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Biomimetic hydrogel-CNT network induced
enhancement of fluid-structure interactions for
ultrasensitive nanosensors

Meghali Bora1,4, Ajay Giri Prakash Kottapalli1,4, Jianmin Miao2 and Michael S Triantafyllou3

Flexible, self-powered, miniaturized, ultrasensitive flow sensors are in high demand for human motion detection, myoelectric

prosthesis, biomedical robots, and health-monitoring devices. This paper reports a biomimetic nanoelectromechanical system

(NEMS) flow sensor featuring a PVDF nanofiber sensing membrane with a hydrogel infused, vertically aligned carbon nanotube

(VACNT) bundle that mechanically interacts with the flow. The hydrogel-VACNT structure mimics the cupula structure in

biological flow sensors and gives the NEMS flow sensor ultrahigh sensitivity via a material-induced drag force enhancement

mechanism. Through hydrodynamic experimental flow characterization, this work investigates the contributions of the mechanical

and structural properties of the hydrogel in offering a sensing performance superior to that of conventional sensors. The ultrahigh

sensitivity of the developed sensor enabled the detection of minute flows generated during human motion and micro-droplet

propagation. The novel fabrication strategies and combination of materials used in the biomimetic NEMS sensor fabrication may

guide the development of several wearable, flexible, and self-powered nanosensors in the future.
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INTRODUCTION

Nature’s designs have long inspired researchers aiming to find
technical solutions and develop novel and advanced engineering
systems.1 Biological sensors are an example of a natural design that
has intrigued scientists over the years. These sensors, for example, flow
sensors, acoustic sensors, and chemical sensors, have developed high
efficiencies, compactness, responsivity, and sensitivity through evolu-
tion over billions of years.2 Most man-made artificial sensors scarcely
match the performance of these natural sensors. Hence, for the
development of novel sensors with high performance and sensitivity, it
is desirable to apply designs from natural sensors to artificial
engineering materials.
Hair cell mechanoreceptors belong to a class of well-developed

natural sensors ubiquitously found in many living organisms such as
insects, amphibians, fishes, and mammals.2 These natural transducers
respond to a variety of environmental stimuli and are capable of
sensing pressure, flow, acoustic waves, and chemicals. Some examples
include air flow sensors in crickets, air flow and vibration sensors in
spiders, water flow sensing whiskers in harbor seals, neuromast
acceleration sensors in fishes, and cilia in the organs of mammals,
including the taste buds on the tongue and cilia in the nose, lungs, and
inner ear cochlea.1–3 In aquatic environments, these hair cells have

special significance because they form a basic and highly effective
mechanism for flow sensing and environmental perception.
Several researchers have developed hair cell-based microelectrome-

chanical system (MEMS) flow sensors that were inspired by the
mechanosensory lateral line of fish, by using piezoelectric and piezo-
resistive membranes with cylindrical, polymeric standing structures.4–7

To improve the sensitivity of these artificial MEMS sensors, biomi-
metic approaches have been investigated to mimic the specialized
structures of the neuromast, such as the cupula. In the microfabricated
sensors, the cupula and cupular fibrils have been mimicked by using
hydrogel capping and electrospun micro/nano fibers, respectively.8–11

Such incorporation of biomimetic materials results in an increase in
the sensitivity and threshold detection of the hair cell sensors by
several orders of magnitude. A soft gelatinous structure, called cupula,
covers the sensory organ, that is, the neuromasts, of fishes. There are
two types of neuromasts, superficial neuromasts (SNs), which are
present on the skin surface and canal neuromasts (CNs), which are
present just below the skin inside fluid-filled channels or canals. The
neuromasts act as a medium that couples the underlying mechan-
osensing cells to the outside water flow through viscous forces.12 They
enhance the drag forces and the absorption of the flow stimulus via
short hair bundles and transmission to the sensory hair cells beneath.13
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Besides the increase in the overall cross-sectional area that is exposed
to flow, the enhanced drag forces are also a result of factors related to
the material properties of the cupula. The biological cupula is
composed of 90% water, and its material composition (and especially
the hydrophilicity and permeability characteristics) plays a critical role
in signal transmission.13 In certain fishes, the cupula also has long thin
fibrils that run along the length of the cupula.14 These fibrils act as a
scaffold that supports the cupula structure, thus allowing it to grow
taller and away from the stagnant boundary layer of the fish’s skin
surface,9 thereby increasing the aspect ratio of the overall sensory
organs and their sensitivity. These fibrils are also thought to help in
coupling the underlying ciliary bundles to the cupula, thus facilitating
the mechanotransduction process in transmitting mechanical energy
to generate neuroelectrical pulses.13

