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Abstract 

Passenger incidence (station arrival) behavior has been studied primarily to understand 
how changes to a transit service will affect passenger waiting times. The impact of one 
intervention (i.e. increasing frequency) could be overestimated compared to another (i.e. 
improving reliability), depending on the assumption of incidence behavior. It is important to 
understand passenger incidence so that management decisions will be based on realistic 
behavioral assumptions. Prior studies on passenger incidence chose their data samples from 
stations with a single service pattern such that the linking of passengers to services was 
straightforward. This simplifies the analysis but heavily limits the stations that can be studied. In 
any moderately complex network, many stations may have more than one service patterns. This 
limitation prevents it from being systematically applied to the whole network and limits its use in 
practice.  

This paper concerns with incidence behavior in stations with heterogeneous services. It 
proposes a method to estimate incidence headway and waiting time by integrating disaggregate 
smartcard data with published timetables using schedule-based assignment. We apply this 
method to stations in the entire London Overground to demonstrate its practicality and observe 
that incidence behavior varies across the network and across times of day, reflecting the different 
headways and reliability. Incidence is much less timetable-dependent on the North London Line 
than on the other lines because of shorter headways and poorer reliability. Where incidence is 
timetable-dependent, passengers reduce their mean scheduled waiting time by over 3 minutes 
compared with random incidence.  
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1. INTRODUCTION  

This paper is concerned with passenger incidence behavior, defined as the act or event of being 
incident to a public transport service with intent to use that service. A lexical convention is 
established here to avoid ambiguity between passenger incidence to public transport services and 
arrival at certain destinations after using public transport services.  

Passenger incidence behavior has been studied primarily for the sake of understanding 
how changes to a public transport service will affect passenger waiting times. It is also of interest 
because it affects the relationship between the departure times of public transport vehicles and 
the passenger loads on those vehicles. It is important to understand passenger incidence 
behaviors so that management interventions will be based on realistic behavioral assumptions. 
As pointed out in one of the seminal investigations on the topic by Bowman and Turnquist (1), 
the effects on passenger waiting time of one particular intervention (i.e. increasing frequency) 
could be overestimated compared with a different type of intervention (i.e. improving reliability), 
depending on what assumptions about incidence behavior are made. 

Prior studies on passenger incidence behavior chose their data samples from stations or 
stops with a single service pattern such that the linking of passengers to scheduled or actual 
services was straightforward. This simplifies the analysis and may suffice the need for academic 
study. But it also heavily limits the stations or stops that can be studied in the transit network. In 
any moderately complex network, many stations may have more than one service patterns. This 
limitation prevents the method from being systematically applied to the entire network and 
therefore limits its use in transit management practice. In environments where passengers at a 
given station have a choice of services, a more sophisticated approach is needed to study 
passenger incidence behavior.  

This paper is concerned with the relationship between the times of passenger incidence 
and published timetables in a rail network with heterogeneous service patterns. It proposes a 
method to study this relationship by integrating disaggregate passenger journey data from 
automatic fare collection (AFC) smartcard systems with published timetables using schedule-
based assignment. The purpose of this paper is two-fold: firstly, to develop a method that 
contributes to the study of passenger incidence behavior across a railway network with 
heterogeneous service patterns and frequencies using published timetables and AFC data; and 
secondly, to apply this method to London Overground to demonstrate its practicality and shed 
light on the incidence behavior of its passengers.  

 

2. LITERATURE 

Previous research has identified a rich set of passenger incidence behaviors, and related them to 
certain aspects of public transport services. Using manually and automatically collected data 
sources, prior research has investigated the diversity of the behavior cross-sectionally and the 
consistency of such behaviors longitudinally over time. It has been found that the randomness of 
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passenger incidence behavior is highly dependent on the service headway and the reliability of 
the departure time of the service to which passengers are incident.  

After briefly introducing the random incidence model, which is often assumed to hold at 
“short” headways (2), the balance of this section reviews six studies of passenger incidence 
behavior which are motivated by understanding the relationships between service headway, 
service reliability, passenger incidence behavior, and passenger waiting time in a more nuanced 
fashion than is embedded in the random incidence assumption. Three of these studies depend on 
manually collected data, two use data from AFC systems, and one studies the issue purely 
theoretically. These studies reveal much about passenger incidence behavior, but all are found to 
be limited in their general applicability by the methods with which they collect information 
about passengers and the services those passengers intend to use. 

