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Activity-Based Human Mobility Patterns
Inferred from Mobile Phone Data:

A Case Study of Singapore
Shan Jiang, Joseph Ferreira, Jr., and Marta C. Gonzalez

Abstract—In this study, with Singapore as an example, we demonstrate how we can use mobile phone call detail record (CDR) data,
which contains millions of anonymous users, to extract individual mobility networks comparable to the activity-based approach. Such
an approach is widely used in the transportation planning practice to develop urban micro simulations of individual daily activities and
travel; yet it depends highly on detailed travel survey data to capture individual activity-based behavior. We provide an innovative data
mining framework that synthesizes the state-of-the-art techniques in extracting mobility patterns from raw mobile phone CDR data, and
design a pipeline that can translate the massive and passive mobile phone records to meaningful spatial human mobility patterns
readily interpretable for urban and transportation planning purposes. With growing ubiquitous mobile sensing, and shrinking labor and
fiscal resources in the public sector globally, the method presented in this research can be used as a low-cost alternative for
transportation and planning agencies to understand the human activity patterns in cities, and provide targeted plans for future
sustainable development.

Index Terms—Mobile phone data, Trajectory data mining, Human mobility networks, Mobility motif detection, Urban computing.
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1 INTRODUCTION

TO improve urban mobility, accessibility, and quality of
life, understanding how individuals travel and con-

duct activities has been the major focus of city and trans-
portation planners and geographers [1]–[4]. In the past,
this was accomplished by collecting survey data in small
sample sizes and low frequencies (e.g., planning agencies
of metropolitan areas in the developed countries conduct
1 per cent household travel survey once or twice in a
decade). With the evolution of society and innovation in
technology, cities have become more diverse and complex
than ever before in the increasingly interconnected world.
Today more than half of the global population (54 per
cent in 2014) lives in urban areas, and it is projected that
additional 2.5 billion urban population will be added by
2050 [5]. The conventional methods widely practiced in the
transportation-planning field were developed to suit the
expensively collected small data, and cannot meet current
challenges. It is urgent for urban researchers to look for
new approaches to address urban challenges such as traffic
congestion, environmental pollution and degradation, and
increasing energy consumption and green house emission.
With the rise of the ubiquitous sensing technologies, digital
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human footprints, which are the digital traces that people
leave while interacting with cyber-physical spaces ([6],[7]),
can be recorded in unprecedentedly massive scale with high
frequency and low costs. It brings great opportunity to
change the landscape of urban research to a new horizon
(e.g., [8]–[11]), and requires innovation to link the massive
data with urban theory and thinking to derive new urban
knowledge, called as urban computing or new urban science
[7],[12],[13].

This paper demonstrates the application of big data
analytics that translates ubiquitous mobile phone data into
planner interpretable human mobility patterns, with Sin-
gapore (a city-state) as an example. By developing a data-
mining pipeline, we quantify spatial distributions of travel
patterns by residents in different parts of the city. The
ultimate goal is to help planners efficiently derive urban
knowledge from big data to target specific urban areas for
future infrastructure and service planning improvement.

The rest of the paper is organized as follows. In Section
2, we review the state-of-the-art literature on mining human
mobility patterns from mobile phone data. We then present
the study area and data in Section 3, including call detail
record (CDR), census, and household travel survey data (for
validation purpose). In Section 4, we introduce the data-
mining methods to extract statistically reliable estimates of
individual mobility networks from CDR data. In Section 5,
we present measures to quantify the spatial distribution of
mobility networks in the urban context. Finally, we discuss
the planning implications of the findings for future urban
development in Section 6.
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2 LITERATURE REVIEW

As wireless mobile connectivity has changed the way people
communicate, work, and play, mobile phone data can be
used to derive the spatiotemporal information of anony-
mous phone users’ whereabouts for analysis of their mobil-
ity patterns [14]–[16]. Although such data are often sparse in
space and time, the large volume and long observation pe-
riod of mobile phone data can be used to infer human foot-
prints in unprecedented scale [17]–[19]. Blondel et al. [20]
reviews broadly recent progress made by studies on per-
sonal mobility, geographical partitioning, urban planning,
development and security and privacy issues. Calabrese et
al. [21] offers a focused survey on ideas and techniques that
apply mobile phone data for urban sensing. In this study,
we focus on the use of mobile phone data to understand
human mobility. Previous work in this aspect illustrates a
pattern of preferential returns to previously visited locations
and explorations of new places as a general and universal
feature [18], [22]–[24]. Based on this feature, it is possible to
estimate meaningful human activity locations using mobile
phone data. CDRs are not as structured as traditional travel
survey data which contains location and time information
for meaningful activity destinations, or as precise as GPS
data which provides higher frequency and accuracy [25].
However, as a byproduct for billing purposes carried out
routinely by mobile service carriers, CDR data can be ob-
tained at a much lower cost and on a greater scale. CDRs can
present spatiotemporal information of mobile phone users’
movements at cellular-tower or much finer-grained level,
depending on the location positioning technology employed
by service carriers. In the following subsections, we review
in detail on previous studies that use CDR data to derive
human mobility in cities.

2.1 Trip-based Analysis
Wang et al. [26] develop a method to generate tower-based
transient origin-destination (OD) matrices for different time
periods and covert them to node-to-node transient ODs in
the road network for Boston and San Francisco. Following
a similar approach, Iqbal et al. [27] use CDR data collected
in Dhaka, Bangladesh over a month, combined with traffic
counts data, to estimate node-to-node transient ODs. While
this method provides a way to convert CDR data to ODs
that are important for transportation planning purpose, it
resembles a trip-based approach that mimics trip segments
of travel based on the appearance of people in space and
time. However, it can be problematic when the CDR data are
in low spatial resolution (e.g., spacing between cell towers is
wide, more than a few kilometers) but road networks within
the tower coverage area are dense, assigning transient ODs
to the road network can generate biased detoured routes in
local roads.

To address this issue, parsing trajectories into stay loca-
tions where people stay to conduct activities is important.
Due to the wide adoption of smartphones and location-
based mobile applications, a vast body of computer science
literature has emerged to advance techniques to mine tra-
jectory data [28]. The goal is to find suitable algorithms
to extract meaningful stay locations for further analysis to
reduce noise in the big data. By applying algorithms to

parse CDR trajectories into stay locations, Alexander et al.
[29] present methods to estimate OD trip-tables by time-
of-day (AM, midday, PM, and rest of day) and by trip
purpose, such as home-based work (HBW) trips, home-
based other (HBO) trips, non-home-based (NHB) trips,
from fine-grained triangulated mobile phone traces for 2
million users in 2 months for Boston. By comparing the
trip estimations with the Census Transportation Planning
Products (CTPP) and household travel survey data in the
same region, Alexander et al. identify a strong correlation
among the ODs of the three sources at the metropolitan
level, showing effectiveness of using CDR data to derive
OD flows at aggregated geographical level.