Biological neuromast sensors exhibit complex designs with multi-
functional properties, hierarchical structures, and diverse materials.15

The fabrication technologies used in developing hair cell inspired
MEMS sensors so far, consider designs based on basic structures and
do not mimic the morphological features, materials and dimensional
variations.8 An amalgamation of the state-of-the-art nanofabrication
technologies and biomimetic soft materials is required to emulate
biological sensors and develop ultrasensitive and self-powered artificial
nanosensors. Here we propose a novel biomimetic nanoelectromecha-
nical systems (NEMS) flow sensor that is ultra-sensitive, self-powered,
flexible in structure, and easy to fabricate. We achieved this by
combining biological design with nanofabrication technology and
biomimetic materials. The sensor features an electrospun and aligned
polyvinylidene fluoride (PVDF) nanofiber membrane and hyaluronic
acid (HA) hydrogel infused vertically aligned carbon nanotube
(VACNT) bundle. The use of electrospun PVDF nanofibers as the
fundamental sensing elements offers numerous benefits, such as self-
powering, flexibility, high elasticity, high sensitivity (due to the high
piezoelectric coefficient), low cost, ease of fabrication, dimensional
stability, biocompatibility, chemical inertness, high mechanical resis-
tance and light weight.16–18 Flow sensors such as the ones developed in
this work are in demand in emerging fields such as electronic skin,
human motion detection, myoelectric prosthetic limbs, artificial skin,
wearable devices, energy harvesters, and microfluidics.

MATERIALS AND METHODS

Electrospinning of PVDF
PVDF powder (MW 534000 Da), dimethyl formamide (DMF), and acetone
were purchased from Sigma Aldrich, Singapore. PVDF (1.5 g) was dissolved in
a co-solvent mixture of 3 ml DMF and 7 ml acetone (in a ratio of 1:2.33) to
obtain a 15 % (w/v) solution. Stirring the solution at 70 °C for 60 min and then
incubating it in an oven at 70 °C for another 30 min homogeneously dissolved
the PVDF. The resulting clear and viscous PVDF solution was filled in a 10 ml
syringe fixed with an 18 G needle for electrospinning. The PVDF solution
syringe was fitted onto a pump, and the flow rate was set to 5 μl min− 1. The
rotating spindle that collects the nanofibers was positioned at a distance of
15 cm from the needle, and a direct current (DC) voltage of 12 kV was applied
across the needle and spindle. The spindle, which was 10 cm in diameter, was
covered with aluminum (Al) foil as the collecting substrate, and the rotating
speed was set to 1500 r.p.m. As the polymer solution drop was electrostatically
stretched or pulled toward the spindle, the nanofibers formed and laid on the
foil in an aligned manner, owing to the continuous rotation.

Synthesis of the HA hydrogel cupula
The modification of hyaluronic acid (HA) using tyramine (Tyr), and cross-
linking tyramine modified HA (HA-Tyr) with hydrogen peroxide (H2O2) in the
presence of horseradish peroxidase (HRP) via covalent bond formation is a
well-established method.19 Corgel hydrogels (Corgel BioHydrogel Lifecore kit,

Lifecore Biomedical, Chaska, USA) are commercially available HA hydrogels
based on this modification and crosslinking mechanism. The Corgel polymer
kit purchased for this work included HA-Tyr with a 5.5% degree of
modification, 10 U ml− 1 HRP, and 1% H2O2 in phosphate buffer saline
(PBS). The Corgel 5.5 hydrogels were prepared according to the instructions
provided by the supplier (Lifecore Biomedical). HA-Tyr powder was dissolved
in HRP (in PBS) to obtain a 1.2 % (w/v) solution. The original stock solution
of H2O2 was diluted with water to obtain a 0.3 % concentration. After
overnight stirring, the HA-Tyr and HRP polymer solution was mixed with
H2O2 in the ratio of 1:25 (v/v) (H2O2:HA-Tyr) to initiate gelation. Gelation
began immediately, and the crosslinking reaction was allowed to continue
overnight. The next day the hydrogels were immersed in deionized (DI) water
and allowed to swell for 24 h at room temperature (RT).

