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ABSTRACT

Virology, like many other biological research topics, has benefited from the applica-
tion of large-scale data generation and analysis. Particular effort has been applied to de-
veloping a greater understanding of prevalent human-pathogenic viruses including type-
1 Human immuno-deficiecy virus (HIV-1) and Hepatitis C virus (HCV). For example,
host-virus interaction networks have been researched and important factors required for
virus replication or innate cellular defence have been elucidated. Thus, large-scale data
sources have provided a wealth of information regarding virus replication and virus-host
interaction that may directly influence research and development of new antiviral treat-
ments. In this thesis, we present research into the interaction between pathogenic viruses –
HCV, HIV-1 and SIV (the simian equivalent of HIV) – and their host cells. Our research
is largely integrative, computational research of large-scale data sources. In particular,
we employ network models and related modes of analysis, with emphasis on identifying
novel drug targets among cellular factors. Initially, we provide relevant background on
virology, large-scale data sources and associated computational methods. Following this,
we present four research projects that investigate either HIV-1, HCV or SIV interaction
with host cells. Finally, we present a detailed analysis of the relationships between large-
scale network data and biological function using the Saccharomyces cerevisiae model and
demonstrate the importance of composite interaction networks. In our research we show
that integration of large-scale data, combined with bespoke computational analyses, can
provide a means for investigating specific aspects of viral infection. In particular, using
this approach we provide insight into host-virus interactions that influence HIV-1, SIV
and HCV infection and we infer cellular functions and specific host factors that may be
useful in the search for novel antiviral drug targets. Thus, we recommend that compu-
tational methods for analysing large-scale data sources continue to be developed, with
particular emphasis on methods that integrate data sources, so that results can be derived
from multiple types of information and more complete biological models.
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CHAPTER

ONE

AN INTRODUCTION TO VIRUS BIOLOGY

1.1 Abstract

In this chapter we introduce viruses and briefly discuss basic aspects of their structure
and replication. Following this we provide a more detailed description of Human immun-
odeficiency virus (HIV) and Hepatitis C virus (HCV) molecular biology, pathogenicity
and treatment as these human-pathogenic viruses are the subject of research in later chap-
ters of this thesis. Finally, with reference to both HIV-1 and HCV, we discuss the emerging
science of identifying host cellular proteins that are required for virus replication and their
use as novel antiviral drug targets.

1.2 Virus basics: virion structures and replication cycles

1.2.1 Viruses: not living but thriving

Viruses are not classified as living organisms, as they can not autonomously repro-
duce and they do not sustain their own metabolism [1]. Rather, viruses are complexes of
biomolecules that infect cells and hijack the host metabolism and molecular machinery in
order to replicate. Viruses are, however, more abundant than living organisms and are also
highly diverse – they are present in every known sector of our ecosystem and account for
more genetic sequence diversity than all living organisms put together [2, 3]. In addition,
there is also evidence to suggest that viruses, or at least, virus-like particles, predate living
organisms and were part of an “ancient Virus World" [4].

1.2.2 Virus structures

Depite their great diversity, the biomolecular structure of virus particles (virions) can
be generalised with reference to some essential and common components:

All virions are equipped with a genome made from nucleic acid. In comparison to
cellular genomes, viral genomes are small, ranging from about 3kb in the case of hepatitis
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B virus [5] to 1200kb in the case of the (unusually) large Mimivirus [6]. Virus genomes
can be constructed from double-stranded or single-stranded DNA or RNA. In the case
where the genomes are single-stranded, the genes are either positive-sense (like mRNA)
or negative-sense (complementary to mRNA). Indeed, it is according to these aspects of
genome structure that viruses are often classified, in a system known as the Baltimore
classification [7].

Viral genomes are encased in a protein coat known as a capsid. Capsids are formed
from a multimeric complex of individual protein capsomers. The shape that the virus par-
ticle forms, known as the morphology varies but is usually either rod shaped, e.g., tobacco
mosiac virus; polyhedral, e.g., adenovirus; spherical enveloped viruses, e.g., influenza, or
complex, such as having a polyhedral head from which a tail apparatus extends, e.g., bac-
teriophage T4 [8]. Enveloped viruses have an outer membrane envelope, derived from the
host cell membrane or an intracellular membrane [8]. On the outer perimeter of virions,
for example, inserted into a membrane envelope, may be additional proteins whose roles
in virus biology typically include attachment to cellular membranes via cellular receptors
and entry into cells [8].

1.2.3 Virus replication

Viral reproductive cycles can be divided into several stages: attachment to the host
cell, entry into the cell, uncoating, replication, virion assembly and release from the cell.

Firstly, virions attach to the surface of the cell through interaction between the virion
and the host cell membrane. In the case of higher eukaryotic viruses, attachment and
entry is typically specific to a certain subset of cells, as viral envelope glycoproteins target
a specific cell-surface receptor that is unique to a specific cell type. For example, gp120
proteins on HIV-1 virions bind specifically to CD4 receptors on CD4+ lymphocytes [9]
and HCV surface glycoproteins E1 and E2 bind to a small array of hepatocyte receptors
including CD81, scavenger receptor SR-BI, and claudin-1 [10].

Next, by fusing with the host membrane, or via endocytosis, viruses enter the host
cells. Endocytosis is a broad term that covers four major mechanisms – phagocytosis,
macropinocytosis, clathrin mediated, and caveolin mediated endocytosis – whereby cells
absorb particles that cannot pass directly through the cell membrane [11]. Clathrin medi-
ated endocytosis is a process by which clathrin-coated cargo-containing vesicle are trans-
ferred accross the plasma membrane [12]. Clathrin mediated endocytosis occurs consti-
tutively in most mammalian cells and is the main endocytosis mechanism observed for
virus uptake, including cellular uptake of both HIV-1 and HCV [12, 10, 11].

