively. In this case,

n∑
i=k+1

Di =C(n)−C(k) =Cn−Ck =An + Ŝn (T)−Ak− Ŝk (T) =
n∑

i=k+1

Ti + Ŝn (T)− Ŝk (T) . (52)

Characterizing the exact departure uncertainty set in an queue with adversarial servers can be

made via minimizing Eq. (52) with respect to T ∈ Ua, for all 1≤ k ≤ n− 1. Theorem 4 obtains a

lower bound over these minimization problems

n∑
i=k+1

Di ≥
n− k
λ
−Γa(n− k)1/α, for all 0≤ k≤ n− 1,

implying that, in an adversarial setting, the departure times belong to the arrival uncertainty set.
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Theorem 4. (Passing through a Queue With Adversarial Servers)

For a multi-server queue with inter-arrival times T∈ Ua, adversarial service times X̂, and ρ< 1,

the inter-departure times D = {D1,D2, . . . ,Dn} belongs to the set Ud satisfying

Ud ⊆Ua =

(D1,D2, . . . ,Dn)

∣∣∣∣∣∣∣∣∣∣

n∑
i=k+1

Di−
n− k
λ

(n− k)1/αa
≥−Γa, ∀ 0≤ k≤ n− 1

 . (53)

Proof of Theorem 4. We note that, for k = 0, Eq. (52) results in Cn ≥ An, yielding the desired

bound. In the remainder of this proof we assume k≥ 1. We first consider the case of a single-server

queue which illustrates the main intuition of the proof.

Single-Server Queue. In a single-server queue with adversarial servers, we can express the

system time of the kth job as

Ŝk (T) = max
1≤j≤k

(
k∑
i=j

X̂i−
k∑

i=j+1

Ti

)
= max

1≤j≤k

(
n∑
i=j

X̂i−
n∑

i=k+1

X̂i−
n∑

i=j+1

Ti +
n∑

i=k+1

Ti

)

=
n∑

i=k+1

Ti−
n∑

i=k+1

X̂i + max
1≤j≤k

(
n∑
i=j

X̂i−
n∑

i=j+1

Ti

)
,

where we obtain the last equality by extracting the partial sums that are independent of the index

j out of the maximum term. Eq. (52) therefore becomes

n∑
i=k+1

Di =
n∑

i=k+1

X̂i + Ŝn (T)− max
1≤j≤k

(
n∑
i=j

X̂i−
n∑

i=j+1

Ti

)
. (54)

We next consider the following two cases and analyze them separately:

Case 1.
n∑

i=k+1

X̂i ≥
n− k
λ
−Γa(n− k)1/αa .

Case 2.
n∑

i=k+1

X̂i <
n− k
λ
−Γa(n− k)1/αa .

Case 1. In a single-server queue, we note that for k≤ n, we have

max
1≤j≤k

(
n∑
i=j

X̂i−
n∑

i=j+1

Ti

)
≤ max

1≤j≤n

(
n∑
i=j

X̂i−
n∑

i=j+1

Ti

)
= Ŝn (T) .
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This results in the partial sum of inter-departure times to be lower bounded by the partial

sum of service times, and given the assumption in Case (a), we obtain

n∑
i=k+1

Di ≥
n∑

i=k+1

X̂i + Ŝn (T)− Ŝn (T) =
n∑

i=k+1

X̂i ≥
n− k
λ
−Γa(n− k)1/α.

Case 2. For a single-server queue, we can bound the maximum term in Eq. (59) by

max
1≤j≤k

(
n∑
i=j

X̂i−
n∑

i=j+1

Ti

)
≤ X̂k + max

1≤j≤k

(
n∑

i=j+1

X̂i−
n∑

i=j+1

Ti

)
,

where the inequality is due to X̂j ≤ X̂k for j ≤ k, since the adversarial service times are

nondecreasing. Given that Ŝn (T)≥ X̂n ≥ X̂k, the partial sum of inter-departure times in

Eq. (59) is then lower-bounded by

n∑
i=k+1

Di ≥
n∑

i=k+1

X̂i− max
1≤j≤k

(
n∑

i=j+1

X̂i−
n∑

i=j+1

Ti

)
. (55)

Substituting the value of the adversarial service times and upper bounding the partial

sum of inter-arrival times according to Assumption 1(a),

max
1≤j≤k

(
n∑

i=j+1

X̂i−
n∑

i=j+1

Ti

)
≤ max

1≤j≤k
g(n− j),

where the function g(·) is such that

g(x) =
x

µ
+ Γs ·x1/αs − x

λ
+ Γa ·x1/αa . (56)

The function g(·) is concave, monotonically increasing from zero to a positive maximum

value after which it becomes monotonically decreasing. Negative function values belong

to the phase where the function is decreasing. The assumption of Case (b) translates to

n∑
i=k+1

X̂i =
n− k
µ

+ Γs(n− k)1/α <
n− k
λ
−Γa(n− k)1/αa , implying that g(n− k)< 0.

Since g(n−k)< 0, the function g(·) is decreasing. Therefore, for j ≤ k, i.e., n− j ≥ n−k,

we have g(n− j)≤ g(n− k), yielding

max
1≤j≤k

(
n∑

i=j+1

X̂i−
n∑

i=j+1

Ti

)
≤ max

1≤j≤k
g(n− j) = g(n− k). (57)
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Applying the bound obtained in Eq. (57) to Eq. (55), we obtain

n∑
i=k+1

Di ≥
n∑

i=k+1

X̂i−
n− k
µ
−Γs(n− k)1/αs +

n− k
λ
−Γa(n− k)1/αa

=
n− k
λ
−Γa (n− k)

1/αa .

We now extend the proof to the more complex case of a multi-server queue.

Multi-Server Queue. Suppose k ∈ Jγ . With adversarial service times and by Eq. (51),

Ŝk (T) = max
0≤j≤γ

 γ∑
i=j

X̂s(i)−
k∑

i=s(j)+1

Ti

 ,

where s(i) = k− (γ− i)m. We analyze the cases where γ ≤ ν− 1 and γ = ν separately.

(a) Suppose that γ ≤ ν− 1. Rewriting the partial sums in terms of ν− 1 and n, we obtain

Ŝk (T) = max
0≤j≤γ

ν−1∑
i=j

X̂s(i)−
ν−1∑
i=γ+1

X̂s(i)−
n∑

i=s(j)+1

Ti +
n∑

i=k+1

Ti


=

n∑
i=k+1

Ti−
ν−1∑
i=γ+1

X̂s(i) + max
0≤j≤γ

ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

 . (58)

By replacing the system time Ŝk (T) in Eq. (52) by its value from Eq. (58), the bound on the

sum of inter-departure times becomes

n∑
i=k+1

Di ≥
ν−1∑
i=γ+1

X̂s(i) + Ŝn (T)− max
0≤j≤γ

ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

 . (59)

We consider the following two cases

Case 1.
ν−1∑
i=γ+1

X̂s(i) ≥
n− k
λ
−Γa(n− k)1/α.