2.2 Activity-based Analysis
Human daily travels are organized based on activities and
anchor locations that are important in their daily life. From
this point of view, the activity-based model—the state-
of-the-art approach in transportation planning—considers
travel demand as the derived needs to conduct activities
[30]–[33]. Therefore, developing methods to translate big
urban data in an activity-based approach is relevant and
important for urban and transportation modeling. By adopt-
ing the concept of “motifs” from complex network theory
[34], Schneider et al. [35] examine daily mobility networks
from CDR data for Paris over a period of 6 months and
from travel survey data for Paris and Chicago for one or
two days. Using a simple method of extracting meaning-
ful activity locations, they maintain towers with frequent
visits above a certain threshold as potential stay locations.
Schneider et al. find that by using only 17 unique motifs, 90
percent of the travel patterns observed in both surveys along
with phone datasets can be retrieved for the metropolitan
areas. Through more careful treatment of stay locations on
fine-grained triangulated mobile phone CDR data for one
million users in Boston, Jiang et al. [24] apply a similar
approach to extract human daily motifs. They report similar
findings and propose a probabilistic inference method to use
motifs, time of day, activity sequence, and land use related
information to further infer activity types and assign traffic
to transportation networks based on travel generated in this
approach. Widhalm et al. [36] further implement the idea
of inferring activity types (such as home, work, shopping,
leisure, and others) for extracted stay locations from mobile
phone data and land use data for Boston and Vienna.

One common weaknesses of these studies is missing
sample expansion methods to expand modeled results from
mobile phone users to population at the metropolitan level.
This is particularly relevant. On the one hand, social de-
mographic characteristics are not available for anonymous
phone users. On the other hand, as previous studies illus-
trate that for urban and transportation planning purposes,
CDR sampling methods are as important as survey sam-
pling methods.

2.3 System-based Approach
Toole and Colak et al. ([37] and [38]) synthesize the methods
of processing CDR data to estimate travel demand, and
propose an innovative framework to derive estimated traffic
on road networks and understand road usage patterns from
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raw CDR data for cities on different continents. These efforts
have greatly enhanced our knowledge on how to use CDR
data to understand human mobility to produce OD tables
at city-scale at a low cost and to estimate travel times
on the road networks. Lorenzo et al. [39] also presents a
system-based approach. They develop an intelligent tool,
AllAboard, that analyzes cellphone data to help city author-
ities in visually exploring urban mobility and optimizing
public transport.

However, due to the complexity of implementation,
the predominant analysis approach continues to be trip-
based, rather than tour-based or activity-based. Motivated
by the above literature, we use Singapore as a case study
to develop a data processing pipeline to extract human
mobility patterns from CDR data to understand travel be-
havior and advance applications of big data for urban and
transportation planning purposes.

3 STUDY AREA AND DATA

We use Singapore as a case study in this paper. Singapore
is a city-state with a range of 43 kilometer in the west-
east direction and 23 kilometer in the north-south direction.
It has a population of 5.18 million in 2010, of which 3.79
million are residents and 1.39 million non-residents. It has
one of the world’s highest mobile penetration rates—above
150% (using total population as base).

3.1 Call Detail Record Data
We use 2 consecutive weeks (i.e., 14 days) of mobile phone
CDR data (in March and April of 2011) from one carrier in
Singapore to examine the mobility patterns of anonymous
individuals in the metropolitan area. The data set of the
studied period contains 3.17 million anonymous mobile
phone users, and a total of 722.92 million records of phone
usages. There are more than 5 thousand cellular towers in
Singapore, with a spacing gap of around 50-meters in the
dense downtown area to a few kilometers in the suburban
region. In general, the cellular tower network has a very
high density covering the whole metropolitan area (see
Fig.1).

3.2 Census Data and Geographic Zones
Despite the high penetration rate, data obtained from one
mobile carrier for this study only count for 63% of the
total population in Singapore. To get statistically meaningful
measures from the CDR data for the whole population, we
need to expand the sampled mobile phone users. Therefore
census data with spatial information is useful. Publicly
available census in Singapore includes population by differ-
ent demographic groups at the planning zone level (named
as Development Guide Planning zone, DGP). We assume
that an individual older than 10 year-old may possess a
mobile phone, and expand users in the CDR data to the
population of Singapore residents in this age-category at the
DGP level.

DGP is a spatial unit of planning area used by the
Singapore urban planning agency—the Urban Redevelop-
ment Authority (URA). There are 56 DGPs in Singapore
with sizes ranging from 0.85 sq km, to 66 sq km. 35 of

these 56 DGPs have residential population residing in them,
and the rest are either industrial zones or reserved land
for other purposes. These DGP zones are further subdi-
vided into finer-grained spatial areas, the transportation
analysis zones, which are called MTZs, used for transporta-
tion planning purposes by the Singapore transportation-
planning agency—the Land and Transportation Authority
(LTA). However, population data at this high spatial reso-
lution (i.e., MTZ) level is not publicly available. A total of
around 1100 MTZs cover the whole metropolitan area, and
their sizes range from 0.015 sq km to 43 sq km.

Fig 1 exhibits the population density at the DGP level,
and illustrates the spatial relationship of DGP, MTZ, and
cellular towers. We expand the phone users at the tower
level to match the total population at the DGP level, and
estimate population at the MTZ level. We discuss the ex-
pansion details in Section 4.
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Fig. 1. Singapore Development Guide Planning (DGP) zones, trans-
portation analysis zones (MTZ), and cellular towers.

3.3 Survey Data
We use the Singapore 2008 Household Interview Travel
Survey (HITS) data collected by the Singapore LTA to
validate results estimated from the CDR data. Compared
with CDRs, travel survey data are often in a small sample-
sizes and come with expansion factors for the purpose
of expanding survey samples to total population. Survey
expansion factors are derived from sampling design based
on individual demographics (e.g., age, gender, etc.). Survey
data includes detailed information on household and indi-
vidual social demographics and travel records self-reported
by survey respondents. The Singapore 2008 HITS includes
34,000 individuals and their 1-day travel information (e.g.,
trip arrival and departure time, trip purpose, location of
trip origins and destinations, etc.). In this study, we use the
travel time and location information and expansion factors
to expand survey samples to the population, and compare
results with estimates from the CDR data.