Inside the host cell, the capsid proteins are removed from the viral genomic material,
e.g., by enzymes in the host cell [8], in a process known as uncoating. Following uncoat-
ing, replication of virus genomes and production of viral proteins occurs within the cell.
These processes are quite specific to the virus type and in particular, depend on their type
of genome. For example, Influenza viruses, have negative-sense single-stranded RNA
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Figure 1.1: HIV virions budding from an infected cell. HIV particles are shown in pink
budding from a host lyphocyte cell. Wellcome Images, available under Creative Com-
mons Licence 2.0.

genomes (a type IV virus [7]). In order to produce positive sense RNA, both as a template
for new genomes and for translation into viral proteins, the virus requires RNA-dependent
RNA polymerase, encoded in its own genome and present also in small amounts as protein
within the virion [13, 14]. Conversely, HIV-1 has a positive-sense single-stranded RNA
genome from which double-stranded DNA is produced by the viral reverse transcriptase
protein. Viral double-stranded DNA is inserted into the host nuclear genome in a process
catalyzed by the HIV-1 integrase protein, that may then be transcribed and translated as
with cellular DNA [15].

Following the production of new viral genomes and proteins, new virions become
assembled and are released from the cell as new infectious particles in a process known
as maturation. Though many viruses can self-assemble before release (virus components
in buffered solution can form infectious and functional particles [16]), enveloped viruses
tend to assemble as part of a scaffold with the cell membrane, where membrane bound
virus proteins are located [17]. These enveloped viruses, including both HCV and HIV-1,
are released by budding of the cell membrane to form the envelope of the virus, in which
viral surface proteins are present. Figure 1.1 shows an image of budding HIV virions.
Alternatively, virus release from cells can involve lysis of the cell. For example in Epstein-
Barr virus infection, expression of certain ‘late’ genes and viral proteins promotes entry
into the lytic cycle [18, 19].
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Figure 1.2: Schematic diagram of the HIV-1 genome. The genome has nine open reading
frames: Gag, Pol, Vif, Vpr, Tat, Vpu, Rev, Env and Nef. The coding RNA is flanked by a
3’ and a 5’ UTR. The open reading frames encode 18 main viral proteins: Matrix (MA),
Capsid (CA) nucleocapsid (NC), p6, Protease (PR, also known as Retropepsin), Reverse
transcriptase (RT), Integrase (IN), Vif, Vpr, Tat, Rev, Vpu, Envelope glycoproteins gp120
and gp41 and Nef; and three polyproteins Gag, Pol and Env (also known as gp160).

1.3 Human-pathogenic viruses HIV-1 and HCV

1.3.1 HIV-1

HIV is a member of the genus Lentivirus, part of the Retroviridae family. Retroviridae

are named so due to the ‘backward’ production of DNA from an RNA genome. Thus,
HIV is classified as a type VI virus [7]. HIV infects human CD4+ lyphocytes and is the
causative agent of acquired immunodeficiency syndrome (AIDS). The two known virus
types, are HIV-1 and HIV-2. HIV-1 is the more potent of the two types, being both more
prevalent and pathogenic [20], hence, the majority of scientific research on HIV, including
the HIV research in this thesis, is focused on HIV-1.

The roles of HIV-1 proteins in virus replication

Each HIV-1 virion carries two copies of the genome, which is 9.7kb in length and con-
tains nine reading frames that encode 18 proteins, including three functional polyproteins
(figure 1.2) [21].

The Gag gene encodes for a polyprotein from which the structural proteins of HIV-1,
Matrix (MA), Capsid (CA) and nucleocapsid (NC), are derived (figure 1.2) [22]. The core
of the virion is composed from the genomic RNA bound to NC proteins, about which is a
cone shaped capsid, formed from CA capsomers [22]. Outside the core is the virus matrix,
composed from MA proteins that are associated both with the inner layer of a membrane
envelope and with the core [23]. Figure 1.3 shows an illustration of a HIV virion. As
with most HIV-1 proteins, NC, CA and MA are attributed with regulatory roles in virus
reproduction, not all of which are fully understood. For example, MA has both a nuclear
localisation and a nuclear export signal, so may have chaperone activity [23]. MA is also
important for recruitment of Gag polyproteins to immature virions, where Gag is cleaved
by PR, as with other HIV-1 polyproteins, as part of the maturation process [23]. NC also
has more than just a structural role: it can cooperate with cellular transcription factors to
enhance viral HIV-1 transcription [24].
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Figure 1.3: A cross-sectional illustration of a HIV virion. Coiled at the centre of the
virion, encased in a cone-shaped capsid is the genomic RNA, Outside of the capsid, within
a membrane envelope is the matrix layer. At the perimeter of the virion is the membrane
envelope into which the envelope glycoproteins complexes are inserted. Wellcome Im-
ages, available under Creative Commons Licence 2.0.

Inserted into the membrane envelope of HIV-1 are trimeric complexes consisting of
glycoproteins dimers – a gp41 transmembrane protein and a gp120. The primary function
of this complex is to facilitate virus attachment and entry into host cells. Entry is achieved
by the binding of gp120 to CD4 molecules on the surface of lymphocytes, the complex
spike then undergoes a conformational change, allowing gp120 to bind to a secondary
chemokine receptor, either CXCR4 or CCR5, depending of the virus tropism. This two-
pronged attachment allows gp41 to penetrate the membrane of the host cell [9].