Case 2.
ν−1∑
i=γ+1

X̂s(i) <
n− k
λ
−Γa(n− k)1/α.

Case 1. Since s(i) ∈ Ji and r(i+ 1) ∈ Ji+1, we have s(i)< r(i+ 1) for all i= 0, . . . , ν − 1. By the

monotonicity of the adversarial service times, we have X̂s(i) ≤ X̂r(i+1), and

n∑
i=s(j)+1

Ti ≥
n∑

i=r(j+1)+1

Ti,
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for all 0≤ i, j ≤ γ ≤ ν− 1. Hence, we can bound the maximum term in Eq. (59) by

max
0≤j≤γ

ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

 ≤ max
0≤j≤γ

ν−1∑
i=j

X̂r(i+1)−
n∑

i=r(j+1)+1

Ti


= max

1≤j≤γ+1

 ν∑
i=j

X̂r(i)−
n∑

i=r(j)+1

Ti

 . (60)

Since γ ≤ ν− 1, then γ+ 1≤ ν, and we can further bound Eq. (60) to obtain

max
0≤j≤γ

ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

≤ max
0≤j≤ν

 ν∑
i=j

X̂r(i)−
n∑

i=r(j)+1

Ti

= Ŝn (T) , (61)

where the last equality is due to Eq. (51). Applying the bound in Eq. (61) to Eq. (59),

and given the assumption in Case 1.,

n∑
i=k+1

Di ≥
ν−1∑
i=γ+1

X̂r(i) + Ŝn (T)− Ŝn (T) =
ν−1∑
i=γ+1

X̂r(i) ≥
n− k
λ
−Γa(n− k)1/α.

Case 2. Since Ŝn (T)≥ 0, Eq. (59) becomes

n∑
i=k+1

Di ≥
ν−1∑
i=γ+1

X̂s(i)− max
0≤j≤γ

ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

 .

By substituting the values of the adversarial service times and bounding the sum of inter-

arrival times by Assumption 1(a), the maximum term in the above equation can be upper

bounded by

max
0≤j≤γ

ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

≤ max
0≤j≤γ

h (ν− j) , (62)

where the function h(·) is such that

h(x) =
x

µ
+ Γs ·x1/αs − m ·x+ c

λ
+ Γa · (m ·x+ c)

1/αa , (63)

and c is a constant with c= (n−νm)− (k−γm). The function h(·) is concave, monoton-

ically increasing to some positive maximum value, after which it becomes monotonically

decreasing. Negative function values belong to the phase where h(·) is decreasing. Note

that, since n= r(n) = n− (ν− ν)m and k= s(γ) = k− (γ− γ)m, we can write

n− k= r(ν)− s(γ) = [n− (ν− ν)m]− [k− (γ− γ)m] =m · (ν− γ) + c.
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As a result, the assumption of Case 2. translates to

ν−1∑
i=γ+1

X̂s(i) =
ν− γ
µ

+ Γs (ν− γ)
1/αs <

n− k
λ
−Γa (n− k)

1/αa

=
m · (ν− γ) + c

λ
−Γa (m · (ν− γ) + c)

1/αa ,

implying h(ν−γ)< 0, and the function h(·) is decreasing beyond ν−γ. For j ≤ γ, we have

ν − j ≥ ν − γ, and since h(·) is decreasing beyond ν − γ, we obtain h(ν − j)≤ h(ν − γ).

Therefore the bound in Eq. (62) becomes

max
0≤j≤γ

ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

≤ max
0≤j≤γ

h (ν− j) = h (ν− γ) .

Given the values of the adversarial service times and the fact that n−k=m · (ν−γ) + c,

h (ν− γ) =
ν− γ
µ

+ Γs (ν− γ)
1/αs − m · (ν− γ) + c

λ
+ Γa (m · (ν− γ) + c)

1/αa (64)

=
ν−1∑
i=γ+1

X̂s(i)−
n− k
λ

+ Γa (n− k)
1/αa . (65)

As a result, the bound in Eq. (59) becomes

n∑
i=k+1

Di ≥
ν∑

i=γ+1

X̂r(i)−h(ν− γ) =
n− k
λ
−Γa(n− k)1/α.

(b) Suppose that γ = ν, i.e. k,n∈ Jν . Rewriting the partial sums in terms of ν and n, we obtain

Ŝk (T) = max
0≤j≤ν

 ν∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti +
n∑

i=k+1

Ti


=

n∑
i=k+1

Ti + max
0≤j≤ν

 ν∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

 . (66)

By replacing the system time Ŝk (T) in Eq. (52) by its value from Eq. (66), the bound on the

sum of inter-departure times becomes

n∑
i=k+1

Di ≥ Ŝn (T)− max
0≤j≤ν

 ν∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

 . (67)

We consider the following two cases

Case 1. 0≥ n− k
λ
−Γa(n− k)1/α.

Case 2. 0<
n− k
λ
−Γa(n− k)1/α.
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Case 1. Under the assumption of Case 1., and since the inter-departure times are non-negative,

n∑
i=k+1

Di ≥ 0≥ n− k
λ
−Γa(n− k)1/α.

Case 2. Given that k= s(ν), the maximum term in Eq. (67) can be rewritten as

max
0≤j≤ν

 ν∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

 = max
0≤j≤ν

X̂s(ν) +
ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti


= X̂k + max

0≤j≤ν

ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

 . (68)

Using Eq. (68), and since Ŝn (T) ≥ X̂n ≥ X̂k, by the monotonicity of the adversarial

service times, Eq. (67) becomes

n∑
i=k+1

Di ≥ Ŝn (T)− X̂k− max
0≤j≤ν

ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti


≥ − max

0≤j≤ν

ν−1∑
i=j

X̂s(i)−
n∑

i=s(j)+1

Ti

=− max
0≤j≤ν

h (ν− j) , (69)

where the function h(·) is defined in Eq. (63). Note that, since γ = ν, we obtain n−k= c.

As a result, the assumption of Case 2. translates to

0<
n− k
µ
−Γa(n− k)1/αa =

c

λ
−Γa · c1/αa =−h(0),

implying h(0)< 0, and the function is decreasing beyond 0. For j ≤ ν, we have ν− j ≥ 0,

and since h(·) is decreasing beyond 0, we obtain h(ν− j)≤ h(0). Therefore the bound in

Eq. (69) becomes

n∑
i=k+1

Di ≥− max
0≤j≤ν

h (ν− j) =−h(0) =
n− k
λ
−Γa(n− k)1/αa .

This completes the proof. �

4.3. Implications and Insights

We present next the implications and insights that follow from the analysis of the departure times

for queues with adversarial servers.
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(a) Tightness of the Departure Characterization: The characterization Ud ⊆Ua is true for

all values of n, though its tightness improves for increasing values of n. In other words, in a

queue with adversarial servers, the inequality

min
T∈Ua

n∑
i=k+1

Di ≥
n− k
λ
−Γa(n− k)1/α

becomes tighter as n increases. To illustrate this point, Figure 1 shows the percent error

between the left hand side and the right hand ride of the above inequality for various values

of k and n. We note that, the higher the value of n, the lower the error is for all k values.
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Figure 1 Percent error values generated by comparing the minimum value of the sum
∑n
i=k+1Di (computed

numerically by an optimization solver) and the expression n−k
λ

− Γa(n− k)1/α for various values of k

and n. The instance shown corresponds to a single-server queue with adversarial servers, traffic intensity

ρ= 0.9, service rate µ= 1, variability parameters Γa = Γs = 1, and tail coefficient α= 2.