4 METHODS

To understand human mobility patterns at the metropolitan
level for urban and transportation planning purposes, in
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this study, we synthesize methods in previous research [24],
[29], [35], and develop a pipeline of (1) parsing the CDR
data to extract stay locations of phone users; (2) detecting
phone users’ home location; (3) filtering users and select sta-
tistically representative samples from the parsed CDR data;
(4) identifying the daily mobility networks of the phone
users; (5) deriving expansion factors for the filtered phone
observations by combining processed phone data and the
census data; expanding cellphone-users, trips, and daily
motifs; and aggregating them from tower to transportation
analysis zones. (see Fig.2)

Fig. 2. Workflow of population estimation and mobility pattern extraction
from CDR data.

4.1 Parsing Trajectory to Extract Stays

Parsing the mobile phone CDR data to extract anchor
points (i.e., stay locations) of individual daily travel and
to differentiate stops from pass-by points is the first stage
before identifying individual mobility networks. Zheng [28]
presents a comprehensive overview on trajectory data min-
ing. Inspired by the algorithm introduced by Hariharan and
Toyama [40] which was tested previously using triangulated
mobile phone data [24], [29], we modified the algorithm for
the tower-based CDR trajectories in this study. Other algo-
rithms on stay detection can also be found in the literature
[41], [42]. While detecting stays, we aim to achieve three
goals: (1) eliminating two types of noises in the raw CDR
data—outliers and signal jumps between towers of users’
geospatial location records—to identify their true location,
(2) clustering points that are spatially close (within the
threshold of ∆d) and temporally adjacent (in the sequence)
into a single location, with a collapsed time duration in-
ferred from this clustering as the stay, and (3) agglomerating
points that are spatially close but not necessarily adjacent in
temporal dimension into one unique location.

• Considering a user i’s location recorded in the CDR
in sequence as Di = (di(1), di(2), ..., di(ni)), by
selecting a roaming distance ∆d1 (e.g., 300 meters)
as the threshold, we heuristically cluster spatially
close locations within ∆d1 for each point into their

medoid (the point in a set that minimizes the max-
imum distance to every other point in the set) and
form a new sequence D′i = (d′i(1), d′i(2), ..., d′i(n

′
i),

where di(k) = (tower(k), t(k)) for k = 1, ..., ni;
tower(k) and t(k) are the tower id, and time stamp
of the user i’s k-th observation in the raw CDR data.
d′i(g) = (cellid(g), t(g), dur(g)) includes the tower
id, starting time of the first observed tower in the
cluster, and the duration that the user stayed in the
cluster.

• Then further cluster the points in the trajectory
sequence set D′i based on the distance threshold
of ∆d2 (e.g., 300 meters), and keep the points
whose duration are greater than the time thresh-
old ∆t (e.g., 10 minutes) as the final stay points
Si = (si(1), si(2), ..., si(mi)), where si(m) =
(cellid(m), t(m), dur(m)). By doing so, we eliminate
outliers in the clustering process. Fig3 illustrates the
input and output of the process.

Fig. 3. Stay point detection.

4.2 Detecting Home

It is important to label the mobile phone users’ home loca-
tion (tower) for several reasons. First, when we later expand
the users to population, we need to combine CDR data with
census data, which only record population by residential
location. Second, in order to form mobility networks we
make an assumption that for each day, an individual always
departures from home and returns home by the end of
a day. Although in the real world there are exceptions,
this assumption simplifies the way we extract mobility
networks from CDR data and allows us to estimate trips
in a justifiable way. Since CDR data passively records phone
users’ spatiotemporal information, it does not always give
complete information of individuals’ whereabouts. Third,
for planning purpose, it is important to understand indi-
viduals’ mobility patterns from their home, as the built
environment and land use of individual residence influence
their travel and activities [43], [44]. Being able to identify
human mobility patterns associated with urban space will
enable planners to target future urban development and
improvement.

A phone user’s home tower is identified as the most
frequently communicated tower during nights of weekdays,
and weekends over the study period (i.e., 14 days in this
study). The definition of ’night’ is a parameter that can be
adjusted in different urban contexts. We define a night from
7 pm to 7 am in this study based on the local context in
Singapore.
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After processing the CDR data, we obtained 2.88 mil-
lion users whose home towers can be observed in the 2-
week data. It counts for 91% of all phone users contained
in the data for the study period, and around 56% of the
total population. By properly expanding these users, we
can disaggregate population from aggregated planning area
level (DGP), to the neighborhood transportation analysis
zone (MTZ) level with high spatial resolution. We discuss
the population expansion method and results in Section 4.5.

4.3 Filtering Phone User-Day Samples

Compared with traditional survey data, the advantage of
the CDR data is the longer observation period and larger
sample size, and its disadvantage is the sparseness of the
data. CDRs may not always reveal individual travel as travel
dairies or GPS tracking applications do. Therefore it is im-
portant to sample user-days when the mobile device is used
frequently enough. Previous research [35] has found that if
a cellphone user’s phone communication activities exceed a
certain threshold, the CDR data can be treated equivalently
as survey data, and generate statistically consistent and
comparable results in terms of individual mobility patterns.
In this study, we adopt similar rules for the sample filtering,
as follows.

• Only keep a user-day observation, if in a day (24
hours) the user has phone records in at least 8 distinct
time-slots of the 48 half-hour time-slots.

• Separate observations on weekdays from those on
weekends, as mobility patterns can be different. Here
we only focus on records on weekdays.

After the filtering, we keep 6.28 million user-days for
1.55 million users in the 10 weekday days of the two
weeks. The total number of users after filtering is 49% of
all users in the raw data. We plot the frequency distribution
of user-days per user after the filtering in Fig4 (a). We
can see that, for these filtered 1.55 million users, 22% of
them only have 1-day observation, 11% 4 days, 7% 7 days,
and 3% 10 days. On average, each user has 4 weekday
observations. We then aggregate the user information to the
tower level. Fig4 (b) shows the density distribution of the
standard deviation (shown separately in Fig4(c)) and the
mean (shown separately in Fig4(d)) of the users’ number of
observation days at the tower level based on users’ home
tower. We plot the spatial distribution of the mean of the
users’ number of observation days at the tower level in Fig
4 (e). We can see that in downtown, airport, and the west-
end of the coastal area, the number of user-day per user
is relatively low. Presumably, tourists and foreigners live in
these areas. While in residential areas in the suburbs, such as
Ang Mo Kio, Bukit Batok, Jurong West, Punggol, Sengkang,
Tampines, Yishun, and Woodlands, the average numbers of
user-days are relatively higher than average.