Random Passenger Incidence Behavior 

One characterization of passenger incidence behavior is that of random incidence (3). The key 
assumption underlying the random incidence model is that the process of passenger arrivals to 
the public transport service is independent from the vehicle departure process of the service. This 
implies that passengers become incident to the service at a random time, and thus the 
instantaneous rate of passenger arrivals to the service is uniform over a given period of time. Let 
W and H be random variables representing passenger waiting times and service headways, 
respectively. Under the random incidence assumption and the assumption that vehicle capacity is 
not a binding constraint, a classic result of transportation science is that 
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where E[X ] is the probabilistic expectation of some random variable X ; cv(H ) is the coefficient 
of variation of H , a unitless measure of the variability of H defined as 
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and σH is the standard deviation of H (4). The second expression in Equation 1 is particularly 
useful because it expresses the mean passenger waiting time as the sum of two components: the 
waiting time due to the mean headway (i.e. the reciprocal of service frequency) and the waiting 
time due to the variability of the headways (which is one measure of service reliability). When 
the service is perfectly reliable with constant headways, the mean waiting time will be simply 
half the headway. 

More Behaviorally Realistic Incidence Models 

Jolliffe and Hutchinson (5) studied bus passenger incidence in South London suburbs. They 
observed ten bus stops each for one hour per day over eight days, recording the times of 
passenger incidence and actual and scheduled bus departures. They limited their stop selection to 
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those served by only a single bus route with a single service pattern so as to avoid ambiguity 
about which service a passenger was waiting for. The authors found that the actual average 
passenger waiting time was 30% less than predicted by the random incidence model. They also 
found that the empirical distributions of passenger incidence times (by time of day) had peaks 
just before the respective average bus departure times. They hypothesized the existence of three 
classes of passengers: with proportion q, passengers whose time of incidence is causally 
coincident with that of a bus’ departure (i.e. because they saw the approaching bus from their 
home, a shop window, etc.); with proportion p(1 − q), passengers who time their arrivals to 
minimize expected waiting time; with proportion (1 − p)(1 − q), passengers who are randomly 
incident. They estimated found that p was positively correlated with the potential reduction in 
waiting time (compared with arriving randomly) resulting from knowledge of the timetable and 
of service reliability. They also found p to be higher in the peak commuting periods rather than 
in the off-peak, indicating more awareness of the timetable and/or historical reliability by 
commuters.  

Bowman and Turnquist (1) build on the concept of “aware” and “unaware” passengers of 
proportions p and (1−p), respectively and propose a utility-based model to estimate p as well as 
the distribution of incidence times and thus the mean waiting time of “aware” passengers over a 
given headway as a function of the headway and reliability of bus departure times. They 
observed seven different bus stops in Chicago, each served by a single (different) bus route, 
between 6:00 and 8:00am for 5-10 days each. The bus routes had headways of 5-20 minutes and 
a range of reliabilities. The authors found that actual average waiting time was substantially less 
than predicted by the random incidence model. They estimate that p was not statistically 
significantly different from 1.0, which they explain by the fact that all observations were taken 
during peak commuting times. Their model predicts that the longer the headway and the more 
reliable the departures, the more peaked the distribution of incidence times will be and the closer 
that peak will be to the next scheduled departure time. This demonstrates what they refer to as a 
“safety margin” that passengers add to reduce the chance of missing their bus when the service is 
known to be somewhat unreliable. Such a safety margin can also result from unreliability in 
passengers’ journeys to the public transport stop or station. They conclude from their model that 
the random incidence model underestimates the waiting time benefits of improving reliability 
and overestimates the waiting time benefits of increasing service frequency. This is because, as 
reliability increases passengers can better predict departure times and so can time their incidence 
to decrease their waiting time.  