The reverse transcriptase protein is an essential enzyme for production of double-
stranded DNA from RNA. Not only does HIV-1 RT catalyse synthesis of negative-sense
cDNA (complementary to the HIV-1 genome) it also has an RNaseH domain that degrades
genomic RNA before synthesis of the second DNA strand. When the double-stranded
DNA has been sythesised, it is translocated to the nucleus and inserted into the host cel-
lular genome in a process catalysed by the IN protein. The inserted DNA is known as
a provirus – a template for both new viral genomes and mRNA. During DNA synthesis
by RT, recombination is frequent and polymerisation is error-prone. Furthermore, both of
the parental RNA genomes can contribute to producing a single DNA copy. These pro-
mote rapid evolution of HIV-1 that can have significant implications on the appearance of
drug-resistant virus strains. [15]

HIV-1 Tat, is the transactivator of viral transcription. Tat binds to the transactivation-
responsive region (TAR) region of in the viral DNA and recruits a transcription activator
complex, P-TEFb, forming what is usually termed the “pre-initiation complex”, that in
turn activates RNA polymerase II [25]. In addition, Tat has been shown to recruit his-
tone acetyltransferases, in order to modify chromatin structure and promote transcription
[25]. As a transcriptional activator, Tat also has many regulatory effects on cellular genes
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linked to a range of functions (indeed several hundred such regulatory relationships have
been catalogued [26, 27]), including immune system regulation [28, 29, 30, 31], signal
transduction [32, 33] and cell survival [34, 35].

Once viral RNA transcripts are produced, in order to act as either viral genomes or
as translated messengers, they must be exported out of the cell nucleus and into the cyto-
plasm. However, these transcripts contain introns, but nuclear export of intron-containing
RNA is not a typical cellular activity. Thus, nuclear export of viral RNA can be facili-
tated by HIV-1 Rev [36]. A nuclear export signal Rev binds to the host protein exportin
1and the argenine-rich domain (ARD) in Rev binds to a Rev-response element (RRE).
The exportin-Rev-RNA complex docks at a nuclear pore complex, and in an interaction
that is mediated by nucleoporins, RNA passes across the nuclear membrane [36, 37, 38].

HIV-1 also has what are termed “accessory proteins” – Nef, Vif, Vpr, and Vpu.
Though these proteins have various roles, their main theme of activity involves manip-
ulation and evasion of the immune responses of the host [39]. For example, a major role
of Vif (Viral infectivity factor), is for counteraction of APOBEC3G (apolipoprotein B
mRNA-editing enzyme catalytic polypeptide-like 3G). APOBEC3G is a cytidine deam-
inase that is active as part of the innate immune response to viral infection. By binding
to HIV-1 genomic RNA, APOBEC3G can create many cytidine (C) to uridine (U) mu-
tations to cause loss of the encoded signal and also be incorporated into newly formed
HIV-1 virions [39]. However, Vif binds to APOBEC3G and recruits an enzyme that ubiq-
uitinates APOBEC3G, targeting it for proteasomal degredation [39]. Thus, Vif inhibits
APOBEC3G-mediated innate immunity. Vpu can also abrogate interferon-α dependent
tethering of fully formed virions at the cell surface, again, as mechanism to avoid innate
immune activity. In the context of acquired immune system avoidance, both Nef and
Vpu can alter the ectopic expression of antigen-presenting MHC class molecules [39].
The established role of Vpr is somewhat different: Vpr arrests infected cells in the G2
stage of the cell cycle. G2 arrest is thought to increase viral replication by upregulating
transcription and translation of viral genes [40].

Lastly, the p6 protein, found at the C-terminus of the Gag polyprotein, is required for
incorporation of Vpr into HIV-1 virions [41].

HIV-1 pathogenicity

HIV-1 infection can be divided into two clear stages, acute and chronic infection.
Acute infection follows the initial infection event. During initial acute infection HIV-1
primarily infects resting CD4+ T cells in areas such as the intestinal and genital mucosa.
Within two weeks of becoming infected, extreme levels of virus replication occurs, infec-
tion plasma viral loads of roughly 107 to over 108 million copies per ml can be observed
and a large proportion of the total CD4+ effector memory T cells in these zones become
infected. As a result, CD4+ cell counts are are dramatically reduced. Following this pe-
riod of intense replication, a necessary switch takes place whereby infection begins to
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target activated, dividing T cells, marking the transition into chronic infection. [42]
Though much attention is paid to deterioration in health that is observed in the chronic

stages of infection, the massive extent of acute HIV-1 infection is also associated with
some severe disease symptoms including fever, fatigue, weight loss, ulceration and neu-
ropathy [43]. Furthermore, the severity of acute infection is thought to be closely linked
to the severity of immune system failure during chronic infection [42].

During chronic HIV-1 infection, viral loads become lower [42] and the infection is
largely asymptomatic [44]. However, throughout chronic infection the host undergoes
increasing general immune activation such as increased pro-inflammatory cytokine pro-
duction, increased frequency of activated memory T cells [44]. The reasons for chronic
immune activation are not entirely clear, however virally-induced innate immune activa-
tion could play an important role [42]. Eventually, typically over the course of a number
of years, the regenerative capacity of the immune system becomes exhausted and the T
cell counts in the host fall below an effective minimum population. This point marks the
beginning of AIDS and fatal immune system collapse [44].

Simian Immunodeficiency Virus does not cause AIDS in natural SIV hosts, such as
African Green Monkeys and Sooty Mangabeys [45]. However, in some non-human pri-
mates that are non-natural hosts, such as macaques, SIV causes AIDS by a similar, if
somewhat accelerated pathway to that observed in human HIV-1 infection [46]. This
paradigm has allowed some interesting studies (e.g., [47, 48, 49]) to try to identify the
molecular determinants of HIV-1 pathogenicity, using SIV infected non-human primates
as biological models. These concepts are studied in greater detail in chapter 6.

HIV-1 Epidemiology

According to the Joint United Nations Program on HIV/AIDS report from 2010, over
33 million people are infected with HIV [50]. Furthermore, HIV-1 infection is a truly
global phenomenon as more than one in 1000 people are infected in most countries for
which data is available; tens of countries from around the world, including Russia, Portu-
gal and the United States have a prevalence of at least one in 500; and in many sub-saharan
African countries, more than one in 20 are infected [50].