Characterization of hydrogels
The water-swollen HA-Tyr hydrogels were characterized on the basis of their
morphology, network structure parameters, and mechanical behavior.

Morphology
The morphology of the HA-Tyr hydrogels was observed using scanning
electron microscopy (SEM) (JSM 6360A Jeol, Japan). Water-swollen hydrogel
samples were rapidly quenched in liquid nitrogen for few seconds, then
lyophilized for 5 days. The freeze-dried hydrogels were gold coated for 80 s, and
their surface and cross-sectional areas were examined under SEM.

Swelling
The network structure parameters of the HA-Tyr hydrogels were calculated
using the Flory-Rehner equations, as previously described.20 The HA-Tyr
hydrogels were swollen for 24 h in DI water, and their wet mass was recorded.
The gels were then lyophilized for 5 days, and their dry mass was recorded. The
swelling ratio, with respect to mass, was used to calculate other parameters such
as the volume swelling ratio, molecular weight between crosslinks, crosslinking
density, and mesh size.

Rheology
The mechanical properties of HA-Tyr hydrogels were evaluated using a stress-
controlled rheometer (Physica MCR 501, Anton Parr, USA) and a parallel plate
geometry measuring system (PP25/TGSN 6539, diameter 25 mm). All the
experiments were performed at a RT of approximately 23 °C. The water-
swollen hydrogels were subjected to dynamic oscillation shear tests with either a
constant frequency or amplitude. In the amplitude sweep, the storage modulus
(G'), and loss modulus (G") were obtained as a function of the strain rate
varying from 0.005 to 5 % at 1.6 Hz. In the frequency sweep test, G′, G′′, and
complex viscosity were obtained as a function of the frequency varying from 0.1
to 10 Hz at a 0.05 % strain rate. This strain was selected from the linear
viscoelastic (LVE) region observed in the amplitude sweep plot.

Morphological characterization of the CNT pillar with the HA-Tyr
hydrogel
The HA-Tyr hydrogel infused CNTs were characterized for their morphology
using field emission SEM (FESEM) (JSM 6701F, Jeol Asia Pte Ltd, Singapore).
The samples with CNTs and hydrogel were freeze dried for 5 days, coated with
platinum for 80 s, and examined through FESEM.

Flow sensing experiments
A dipole (sphere of 16 mm diameter) stimulus was used in all the experiments
to generate oscillatory flows with various velocities. The dipole was vibrated
using a permanent magnet mini-shaker (Brüel & Kjær model 4810, Norcross,
GA; axial resonant frequency 418 kHz) and was connected using a rigid
stainless-steel rod 4 mm in diameter. The mini-shaker was inverted and
mounted so that the dipole was positioned 25 mm away from the sensor and
vibrated perpendicular to the long axis of the VACNT bundle. The velocity
generated by the vibration of the dipole was pre-calibrated using a Polytec
PSV-300 laser Doppler vibrometer (LDV).7 For all the experimental results, the
unamplified peak-to-peak output of the sensor was plotted. The voltage output
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from the sensor was acquired using a National Instruments data acquisition
card (NI-DAQ) and recorded using the LabVIEW software.

RESULTS AND DISCUSSION

Development of the biomimetic NEMS neuromast sensor
Sensor structure and sensing principle. The sensor consisted of three
main parts: the PVDF nanofiber sensing membrane, a high aspect
ratio VACNT bundle, and a hydrogel cupula. The PVDF membrane is
a self-suspended film of aligned PVDF nanofibers fabricated through
electrospinning process. The circular membrane has a thickness of
~ 20 μm, defined by the timed electrospinning, and a diameter of
2 mm, defined by a cavity formed in the two optically clear adhesive
(OCA) films between which the membrane is suspended.
The sensor features a cylindrical hair-like structure formed from