4.4 Identifying Activity-Based Mobility Patterns

4.4.1 Daily Mobility Motifs
Human daily mobility can be highly structural—organized
by a few activities essential to life. It is important to
identify individual mobility networks (i.e., daily motifs).
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Fig. 4. User-day statistics after sample filtering: (a) frequency distribution
of total number of days for each user; (b) density distribution of the
standard deviation (shown in c) and mean (shown in d) of the users’
number of observation days at the tower level; (e) spatial distribution of
the mean of the users’ number of observation days at the tower level.

The most contemporary travel demand models developed
and employed by regional transportation agencies in the
developed countries are activity-based [33]. Fig 5 (1a-1f)
shows some examples of individual activity pattern (daily
tours) commonly observed in travel surveys. Represented
in the transportation modeling language, they are: (1a) 1
home-based work tour, (1b) 1 home-based work tour with
a third destination, and work as the primary destination,
(1c) 1 home-based work tour with 1 home-based sub-tour,
(1d) 2 home-based work tours with a third destination, (1e)
1 home-based work tour with 1 work-based sub-tour, and
(1f) 1 home-based work tour with 1 escort tour (to drop
off and pick up somebody). These activity patterns can go
into numerous combinations. However, if we use a more
abstract diagram to represent these activity-chains, they can
be reduced into daily motifs captured by the massive and
passive mobile phone data. Fig 5 (2a-2f) represents (1a-1f)
in a highly abstract format, called daily motifs. They have
been proposed and tested as measures of human mobility
in previous studies for Paris, Chicago and Boston [24],
[35], and have been found comparable to travel surveys in
aggregated statistics.
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Fig. 5. Examples of daily mobility networks (1a-1f) in daily travel surveys,
and (2a-2f) in abstract.

Here, we present the algorithm to identify the daily mo-
tifs for the filtered phone users whose mobile phone records
in a sampled day are frequent enough (explained in Section
4.3) for representing their daily activity pattern. Formally
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speaking, a motif is an equivalence class of directed graphs.
A directed graph is an ordered pair D = (V,A) where V is
the set of nodes (or vertices), and A is a set of ordered pairs
of nodes (i.e., directed edges). Without loss of generality,
when V is a set of n elements, we take V to be the set
Vn , {1, 2, . . . , n}. Let Dn be the set of directed graphs with
n nodes, i.e., Dn , {Dn | Dn = (Vn, A), A ⊆ Vn × Vn}. The
motifs [Dn] ignore the labeling of the nodes.

With the extracted stay locations, including observed
and potential stay locations (described in Section 4.1) and
users’ identified home location (discussed in Section 4.2), we
will be able to identify the mobility networks as illustrated
in Fig 5 (2a-2f). We find that not all users necessarily have
the first stay-point (or potential stay-point) starting from
their home tower, or the last stay point (or potential stay-
point) ending at their home tower every day in the filtered
trajectory, due to the passive nature of the CDR data. In
order to form a complete tour for each user, we make the
assumption that, if a user travels in a day, s/he starts the
first trip from, and ends the last trip at home.

• From the extracted stay points and filtered day(s), we
obtain a sequence of destinations on the sampled day
k, for a given anonymous user i, denoted by Sik =
(sik(1), sik(2), ..., sik(mik)).

• User i’s home hi was detected in previous step.
• Always check if for day k, user i’s first and last

activity locations are hi. If not, we add home hi to
the stay point sequence, which forms a new sequence
S′ik = (s′ik(1), s′ik(2), ..., s′ik(m′ik)).

• Count total number of trips (which are journeys from
origins to destinations), lik, for user i on day k.

• Count total number of distinct nodes, nik, from tra-
jectory S′ik.

• Form a network (directed graph)Dik with nik nodes:
using an nik × nik matrix Mik, we represent the
mobility network for user i on day k. If there is at
least one trip from node o to node d, Mik(o, d) = 1;
otherwise, Mik(o, d) = 0.

• Obtain motif [Dik], i.e., the equivalence class of Dik.

4.4.2 Mobile Phone Usage Patterns and Mobility Patterns
After filtering the user-day samples, it is important to verify
that users with more phone usage events do not have
systematic differences in travel behavior. To this end, we
examine the relationship between the filtered users’ cell
phone usage patterns and their daily travel patterns. Fig
6 (a) presents the frequency distribution of total number of
phone usage observations for all the 1.55 million filtered
users in the 10 weekday days. The 5th, 20th, 40th, 60th,
80th, and 95th percentiles of the total phone usages during
this period for all the filtered users are 140, 262, 420, 650,
1108, and 2558, respectively. Based on this information, we
group the filtered users into 5 groups, with total phone
usage observations of [100, 200), [200, 400), [400, 600), [600,
1000), and [1000, 2500). We examine the filtered users’ daily
travel patterns, including daily number of trips, and daily
number of unique destinations for each of the groups. Fig
6 (b) shows that for these 5 groups of filtered users, the
frequency distributions of their daily number of trips are
quite similar across the groups. Similarly, Fig 6 (c) shows

that the frequency distributions of daily number of unique
locations visited by the filtered users of various groups also
follow similar patterns.

(a)

(b) (c)

Fig. 6. Frequency distribution of (a) total no. of phone usages for filtered
users, (b) weekday daily no. of trips for filtered user-day samples by user
group, and (c) weekday daily no. of unique locations for filtered user-day
samples by user group.

It indicates that phone users with different phone usage
patterns do not have systematic differences in travel behav-
ior. This verification is critical to the validity of using active
mobile phone user-day samples to further examine human
daily mobility patterns, and use these samples to expand to
the population.

4.5 Expanding Mobile Phone Sample to Population
To derive estimates of trips and daily mobility patterns
(motifs), and robust spatial patterns for the population in
the metropolitan area, and informative for city planning
and transportation planning, we need to expand the mobile
phone samples (including users and user-days) properly.
In this section, we describe the process in generating the
expansion factors for the CDR data.