Due to the widespread infection frequencies, HIV-1 is considered by the World Health
Organisation to be a pandemic. The major limiting factor to the spread of HIV-1 is the
limited routes for transmission. HIV-1 infection is only transmitted through direct contact
of bodily fluids between an infected and uninfected individual, typically through sex-
ual transmission, blood (such as sharing hypodermic needles and infected blood transfu-
sions), of from an infected mother to their child during pregnancy, childbirth or breast
feeding [51]. In practical terms, prevention of HIV-1 infection can be achieved by rela-
tively simple methods, e.g., injecting only with sterile needles and using condoms. How-
ever, the social and economic requirements for successfully managing HIV-1 infection on
a global scale are clearly problematic and as a result millions of new HIV-1 infections

24



1.3. HUMAN-PATHOGENIC VIRUSES HIV-1 AND HCV

occur every year [50].

1.3.2 HIV-1 treatment

Despite recent advances in HIV-1 vaccine development, there is no effective HIV-1
vaccine [52]. However, there are over twenty antiretroviral drugs that are approved for
use in order to prohibit HIV-1 replication and the onset of AIDS.

Antiretroviral drugs can be categorised according to their mechanism of action. The
two categories that together account for the majority of antiretrovirals are protease in-
hibitors and reverse transcriptase inhibitors. Protease inhibitors, of which there are cur-
rently ten approved drugs [51], inhibit the HIV-1 protease and prevent cleavage of viral
polyproteins to individual proteins. Reverse transcriptase inhibitors, that prevent reverse
transcription of viral cDNA from genomic RNA, fall into two subtypes, nucleoside ana-
logues and non-nucleoside analogues. Nucleoside analogues prevent cDNA synthesis by
acting as competitive RT substrates that when incorporated into viral DNA cause termina-
tion of DNA synthesis [53]. Non-nucleoside/nucleotide analogues bind to a hydrophobic
pocket of RT to alter the structure and inhibit the activity of the enzyme [53]. Other types
of antiretroviral agents include cell entry and integrase inhibitors.

These antiretroviral agents are, in the current protocol for treatment, typically adminis-
tered in combination, in a system known as highly active antiretroviral therapy (HAART).
HAART is normally started during chronic HIV-1 infection when CD4+ T cell counts be-
come low, e.g., lower than 200 cells/mm3 [54]. Typically HAART involves two nucleo-
side analogues and either a non-nucleoside analogue or a protease inhibitor. However, the
combination of agents is frequently altered in order to avoid intolerance, toxicity and the
appearance of resistance mutations [54]. Although, owing to proviral integration into host
cell genomes, HAART cannot eradicate HIV-1, it is a very effective program of treatment
and can prevent the onset of AIDS for the lifetime of an infected patient [54].

A major drawback of HAART is the ongoing requirement for access to pharmaceu-
ticals and treatment monitoring. In low- and middle-income countries only an estimated
36% of those patients in need were receiving treatment. However, this percentage has
increased in recent years. [50]

1.3.3 HCV

“Hepatitis” means inflammation of the liver [55]. HCV primarily infects hepatocytes
found in the human liver [56, 55] and is a major cause of acute and chronic hepatitis,
hepatocellular carcinoma and liver cirrhosis. HCV is the soul member of the genus
Hepacivirus, part of the Flaviviridae family. Flaviviridae include several other human-
pathogenic viruses including yellow fever virus, dengue fever virus and Japanese and
Tick-bourne encephalitis [57]. Like all Flaviviridae, HCV has a positive-sense, single
stranded genome. Thus, HCV is classified as a type VI virus [7].
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Figure 1.4: Schematic diagram of the HCV genome. The genome has a single main open-
reading frame that encodes ten main proteins. In addition, within the Capsid (C) sequence
is an alternative reading frame protein, termed Frameshift protein (or F).

The roles of HCV proteins in virus replication

The HCV genome encodes a single polyprotein of approximately 3000aa in length,
that is cleaved to form ten main proteins; from the C to N-terminus these are C, E1, E2,
p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B [58] (figure 1.4). Owing to advances in
HCV cell culture models, many advances in our understanding of HCV biology have been
made in the last ten years [59]. However, our knowledge of HCV replication does not yet
match that of HIV-1.

The structural proteins of HCV are C (core) and envelope glycoproteins E1 and E2.
The core protein encases the genomic RNA and forms the capsid of the virus. Core is bio-
chemically very basic and can self-assemble to form HCV-like particles [58]. Surround-
ing the capsid is a membrane envelope, into which E1-E2 heterodimeric glycoproteins are
inserted.

Liken to HIV-1, the prominent role of the surface glycoproteins is to mediate fusion
and entry into target cells. Perhaps the best etablished HCV cell-entry mediator is CD81.
CD81, that binds to the E2 protein to mediate HCV entry, is found on the cell surface of a
number of cell types, including hepatocytes. However, not all CD81 expressing cells are
susceptible to HCV entry [57], leading to the proposal that other receptors are required in
this process. Other identified receptors include scavenger receptor B type I (SR-BI) and
heparan sulfate proteoglycans that bind E2 [57], tight-junction proteins Claudin-1 and
Occludin and low-density lipoprotein [58]. However, the role of these cellular proteins is
far from fully elucidated. HCV particles enter the cell via the clathrin-mediated pathway,
following which viral RNA may be released into the cytosol where virus replication can
begin [60].

In addition to their structural and entry-mediating properties, HCV structural proteins
have other roles. For example, Core is essential for association of HCV virus particles
with the endoplasmic reticulum (ER). Core can also translocate into the mitochondria of
infected cells, chaperone mitochondrial proteins and effect Ca2+ and apoptosis signals
[58]. E1 and E2 are also thought to be important for ER localisation [57].

HCV replication occurs entirely in the cytosol [56]. Synthesis of HCV polyproteins is
perceptively more straightforward than for HIV-1. Situated near to the 5’ end of genomic
HCV RNA is the internal ribosomal entry site (IRES). The IRES mediates binding of
the RNA to the ribosome in order to form a translation initiation complex, consiting of
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viral RNA and proteins, ribosomal subunits and cellular transcriptional activators such as
eukaryotic translation initiation factor, eIF3 [57].