highly aligned vertically standing CNT bundles (CVD Equipment
Corp, New York, NY, USA). A single VACNT bundle is 4000 μm in
height and 350 μm in diameter. The high aspect ratio VACNT (11.43)
offers a high sensitivity to the sensor as compared to those with
shorter hair structures that fall within the flow generated boundary
layers and thereby experience a reduced velocity.5,21,22 The VACNT
bundle, which is positioned at the center of the circular membrane is
attached at its root but free to move at its distal tip, and is
encapsulated within a HA-based hydrogel canopy mimicking the
cupula of biological neuromast. A prolate spheroid-shaped hydrogel
cupula with the same height as the CNT bundle and a diameter 4.3
times that of the bundle encapsulates three-quarters of the bundle
from its distal end.
Flows generated in the vicinity of the sensor would cause a drag

force on the hydrogel cupula, owing to the flow-structure interaction.
The cupula transduces the flow-induced drag force into a

displacement in the VACNT bundle. Since the VACNT bundle is
fixed to the PVDF nanofiber membrane on one end, the bending
moment in the bundle causes a displacement in the membrane. Due
to the piezoelectric nature of the PVDF nanofibers, electrical charges
are generated, which are acquired as the sensor output through the
copper contacts. In response to the flow, the rigid nature of the CNT
bundle causes it to pivot at the base, rather than bend along the shaft,
thus maximizing the tip displacement and torque at the base,
increasing the strain induced in the PVDF fibers, which in turn leads
to enhanced sensitivity of the sensor.

Sensor fabrication. The sensor fabrication comprises three main
parts: (1) electrospinning to form the self-suspended PVDF sensing
membrane; (2) atmospheric pressure chemical vapor deposition
(APCVD) growth of the multi-walled VACNT bundles; and (3)
artificial cupula synthesis and drop-casting. Figures 1a–f depict the
sensor fabrication through schematics. More details regarding the unit
processing steps involved in the sensor fabrication are provided in the
Supplementary Information (Supplementary Figure S1). The electro-
spinning parameters were optimized to obtain PVDF nanofibers with
a high β-phase. The electrical and mechanical properties of the PVDF
nanofibers and the porosity of the VACNT bundle were characterized
to evaluate their effects on the sensitivity and accuracy of the sensor.
The piezoelectric coefficient of a single nanofiber, which was
determined through fiber displacement in the presence of a varying
electric field, was − 58.7 pm V−1. Nanomechanical characterizations
conducted using a triboindenter revealed a Young’s modulus and
hardness of 2.2 and 0.1 GPa, respectively. The VACNT bundle was
characterized for its porosity using Brauner-Emmett-Teller (BET)
analysis, and the average pore diameter was 74.12 Å.

Figure 1 Fabrication of the biomimetic NEMS sensor. (a) Aligned PVDF nanofibers electrospun on top of aluminum foil. (b) OCA film punched with cavities
2 mm in diameter. (c) Nanofibers transferred from the aluminum foil to the OCA film. (d) Another identical OCA film was placed, and the fibers were sealed
between the two OCA films via application of pressure. (e) The CNT bundles separately grown on a silicon wafer were batch-transferred to the array of PVDF
films. (f) After the CNT transfer process, the silicon wafer was removed. (g) Photograph of a single sensor featuring the vertically standing VACNT at the
center of the PVDF membrane. (h) Photograph of the sensor after drop-casting the HA-Tyr hydrogel on the VACNT bundle.

Biomimetic hydrogel-CNT network for ultrasensitive nanosensors
M Bora et al

3

NPG Asia Materials



Hydrogel cupula. For the artificial cupula, the HA-based hydrogel
was used and drop cast over the VACNT bundle. A modified HA was
used to develop the chemically crosslinked hydrogel. Commercially
available HA-Tyr (Corgel), was enzymatically crosslinked using a well-
established method that results in the formation of a hydrogel with
controlled properties.19,23 The HA-Tyr polymer chains were covalently
bound by using hydrogen peroxide (H2O2) in the presence of
horseradish peroxidase (HRP) enzyme. Figures 1g and h show the
naked VACNT bundle sensor and the sensor with the HA-Tyr
hydrogel cupula, respectively.
HA-Tyr hydrogel, used to encapsulate the CNT bundle, mimics the