4.5.1 Expansion Factors
Two types of expansion factors are generated, including (1)
user expansion factors, and (2) user-day expansion factors.
Fig 7 presents the entity relationship diagram useful in gen-
erating these expansion factors. After detecting the mobile
phone users’ home towers, we store the users’ information
in a database table “user”, with their anonymized id num-
ber that is unique to each user. Home towers of 2.88 million
users were detected. We store the mobility patterns of the
filtered users who had frequent phone communication ac-
tivities (in at least 8 half-hour time slots in a day) in the
table “user day motif”, in which each row represents a
unique user-day observation, with user id, motif id, and
number of trip information. 6.28 million user-day records
are included in this table for 1.55 million unique users whose
home tower information can be found in the “user” table.
The rest of the 1.33 million users, who are in the “user” table
but not in the “user day motif” table, are those whose
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phone communication activities are not enough to meet the
filtering threshold.

As exhibited in Fig 7, the “user” table is linked to the
“cell tower” table through the “cell tower id” of the users’
“home tower id”. By the spatial operation of joining cell
towers to the MTZ zones that they fall into, each cell tower
is associated with an MTZ. For those towers, which are
not contained in any MTZs, the nearest MTZ within a 200-
meter distance is used to allow for the measurement error
in spatial representation of zone and tower location. The
“cell tower’ table is linked to the “mtz taz” table (through
“mtz id”), which is then linked to the “planning area”
table (through “dgp id”), including 56 DGP zones of which
35 contain residential population.

Fig. 7. Entity relation diagram of the processed mobile phone user,
user-day mobility data from their CDRs, and geographic spatial units:
towers, transportation analysis zones (MTZs), planning area (DGPs)
with census population.

Two sets of expansion factors are considered. One in-
cludes the user expansion factors calculated for the 2.88
million users with identifiable home location; the other
includes user expansion factors for the 1.55 million users
and the user-day expansion factors for the 6.28 million
user-day observations (from the 1.55 million users). For the
former case, the user expansion factor for every user with
home tower in the same planning area is the same. For the
latter case, as each user may have observations for more
than one day, we normalize the expansion factor by the total
number of observation-days for this user. We define the user
expansion factor βi for user i, and the user-day expansion
factor θik for user i on day k as follows.

• βi = Pg/
∑Qg

1 Uhg , for user i with a home tower hg .
Where Pg is the population (above 10 years old) in
DGP zone g reported in the census; Uhg is the total
number of users whose home tower is at hg in DGP
zone g, and Qg is the total number of towers in zone
g;

• θik = βi/Ki, where Ki is the total number of days
when the user i’s motifs are identified.

In Fig 8 (a) we present the spatial distribution of the
user expansion factors at the tower level across Singapore,
color-coded by different brackets of the expansion factors
based on the ranging of the standard deviation measure.
We can see that the user expansion factors are higher in
the north part of Singapore, meaning that phone user to

the population ratio in this region is lower than the city
average. However, when looking at Fig 4 we see that for
an average phone user in this north region, she or he tends
to have relatively more days of observations. In the central
region, the user-expansion factors are lower, meaning that
the phone user to population ratio in this region is higher
than the city average. Fig 8 (b) and (c) present the frequency
distribution of user expansion factors (for the 1.55 million
phone users) and user-day expansion factors (for the 6.28
million user-day observations), respectively.

Fig. 8. (a) Spatial distribution of user-expansion factors at the tower level,
and frequency distribution of (b) user-expansion factors,and (c) user-day
expansion factors.

4.5.2 Population Estimation in High Resolution
With the estimated expansion factor for each phone user in
the study, we can then estimate population with high spatial
resolution that are not available in the census statistics but
are useful for the transportation and urban planning. Fig
9 (a) presents the estimated residential population density
(for people older than 10 years old) in Singapore at the
MTZ level (with more than 1100 zones) by using the CDR
data. To compare the population estimates from users who
only have home location detected (denoted as Estimation
1), with the estimates from the filtered user whose mobility
patterns can be identified (denoted as Estimation 2), we
plot the two population estimates at the tower level, and
at the MTZ level in Fig 9 (b) and (c) respectively. We can see
that with proper treatment of expansion, by only using the
frequent user-observations (although a smaller sample size),
it can provide comparable estimates to those by using all
user samples whose home location can be detected without
filtering (based on their phone usage frequency). The benefit
of using the filtered phone users (based on their phone com-
munication frequency) is that we can mine richer mobility
patterns from their records, and treat these observations
as travel survey in a much larger scale, to inform sound
city planning and make wiser decisions on public policies
related to urban and transportation development.
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Fig. 9. (a) Residential population density estimates at the MTZ level; (b)
comparison of population estimation from the sample with all users with
detected home (a.k.a. Estimation 1), and filtered users with complete
motility networks (a.k.a., Estimation 2) at the tower level, and (c) at the
MTZ level.

4.5.3 Aggregating Daily Trips and Mobility Patterns

After applying the expansion factors to the user-day ob-
servations, we aggregate the daily trips and mobility pat-
terns for Singapore residents (above 10 years old) at the
metropolitan level, and infer human mobility patterns for
Singapore. Fig 10 presents the inferred frequency distribu-
tion of (a) daily mobility patterns, (b) the number of daily
trips, and (c) the number of unique daily destinations that
the mobile phone users visited during weekday. Fig 10 (a)
also compares the results obtained from CDR data with the
estimates from the HITS travel survey data. From the mobile
phone data, we find that on an average weekday, 13.5%
Singapore residents stayed at home, 33% visited 2 unique
places, 30% 3 places, 14% 4 places, 5.5% 5 places, 2.1% 6
places, and less than 2% visited more than 6 places. These
patterns cover around 90% of survey respondents’ travel.

When comparing the estimates of daily motifs with
survey data, in Fig 10 (a) we find that the motif with 2-
nodes reported in the survey is dominant (55%), and much
higher than those observed from the CDR data. We find
the following reasons for explanation. (1) The HITS survey
only asks for motorized travel, and excludes non-motorized
travel. (2) People tend to under-report their secondary des-
tinations to the primary destinations in the survey than the
mobile phone could detect. If we refer to travel survey data
in other metropolitan areas such as Chicago, Boston, and
Paris, we found that the 2-node travel patterns are always
less than 40% [24][35].

A separate study [45] that uses smartphone-based sur-
vey to track and record individual users’ travels and activ-
ities in Singapore conducted by the Future Mobility Survey
(FMS) project confirms similar observation. Even though
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Fig. 10. (a) Daily motifs derived from CDR and survey data, and (b)
frequency distribution of daily trips, and (c) activity destinations from
CDR data.

the FMS project only has 387 individuals who answered
both the paper-based survey and validated their travel in
the smartphone app based tracking survey, it is observed
that people significantly under report their travel in the
paper-based survey. 76.3% people in the paper-based survey
reported 2 trips, while only 20% were detected and verified
that they had 2 trips in the smartphone based survey. There-
fore, the mobility patterns inferred from the phone CDR
data here can be more reasonable than the travel survey
data. This difference will have a significant impact on policy
implications for urban and transportation planning.