The non-structural proteins – NS2, NS3, NS4A, NS4B, NS5A and NS5B – are thought
to be involved in genomic replication of HCV [58]. The function of the NS2-NS3 pro-
tease is not well understood. Originally a polyprotein of NS2-NS3 was termed an au-
toprotease, as it was assumed that the proteolytic active site in NS2, that is required for
NS2-NS3 cleavage, acts alone through a cis-acting mechanism. However, it has been
shown that the complex acts as a dimer. NS2 is required for the production of infectious
virus particles, possibly as a late stage in virus reproduction during particle assembly
[61, 58]. NS3 is multifunctional, it is an RNA helicase and a serine protease. As a
protease, with NS4A as a cofactor, it is responsible for cleavage of viral polyproteins at
junctions NS3-NS4A, NS4A-NS4B and NS4B-NS5A. The NS3-NS4A protease may also
be important for blocking acute immune activation by inhibiting signals mediated by the
double-stranded RNA sensor, RIG-I [62, 55]. As a helicase, NS3 interacts with the NS5B
polymerase in order to couple RNA unwinding to ATP hydrolysis [58], presumably as
part of RNA replication. HCV replication takes place in what has been termed a ‘mem-
branous web’ – a matrix of small vesicles that are associated with the rough endoplasmic
reticulum. The role of NS4B includes promoting formation of these vesicles and acting
as a membrane anchor for the HCV replication complex, though several other putative
functions have been suggested including modulation of NS5B activity and interleukin 8
signaling [58, 55]. NS5A is an RNA binding phospho-protein. NS5A is present in hyper-
and basally phosphorylated forms. The basally phosphorylated form is associated with
increased RNA replication [58]. NS5A and NS5B are also required for assembly of the
replication complex, possibly by interacting with vesicle membrane-associated protein
hVap-33 [55]. NS5A has also been attributed with other roles including inhibiting protein
kinase R, another innate immune system double-stranded RNA sensor [55].

The HCV p7 protein is a membrane protein that can act as a Ca2+ ion channel. Little
is known about the details of p7 activity, though it is required for effective HCV infection
in vitro and it may have a role in virus particle maturation and release from the cell [61].

In addition, there is another protein, the frame-shift protein, F, that is encoded in an al-
ternative reading frame to the other HCV proteins, within the capsid-encoding sequence.
The F protein has been shown to be present in some chronically infected patients but the
function and also the mechanism by which this protein is produced are not well under-
stood, although putative functions have been proposed including prevention of apoptosis
of infected cells [63, 64].

HCV pathogenicity

Like HIV-1, HCV infection also has acute and chronic stages. The acute infection
usually lasts from two to six weeks and during this time the majority of patients do not
experience any noticeable symptoms, though in some cases patients get jaundice or other
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non-specific symptoms such as abdominal pain [55]. The symptoms during acute in-
fection are probably caused by virus replication and the associated immune activation, in
particular, a HCV-specific CD8 cytotoxic T cell response [65]. During the first six months
of infection, some patients clear HCV completely, though this only occurs in 10-25% of
cases, the majority progress to chronic hepatitis C [65].

Disease progression during chronic HCV infection is slow. HCV infected individu-
als may not experience any severe symptoms for over twenty years from contracting the
infection [55]. However, on their eventual appearance, HCV disease symptoms are se-
vere and include liver inflammation, liver fibrosis and cirrhosis and an increased risk of
hepatocellular carcinoma [65]. Liver fibrosis is the build up of connective tissue caused
by repeated scarring of the liver that may eventually lead to loss of function (known as
cirrhosis).

Liver damage, as with in acute infection, is linked to host cytotoxic T cell response.
However, disease symptoms are also linked to the pathogenic activities of HCV proteins
[65]. For example, C, NS3 and NS5A proteins have been linked to an increase in oxidative
stress – a contributer to fibrosis and possibly also to DNA damage that induces carcinoma.
The core protein is also linked to steatosis (also known as “fatty liver”) by inducing the
build up of lipid droplets within cells [55]. Steatosis occurs in the majority of chronic
HCV infections [65] and increases inflammation and contributes to inflammation and
liver damage.

Though persistent inflammation and oxidative stress probably contribute hepatocellu-
lar carcinoma in chronic HCV infection, the causes are not entirely understood. However,
the activity of some HCV proteins may be oncogenic. For example, HCV core stimulates
growth factors and inhibits apoptosis. In addition, core, NS3 and NS5A can influence the
activity of tumour suppressor, p53. Liken to this, NS5B downmodulates a second tumour
suppressor, pRb. [65]

HCV Epidemiology

Owing to the often asymptomatic nature of HCV infection, an accurate figure for
number of HCV infected individuals is difficult to estimate. However, according to World
Health Organisation estimates, about 3% of the world population are infected with HCV
and over 170 million people are currently at risk from developing liver cirrhosis as a
result of their infection [66]. Due to the delayed onset of hepatitis C, unfortunately, in the
medium term, the burden these infections have on society is likely to increase [67].

HCV can only be transmitted by direct blood-to-blood contact [57]. Indeed, many
transmissions have occurred directly as a result of contaminated blood transfusions and
this has impacted on the global distribution of HCV carriers. For example, 15-20% of the
population in Egypt are (or have before clearance) been HCV infected and this epidemic
can be directly linked to schistosomiasis treatment. Schistosomiasis is a parasitic infection
caused by trematode worms, the treatment for which has included mass-treatment via
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injection, a significant proportion of which were contaminated [68].
Other global hotspots include Italy, where before HCV screening, injections of nu-

trients and vitamins were popular [69]; and Romania, where contaminated transfusions
and more recently, intravenous drug use have been relatively widespread. Both Italy and
Romania have an HCV prevalence of > 3%.

HCV Treatment

As with HIV-1, there is no HCV vaccine. A high level of virion production (estimated
as 1012 virions per day), combined with the error-prone HCV RNA polymerase, causes
frequent mutation of the viral genome (estimated at 8-18 mutations per year) resulting in
production of immune escape mutants [70].