material, structural, and mechanical properties of the cupula of CNs in
fishes with a rigid yet highly porous network structure. HA is a
glycosaminoglycan, thus mimicking the material composition of
natural cupula.14 The hydrogel synthesis was optimized to obtain a
high mechanical strength (Young’s modulus similar to that of the
cupula of CNs) and water content inside its matrix mimicking the
natural properties of the cupula. After the HA-Tyr was completely
crosslinked, it was immersed in DI water to achieve a swelling
equilibrium. Figure 2a shows a photograph of the HA-Tyr hydrogel
disc after swelling. The hydrogel was very transparent with a smooth
surface. To observe its mesh network, this water swollen gel was
lyophilized and examined through SEM. Figure 2b shows a scanning
electron micrograph of the cross-section of a dried hydrogel sample.
The gel showed a porous network capable of absorbing and retaining
water molecules in its matrix. This result was further corroborated by
the results of the swelling study. The network structure parameters,
including the swelling ratio and mesh size, were calculated by using
the Flory Rehner equations for polymers, as described previously.20

Supplementary Table S1 (see Supplementary Information) sum-
marizes the approximate values of each of these parameters. The
water content of these gels was ~ 99% with micrometer-sized pores in

their network. Thus, this biomimetic cupula possesses a high hydro-
philicity and a porous structure that would affect the frictional forces
resulting from the viscous drag of fluid motion. Figures 2c–e show the
plots obtained from the rheological analysis of the HA-Tyr hydrogel
for its mechanical properties. In the amplitude sweep test, the G′ was
plotted as a function of the strain rate, as shown in Figure 2c. From
the LVE region of this plot, a strain rate was selected, and frequency
sweeps in Figures 2d and e were obtained with the storage modulus
and complex viscosity, respectively, plotted as a function of the
frequency. The modulus was constant with respect to the frequency
up to approximately 5 Hz, thus demonstrating the high stiffness of
these gels. Additionally, the complex viscosity consistently decreased
with an increase in the frequency, thus showing the shear thinning
behavior of the HA-Tyr hydrogels, which is a characteristic of
viscoelastic polymers. The storage modulus at 1 Hz (~3.46 kPa) was
used to calculate the Young’s modulus (E) using the relation
E= 3×G’.9 The HA-Tyr hydrogels had E value of approximately
10.4 kPa, which is similar to those for the biological cupula of CNs.10

The high stiffness and water content of the HA-Tyr hydrogel network
demonstrates a rigid, yet, highly porous structure. This is typical of the
cupula of CNs, making the HA-Tyr hydrogels a good mimic of the
natural cupula.

VACNT bundle. Figure 3a shows a photograph of the high aspect
ratio (11.43) CNT bundles grown on a silicon wafer. Figures 3b and c
are FESEM images of a CNT bundle at different magnifications,
showing thousands of nanotubes within a bundle and the high
alignment along the length of growth, respectively. CNTs are
hydrophobic;, thus, to facilitate hydrogel drop casting, they were
exposed to oxygen plasma treatment.24 For drop-casting, the HA-Tyr
solution with HRP was dropped over the plasma-exposed CNTs and
then crosslinked by dropwise addition of H2O2 solution. Gelation was

Figure 2 Characterization of the HA-Tyr hydrogels. (a) A photograph of a hydrogel disc after crosslinking and swelling in DI water. (b) Scanning electron
micrograph of hydrogel showing the porous mesh network. (c) Storage modulus of hydrogel as a function of strain rate, showing constant stiffness up to 0.1%
strain. (d) Storage modulus of hydrogels as a function of frequency, showing a high stiffness across the entire range tested. (e) Complex viscosity as a function
of frequency showing shear thinning behavior.
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allowed to continue overnight, and the hydrogel was swollen in DI
water for 24 h. Figure 3d shows a FESEM image of the cross-section of
the CNT bundle infused with hydrogel. It can be observed that the
hydrogel was present on the CNTs as well as in between them. This is
because during swelling, as the water diffused into the hydrogel
network and the polymer chains started to swell, they would also open
up the CNT bundles by infusing into them due to swelling. This
infusion of water-filled polymer chains into CNTs would help them to
more efficiently couple the mechanical deflection stimulus to the
nanofibers. Figure 3e shows a FESEM image of the aligned PVDF
nanofibers (thickness ~ 700 nm), and Figure 3f shows a cross-section
of the PVDF membrane (thickness ~ 20 μm) that was suspended
between the two OCA films.