5 SPATIAL PATTERNS OF ACTIVITY-BASED HU-
MAN MOBILITY

Understanding the spatial patterns of human mobility ag-
gregated at their home location is especially important to
help planners understand how their neighborhood and the
built environment may influence their travel. A vast body
of literature in planning [46] has tried to test this theory
empirically using traditional travel survey data. With the
method presented in this study, we can derive new evi-
dences on people’s travel behavior in a large scale, and
facilitate planners and policy makers to identify areas with
great potential for improvement, such as provision of trans-
portation alternatives to reduce motorized travel, improve-
ment of community facilities to targeted population. In this
section, we present analytical indicators to measure the
spatial distribution of mobility patterns from the perspective
of individuals’ home location.

5.1 The 2-node Home-based Tour

Fig 11-b presents the population density of residents with
only 2-node motifs. These residents had one additional
place besides ’home’ that is important in their daily life.
It could be workplace for workers, school for students, or a
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social/recreational place for the non-workers/non-students.
Since they are the majority of the population (around 33%,
shown in Fig 10-a), the spatial distribution of the group with
2-node motifs is very similar to the spatial distribution of
total population (shown in Fig 9-a). We use the concept of
Location Quotient, to compare an area’s distribution of resi-
dents by mobility type to the distribution of a reference area
(i.e. the Singapore metropolitan area). To be more specific,
for example, to measure how residents with daily motif m
are concentrated in a particular neighborhood (at the MTZ
level) compared to the population in the metropolitan area,
we use the Location Quotient (LQm), detailed as follows.

• LQm = (em/e)/(Em/E), where em is the residential
population with daily motif type m (Fig 9-a) in a
zone (e.g., MTZ); e is the total residential population
in zone;Em is residential population with daily motif
type m in the metropolitan area (e.g., Singapore); E
is the total residential population in the metropolitan
area.

From Fig 11 (a) and (c), we can see that several sub-
urban neighborhoods have a unique identity with a greater
than metropolitan average share of residents whose daily
mobility networks are of 2 nodes. These areas include
zones in the West region, such as Jurong East, Jurong
West, Clementi, Bukit Batok, Choa Chu Kang; zones in the
North-West region, including Woodlands, Sembawang, and
Yishun; zones in the North-East region such as An Mo Kio,
Sengkang, and Punggol; and zones in Bedok of the East
region (see Fig 11-a for zone name references). People who
only visit 1 other place besides their home (for work/school
as the majority) are overly concentrated in these zones,
which are new towns and far away from the city cen-
ter. It would be potentially important to provide public
transportation services with high capacity and frequency
during the peak-hour to relieve congestion for residents in
these neighborhoods. Meantime it is also important to plan
more localized economic and community services in these
neighborhoods to help reduce long distance travel for the
needs of additional activities.

5.2 The 1-node, 3-node and 4-node Motifs

As the 2-node home-based tour pattern (see Fig 10) is
the majority of mobility patterns in the metropolitan area,
we also use it as a reference, and compare other types
of mobility patterns to the spatial distribution of the 2-
node pattern, and we call it the Relative Location Quo-
tient, RLQd = LQd/LQ2, for motif type d. Fig 11 (d-f)
highlights MTZs that have high concentration of stay-at-
home residents, and residents with 3-node, and 4-node in
their daily activity motifs, respectively. Fig 11 (e) and (f)
collapse the spatial distribution of the different motifs with
3-node, and with 4-node into one map. Fig 11 only shows
areas with population (for the corresponding type of motif)
greater than 500 persons, and population density (for the
corresponding type of motif) higher than 1500 person per sq
km. We also only show areas that their Location Quotient,
and Relative Location Quotient (to 2-node) exceed 1.05 (to
allow for 5% error), to illustrate the highly concentrated
areas with the corresponding types of daily motifs for

residents living in the zones. Fig 11 (a) overlays the highly
concentrated zones of residents with 2-node, 3-node, and 4-
node in different colors, and illustrates the overall patterns
of mobility of Singapore residents. We can see that weekday
stay-at-home residents are highly concentrated in zones in
the Central region and along the east coast, and in zones of
the North-west region, and some areas in the West region. In
the Central region, it contains more mature neighborhoods
where senior residents have higher probability to reside.

Fig12 zooms into the neighborhoods containing highly
concentrated residents with 3- and 4-node motifs demon-
strated in Fig11(a). We can see that these area include
suburbs that are connected by light rail (grey lines in the
figure) to the major transit lines, such as Bukit Panjang,
and Bukit Bakok in the West region (Fig12-a), and Sengkang
in the North-East region (Fig12-b), where accessibility are
relatively low. It also includes areas that are currently not
served by the MRT, such as Lentor, Mayflower, Bright Hill
and Upper Thomason, in Ang Mo Kio and Bishan (Fig12-c),
and neighborhoods in the north part of Bedok and Tempines
(Fig12-d). Neighborhoods that have higher concentration
of residents of 3- and 4-node motifs usually have more
trips. By providing more convenient public transportation
serveries, improved level of services (e.g. for the light rail),
and alternative transportation modes can help reduce total
travel. It’s worth noting that in some areas, the Singapore
LTA has provided plans to improve transit network (and
some of them are under construction as depicted in grey
dashed line in Fig12-c and d).

6 CONCLUSIONS

Sustainable urban and transportation planning depends
greatly on understanding human mobility patterns in the
metropolitan area. In this paper, we present an integrated
pipeline that can parse, filter, and expand the raw passive
and massive mobile phone CDR data to extract human
mobility patterns for millions of anonymous residents in a
metropolitan area, and translate the knowledge gained into
planning-interpretable languages. Traditional travel survey
data, although rich in detail, can be misleading. It may gen-
erate inaccurate mobility patterns due to incomplete self-
reports, lead to biased travel demand models—especially
for non-work trip purposes—and result in inefficient re-
source allocation and ill-informed plans. Big Data, if prop-
erly treated, can provide further insights beyond travel sur-
veys, supporting multiple-day observations, revealing more
robust mobility patterns, and covering wider geographic ar-
eas. The method presented in this paper differs from existing
studies that utilize CDR data to examine human travels in
a trip-based approach [26], [38]. Rather, it is activity-based
and focuses on patterns of tours and trip-chaining behavior
in daily mobility networks.