Treatment of chronic HCV infection is currently based on a combination of pegylated
interferon-α and ribivarin. Interferon-α is a not a virus-specific treatment, rather it evokes
a general antiviral immune response that is not fully characterised but includes antigen
expression by class I major histocompatibility complexes, activation of immune effector
cells, and activation and regulation of cytokine cascades [71]. Ribivarin is a broad spec-
trum guanosine nucleotide analogue that interferes with elongation of RNA-dependent
RNA polymerisation but the mechanism of this drug is not greatly understood [71].

Unlike HIV-1, this program of therapy can cure chronic HCV infection, as there is
no provirus integration. However, clearance only occurs in about 40% of cases [71] and
in addition, treatment is often interrupted due to the adverse side effects of these drugs,
such as flu-like symptoms caused by interferon-α and hemolytic anemia (destruction of
red blood cells) caused by ribivarin [72].

1.4 Host cellular factors as targets for antiviral drugs

An emerging train of thought and research into antiviral therapy regards the potential
for host-cellular factors, that are essential for viral reproduction, to act as novel drug
targets [73, 74, 75]. The rationale behind this idea is that viruses rely on the functions of
specific host proteins in order to replicate.

There are two major advantages of targeting host, rather than virus proteins. Firstly,
host proteins are not liable to frequently mutate during the course of antiviral therapy –
viral escape mutants would have to circumvent use of the cellular cofactor being drugged,
perceptibly a more complex route for escape than slight alterations in structure to avoid
direct drug binding [73, 74, 75]. Secondly, viruses have very few proteins to target com-
pared with humans. Indeed, in addition to those host factors with established virological
roles identified as important through specific (and often multiple) small scale studies,
hundreds of novel host-cellular factors have been identified as essential by genome-scale
siRNA screens, for several viruses including HIV-1, HCV and Influenza [76].
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Currently, our portfolio of antiviral drugs that target host factors is small. For example,
from over twenty antiretroviral drugs that are currently approved for use against HIV-1,
only one, maraviroc, targets a host-cellular factor [75] – the CCR5 entry co-receptor [77].
Furthermore, this agent is not without problems, as maraviroc drives intra-patient HIV-
1 populations towards usage of the alternative CXCR4 coreceptor, rendering maraviroc
ineffective [78]. No host-targeting anti-HCV drugs have yet been approved. However, al-
isporivir, a Cyclophilin A inhibitor, has recently entered phase II trials [79] and inhibitors
to microRNA mir-122 are also being investigated [80, 81].

Clearly, as a science, the approach of targeting host cellular factors as an antiviral
approach is in its infancy. By researching and understanding more about how these host
factors influence viral replication, we further our ability to successfully identify effective
targets. By integrating information and conducting data mining we maximise the informa-
tive potential of the available information – this lemma embodies the motivation behind
the research in this thesis.
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CHAPTER

TWO

A REVIEW OF LARGE-SCALE BIOLOGICAL DATA
SOURCES AND DATA MINING TECHNIQUES

2.1 Abstract

In this chapter we introduce sources of large-scale data including data derived from
laboratory experiments and from computational inference. The methods for obtaining the
data are described and examples of data sources are given. Following this we describe
methods of data mining that are applicable to the analysis of large-scale biological data.
Throughout, particular attention is paid to areas of research relevant to virus-host interac-
tion, particularly the study of interaction networks. Lastly, we briefly discuss the role that
computational biology has in furthering our understanding of virus infection.

2.2 Large-scale data sources

Large-scale biological data is most commonly information pertaining to one of the
“omic” types of biological information, i.e., genes, transcripts, proteins and metabolites,
of which there are many thousands of each entity in a typical human cell. Single large-
scale data sources usually provide comparable information across many entities from one
source, e.g., the sequences for many genes. Data sets pertaining to entire genomes and
proteomes are quite usual, furthermore, recent advances in high-throughput sequencing
have also allowed many genomes to be compared. Importantly, these data sets can be
sufficiently large (and accurate) such that the data can form a basis for statistical and
computational analyses.

There are many sources of large-scale data. Some sources stem from large laboratory
experiments, e.g., genome-wide microarray analysis [82]; some are composite sources
that store measurements taken by individual (but comparable) studies, e.g., repositories
for protein and genetic interaction data, such as the Biological General Repository for
Interaction Datasets (BioGRID) [83]; and some comprise meta-data that, biologically
speaking, can be very diverse but is present in a standardised structure, e.g., Gene Ontol-
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ogy (GO) annotation [84].
In the following subsections sources of large-scale data are briefly described. Not

every source is covered, rather, focus is placed on data types that are relevant to work
in this thesis, particularly gene expression data, protein and gene interaction data and
biological annotation.

2.2.1 Gene expression profiling by DNA microarray

Gene expression profiling is possible using several methodologies including high-
throughtput sequencing [85] and reverse-transcriptase polymerase chain reaction (often
referred to as RT-PCR) [86]. However, perhaps the most prominent method is the use
of DNA microarrays. Indeed, microarray-based gene expression profiling is, perhaps,
the most commonly measured of all large-scale biological data. For example, the Gene
Expression Omnibus data repository at NCBI hosts over 19 thousand publicly available
microarray-based expression profiling experiments [87].

Briefly, DNA microarrays are small solid plates to which multiple strands of DNA
are attached (often referred to as gene chips) [88]. The strands (known as probes), are
specific sequences, such as sections of known genes, or simply short synthetic sequences
that cover the possible sequence-space. Furthermore, probes are grouped into probe sets.
Samples of mRNA are harvested from a source of interest and, depending on the specific
platform, this mRNA may be used to produce cDNA or cRNA and one, or a mixture of
these nucleic acid samples (known as the target sequences) are washed over the gene chip
to allow hybridisation against probes of a complementary sequence [88]. Typically, the
target DNA is fluorescence-tagged so that the hybridisation reaction causes emission of
radiation that can be detected using a confocal microscope, to allow the quantity of spe-
cific sequences within the target pool to be determined [88]. Microarray technology has
developed greatly over the last 20 years and commercially developed gene chips, kits and
methods, from companies such as Affymetrix, Illumina and Agilent have improved the
availability, coverage and accuracy of gene expression profiling. Many such methodolog-
ical advances are reviewed in [89].