Furth and Muller (2) study the issue in a theoretical context and generally agree with the 
above findings. They are primarily concerned with the use of data from automatic vehicle 
tracking systems to assess the impacts of reliability on passenger incidence behavior and waiting 
times. They propose that passengers will react to unreliability by departing earlier than they 
would with reliable services. Randomly incident “unaware” passengers will experience 
unreliability as a more dispersed distribution of headways and simply allocate additional time to 
their trip plan to improve the chance of arriving at their destination on time. “Aware” passengers, 
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whose incidence is not entirely random, will react by timing their incidence somewhat earlier 
than the scheduled departure time to increase their chance of catching the desired service. The 
authors characterize these reactions as the costs of unreliability. 

Luethi et al. (6) continue with the analysis of manually-collected data on actual passenger 
behavior. They use the language of probability to describe the two classes of passengers. The 
first is “timetable-dependent” passengers whose incidence behavior is affected by awareness 
(possibly gained through their own experience with the service) of the timetable and/or service 
reliability (i.e. the “aware” passengers). The second is “timetable-independent” passengers 
whose incidence behavior is random and so does not reflect any such awareness (whether or not 
they have it). The language of timetable-dependency is adopted for the balance of this paper to 
describe the randomness of passenger incidence behavior regardless of what exactly is driving 
the behavior on the part of the passengers. It is preferred because it expresses the probabilistic 
association between two observed variables, incidence times and scheduled departure times, 
rather than some unobserved passenger state of mind. They observed passenger incidence at 28 
bus, tram, and commuter rail stations in and around Zurich, Switzerland, with headways of 2.33-
30 minutes, during morning and evening peak hours and midday off-peak hours. To avoid 
ambiguity, they limited their station selection to non-terminal non-interchange stations served by 
a single route with constant headways over the period of observation. The authors observed that 
a substantial share of passengers appear to be timetable-dependent for headways as low as five 
minutes. They propose distributions of passenger incidence times over a given headway to be the 
weighted superposition of two distributions: the one for timetable-independent passengers, with 
weight 1−p, distributed uniformly over the headway, and the other for the timetable-dependent 
passengers, with weight p, distributed according to a Johnson SB (JSB) distribution. The authors 
found the fit of their bespoke distribution to the observed data to be statistically significant. This 
distribution is parameterized in terms of the headway, but not the reliability of the service. 
Estimations of their model yield values of p for the different time periods of the day, which they 
find to be highest in the morning peak and lowest in the off-peak, supporting the conclusion that 
the incidence of commuters is more timetable-dependent. 

Csikos and Currie study this phenomenon, first cross-sectionally (7) and then 
longitudinally (8), using data from the AFC system of the heavy rail network in Melbourne, 
Australia. In their first study they use four weeks’ worth of data from 07:30 to 15:00, but limit 
themselves to analyzing seven particular stations out of 209, for a total of 38,000 observations 
over approximately 1,470 hours. The stations are, as in the other studies, selected to avoid 
ambiguity regarding which scheduled service each passenger intended to use. They also obtained 
high level data about the aggregate reliability (6-minute terminal on-time performance) of the 
train lines serving the selected stations. Their findings generally confirm those of the other 
studies. In their second study, they use the same four-week data set, but track individual ticket 
holders over time to study the consistency of behavior. They focus on the 15,000 trips made 
between 06:00 and 10:00 by 1,043 individual passengers who, as morning commuters, are 
expected to exhibit the most consistent behavior patterns. They characterize the passengers by 
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the times of incidence and the “offset” times until the next scheduled departure. They classify 
passengers into four distinct archetypes exhibiting various levels of consistency in these two 
variables, finding roughly equal numbers of passengers in each category. On one end of the 
spectrum are “like clock-work” passengers who exhibit consistent behavior that often minimizes 
their waiting time with respect to the schedule. On the other end, “largely random” passengers 
have very little consistency with respect to waiting time, exhibiting largely timetable-
independent behavior. The authors’ overall conclusion in this work is one of heterogeneity in 
passenger behavior, even under homogeneous conditions (i.e. at the same station at the same 
time of day served by the same line). 