As the literature suggests, in light of changing urban
economic structure, diverse workforce participation, and
flexible working schedule, trip-chaining behavior has be-
come more complex. Policies for peak-hour congestion mit-
igation or VMT reduction that ignore the increasing need to
chain non-work trips into commuting trips or focus only on
travel speed improvements or travel cost incentives could be
less effective than expected [47]. Moreover, the method pre-



IEEE TRANSACTIONS ON BIG DATA, TBD-2015-12-0163 10

East

West

North-West

Central East

North-East

Central West

Jurong Industrial

Central Area

1

4
13

8

2

22

9
24

6
11

23

25
21

3

5

26

18

12 14

19

Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community

East

West

North-West

Central East

North-East

Central West

Jurong Industrial

Central Area

Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community

Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community

Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community

population density
(2 node) per/sq km

1.2 - 1500

1600 - 5000

5100 - 120000

2 Node (per density>1500)

LQ>1.05

1 Node (per density>1500)
LQ>1.05 & RLQ>1.05

3 Node (per density>1500)

LQ>1.05 & RLQ>1.05
4 Node (per density>1500)

LQ>1.05 & RLQ>1.05

DGP URA Names
1, Ang Mo Kio
2, Bedok
3, Bishan
4, Bukit Batok
5, Bukit Merah
6, Bukit Panjang
7, Bukit Timah
8, Choa Chu Kang

9, Clementi
10, Geylang
11, Hougang
12, Jurong East
13, Jurong West
14, Kallang
15, Marine Parade
16, Novena
17, Outram

18, Pasir Ris
19, Punggol
20, Seletar
21, Sembawang
22, Sengkang
23, Tampines
24, Toa Payoh
25, Woodlands
26, Yishun

3 Node

4 Node

2 Node

(a) (b)

(d) (e) (f)

(c)
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Fig. 12. Neighborhoods with high concentration of residents with 3-node
and 4-node daily motifs (with zone reference names in Fig11-a).

sented here can be further extended to examine more details
at clusters with 1- or 2- node versus 3- or 4-node motifs—
including understanding the demographics, housing types

of the clusters, calling for a next-level investigation that sorts
motifs by tour length. With the types of tools presented
here, planners can derive new evidences on people’s travel
behavior on a large scale using ubiquitous data from com-
munication technologies. By understanding the different
patterns of human mobility for different neighborhoods at
the metropolitan scale, planners can design policies that
target neighborhoods with great potential for improvement.
The large-scale behavior evidence can be used to arrange
shopping clusters along certain stops for transit-oriented
development, add transportation alternatives and improve
level of service along certain corridors. Other applications
include improving community facilities for targeted pop-
ulation, or integrating land-use transportation planning to
reduce total travel and its negative social and environmental
externalities.

ACKNOWLEDGMENTS

This research was in part funded by the Singapore Na-
tional Research Foundation (NRF) through the Singapore-
MIT Alliance for Research and Technology (SMART) Center
for Future Urban Mobility (FM) and by the Center for
Complex Engineering Systems (CCES) at KACST. We thank
data providers for research collaboration through SMART.



IEEE TRANSACTIONS ON BIG DATA, TBD-2015-12-0163 11

REFERENCES

[1] K. Lynch, The Image of the City. Cambridge, MA: The MIT
Press, 1964.

[2] T. Carlstein, D. Parkes, and N. Thrift, “Human activity and time
geography,” 1978.

[3] T. Hgerstrand, “What about people in regional science?,” Pap. Reg.
Sci., vol. 24, no. 1, pp. 7–24, 1970.

[4] S. Jiang, J. Ferreira, and M. C. Gonzlez, “Clustering daily patterns
of human activities in the city,” Data Min. Knowl. Discov., vol.
25, no. 3, pp. 478–510, Apr. 2012.

[5] M. Batty, “Cities as Complex Systems: Scaling, Interactions, Net-
works, Dynamics and Urban Morphologies,” in Encyclopedia of
Complexity and Systems Science, vol. 1, R. Meyers, Ed. Berlin,
DE: Springer, 2009, pp. 1041–1071.

[6] D. Zhang, M. Philipose, and Q. Yang, “Introduction to the special
issue on intelligent systems for activity recognition,” ACM Trans.
Intell. Syst. Technol., vol. 2, no. 1, pp. 1–4, Jan. 2011.

[7] D. Zhang, B. Guo, and Z. Yu, “The Emergence of Social and
Community Intelligence,” Computer, vol. 44, no. 7. pp. 21–28,
2011.

[8] “Data for Development (D4D) Challenge.” [Online]. Available:
http://d4d.orange.com/en/Accueil.

[9] J. Wakefield, “Mobile phone data redraws bus routes in Africa,”
BBC, 01-May-2013.

[10] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
user movement in location-based social networks,” in Proceedings
of the 17th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2011, pp. 1082–1090.

[11] S. Elwood, M. F. Goodchild, and D. Z. Sui, “Researching Volun-
teered Geographic Information: Spatial Data, Geographic Research,
and New Social Practice,” Ann. Assoc. Am. Geogr., vol. 102, no.
3, pp. 571–590, 2012.

[12] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban Computing,”
ACM Trans. Intell. Syst. Technol., vol. 5, no. 3, pp. 1–55, Sep.
2014.

[13] M. Batty, The New Science of Cities. MIT Press, 2013.
[14] N. Eagle, A. Pentland, and D. Lazer, “Inferring friendship network

structure by using mobile phone data,” Proc. Natl. Acad. Sci.,
2009.

[15] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti,
“Real-Time Urban Monitoring Using Cell Phones: A Case Study
in Rome,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 1, pp.
141–151, 2011.

[16] N. Caceres, J. P. Wideberg, and F. G. Benitez, “Deriving origin
destination data from a mobile phone network,” Intell. Transp.
Syst. IET, vol. 1, no. 1, pp. 15–26, 2007.

[17] C. Ratti, D. Frenchman, R. M. Pulselli, and S. Williams, “Mobile
landscapes: Using location data from cell phones for urban analy-
sis,” Environ. Plan. B Plan. Des., vol. 33, no. 5, pp. 727–748,
2006.

[18] M. C. Gonzlez, C. A. Hidalgo, and A.-L. Barabsi, “Understanding
individual human mobility patterns,” Nature, vol. 453, no. 7196,
pp. 779–782, Jun. 2008.