Sensor testing
The biomimetic NEMS flow sensor was experimentally characterized
in air and water flows to evaluate its flow-sensing performance. To
investigate the mechanical and material contributions to the sensitivity
enhancement offered by the HA-Tyr hydrogel cupula, a comparative
experimental analysis was conducted. This process involved a com-
parison of the flow-sensing performance of the PVDF membrane
sensor featuring just the VACNT bundle and the VACNT bundle
scaffolding the hydrogel cupula in both air and water flows. In all the
flow-sensing experiments, a dipole (vibrating sphere) stimulus was
used to generate flows in the vicinity of the sensors. The choice of a
dipole stimulus for the experiments is due to its biological relevance to
hydrodynamic flow sensing in CNs in fishes. The flow field generated
by an oscillating dipole in water closely represents that generated by a
freely swimming fish, which forms the cues for CNs that are majorly
responsible for object localization.25,26 In addition, the dipole
stimulus forms experimental scenarios similar to those used in
past studies by biologists and engineers for the characterization of

artificial hair cell sensors, which allows comparison of the sensing
performance.2–13,21,22,27,28 To generate varying flow velocities, the
dipole was driven with a sinusoidal signal of fixed amplitude of
250 mVrms and varying frequencies from 1–100 Hz. When the dipole
was set to oscillate at distinct frequencies, the sensor output
was verified to follow a sinusoidal trend at the same frequency of
the source in both air and water media. The experimental setup
used in this work for the oscillatory flow sensing in water is shown in
Figure 4a. For air flow sensing, the setup was similar except
that the medium was ambient air. The initial flow sensing
experiments were conducted using the PVDF sensor with a naked
VACNT bundle without the cupula dressing. The dipole was
located 25 mm away from the sensor and vibrated in a plane
perpendicular to the long axis of the VACNT bundle. The vibration
of the sphere causes the fluid surrounding it to vibrate at the
same frequency. The drag force generated by displaced water
causes the VACNT bundle to move at the same frequency as that of
the dipole.
To characterize the threshold detection limit of the sensor and flow

sensitivity, the velocity of the oscillatory flow was varied from 1 to
100 mm/s − 1, and the sensor output was recorded at each velocity.
Figures 4b and c show the flow sensing results conducted in air and
water, respectively. The sensor output monotonically increased with
the increase in flow velocity, as anticipated. Error bars show the s.d.'s
of five repeats of the experiments using five of the fabricated sensors.
The as-recorded sensor output data are provided in the Supplementary
Information for the lowest and highest velocity points (Supplementary
Figure S3). Notably, the flow–structure interaction induced drag force
depends on the contributions from both the skin friction and pressure
gradient (pressure on both sides of the VACNT bundle that drives its
motion). At low Reynolds numbers (Reo50), skin friction is the
dominant factor contributing to the drag force. At higher values of Re,

Figure 3 Characterization of the VACNT bundle and PVDF nanofibers. (a) Photograph showing an array of VACNTs as-grown on a Si wafer. The scale placed
alongside shows their high aspect ratio. (b) FESEM image showing the angle view of a single CNT bundle on a Si wafer after completion of the growth.
(c) FESEM image of a CNT bundle showing the high alignment of the nanotubes running parallel to each other. (d) FESEM image of the cross-section of the
hydrogel cupula-dressed CNT bundle showing the infusion of the hydrogel over and in between the nanotubes. (e) FESEM image of the aligned, electrospun
PVDF nanofibers. (f) FESEM image of the PVDF nanofiber membrane suspended between two OCA films.
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the pressure gradient determines the drag force. Flow calibration
results show that the sensor is capable of sensing low flows with a
velocity detection threshold of 5 mm s− 1 in both air and water. The
voltage sensitivity of the sensor for air and water flows is 17.2 mV/
(m s-1) and 45.2 mV/(m s− 1), respectively.
In another experiment, the naked VACNT sensor and cupula-