(b) Robust Burke Theorem: Asymptotically, the characterization of the departure process in

Theorem 4 is tight, which implies that the departure uncertainty set is therefore approximately
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equal to the arrival uncertainty set for large values of n. This is akin to the Burke Theorem from

the stochastic queueing literature, which states that, asymptotically, the departure process in

an M/M/m queue is a Poisson process with a rate equal to that of the arrival process. By

looking at asymptotics, Theorem 4 can be thought of as a generalization of the Burke’s theorem

to more general setting such as heavy-tailed behavior. This result allows us to decompose

a network of queues with adversarial servers and provides the cornerstone of our network

analysis, as we shall cover next.

5. The Robust Queueing Network Analyzer

Consider a network of J queues serving a single class of jobs. Each job enters the network through

some queue j, and either leaves the network or departs towards another queue right after completion

of his service. The primitive data in the queueing network are:

(a) External arrival processes with parameters (λj,Γa,j, αa,j) that arrive to each node j = 1, . . . , J .

(b) Service processes with parameters (µj,Γs,j, αs,j), and the number of servers mj, j = 1, . . . , J .

(c) Routing matrix F = [fij], i, j = 1, . . . , J , where fij denotes the fraction of jobs passing through

queue i and are routed to queue j. The fraction of jobs leaving the network from queue i is

1−
∑

j fij.

In this section, we assume the arrival and service processes have symmetric tail behavior, i.e.,

αa,j = αs,j = α, for all j = 1, . . . , J . In order to analyze the system time in a particular queue j

in the network, we need to characterize the overall arrival process to queue j and then apply

Theorem 2 for single-server and Theorem 3 for multi-server queues. The arrival process in queue

j is the superposition of different processes, each of which is either an external arrival process, or

a departure process from another queue, or a thinning of a departure process from another queue,

or a thinning of an external arrival process. Correspondingly, in order to analyze the network, we

need to characterize the effect that the following operations have on the arrival process:

(a) Passing through a queue: Under this operation, the jobs exit the queue with inter-departure

times D = {D1, . . . ,Dn}. For queues with adversarial servers, Theorem 4 shows that the inter-
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departure times satisfy the arrival uncertainty set. This characterization is tighter in steady-

state and is akin to the Burke’s theorem.

(b) Superposition of arrival processes: Under this operation, p arrival processes Tj ∈ Uaj ,

j = 1, . . . , p combine to form a single arrival process. Theorem 5 characterizes the uncertainty

set of the combined arrival process.

(c) Thinning of an arrival process: Under this operation, a fraction f of arrivals from a given

arrival process is classified as type I while the remaining arrivals are classified as type II. In

Theorem 6, we characterize the uncertainty set of the resulting thinned type I process.

We note that the analysis of the departure times entails a queueing behavioral assumption, namely

that servers act adversarially so as to maximize the system time. However, the results for the

superposition and thinning operations do not make assumptions regarding the behavior of servers.

Taken together, our network analysis provides an exact characterization of the steady-state per-

formance of queueing networks under the assumption of adversarial servers. This analysis provides

a good approximation of the performance in stochastic queueing networks as shown in Section 7.

5.1. The Superposition Process

Let us consider a queue j that is fed by q arrival processes. Let Uaj denote the uncertainty set

representing the inter-arrival times Tj = {T j
1 , . . . , T

j
n } from arrival process j = 1, . . . , p. We denote

the uncertainty set of the combined arrival process by Uasup. Given the primitives (λj,Γa,j, α),

j = 1, . . . , p, we define the superposition operator (λsup,Γa,sup, αsup) = Combine
{

(λj,Γa,j, α) , j =

1, . . . , p
}

, where (λsup,Γa,sup, αsup) characterize the merged arrival process Tsup = {T sup1 , . . . , T supn }.

Theorem 5 (Superposition Operator). The superposition of arrival processes characterized by

the uncertainty sets

Uaj =

(T j1 , . . . , T
j
n)

∣∣∣∣∣∣∣
n∑

i=k+1

Ti−
n− k
λj

(n− k)
1/α

≥−Γa,j , ∀k≤ n− 1

 , j = 1, . . . , p, (70)
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results in a merged arrival process characterized by the uncertainty set

Uasup ⊆

(T sup1 , . . . , T supn )

∣∣∣∣∣∣∣
n∑

i=k+1

Ti−
n− k
λsup

(n− k)
1/α

≥−Γa,sup , ∀ 0≤ k≤ n− 1

 ,

where the effective arrival rate, tail coefficient and variability parameter are such that

λsup =

p∑
j=1

λj, αsup = α, Γa,sup =
1∑p

j=1 λj
·

(
p∑
j=1

(λjΓa,j)
α/(α−1)

)(α−1)/α

· (71)

Proof of Theorem 5. We first consider p= 2 and then generalize the result by induction.

(a) By Eq. (70), the inter-arrival times T1 = {T 1
i , . . . , T

1
n} and T2 = {T 2

i , . . . , T
2
n} are such that

λj

nj∑
i=kj+1

T j
i ≥ (nj − kj)−λjΓa,j (nj − kj)1/α

, j = 1,2.

Summing over index j = 1,2, we obtain

λ1

n1∑
i=k1+1

T 1
i +λ2

n2∑
i=k2+1

T 2
i ≥ (n1− k1 +n2− k2)−λ1Γa,1 (n1− k1)

1/α−λ2Γa,2 (n2− k2)
1/α

. (72)

We consider the time window T between the arrival of the kth
1 and the nth

1 jobs from the first

arrival process. We assume that, within period T , the queue sees arrivals of jobs (k2 + 1) up

to n2 from the second arrival process. Therefore, period T can be written in terms of the

combined inter-arrival times Tsup = {T sup1 , . . . , T supn } as

T =

n1∑
i=k1+1

T 1
i =

n∑
i=k+1

T supi , where k= k1 + k2, and n= n1 +n2. (73)

Without loss of generality, we assume that
∑n1

i=k1+1 T
1
i ≥

∑n2
i=k2+1 T

2
i and by Eqs. (73),

(λ1 +λ2)

n∑
i=k+1

T supi ≥ λ1

n1∑
i=k1+1

T 1
i +λ2

n2∑
i=k2+1

T 2
i ≥ (n− k)−λ1Γa,1 (n1− k1)

1/α−λ2Γa,2 (n2− k2)
1/α

,

where the last inequality is obtained by applying the bound in Eq. (72) and substituting

n1 +n2 = n and k1 +k2 = k. By rearranging and dividing both sides by (λ1 +λ2) and (n− k)
1/α

,

n∑
i=k+1

T supi − n− k
λsup

(n− k)
1/α

≥−γa,sup, where λsup = λ1 +λ2, αsup = α, and
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γa,sup =
λ1

λ1 +λ2

Γa,1

(
n1− k1

n1− k1 +n2− k2

)1/α

+
λ2

λ1 +λ2

Γa,2

(
n2− k2

n1− k1 +n2− k2

)1/α

.