[19] F. Girardin, F. Calabrese, F. D. Fiore, C. Ratti, and J. Blat, “Digital
Footprinting: Uncovering Tourists with User-Generated Content,”
IEEE Pervasive Computing, vol. 7, no. 4. pp. 36–43, 2008.

[20] V. D. Blondel, A. Decuyper, and G. Krings, “A survey of results
on mobile phone datasets analysis,” EPJ Data Sci., vol. 4, no. 1,
2015.

[21] F. Calabrese, L. Ferrari, and V. D. Blondel, “Urban Sensing Using
Mobile Phone Network Data: A Survey of Research,” ACM Com-
put. Surv., vol. 47, no. 2, pp. 25:1–25:20, Nov. 2014.

[22] C. Song, T. Koren, P. Wang, and A.-L. Barabasi, “Modelling the
scaling properties of human mobility,” Nat Phys, vol. 6, no. 10,
pp. 818–823, 2010.

[23] C. Song, Z. Qu, N. Blumm, and A.-L. Barabsi, “Limits of pre-
dictability in human mobility.,” Science, vol. 327, no. 5968, pp.
1018–1021, 2010.

[24] S. Jiang, G. a Fiore, Y. Yang, J. Ferreira, E. Frazzoli, and M. C.
Gonzlez, “A review of urban computing for mobile phone traces,”
in Proceedings of the 2nd ACM SIGKDD International Workshop
on Urban Computing - UrbComp ’13, 2013

[25] V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Collaborative location
and activity recommendations with GPS history data,” Proc. 19th
Int. Conf. World wide web - WWW ’10, p. 1029, 2010.

[26] P. Wang, T. Hunter, A. M. Bayen, K. Schechtner, and M. C. Gonzlez,
“Understanding road usage patterns in urban areas.,” in Scientific
reports, 2012, vol. 2, p. 1001.

[27] M. S. Iqbal, C. F. Choudhury, P. Wang, and M. C. Gonzlez,
“Development of origin–destination matrices using mobile phone
call data,” Transp. Res. Part C Emerg. Technol., vol. 40, pp. 63–
74, Mar. 2014.

[28] Y. Zheng, “Trajectory Data Mining: An Overview,” ACM Trans.
Intell. Syst. Technol., vol. 6, no. 3, pp. 29:1–29:41, May 2015.

[29] L. Alexander, S. Jiang, M. Murga, and M. C. Gonzlez, “Origin–
destination trips by purpose and time of day inferred from mobile
phone data,” Transp. Res. Part C Emerg. Technol., vol. 58, pp.
240–250, Sep. 2015.

[30] M. A. Bradley, J. L. Bowman, and B. Griesenbeck, “Development
and application of the SACSIM activity-based model system,” in
11th World Conference on Transport Research, 2007.

[31] J. Hao, M. Hatzopoulou, and E. Miller, “Integrating an Activity-
Based Travel Demand Model with Dynamic Traffic Assignment and
Emission Models,” Transp. Res. Rec. J. Transp. Res. Board, vol.
2176, no. -1, pp. 1–13, 2010.

[32] A. R. Pinjari and C. R. Bhat, “Activity-based travel demand
analysis,” A Handb. Transp. Econ., no. 1, pp. 1–36, 2011.

[33] Transportation Research Board, “Activity-Based Travel Demand
Models: A Primer,” 2015.

[34] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon, “Network motifs: simple building blocks of complex
networks.,” Science, vol. 298, no. 5594, pp. 824–827, Oct. 2002.

[35] C. M. Schneider, V. Belik, T. Couronn, Z. Smoreda, and M. C.
Gonzlez, “Unravelling daily human mobility motifs.,” J. R. Soc.
Interface, vol. 10, no. 84, Jul. 2013.

[36] P. Widhalm, Y. Yang, M. Ulm, S. Athavale, and M. C. Gonzlez,
“Discovering urban activity patterns in cell phone data,” Trans-
portation (Amst)., vol. 42, no. 4, pp. 597–623, Jul. 2015.

[37] J. L. Toole, S. Colak, B. Sturt, L. Alexander, A. Evsukoff, and M. C.
Gonzlez, “The path most traveled: Travel demand estimation using
big data resources,” Transp. Res. Part C Emerg. Technol., May
2015.

[38] S. Colak, L. P. Alexander, B. G. Alvim, S. R. Mehndiretta, and M. C.
Gonzalez, “Analyzing Cell Phone Location Data for Urban Travel:
Current Methods, Limitations and Opportunities,” in TRB 2015
Annual meeting, 2015, no. 15–5279, pp. 1–17.

[39] G. Di. Lorenzo, M. Sbodio, F.Calabrese, M.Berlingerio, F.Pinelli,
and R. Nair, “AllAboard: Visual Exploration of Cellphone
Mobility Data to Optimise Public Transport,” IEEE Trans-
actions on Visualization and Computer Graphics., 2014.
http://doi.org/10.1109/TVCG.2015.2440259.

[40] R. Hariharan and K. Toyama, “Project Lachesis: parsing and
modeling location histories,” Geogr. Inf. Sci., pp. 106–124, 2004.

[41] C.-C. Hung and W.-C. Peng, “A regression-based approach for
mining user movement patterns from random sample data,” Data
Knowl. Eng., vol. 70, no. 1, pp. 1–20, 2011.

[42] H. Xiong, D. Zhang, D. Zhang, V. Gauthier, K. Yang, and M.
Becker, “MPaaS: Mobility prediction as a service in telecom cloud,”
Inf. Syst. Front., vol. 16, no. 1, pp. 59–75, 2014.

[43] R. Cervero and J. Murakami, “Effects of built environments on
vehicle miles traveled: evidence from 370 US urbanized areas,”
Environ. Plan. A, vol. 42, no. 2, pp. 400–418, 2010.

[44] P. C. Zegras, “The influence of land use on travel behaviour:
Empirical evidence from Santiago de Chile,” TRB Annu. Meet.
CD ROM, vol. 1898, no. January, pp. 1–15, 2004.

[45] C. Carrion, F. Pereira, R. Ball, F. Zhao, Y. Kim, K. Nawarathne, N.
Zheng, C. Zegras, and M. Ben-Akiva, “Evaluating fms: A prelimi-
nary comparison with a traditional travel survey,” 2014.

[46] R. Ewing and R. Cervero, “Travel and the Built Environment: A
Synthesis,” Transp. Res. Rec., vol. 1780, no. 1, pp. 87–114, 2001.

[47] R. Wang, “The stops made by commuters: evidence from the 2009
US National Household Travel Survey,” J. Transp. Geogr., Dec.
2014.