As a brief summary of the six studies, passenger incidence behavior has been 
characterized primarily in terms of how random it appears to be with respect to the timetable and 
to actual vehicle departure times. The appearance of randomness (or lack thereof) has been used 
to indicate the degree to which passengers have and use knowledge of the published timetable 
and of actual departure times. At longer headways, passengers have more to gain by gaining and 
using knowledge of the timetable; their behavior tends to be less random, peaking somewhat 
before the scheduled departure time. Passengers also appear to gain and use knowledge of the 
actual, rather than scheduled, departure times. When departure times are reliable, even if they are 
reliably late (or early) by a particular amount, incidence behavior tends to be less random with 
more passengers being incident shortly before the reliable departure time. When departure times 
are inconsistent (i.e. unreliable), passengers have less to gain from choosing any particular time 
of incidence, so their behavior tends to be more random. 

 

3. METHODOLOGY 

This section proposes a method for studying passenger incidence with respect to scheduled 
departure times using AFC smart card data and schedule-based assignment. The method depends 
on the following concepts, for a given passenger journey. 

Attractive Departure – a departure scheduled from the passenger’s station of incidence that the 
passenger is or would have been willing to board, however “willing” is defined. The use of the 
word “attractive” is in the tradition of Spiess and Florian (9) and Nguyen and Pallottino (10) in 
their work on hyperpaths and optimal strategies. They defined the “attractive set” of lines as the 
set that a passenger is willing to board at a given location. This concept makes explicit the 
possibility that some scheduled departures may not be viable alternatives for a given passenger 
as a function of that passenger’s destination and of the subsequent itinerary of those departures. 
For example, on a line with a trunk and branches, passengers bound for one of the branches may 
experience longer headways than those traveling only on the trunk. 

Scheduled Waiting Time (SWT) – the time the passenger should have to wait according to the 
schedule, given his or her time of incidence and attractive departures. This is defined as the 
length of time between passenger incidence and the next attractive departure. 
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Incidence Headway – the (scheduled) headway applicable to the passenger given his or her time 
of incidence and set of attractive departures. This is defined as the length of time between the 
last attractive departure prior to the time of incidence and the next such departure after the time 
of incidence. 

The above six studies of passenger incidence all selected places and times of observation 
so as to avoid ambiguity with respect to each passenger’s attractive departures. They trivialized 
the measurement of SWT and incidence headways by selecting stations served by only a single 
service pattern and, in some cases, with a constant headway. While this may be sufficient for 
modeling the behavior of certain group of passengers, it is clearly inadequate for understanding 
behavior across an entire network. In many real-world public transport networks, the largest 
numbers of passengers are incident at large stations or terminals that provide access to 
heterogeneous services. 

In the case of the London Overground, this is most problematic on the North London 
Line (NLL). Consider, for example, passengers incident to the NLL at Stratford, one of the 
Overground’s busiest stations. In 2008 peak period timetables, the NLL was running a mostly 
(but not perfectly) regular 15-minute (i.e. 4 trains per hour) service all day from Stratford to the 
end of the NLL at Richmond. This was augmented with occasional irregular services – a 
“shuttle” that ran only as far as Camden Road, and one “special” that ran on the NLL to 
Willesden Junction but then on the West London Line to Clapham Junction. It is not 
immediately obvious which of these services would be attractive to a given passenger at 
Stratford, and thus not clear what incidence headway each passenger experiences. The previous 
literature avoided this issue by avoiding stations such as Stratford altogether. 

The method proposed here is designed as a tool to support the study of passenger 
incidence behavior in general (i.e., including locations with heterogeneous services) and to 
facilitate its application in practical transit management. It does so by estimating SWT and 
incidence headway automatically from the integration of published timetables with disaggregate 
AFC passenger journey data via schedule-based assignment.  

Schedule-based assignment depends on a run-based model of public transport supply, 
which is very similar to the line-based model of supply, but unfolded in the temporal dimension 
Nuzzolo and Crisalli (11). In such a model, each individual scheduled or actual run (or trip) of 
the public transport service is represented individually by its own subgraph. In the subgraph for a 
given run, the nodes represent the arrival, departure, or transit of that run at a specific location at 
a specific time. The links represent travel (or dwelling) on that run between specific points in 
time and space. The combination of the subgraphs of all runs is referred to as the service 
subgraph. Demand is also modeled with temporal as well as spatial dimensions in the demand 
subgraph. Nodes in this subgraph represent centroids of demand in time, according to user 
departure and arrival times, and space, according to the physical network. The access/egress 
subgraph joins the service and demand subgraphs with boarding and alighting links. The union 
of these three subgraphs is referred to as the diachronic graph representation. One benefit of 
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such a representation is that shortest travel time paths can be found via standard shortest-path 
network algorithms such as Bellman-Ford or Dijkstra’s (12). 