A major aim of many DNA microarray experiments concerns the identification of dif-
ferentially expressed genes [89], that is, genes whose expression changes significantly
between two differently treated biological samples. Thus, gene regulation can be linked
to a specific treatment (such as a stimulus or a perturbation) and insights into gene func-
tions and cellular responses can be gained. Considering this aim, there are many aspects
additional to the biochemical process of microarray analysis that contribute to experimen-
tal findings including experimental design, probe-set annotation, filtering, quality control
and statistical significance calculations. These aspects are described below.

At a basic level, experimental design involves the selection of samples, including
treated samples and untreated controls for comparison. Typically, for reasons of reliability
and increased statistical power, several biological samples are prepared and tested, in
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addition, measurements may be taken more than once for each sample (known as technical
replicates). Further to this, efficient designs have been conceived for specific types of
experiment [90].

After raw array intensity measurements have been taken and before differentially ex-
pressed genes are identified, computational steps to annotate probe sets and also quality-
check, normalise and filter the data, are usually taken.

Probe set annotation concerns linking array probes to known genes or transcripts from
public databases. For example, Affymetrix produce annotations that correspond specifi-
cally to the arrays that they produce [91]. However, custom annotations for commercial
arrays have also been produced that improve upon the precision and accuracy of com-
mercial annotations by using more recent genome builds and by removal of certain “bad”
probe sets [92, 93, 94, 95].

Quality control is an important part of microarray analysis as problems can arise at
several steps during the labaratory protocol, including uneven hybridisation or fluores-
cence over the array and RNA degredation [96]. Quality checks vary in their complexity,
the simplest being visual inspection of array intensities to identify obvious anomolies,
such as scratches. Specific software packages that perform a plethora of more complex
metrics are available. For example, the ArrayQualityMetrix package [97] produces plots
that can be used to assess RNA degradation, spatial distribution of probe-target hybridis-
ation and comparative probe intensity distribution plots. In addition to these microarray-
specific quality checks, more general methods, such as principal component analysis
(PCA), can be employed [98] (see section 2.3.2 for a more detailed description of PCA).

Due to inconsistency in the preparation of samples and variation of environmental
conditions during the laboratory steps of microarray protocols, normalisation is an essen-
tial step in analysis pipelines in order to allow samples to be compared without bias [98].
Several normalisation methods are commonly applied but arguably the best is quantile
normalisation [99, 100, 101]. Quantile normalisation works by making same-size distri-
butions equivalent. First probes from each array are ordered according to their intensity
value. Second, the values at each equivalent position from all arrays are changed to the
mean those values. Last, the probes are put back in the original order. Hence, when
expression values are summarised for each probe set, their distributions will typically be
very similar (figure 2.1). Indeed, as this method is simple, it is also computationally quick
to calculate [100]. Quantile normalisation is the normalisation step used to calculate Ro-
bust Multichip Average (RMA) expression measures [99].

Microarrays can provide expression values for thousands of genes. For each gene
for which the significance for differential expression is to be identified, a statistical test
is required to calculate a probability (P ). However, this leads to thousands of statistical
tests being carried out and thus, a correction for multiple statistical tests must be applied.
Indeed, the more tests that are performed, the more severe the correction. Therefore, by
filtering out genes that appear to be insignificant before testing, potentially more genes
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Figure 2.1: Example of microarray probe intensity normalisation. Box-and-whisker plots
display probe intensity distributions for (A) raw sample intensity values and (B) the same
samples after their intensity distributions have been normalised using RMA, a process
that includes quantile normalisation. Sample distributions are clearly more similar to one
another after normalisation.

attain statistical significance [102, 103]. Filtering methods utilise a variety of metrics
including aspects of inter- and intra-sample variation [102], assessment of perfect versus
mis-matched probe intensities [104] or simply removal of probe sets that do not meet a
minimum expression value [102].

The probability for differential expression can be calculated using a statistical test, the
classical choice for a simple two-sample test being a T test. In a T test, the replicates
from one treatment are tested against the replicates from another treatment, for a single
gene. The T test lacks power because in each individual test the majority of informa-
tion available on the array is disregarded. Hence, more complex models for differential
expression analysis have been developed that utilise more information to calculate signif-
icance. For example the Limma method [105] utilises a bayesian method that takes data
values from other genes on the array into account to calculate a moderated T-statistic. As
a result Limma generally outperforms the traditional T test as a method for identifying
differentially expressed genes from the results of microarray analysis [106].

When differentially expressed genes have been identified, further analysis can take
place in order to interpret the results. In particular, it is popular to perform: (i) functional
annotation enrichment analysis using tools such as Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) functional enrichment tools [107, 108]; and (ii)
perform clustering analysis, using methods such as hierarchical clustering to group genes
(and also similar treatments) that share a similar profile of expression [98] (section 2.3.2
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has greater detail on clustering methods). Although other methods that make use of other
data types, such as protein interaction networks have also been developed [109].

Microarray analysis has been applied for the detection of gene-regulatory changes
induced by the infection of pathogenic viruses, including HIV-1 [110] and HCV (e.g.,
[111, 112, 113]). The experimental designs utilised in these studies can compare prepara-
tions taken from uninfected cells to those from infected cells, or alternatively, time-course
experiments can assess changes in gene-regulation over the course of infection.