We let the fraction of arrivals from the first process be denoted by

x=
n1− k1

n1− k1 +n2− k2

, with x∈ [0,1]. (74)

The maximum value that γa,sup achieves over x ∈ [0,1] can be determined by optimizing the

following one-dimensional concave maximization problem

max
x∈(0,1)

{
βx1/α + δ (1−x)

1/α
}

=
(
βα/(α−1) + δα/(α−1)

)(α−1)/α
, (75)

where β = λ1
λ1+λ2

Γa,1, and δ = λ2
λ1+λ2

Γa,2. Substituting β and δ by their respective values in

Eq. (75) completes the proof for p = 2. We refer to this procedure of combining two arrival

processes by the operator (λsup,Γa,sup, αsup) =Combine{(λ1,Γa,1, α) , (λ2,Γa,2, α)} .

(b) Suppose that the arrivals to a queue come from arrival processes 1 through (p−1). We assume

that the combined arrival process belongs to the proposed uncertainty set, with

λ̄=

p−1∑
j=1

λj and Γa =
1

λ̄
·

(
p−1∑
j=1

(λjΓa,j)
α/(α−1)

)(α−1)/α

Extending the proof to p sources can be easily done by repeating the procedure shown in part

(a) through the operator (λsup,Γa,sup, αsup) =Combine
{(
λ̄,Γa, α

)
, (λp,Γa,p, α)

}
. �

5.2. The Thinning Process

We consider an arrival process in which a fraction f of arrivals is classified as type I and the

remaining arrivals are classified as type II, where f = p/q is assumed rational and p≥ 0 and q > 0

are integers, with p≤ q. We note that the assumption on the rationality of the fraction f is not

very restrictive, since any irrational number can be arbitrarily closely approximated by a rational

number. We consider the following routing scheme: (a) we first thin the original arrival process

T = {T1, . . . , Tn} into q split processes such that jobs j, j + q, j + 2q, etc. are selected to form

the split process j, where 1≤ j ≤ q, (b) we then superpose p of these split processes to form the

desired thinned process. Our computational results suggest that this routing policy provides a
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good approximation of the probabilistic routing policy. Given the primitives (λ,Γa) of the original

process and the fraction f , we define the thinning operator (λsplit,Γa,split, α) = Split
{

(λ,Γa, α) , f
}

,

where (λsplit,Γa,split, α) characterizes the thinned arrival process Tsplit = {T split1 , . . . , T splitn }.

Theorem 6 (Thinning Operator). The thinned arrival process of a rational fraction f of

arrivals belonging to Ua is described by the uncertainty set

Uasplit ⊆

(T split1 , . . . , T splitn )

∣∣∣∣∣∣∣
n∑

i=k+1

T spliti − n− k
λsplit

(n− k)
1/α

≥−Γa,split, ∀ 0≤ k≤ n− 1

 , (76)

where λsplit = λ · f and Γa,split = Γa ·
(

1

f

)1/α

.

Proof of Theorem 6. We denote the rational fraction f = p/q, where p≥ and q > 0 are integers,

with p≤ q. By our routing mechanism, we first split the original arrival process into q split processes

Tj =
{
T ji
}
i≥1

, each associated with a thinning fraction fj = 1/q, where j = 1, . . . , q. We then com-

bine p split processes and employ the results from Theorem 5 to obtain the desired characterization

for the thinned process Tsplit =
{
T spliti

}
i≥1

.

(a) The split process
{
T ji
}
i≥1

is formed by selecting jobs j, j+ q, j+ 2q, etc. In other words, the

(kj + 1)th job in the split process corresponds to the (j+ kjq)
th

job in the original process.

Consider the time window T between the (kj + 1)th and the (nj + 1)th arrivals in the split

process
{
T ji
}
i≥1

. This time window corresponds to the time elapsed between the (j+ kjq)
th

and the (j+njq)
th

arrivals in the original process, yielding

T =

nj+1∑
i=(kj+1)+1

T ji =

j+njq∑
i=j+kjq+1

Ti ≥
njq− kjq

λ
−Γa (njq− kjq)1/α

=
nj − kj
λj

−Γa,j (nj − kj)1/α
,

where λj = λ · 1/q = λ · fj and Γa,j = Γa · q1/α = Γa · (1/fj)1/α
, and this characterization is

identical to all q split processes. Eq. (76) holds for fractions of the type fj = 1/q, where q ∈N+.

(b) We next show that the above result can be extended for any rational fraction f = p/q. The

corresponding split process
{
T spliti

}
i≥1

can be seen as a superposition of p out of the q split

processes characterized by an uncertainty set of the form described in Assumption 1 with
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parameters λj and Γa,j, as obtained in part (a). Without loss of generality, suppose we combine

split processes 1 through p. Utilizing the findings of Theorem 5, we obtain Eq. (76) with

λsplit =

p∑
j=1

λj = pλ/q= λ · f, and Γa,split =
1

λsplit
·

(
p∑
j=1

(λjΓa,j)
α/(α−1)

)(α−1)/α

.

Substituting the values of λj and Γa,j obtained in part (a) in the above expression yields

Γa,split = Γa · (1/f)
1/α

, hence concluding the proof. �

Remark: The superposition and thinning operators are consistent. In fact, it is easy to check that,

for splitting fractions fj such that
∑m

j=1 fj = 1,

Combine

{
Split

{
(λ,Γa, α) , fj

}
, j = 1, . . . ,m

}
= (λ,Γa, α) .

5.3. The Overall Network Characterization

We perceive the queueing network as a collection of independent queues that could be analyzed

separately. The servers in each queue behave in an adversarial manner to maximize the time jobs

spend in the queue. We employ the Combine and Split operators in view of characterizing the

effective arrival process to each queue in the network. Knowledge of the effective arrival process

allows to study the system time spent at the queue through Theorems 2 and 3 for a single-server and

multi-sever queue, respectively. The output of the queue belongs to the effective arrival uncertainty

set as shown in Theorem 4 . Theorem 7 characterizes the effective arrival process perceived at each

queue in the network.