We assume in this paper that, for a given origin, destination, and time of incidence, all 
passengers plan to use the single schedule-based path (i.e. set of scheduled services) through the 
network that minimizes total travel time. Additionally, assume that passengers plan itineraries to 
minimize the number of total boardings up to the point where total travel time is not increased 
(e.g. in the trunk-and-branch example, branch-bound passengers won’t board a train bound for 
the wrong branch just to get to the end of the trunk and transfer to the correct branch). These 
assumptions are necessarily a simplification of the true behaviors and perceptions of passengers. 
The degree to which they hold is a function of the attributes of the particular network to which 
they are applied and of the behavioral preferences of the passengers in question. These 
assumptions are sufficient to determine, for each passenger journey, the attractive departures 
prior and subsequent to the time of incidence. SWT and incidence headway can be determined 
once the times of these two departures are known. 

Algorithm and implementation 

For a given passenger journey on a given public transport network, let 

SWT = the scheduled waiting time for the given journey; 

HI = the incidence headway for the given journey; 

I = time of passenger incidence for the given journey; 

LO = location of incidence of the journey in question (i.e. the origin); 

LD = destination of that journey; 

Dprior = time of last attractive departure prior to I ; 

Dnext = time of first attractive departure after I ; 

Hmax = the maximum normal headway (i.e. time between any two successive departures in the 
same direction from the same location) on the network; 

Hmin = the minimum normal headway on the network; 

Path(from, to, time) = a function that finds the shortest weighted travel time path from location 
from to location to with departure time strictly greater than time, with all travel time weights 
equal to 1 except for a transfer or boarding penalty that is positive but less than Hmin; 

Departure(path) = a function that returns the scheduled departure time of path path. 

Table 1 illustrates the algorithm to find HI and SWT for the journey in question under the 
above assumptions. Lines 1 through 3 accomplish the simple task of finding the next attractive 
departure and thus determining the scheduled waiting time (SWT). Lines 4 through 9 search 
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backward in time in increments of Hmin until either a new attractive departure time d is found or 
the time has been moved by more than Hmax. Hmin is the largest step possible such that the 
search will never skip over a possible attractive departure. In theory, the algorithm could use the 
timetable to determine the next departure time in this backward search process rather than 
blindly stepping in increments of Hmin. However, the algorithm is unaware of particular 
departure times since the Path() function encapsulates all knowledge of the timetable itself. This 
particular algorithmic design is motivated primarily by implementation concerns, discussed in 
the following section. 

A 272-line Perl script was written to implement the algorithm for individual Oyster 
passenger journey records. The Path() function encapsulates the complexity of conducting a 
schedule-based assignment for a single passenger trip. It will either find the prior attractive 
departure time Dprior or determine that there is no prior attractive departure in at most Hmax 

/Hmin steps. If it does find Dprior , it uses that result to determine HI . Embedded in this 

function is the algorithm for finding shortest weighted travel time paths in a schedule-based 
network. The travel time weighting are such as to enforce the assumption that passengers 
minimize the number of boardings (without affecting total travel time). A robust implementation 
of Path() function using a modified Dijkstra's algorithm is available in the free/open source 
software library Graphserver (13). Graphserver reads timetables in the widely used General 
Transit Feed Specification (GTFS) (14). This specification was defined by Google to facilitate 
transfer of public transport schedules from operators to Google to power its own web-based 
journey planning software. It has become a de-facto standard for public distribution of public 
transport timetables. Unfortunately, London Overground timetables do not come in GTFS 
format, so another 302-line bespoke Perl (15) script was written to do the transformation. This 
algorithm improves on the previous approaches to finding SWT and HI by considering the 
timetable in the context of each individual journey. The origin, destination, and incidence time of 
each individual journey determine which departures will be attractive.  