dressed VACNT sensor were simultaneously positioned equidistant
from the center of the dipole to determine the enhancement in the
sensor output in the presence of the hydrogel cupula. The dipole was
vibrated at a frequency of 35 Hz and an amplitude of 250 mVrms, and
the outputs from both sensors were simultaneously recorded.
Figures 4d and e show the frequency content of the sensor outputs
(fast Fourier transform of voltage amplitude output), which clearly

shows a peak at 35 Hz for both sensors. It was also observed that the
amplitude of the voltage output of the cupula-dressed sensor increased
by 2.5 and 8 times that of the naked VACNT sensor in air and water
flows, respectively. A similar enhancement in the sensor output was
observed for all frequencies in the range of 1–100 Hz due to the
incorporation of the cupula. The additional data on the repeatability of
the experimental sensitivity enhancement is provided in the
Supplementary Information (Supplementary Figure S2).
The enhancement in sensitivity due to the presence of the HA-Tyr

hydrogel cupula is higher than that reported in our earlier work, which
used methacrylic anhydride (MA) modified HA hydrogel (HA-MA)
cupula.11 This could be attributed to the structural differences between
the two types of HA hydrogels. The crosslinked network of hydrogel

Figure 4 Flow sensing experiments in air and water. (a) Experimental setup using a dipole stimulus to generate oscillatory flow with biological relevance to
the lateral-line stimulus. (b) Flow calibration of the naked VACNT sensor in air flow. (c) Flow calibration of the naked VACNT sensor in water flow. Error bars
represent the s.d.'s of the sensor outputs for five repeats of the experiment on five sensors. (d, e) Enhancement in sensor output of the HA-Tyr cupula-
dressed VACNT sensor in comparison to the naked VACNT sensor in air and water flows, respectively.
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obtained from the two chemical moieties, MA and Tyr, have different
pore sizes and swelling ratios, thus resulting in different amounts of
water absorbed and retained in their matrices. Higher amounts of
water-filled pores in the structure of the HA-Tyr hydrogels results in
more fluidic interaction (interaction of the water filled in the pores of
hydrogel with the surrounding water) than that in the HA-MA
hydrogels, thus leading to an increase in the drag force associated
enhancement of the sensitivity in the former. The VACNT bundle
served as a good scaffold keeping the soft hydrogel cupula intact even
at flow velocities as high as 0.5 m s− 1.

There are two major factors that lead to an enhancement in the
sensitivity of the HA-Tyr hydrogel cupula dressed sensor. The first one
is the fluid-structure interaction generated drag force that significantly
increases because of the presence of the HA-Tyr cupula. The porous
structure of the HA-Tyr hydrogel plays an important role in modifying
the pressure transfer from the surrounding flowing water to the
VACNT encapsulated hydrogel network, enhancing the drag force
experienced by the sensor. The second factor is the cross-sectional area
of the structure interacting with the fluid that is increased due to the
presence of the HA-Tyr hydrogel cupula as compared to the sensor

Figure 5 Applications of zero-powered, miniaturized, low-cost, and lightweight PVDF- VACNT sensor for human motion detection and high-precision flow
sensing. (a) Response of the sensor to three pulses of air flow velocity of 10 mm/ s−1. (b) Response of the sensor to four sweeps of a human
hand at a distance of 25 cm away from the sensor. (c) Sensor output for a human subject walking parallel (at a distance of 50 cm from the sensor) and
perpendicular (starting from a distance of 3 m to a distance of 50 cm from the sensor) to the sensor. (d) Response of the sensor to a leaf dropping at a
distance of 10 cm from the sensor. (e) Underwater sensing experiment demonstrating the high sensitivity of the sensor in detecting water droplets with
volumes as low as 2 μl.
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featuring the naked VACNT bundle. The increased cross-sectional
area leads to an enhanced drag force that can be estimated using a
scaling factor (for flows with low Reynolds numbers) as follows:

FHA�Tyr

FVACNT

� �
~ HHA�Tyr

HVACNT

� �4=3 DHA�Tyr

DVACNT

� �2=3

where F is the drag force, D is the diameter, and H is the height of the
structure. Considering the geometrical features of the naked and
the cupula dressed sensors Figures 1g and h, the drag force due to the
presence of cupula was found to increase 2.6 times. This factor closely
matches the increase in the output observed in the air flow
experiment (Figure 4d). However, this factor is much higher in the
experiment conducted in water and that could be attributed to
the roles of the material parameters and micro-structural network of
the HA-Tyr cupula.
We also conducted several experiments to exemplify the applica-

tions of such zero-powered, miniaturized, low-cost, lightweight flow
sensors in human motion detection and soft robotics and for sensing
flows with ultrahigh precision. Figure 5a shows the response of the
sensor to an extremely low air flow velocity of 10 mm s− 1 passing the
VACNT bundle, which generates a sensor output as high as 100 mV
(additional experimental results in Supplementary Figure S4). Video
recordings showing the displacement of the naked and hydrogel
cupula-dressed VACNT bundles are provided in the Supplementary
Information (Supplementary Video 1 and 2, respectively). The sensor
produced three distinct peaks in its output in response to the flow
velocity that was provided three times at short equidistant intervals.
A tiny negative peak was seen due to the recoil of the VACNT bundle
after the flow was turned off. We conducted experiments where the
sensor detects human motion by sensing the various flows generated
by body movements. Figure 5b shows the sensor output in response to
sweeping motion (four times) of a human hand at a distance of 25 cm
from the sensor (additional experimental results in Supplementary
Figure S5). The four distinct peaks generated in the sensor output
correspond to the four passes of the hand. Figure 5c shows the
response of the sensor to a human walking parallel (red line) and
perpendicular (blue line) to the sensor. In the case of walking parallel
to the sensor, the human subject walked in a straight line at a distance
of 50 cm away from the sensor. In the case of walking perpendicular to
the sensor, the human subject approached the sensor from a distance
of 3 m and stopped after reaching a distance of 50 cm from the sensor.
When the human subject walked toward the sensor, a single broad
peak was observed, and when the human subject walked parallel to the
sensor, a voltage dip followed by a peak was observed. This is because
in the latter case, as the human subject just passed beyond the sensor,
the flow now occurred in the backward direction. Additional experi-
mental results for the detection of human subject motion are
presented in Supplementary Figures S6 and S7. Figure 5d shows the
output of the sensor in response to a thin leaf that was dropped beside
the sensor. Even the extremely low flow generated by a falling leaf
resulted in a sensor output of 40 mV.
To demonstrate the extremely high flow sensitivity of the sensor in

water, we conducted an experiment that involved detection of micro-
droplets of water. The sensor was immersed 2 cm deep in water while
droplets with volumes varying from 2 to 25 μl were dropped from a
height of 2 cm from the surface of the water. The sensor was able to
detect the flow generated by a 2 μl droplet and showed a linear
increase in the output as the droplet volume increased, as shown in
Figure 5e. The error bars represent the s.d.'s for five repeats of the

experiment on five sensors. This experimental result demonstrated a
high sensitivity of 6.5 mV μl− 1.

CONCLUSION

The design of our sensor, although bioinspired from hair cell sensors
of fishes, is simplified as compared to the MEMS sensors reported
earlier. The HA hydrogel cupula mechanically couples the external
flows to the embedded VACNT bundle, thereby enhancing the
sensitivity of the sensor. The VACNT bundle not only transfers the
flow-generated torque to the PVDF membrane but also acts as a
scaffold facilitating the formation of biomimetic hydrogel cupula.
Further, the CNT bundle scaffolding hydrogel closely mimics the
biological cupula with embedded cupular fibrils, and this biomimetic
design offers the benefit of high structural rigidity to the soft cupula.
With the CNTs inside the hydrogel matrix, the requirement of the hair
cell standing structure proposed in previous MEMS sensor designs is
overcome. After swelling, the hydrogel permeates through the CNTs,
thereby coupling the flow stimulus with the PVDF nanofibers. The
high bendability and elasticity of the CNTs result in a high restoring
force that contributes to the faster response time of the sensor. Hence,
with our biomimetic sensor, we achieved the function of a hair cell
standing structure and cupular fibrils by using a CNT bundle and
hydrogel cupula together. This method simplifies the overall sensor
design and minimizes the fabrication steps while improving the
sensitivity. Unlike biomimetic hair cell sensors developed in the past,
this sensor operates with no power supply and achieves a good sensing
performance by using the PVDF nanofiber membrane as the sensing
material.2–6,8–11,13,21,22
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