Theorem 7 (Queueing Network Characterization). The behavior of a single class queueing

network is equivalent to that of a collection of independent queues with adversarial servers, where

the arrival process to node j characterized by the uncertainty set

Uaj ⊆

(T j1 , . . . , T
j
n)

∣∣∣∣∣∣∣
n∑

i=k+1

T ji −
n− k
λj

(n− k)
1/α

≥−Γa,j, ∀ 0≤ k≤ n− 1

 , j = 1 . . . , J,

where
{
λ̄1, λ̄2, . . . , λ̄J

}
and

{
Γa,1,Γa,2, . . . ,Γa,j

}
satisfy the set of equations for all j = 1, . . . , J

λ̄j = λj +
J∑
i=1

(
λ̄ifij

)
, (77)
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Γa,j =
1

λ̄j
·

[
(λj ·Γa,j)α/(α−1)

+
J∑
i=1

(
λ̄i ·Γa,i

)α/(α−1) · fij

](α−1)/α

. (78)

Proof of Theorem 7. Let us consider a queue j receiving jobs from (a) external arrivals described

by parameters (λj,Γa,j, α), and (b) internal arrivals routed from queues i, where i = 1, . . . , J ,

resulting from splitting the effective departure process from queue i by fij. By Theorem 4, the

effective departure process from queue i belongs to the uncertainty set satisfied by the effective

arrival process to queue i and described by the parameters
(
λ̄i,Γa,i, α

)
. The effective arrival process

to queue j can therefore be represented as

(
λ̄j,Γa,j, α

)
=Combine

{
(λj,Γa,j, α) ,

(
Split

{(
λ̄i,Γa,i, α

)
, fij

})
, i= 1, . . . , J

}
(79)

By Theorem 6, we substitute the split processes by their resulting parameters and obtain the

superposition of J + 1 arrival processes

(
λ̄j,Γa,j, α

)
=Combine

{
(λj,Γa,j, α) ,

(
fijλ̄i,Γa,i

(
1

fij

)1/α

, α

)
, i= 1, . . . , J

}
(80)

Applying now Theorem 5 yields Eqs. (77) and (78). �

Note that in our analysis, we have assumed that each queue in the network perceives one stream

of external arrivals. However, Theorem 7 can be extended in the case where external arrivals are

thinned among different queues in the network. This can be done by adding a node in the network

for each thinned external arrival process and appending its thinning probabilities to the transition

matrix F. We next provide the main insights and implications that arise from Theorem 7.

(a) Network Performance Analysis: Theorem 7 allows us to compute performance measures

in a queueing network by considering the queues separately. For instance, the system time Ŝ j
n

at queue j can be determined through Theorems 2 and 3 with an effective arrival parameters

(λ̄j,Γa,j, α) and service parameters (µ,Γs, α).

(b) Tractable System Solution: Determining the overall network parameters (λ̄,Γ) amounts to

solving a set of linear equations. To see this, substitute xj =
(
λ̄jΓa,j

)α/(α−1)
, for all j = 1, . . . , J ,

in Eqs. (77) and (78) to obtain the following linear system of equations
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λ̄j = λj +
J∑
i=1

λ̄ifij j = 1, . . . , J,

xj = (λjΓa,j)
α/(α−1)

+
J∑
i=1

fijxi j = 1, . . . , J.

Given that the routing matrix F = {fij} is sub-stochastic, the linear system of equations solves

for (λ̄j, xj), hence allowing to determine Γa,j, for all j = 1, . . . , J .

6. Queues with Asymmetric Heavy-tailed Arrival and Service Processes

In this section, we extend our results for systems characterized by an asymmetry between the

arrival and service tail coefficients. Note that we assume that, within a given queue j, all servers

have the same tail coefficient αs,j. We omit the proofs as they are straightforward generalizations

of the proofs in Theorems 2-7.

System Time: Similarly to Eq. (45), the worst-case system time for asymmetric heavy-tailed

arrival and service processes is given by

Ŝn = max
0≤j≤ν

{
m1/αaΓa (ν− j)1/αa + Γs (ν− j+ 1)

1/αs − m(ν− j)
λ

+
ν− j+ 1

µ

}
.

While the above one-dimensional nonlinear integer optimization problem can be solved efficiently

to obtain exact values, we present Theorem 8 which presents a closed-form upper bound on the

worst-case system time. The bound is not tight, but provides useful insights as to the effect of the

heavy-tailed processes on the system time.

Theorem 8. System Time with Asymmetric Tails

In an m-server FCFS queue with T∈ Ua, X∈ Usm, αa 6= αs such that ρ< 1,

Ŝn ≤
ᾱ− 1

ᾱᾱ/(ᾱ−1)
·
λ1/(ᾱ−1)

(
Γa + Γs/m

1/ᾱ
)ᾱ/(ᾱ−1)

(1− ρ)
1/(ᾱ−1)

+
m

λ
, for n= r+ νm, and r= 1, . . . ,m,

where ᾱ= min(αa, αs) .

Departure Process: The arguments in the proof of Theorem 4 generalize to the asymmetric case,

and the characterization is asymptotically tight.
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Superposition Process: We next consider the case when the arrival streams are characterized

by different tail coefficient αa,j. For notational convenience, we let 1{αa,j=α} denote the indicator

variable defined by 1{αa,j=α} = 1 if αa,j = α and zero otherwise.

Theorem 9. Superposition Operator for Asymmetric Tails

The superposition of arrival processes characterized by the uncertainty sets

Uaj =

(T j1 , . . . , T
j
n)

∣∣∣∣∣∣∣
n∑

i=k+1

Ti−
n− k
λj

(n− k)
1/αa,j

≥−Γa,j , ∀ 0≤ k≤ n− 1

 , j = 1, . . . ,N, (81)

results in a merged arrival process characterized by the uncertainty set

Uasup ⊆

(T sup1 , . . . , T supn )

∣∣∣∣∣∣∣
n∑

i=k+1

Ti−
n− k
λsup

(n− k)
1/ᾱ

≥−Γa,sup , ∀ 0≤ k≤ n− 1

 ,

where the effective tail coefficient ᾱ= minj αa,j, and

λsup =
N∑
j=1

λj and Γa,sup =
1∑N

j=1 λj
·

(
N∑
j=1

1{αa,j = ᾱ} · (λjΓa,j)αa,j/(αa,j−1)

)(ᾱ−1)/ᾱ

Theorem 9 implies that the effective tail behavior is dominated by the arrival process with the

heaviest tail. While this lower bound may not be tight, the related inaccuracies do not seem to

induce large discrepancies within the network according to our computations. In fact, Tables 9 and

10 in Section 7 suggest that having external arrival processes with various tail behavior does not

worsen the performance of our algorithm and errors are within 8.7%.

Thinning Process: We note that the split arrival process inherits the tail coefficient αa corre-

sponding to the thinned arrival process. Hence, Theorem 6 still holds in this case.

The Generalized Queueing Network: We characterize the parameters of the effective arrival

processes to each queueing node in the network under the assumption of asymmetric tail behavior.

We observe that the parameter ᾱa,j describing the tail behavior of the effective arrival process

depends on the tail behavior of all the queueing nodes that communicate with node j.