 

4. APPLICATION TO THE LONDON OVERGROUND NETWORK 

This section applies the proposed methodology to examine passenger incidence behavior on the 
London Overground network using a large sample of passenger journey data from the Oyster 
smartcard ticketing system.  

Figure 1 shows a schematic map of Transport for London (TfL)’s rail services as of 
Spring 2010, including London Underground, Dockland Light Rail and Overground. The 
Overground network is for the most part circumferential, primarily orbiting London to the North 
and West, with the majority of stations in zones 2 and 3. The Overground is very much part of 
the integrated network of TfL services, with 19 of its stations offering interchanges to London 
Underground or DLR services.  In 2010, the Overground is running 407 scheduled weekday train 
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trips with 27 units of rolling stock (16).  

Services on the Overground are divided into four different service patterns, as described 
in Table 2. The core of this network is the North London Line (NLL) which runs 28 kilometers 
between Stratford in the northeast of London and Richmond in the southwest, connecting to 
every other Overground service and numerous other TfL and National Rail services along the 
way.  It is by far the busiest Overground line, with the most frequent service and an estimated 
58% of all Overground boardings (17). The NLL runs four (end-to-end) trains per hour (tph) 
over most of the day, with some segments receiving six tph during the peak periods. The other 
Overground lines run at lower frequencies of three tph during the peak periods and two to three 
tph during other periods.   

 

Data 

On November 11, 2007, overall management and revenue responsibility for this set of services 
was transferred to TfL from the Silverlink which held the prior National Rail franchise. At that 
time, the network was rebranded as the Overground and became fully Oyster-enabled. Oyster is 
TfL’s automatic fare collection (AFC) smartcard system. London's fare policy and technologies 
requires most Oyster users to validate their cards upon all entries and exits to the system. The 
centralized computer system archives these Oyster entry and exit transactions including their 
location, time stamp and Oyster ID in an easily accessible database. As a result, disaggregate 
Oyster journey data are cheap to gather in large volumes, and provide a prime source of data on 
individual passenger journeys. 

The data analyzed here is a 100% sample of all Oyster journeys between all pairs of London 
Overground stations for the 52 business days from 31 March, 2008 through 10 June, 2008, 
inclusive. Public timetables were obtained for the Overground network. The data set was filtered 
to include only those journeys for which it can be assumed with relative certainty that the 
passenger in question used only Overground services, i.e., this data set does not include journeys 
that interchanged to the Overground but with initial Oyster validations elsewhere in the railway 
system. Nor does it include journeys initially incident to the Overground but interchanging to 
other railway services. Journeys with interchanges to and/or from buses will be included here, 
since the Oyster system effectively separates the recording of bus and rail journeys. Passengers 
transferring from buses to London Overground may exhibit a different incidence behavior since 
they do not have control over the time when the bus arrives at the transfer stops. Their incidences 
at London Overground stations are only a function of the timetable coordination between bus 
and Overground services, if there is any such coordination. In general these journeys may 
demonstrate random incidence behavior. The resulting data set contains nearly 1,670,000 
journeys from 54 stations on 1,442 origin-destination pairs made by over 290,000 passengers. It 
constitutes approximately 53,000 station-hours of observation of passenger incidence to 
Overground services. 
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The methodology described in the previous section was applied to each Oyster journey in the 
data set: the transaction time of the Oyster entry was taken as the time of incidence, and the 
origin and destination of the journey were used along with the timetable to estimate which 
services the journey was incident to. This processing took some number of hours for the entire 
data set, but was fully automated. It results in a large set of observations for which the following 
are measured or estimated: 

• the date and time of incidence, 
• the incidence headway, 
• the scheduled waiting time (SWT), 
• the location (i.e. station) of incidence (i.e. the journey’s origin), 
• the journey’s destination, 
• the Overground line to which the passenger was incident. 

For journeys that require an interchange within the Overground system (of which there 
are relatively few), the above is measured or estimated for only the first incidence event. 