Theorem 10. Queueing Network Characterization with Asymmetric Tails

Consider a queueing network with J queues and external arrival processes characterized by
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(λj,Γa,j, αa,j). The behavior of this network is equivalent to that of a collection of independent

queues, with the arrival process to node j characterized by the uncertainty set

Uaj ⊆

(T1, . . . , Tn)

∣∣∣∣∣∣∣
n∑

i=k+1

Ti−
n− k
λ̄j

(n− k)
1/ᾱa,j

≥−Γa,j , ∀ 0≤ k≤ n− 1

 , j = 1 . . . , J,

where
{
λ̄1, λ̄2, . . . , λ̄J

}
and

{
Γa,1,Γa,2, . . . ,Γa,J

}
satisfy the set of equations for all j = 1, . . . , J

λ̄j = λj +
J∑
i=1

(
λ̄ifij

)
,

Γa,j =
1

λ̄j
·

[
1{αa,j = ᾱa,j} · (λjΓa,j)

αa,j/(αa,j−1)
+

J∑
i=1

1{ᾱa,i= ᾱa,j} ·
(
λ̄iΓa,i

)ᾱa,i/(ᾱa,i−1) · fij

](ᾱa,j−1)/ᾱa,j

,

with ᾱa,j = mini:{i→j}αa,i, where {i→ j} means that node i communicates with node j in the net-

work with routing matrix F.

We next provide the main insights and implications that arise from Theorem 10.

(a) Effect of Heavier Tails: Theorem 10 implies that the tail behavior of the effective arrival

process at a given queue is determined by the “heaviest” tail among all departure processes

arriving to this queue including the external arrival process to the queue. If all nodes commu-

nicate with each other, the tail behavior of the queueing network is then determined by the

heaviest tail among the external arrival processes.

(b) Tractable System Solution: Note that the set of equations that characterize the effective

arrival process are similar to Eqs. (77) and (78). The only difference in the system for the

asymmetric case is the presence of indicator variables 1{αa,j = ᾱa,j} which isolate the heaviest

tail among the merged arrival processes at any given node. Given that these indicator variables

are known from data, one could think of this system as a linear system of equations (as for

Eqs. (77) and (78)) with f̃ij = 1{ᾱa,i= ᾱa,j} · fij. The modified routing matrix with entries f̃ij

remains sub-stochastic allowing a unique solution to this system of linear equations.

7. Computational Results

We propose a Robust Queueing Network Analyzer (RQNA) algorithm to approximate the perfor-

mance of steady-state stochastic queueing networks with the following primitive data:
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(a) The distributions of the external arrival processes with parameters (λj, σa,j, αa,j) with coeffi-

cients of variation c2
a,j = λ2

jσ
2
a,j, j = 1, . . . , J .

(b) The distributions of the service processes with parameters (µj, σs,j, αs,j) with coefficients of

variation c2
s,j = µ2

jσ
2
s,j and the number of servers mj, j = 1, . . . , J .

(c) Routing matrix F = [fij], i, j = 1, . . . , J , where fij denotes the fraction of jobs passing through

queue i routed queue j. The fraction of jobs leaving the network from queue i is 1−
∑

j fij.

We note that, for heavy-tailed arrivals and services with infinite variance, we truncate the proba-

bility distribution and compute the corresponding first and second moments. While the truncation

achieves finite moments, it is still a fair depiction of heavy-tailed behavior. In fact, as observed in

simulations, these systems do not reach steady-state until seeing a very large number of arrivals.

We run simulations for a large number of arrivals (n= 30,000) to ensure steady-state is reached.

Our computations aim at providing a numerical validation that our network analysis framework,

namely the key elements of network decomposition presented in Sections 4 and 5, provides a good

approximation for the performance of stochastic queueing networks. We (a) compare our results

with simulation and the Queueing Network Analyzer (QNA) proposed by Whitt (1983), and (b)

investigate the relative performance of RQNA with respect to system’s network size, degree of

feedback, maximum traffic intensity, and diversity of external arrival distributions.

7.1. Derived Variability Parameters

To apply RQNA on stochastic queueing networks, we first need to translate the stochastic primitive

data into uncertainty sets with appropriate variability parameters (Γa,j,Γs,j) for each j = 1, . . . , J .

Along the lines of QNA, we construct appropriate functions to describe the variability parameters

Γa and Γs in terms of the distributions’ first and second-order data, namely the arrival and service

rates and their corresponding variances. We then simulate multiple isolated instances of a single

queue with various arrival and service distributions and use regression to compute the variability

parameters associated with the primitives’ distributions. This allows us to build a dictionary or a

look-up table of variability parameters values for given arrival and service distributions. We note
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that this step is done prior to observing a network instance, and is therefore independent of the

network analysis.

We consider a single queue with m servers characterized by (ρ,σa, σs, α) and model its variability

parameters as Γa = σa and Γs = f(ρ,σa, σs, α), where the functional form for f(·) is motivated by

the Kingman’s bound (Kingman (1970))

f (ρ,σs, σa, α) =
(
θ0 + θ1 ·σ2

s/m+ θ2 ·σ2
aρ

2m
)(α−1)/α−σam(α−1)/α.

We simulate multiple instances of the queue for various parameters of (ρ,σa, σs, αa, αs) and different

arrival and service distributions. We employ linear regression to generate appropriate values for

θ0, θ1 and θ2 to adapt the value Ŝn obtained inTheorem 3 to the expected value of the simulated

system time. We propose two different adaptation regimes:

(a) Service Distribution Dependent Adaptation where we allow the set of values (θ0, θ1, θ2) to

depend on the service distribution, and

(b) Service Distribution Independent Adaptation where we obtain a single set of values (θ0, θ1, θ2).

The motivation for considering the service independent adaptation regime is that often we might

not know the service time distributions. We also note that we do not perform an adaptation of the

values of (θ0, θ1, θ2) for each arrival distribution, since in the network, we have no prior knowledge

of the arrival distribution at a given queue. The only known distribution at each queue is in fact

the service distribution, hence the proposed adaptation methods. Table 1 provides the resulting

(θ0, θ1, θ2) for each of the adaptation regimes.

Table 1 Service adaptation regimes.

(θ0, θ1, θ2) Service Dependent Service Independent

Pareto Normal

θ0 -0.05 -0.02 -0.06

θ1 1.09 1.03 1.07

θ2 1.11 1.04 1.07

When presented with an instance of a queue, we readily plug the values of (θ0, θ1, θ2) into the

proposed functional form to derive the variability parameters and apply Theorem 3 to compute
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the steady-state system time. Tables 2 and 3 compare the system time we obtain by the above

procedure relative to the simulated values for single queues. We observe that errors are within 9.5%

of simulation. As expected, knowledge of the service distribution leads to more accurate answers.

In summary, the adaptation of the variability parameters allows a mapping of the expected

system time obtained by simulations to the worst case system time under our approach. In other

words, the dictionary we populated in this pre-algorithm step chooses variability parameters Γa

and Γs that allow us to make the following approximation E [S (T,X)]≈ Ŝ (Γa,Γs).

Table 2 Multi-Server Single Queue: System time percent errors (service independent adaptation).

Case 1 server 3 servers 6 servers 10 servers

(c2a, c
2
s) Normal Pareto∗∗ Normal Pareto Normal Pareto Normal Pareto

(0.25,0) 6.55 6.81 8.82 -9.36 8.82 -9.60 8.45 -9.269

(0.25,1) 6.48 -7.31 7.24 -7.96 8.67 -9.16 9.264 -8.839

(0.25,4) -7.27 -6.58 -8.20 9.85 -8.88 8.26 -8.84 8.89

(1,1) -6.58 6.42 -7.98 8.93 -9.04 7.96 -8.58 9.36

(1,4) 6.07 6.12 8.55 8.26 8.63 8.66 7.98 9.05

(4,0) 6.05 -5.70 -7.30 7.86 -8.61 8.48 -9.21 9.514

(4,1) -7.43 -7.84 -7.59 -7.91 -9.31 -9.01 -8.74 -9.553

(4,4) 7.40 -5.89 -9.37 -8.78 -9.03 -9.36 -8.96 -9.34

Table 3 Multi-Server Single Queue: System time percent errors (service dependent adaptation).

Case 1 server 3 servers 6 servers 10 servers

(c2a, c
2
s)
∗ Normal Pareto∗∗ Normal Pareto Normal Pareto Normal Pareto

(0.25,0) 1.18 2.91 6.03 -6.27 6.27 -7.40 6.45 -6.88

(0.25,1) 3.25 -3.08 5.44 -4.90 6.34 -6.58 7.38 -5.69

(0.25,4) -3.17 -2.71 -5.46 6.31 -5.97 5.18 -5.89 6.50

(1,1) -2.11 1.36 -5.75 7.25 -6.16 6.04 -6.56 7.22

(1,4) -1.53 2.48 6.66 6.02 6.91 6.04 6.87 7.14

(4,0) 1.38 -1.73 -5.71 5.68 -6.50 5.34 -7.48 7.70

(4,1) -3.08 -1.82 -6.03 -4.07 -6.11 -7.76 -6.52 -7.12

(4,4) 1.33 -2.23 -7.40 -7.82 -6.22 -5.81 -6.10 -7.18

∗ ca = λσa and cs = µσs represent the coefficients of variation for the inter-arrival and service times.

∗∗ Truncated Pareto distribution fα = αx−α−1

1−(1/H)α
, choosing H to achieve the desired coefficient of variation,

with mean 1/µ= 1
1−(1/H)α

· α
α−1

·
(
1− 1/Hα−1

)
and variance 1

1−(1/H)α
· α
α−2

·
(
1− 1/Hα−2

)
− 1/µ2.

Note: The model parameters Γa and Γs may be derived from other available information about
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the inter-arrival and service times. For instance, Bertsimas et al. (2014) propose a schema for

constructing uncertainty sets and obtaining model parameters using available data and statistical

hypothesis tests, and Bandi and Bertsimas (2012a) present approaches that use distributional and

correlation information to inform the model parameters.

7.2. The RQNA Algorithm

Having derived the required primitive data for our robust approach, we next describe the RQNA

algorithm we employ to compute performance measures of a given network of queues. To do this,

we keep track of all possible paths that a job may follow throughout the network. A path p consists

of a list of queues visited by some job from entering until leaving the network. We denote the set

of all possible paths by P. Let fp be the fraction of jobs routed through each path p∈P across the

network. The expected overall system time in a network can then be written as

E[Stot] =
∑
p∈P

fpE[Sp],

where Sp is the system time across each path p∈P. Note that E[Sp] can be obtained by summing

the individual expected system times at all nodes associated with this path. Using our adaptation

technique presented in Section 7.1, we estimate the the expected system time at each node in

path p by the worst case system expression using the generated variability parameters. Using this

process, we estimate the expected system time of the network by computing a weighted sum of the

worst case system times at each node. This is made explicit in the algorithm presented below.

ALGORITHM (Robust Queueing Network Analyzer)

Input: External arrival parameters (λj, σa,j, αa,j), service parameters (µj, σs,j, αs,j), and routing

matrix F = [fij], for i, j = 1, . . . , J . Input also the service times distributions for the case

of service dependent adaptation regime.

Output: System times at each node j, j = 1, . . . , J .

1. For each external arrival process i in the network, set Γa,i = σa,i.



Author: Robust Queueing Theory
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 49

2. For each queue j in the network with parameters (µj, σs,j, αs,j), compute

(a) the effective parameters
(
λj,Γa,j, ᾱa,j

)
according to Theorem 10 and set ρj = λj/µj,

(b) the variability parameter Γs,j = f
(
ρj,Γa,j, σs,j, ᾱa,j, αs,j

)
, and

(c) the system time Ŝ at node j using Theorem 3.

3. Compute the total system time of the network by computing

(a) the set of all possible paths P in the network,

(b) the fraction fp of jobs routed through each path p∈P,

(c) the corresponding total system time Ŝp across each path p∈P by summing the

individual system times at all nodes associated with this path,

(d) the total system time in the network Ŝ =
∑

p∈P fpŜ
p.

Note that, in Step 2(b), we treat each queue j in the network separately as a single isolated queue

with an effective arrival process described by the variability parameter Γa,j. We note that use Γa,j

as an input to f(.) in place of the standard deviation. Deriving the variability parameter Γs,j can

be done using wither the service independent or the service dependent adaptation regime based on

whether we know the specific service time distribution at each queue.

7.3. Performance of RQNA in Comparison to QNA and Simulation

We consider the network shown in Figure 2 and perform computations assuming queues have either

single or multiple servers, with normal or Pareto distributed service times.

Table 4 reports the percentage errors between the expected system times calculated by simulation

and those obtained by each of QNA and RQNA, assuming all nine queues in the network have

a single server. RQNA produces results that are often significantly closer to simulated values

compared to QNA. Improvements generally range one order of magnitude better in favor of RQNA.

Tables 5 and 6 summarize the percentage errors for RQNA relative to simulation for queues with

3, 6, and 10 servers using the service independent and service dependent adaptation regimes,

respectively. We make the following observations.

(a) RQNA is fairly insensitive to the heavy-tailed nature of the service distributions. In fact, the

percentage errors for the Pareto and normally distributed services are within the same order.
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Figure 2 The Kuehn’s Network (see Kuehn (1979)).

(b) Adaptation of (θ0, θ1, θ2) to service distribution yields smaller errors up to 6%.

(c) RQNA’s performance is generally stable with respect to the number of servers at each queue,

yielding errors within the same range for instances with 3 to 10 servers per queue.

Table 4 Single-Server Network: System time percent errors relative to simulation.

Case Pareto Distribution Normal Distribution

(c2a,j , c
2
s,j) QNA RQNA∗ RQNA∗∗ QNA RQNA∗ RQNA∗∗

(0.25,0) 22.78 8.28 3.29 15.28 7.79 1.39

(0.25,1) 18.48 -8.82 -3.48 12.08 8.33 3.87

(0.25,4) 20.13 -7.12 -3.05 11.57 -7.92 -3.88

(1,1) 14.06 6.83 1.80 5.84 -7.12 -2.56

(1,4) 10.15 6.88 2.89 -10.45 7.91 -0.68

(4,0) 21.82 -7.24 -1.93 10.95 6.74 1.29

(4,1) 23.71 -8.73 -2.14 14.18 -9.28 -3.51

(4,4) 17.51 -7.17 -2.97 11.55 9.25 1.67

∗ Service Independent ∗∗ Service Dependent

7.4. Performance of RQNA as a Function of Network Parameters

We investigate the performance of RQNA (for the service dependent adaptation regime) as a

function of the system’s parameters (network size, degree of feedback, maximum traffic intensity

among all queues and number of distinct distributions for the external arrival processes) in families

of randomly generated queueing networks. We note that we randomly assign 3, 6 or 10 servers to

each of the multi-server queues in the network independently of each other. Tables 7 and 8 report
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Table 5 Multi-Server Network: System time percent errors (service independent adaptation).