As a point of validation, Figure 2 plots distributions of incidence headway for passengers 
on the Gospel Oak to Barking (GOB) and North London (NLL) lines. The findings are consistent 
with expectations. On the NLL, the mode of all the distributions is 15 minutes, reflecting the 
core service. The distribution is more concentrated during the Inter-Peak period, when there are 
no scheduled “shuttles” or “specials.” The opposite is true on the GOB which runs a regular 20 
minute service in the peak periods but transitions to and from a 30 minute service in the Inter-
Peak period. The AM Peak distribution is somewhat more dispersed than that of the PM Peak 
because it includes a transition from 30 minute headways in the early morning. 

 
Results 

Consistent with the reviewed studies of passenger incidence behavior, the first results of interest 
are distributions of passenger incidence time over a given headway. Figure 3 plots these 
distributions for the London Overground network by line and by time period. In this plot, 
incidence times are normalized by the incidence headway because different passengers 
experience different incidence headways.  

It is clear from Figure 3 that passenger incidence behavior, with respect to published 
timetables, varies spatially and temporally across the Overground network. Passenger incidence 
on the GOB and Watford DC (WAT) lines is much more peaked (i.e. timetable- dependent), 
each with 20 minute headways, than on the NLL, with 7-15 minute headways, during any time 
period. Also, the NLL is acknowledged by Overground management to have the most serious 
reliability problems (18). These variations are consistent with the literature that passenger 
incidence is more timetable-dependent with a more peaked distribution during in longer 
headways and for more reliable services. 

Also consistent with the literature is that, for all lines, the distribution is more peaked in 
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the AM Peak period than in the PM Peak or midday Inter-Peak periods. It appears that 
Overground commuters in the AM Peak period, more likely with knowledge of the timetable and 
the service and more sensitive to time saving, exhibit less random incidence behavior than 
passengers in other time periods despite the shorter headways and less reliable service found in 
the AM peak. The distribution in late night period is also very peaked because of longer 
headways and possibly higher sensitivity to time.  

The peaks of all of the distributions are somewhat before the very end of the headway, 
indicating some type of “safety margin” or waiting time-minimization behavior on the part of 
passengers. Many of the distributions have small spikes at the beginning of the headway, 
indicating possible “late running awareness” among some passengers. While such awareness 
may in fact be found on the Overground, it is also possible that it is the passengers themselves 
who are running late. They may be planning to take a train scheduled to depart at a certain time 
but, because of uncontrollable circumstances or just their own poor planning, arrive at the station 
shortly after that departure time. 

Figure 4 shows the mean waiting time, for each line and time period, under two different 
models of passenger behavior and train operations: random incidence vs. timetable dependent 
incidence. In the first case, it is assumed that all passengers are randomly incident to constant 
headway services, so the mean waiting time is calculated as half the mean incidence headway. In 
the second, no behavioral assumption is made and all trains are assumed to run as per the 
timetable, so the “observed” mean waiting time is calculated as the mean scheduled waiting 
time. Figure 4 thus indicates the effects of the observed incidence behaviors (compared with 
random incidence) on passenger waiting times. 

On the NLL, the relatively slight skew in the incidence distributions translate into 
relatively small impacts on waiting time. In the AM Peak timetable dependence decreases 
waiting time by 7.2% from 6.82 minutes to 6.33 minutes (about 30 seconds). In the Inter-Peak 
and PM Peak periods, the reductions are only 0.2% and 2.2%, respectively. On the GOB, on the 
other hand, the implications of timetable-dependence are substantial. In the AM Peak, the 
waiting time decreases by 29% from 10.5 minutes to 7.4 minutes (3.1 minutes). In the Inter-Peak 
and PM Peak periods, the reductions are still 20.4% and 17.5%, respectively. 

Transit assignment models often make an assumption that no service would be assigned a 
mean passenger waiting time over certain threshold, say, 10 minutes in the London Overground 
case. The results of this section lend support to this assumption. Regular weekday headways on 
the Overground network go as high as 30 minutes, but the observed mean scheduled waiting 
time is above 11 minutes in only two cases (on the WLL during the Inter-Peak and Evening time 
periods) and is never above 12.1 minutes. 

 

5. DISCUSSION 

This paper developed a methodology to relate disaggregate AFC journey data to published 
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timetables for the purpose of studying passenger incidence behavior, and applied this 
methodology to the London Overground. 