Case 3 servers 6 servers 10 servers

(c2a,j , c
2
s,j) Normal Pareto Normal Pareto Normal Pareto

(0.25,0) 6.88 -7.21 7.33 -9.42 7.84 -8.00

(0.25,1) 6.17 -5.82 7.72 -7.18 8.48 -6.87

(0.25,4) -6.33 7.39 -7.53 6.28 -7.14 7.82

(1,1) -7.26 8.02 -6.98 7.16 -7.98 9.22

(1,4) 7.38 6.93 7.37 6.94 8.21 10.91

(4,0) -6.86 7.42 -7.26 6.76 -8.22 9.71

(4,1) -6.60 -5.01 -7.57 -8.99 -8.46 -9.34

(4,4) -8.14 -8.40 -7.53 -6.84 -7.49 -8.87

Table 6 Multi-Server Network: System time percent errors (service dependent adaptation).

Case 3 servers 6 servers 10 servers

(c2a,j , c
2
s,j) Normal Pareto Normal Pareto Normal Pareto

(0.25,0) 2.10 -2.73 2.63 -3.48 2.84 -3.66

(0.25,1) 3.26 -0.80 4.03 -1.06 4.42 -0.99

(0.25,4) -2.07 1.42 -2.56 1.79 -2.76 1.91

(1,1) -3.18 1.72 -4.13 2.23 -3.98 2.23

(1,4) 3.86 1.53 4.98 1.94 5.12 2.00

(4,0) -3.85 4.63 -5.82 5.36 -5.43 5.31

(4,1) -3.27 -4.28 -4.37 -4.83 -4.23 -5.67

(4,4) -3.28 -4.12 -5.82 -5.82 -5.83 -6.13

the system time percentage errors of RQNA relative to simulation as a function of the size of the

network and the degree of feedback for queues with single and multiple servers, respectively.

(a) Errors are slightly higher for multi-server networks compared to single-server networks.

(b) RQNA’s performance is generally stable for higher degrees of feedback with errors below 6.2%.

(c) RQNA is fairly insensitive to network size with a slight increase in percent errors between

10-node and 30-node networks.

Tables 9 and 10 present the system time percentage errors for RQNA relative to simulation as a

function of the maximum traffic intensity among all queues in the network and the number of dis-

tinct distributions for the external arrival processes. Specifically, we design four sets of experiments

in which we use one type (normal), two types (Pareto and normal), three types (Pareto, normal

and Erlang) and four types (Pareto, normal, Erlang and exponential) of arrival distributions.
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Table 7 Single-Server Networks: RQNA percent error as a function of network size

and degree of feedback.

% Feedback loops / No of nodes 10 15 20 25 30

Feed-forward networks 0% 2.86 2.94 3.03 2.92 3.21

20% 3.12 3.25 3.29 3.71 3.64

35% 3.74 3.81 4.02 4.07 4.14

50% 4.42 4.63 4.84 5.23 5.65

70% 4.85 5.16 5.34 5.68 5.86

Table 8 Multi-Server Networks: RQNA percent error as a function of network size

and degree of feedback.

% Feedback loops / No of nodes 10 15 20 25 30

Feed-forward networks 0% 3.59 3.55 3.76 3.43 3.85

20% 3.70 4.01 4.02 4.39 4.45

35% 4.32 4.78 4.95 5.03 4.88

50% 4.95 4.81 5.36 5.67 6.19

70% 5.02 5.56 5.93 5.96 6.03

(a) RQNA presents slightly improved results for lower traffic intensity levels. It is nevertheless

fairly stable with respect to higher traffic intensity levels.

(b) The percentage errors generally increase with diversity of external arrival distributions, but

still are below 8.5% relative to simulation.

Table 9 Single-Server Networks: RQNA percent error as a function of traffic

intensity and variety of external arrival distributions.

No of different distributions ρ= 0.95 ρ= 0.9 ρ= 0.8 ρ= 0.65 ρ= 0.5

1 3.34 3.26 3.17 3.02 2.72

2 6.38 5.85 5.47 4.87 3.24

3 7.43 7.09 6.04 5.88 4.53

4 7.56 6.98 6.81 6.29 5.18

8. Concluding Remarks

This paper revisited the problem of analyzing the performance measures of a single-class queue

with multiple servers by proposing a new approach for modeling uncertainty. We proposed a robust

optimization approach yielding closed-form solutions expressions for the system time in multi-

server queues with possibly heavy-tailed arrival and service processes that are not available under
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Table 10 Multi-Server Networks: RQNA percent error as a function of traffic

intensity and variety of external arrival distributions.

No of different distributions ρ= 0.95 ρ= 0.9 ρ= 0.8 ρ= 0.65 ρ= 0.5

1 4.05 4.09 3.62 3.68 3.23

2 5.08 7.10 6.42 6.11 3.71

3 5.92 6.32 6.90 7.34 5.68

4 7.67 8.64 7.28 6.85 5.37

traditional queueing theory. We extended our analysis to the study of arbitrary networks of queues

with adversarial servers via the following key principle: (a) the departure from a queue, (b) the

superposition, and (c) the thinning of arrival processes have the same uncertainty set representation

as the original arrival processes. Our computations validated our model with error percentages in

single digits (for all experiments we performed) relative to simulation and performs significantly

better than QNA. Moreover, our approach is to a large extent insensitive to the number of servers

per queue, network size, degree of feedback and traffic intensity, and somewhat sensitive to the

degree of diversity of external arrival distributions in the network.

We are currently investigating extensions of the present framework in two directions: (a) a

tractable transient analysis of multi-server FCFS queues (please see Bandi et al. (2014)), and (b)

a tractable steady-state analysis of priority disciplines in multi-server queues.
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G. Samorodnitsky and M. Taqqu. Stable non-Gaussian Random Processes: Stochastic Models with Infinite

Variance. Chapman & Hall, 1994.

J. G. Dai and J. M. Harrison. Reflected brownian motion in an orthant: Numerical methods for steady-state

analysis. The Annals of Applied Probability, 2:66–86, 1992.

W. Whitt. The queueing network analyzer. Bell System Technical Journal, pages 2779–2813, 1983.

W. Whitt. The impact of a heavy-tailed service-time distribution upon the M/GI/s waiting-time distribution.

Queueing Systems, 36:71–87, 2000.

J. Xie and Y. Jiang. Stochastic network calculus models under max-plus algebra. In Global Telecommuni-

cations Conference, 2009. GLOBECOM 2009. IEEE, pages 1–6, Nov 2009.