The following conclusions are drawn about the methodology developed here. Firstly, it 
can be used to study passenger incidence behavior using large samples of disaggregate journey 
data from AFC systems such as the Oyster smartcard system. Secondly, it can for each passenger 
journey estimate scheduled waiting time and incidence headway under heterogeneous conditions. 
Finally, this methodology is able to efficiently process millions of such data records and can be 
implemented using open standard timetable formats and free software tools.  

As a limitation the proposed method hinges on the schedule-based assignment, for which 
there are unsolved methodological issues such as station congestion or train crowding. The 
London Overgroud is a relatively simple network (i.e., as compared to London Underground) so 
that we wouldn’t be subject to those issues. As the inner workings of schedule-based assignment 
improve, the method of this paper will continue to become more broadly applicable.  

With respect to the London Overground, the following results can be concluded. 
Generally, passenger incidence behavior varies across the network and across times of day, and 
the differences reflect the different headways, reliability of service, and time of day (indicating 
different knowledge of the network and sensitivity to time), in line with the findings in the 
literature to date. Specifically, incidence appears to be much less timetable-dependent on the 
North London Line (NLL) than on the other Overground lines because of shorter headways and 
less reliable service on this line as compared to others. The method and result of the paper also 
provide one service quality measure, scheduled waiting time, for the entire Overground network. 
On the GOB, WAT and WLL lines where incidence behavior is more timetable-dependent, 
passengers reduce their mean scheduled waiting time by over 3 minutes, or up to 30%, during 
daytime hours compared with random incidence behavior. On the NLL, such reductions are 
much smaller, in some cases nearly zero, in both relative and absolute terms.  

The method developed in this paper can support further study of passenger incidence 
behavior in a more systematic way, i.e. the researchers no longer need to select a special subset 
of the stations with only one service pattern. The work of Bowman and Turnquist (1) has been 
influential in shaping the understanding of the relationships between headway, reliability, 
passenger behavior, and waiting time. Their work should be updated using the method of this 
paper to easily analyze large samples of passenger data across heterogeneous networks. The 
London Overground network represents an ideal opportunity to conduct such a study – its 
passengers can clearly be studied via Oyster data, and its trains are tracked by a computerized 
signaling system. After East London Line opened, the network has headways ranging from 5 to 
30 minutes during most hours of the day, providing a good range of variation.  

Another application is to study the impact of real time information. Many strides have 
been made towards informing passengers in real time about the status of public transport 
services. Such information is now often distributed via in-station signs and announcements as 
well as over the internet to passengers’ computers and, more importantly, mobile devices. It is 
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crucial to advance the understanding of passenger incidence to include the effects of real-time 
information. This requires careful thinking and research designs, but should be able to take 
advantage of the methodology developed here, for example by using actual recorded train arrival 
and departure times (rather than published timetables) in the schedule-based assignment. 
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TABLE 1 Algorithm to Find Scheduled Waiting Time and Incidence Headway For A 
Given Passenger Journey 

1:  p := Path(LO , LD , I ) 
2:  Dnext := Departure(p) 
3:  SWT := Dnext − I 
4:  i := I 
5:  d := Dnext 
6:  while d = Dnext or Dnext − i ≤ Hmax do 
7: i := i − Hmin 
8: d := Departure(Path(LO , LD , i)) 
9:  end while 
10:  if d  ≠ Dnext then 
11: Dprior := d 
12: HI = Dnext − Dprior 
13:  else 
14: Dprior := null 
15: HI := null 
16:  end if 
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TABLE 2 London Overground Services 

Service Pattern (Line) Code Primary Terminals Frequency 
(Peak tph) 

North London Line NLL Stratford ⇔ Richmond 4-6 
Gospel Oak to Barking Line GOB Gospel Oak ⇔ Barking 3 
Watford DC Line WAT Watford Junction ⇔ London Euston 3 
West London Line WLL Clapham Junction ⇔ Willesden Junction 2-3 
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FIGURE 1 Transport for London’s rail service map (Spring 2010). 
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FIGURE 2 Distributions of passenger incidence headways by line and time period. 
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FIGURE 3 Distributions of passenger incidence by line and time period. 
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FIGURE 4 Mean scheduled passenger waiting time by line and time period. 
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