2.2.2 Computationally inferred gene-regulatory interactions

Using the microarray platform it is possible to observe the effect that specific proteins
have on the regulation of genes (gene-regulatory interactions). For example, a set of over
300 interferon-stimulated genes was verified using microarray analysis [114]. Likewise,
the effects of virus proteins can be assessed. Izmailova et al. [115] monitored the effects
of the HIV-1 Tat protein on the expression of several thousand cellular genes from den-
dritic cells and found that over 30 genes are differentially expressed. However, by this
methodology, it is practically infeasible to elucidate the effect that every protein has on
every other gene, i.e., an all-by-all analysis, for a human system. In an attempt to obtain
such a universal view of gene regulatory relationships, computational inference methods
have been developed that can reverse engineer regulation networks from expression data
[116].

There are two major gene-regulatory inference methodologies, Bayesian networks and
information theoretic approaches. Bayesian networks utilise joint probability distributions
to infer causal relationships between genes. Gene regulatory relationships derived using
Bayesian networks are represented by directed acyclic graphs (DAGs), where the nodes
of the graph represent genes and the edges of the graph represent dependencies between
those genes. In this model, the expression level of a gene is dependent on the other
genes on which there is a dependency. The network structure can be estimated from
gene expression data by a machine learning algorithm, typically by searching for the best
network, according to a statistical scoring function [117].

Information theoretic approaches operate on the assumption that genes with similar
expression profiles are likely to be linked by some form of regulatory event. Indeed, clus-
tering genes of similar expression using a method such as hierarchical clustering, is also
an information theoretic approach that can coarsely group genes that may be co-regulated.
However, such clustering approaches make no attempt to separate direct regulatory in-
teractions from those that are the indirect result of gene-regulatory interaction cascades
[118]. In order to infer direct relationships, information theoretic approaches firstly cal-
culate similarity, or mutual information (MI), between all pairs of genes. Secondly, by a
data-processing step, the most direct, causal relationships are estimated. Established sta-
tistical measures, such as Spearman’s correlation can be used as the similarity measure, or
alternatively, certain specific MI statistics are also appropriate [119]. A variety of methods
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for the aforementioned data processing step have been developed [118, 120, 107, 121],
and in comparison to inferring Bayesian networks, the processing steps are relatively sim-
ple and computationally inexpensive. For example, the Algorithm for the Reconstruction
of Accurate Cellular Networks (ARACNE) is based on the theory of Data Processing
Inequality [122], that states that if gene X , interacts with gene Y in a second order in-
teraction through gene Z (rather than directly), then the MI value between X and Y ,
MI(X;Y ), will be smaller than either MI(X;Z) or MI(Y ;Z). Using this rationale,
weak edges within triplets and also edges with MI cutoff less than a given cutoff are re-
moved [119]. The advantage of MI network approaches, is that large networks of many
thousand genes can be inferred [107], an attribute not yet demonstrated for Bayesian net-
works.

A major problem with computationally inferred gene-regulatory interactions is the er-
ror rate, both in terms of precision and recall. For example, Altay et al. [123] demonstrate
that even when the number of samples is as high as 200 (one sample being equivalent to
a single microarray), the very best MI network inference method achieves an F score of
roughly 0.45, i.e., the accuracy value, taking into true and false positives and also true and
false negatives, is less than half of the potential value.

2.2.3 Protein-protein interactions (PPIs)

Whereas genes store the code that “programs” cellular biology, proteins are a major
effector of this code. In order to carry out their tasks, proteins act in unison, dynamically
regulating and physically transporting one another, coming together in specific combina-
tions to form functional complexes and providing intracellular and extracellular signals to
react to ever-changing environmental factors. All of these protein activities rely on a com-
plex and dynamic network of interactions between proteins [124]. By elucidating what
protein take part in interactions with one another, we can gain an insight into these activ-
ities. Though earlier technologies, such as GST pulldown and co-immunoprecipitation,
allow PPIs to be discovered, large-scale (and even genome-wide) screens are now quite
common using methods such mass spectrometry to identify complexes and yeast-two-
hybrid assays to identify interacting protein pairs [124].

To identify protein complexes, proteins can be affinity-tagged and used as a bait for
protein complex formation. Tagged complexes may then be purified and the subunits
identified by mass-spectometry. A benefit of this method is that protein complexes can
be allowed to form in a natural physiological environment, however, this also poses a
drawback as the environment tested may not allow every true complex to form. [124]

Yeast-two-hybrid works using hybrid fusion proteins in a yeast system, one protein
being fused to a DNA-binding domain (known as the bait), the other protein fused to a
transcriptional activating domain (known as the prey). When the bait and the prey bind
one another, they form a DNA-binding transcriptional activator that promotes expression
of a reporter gene [125]. Variations and developments that use the theme of bait-prey
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binding have been developed to allow greater numbers of interactions to be detected using
large libraries of prey constructs and pooling of many preys to reduce the number of tests
required [125]. However, yeast-two-hybrid studies have drawbacks, in particular, that the
proteins being tested are not always in their native physiological environment, indeed they
may be from a different organism than yeast. The second drawback of yeast-two-hybrid,
as with all protein interaction assays, is that it is prone to both false-positive and false-
negative errors. For example, it is estimated that protein interaction assays of Drosophila

melanogaster proteins suffer from roughly 17% false positives and 28% false negatives
[125].

The largest available data set of protein-protein interactions between HCV and host-
cellular proteins was mainly produced using the yeast-two-hybrid system (and also partly
by curating interactions from previous literature). This data set includes 314 protein in-
teractions identified by yeast-two-hybrid. Follow up analysis of the implicated proteins
revealed that HCV targets proteins from specific functions, for example, proteins involved
in insulin signaling that can be directly linked to steaosis, thereby providing a molecular
insight into the pathogenicity of HCV infection. [126]

2.2.4 Computationally inferred protein-protein interactions

Like gene-regulator interactions, protein-protein interactions can also be computation-
ally inferred. Most of these prediction methods use sequence or structural data to predict
PPIs, as it is likely that interactions have influenced the evolution of the protein and cor-
responding gene. Four examples follow, though there are many more methods that have
been developed [125].

Phylogenetic profiling of proteins can be used to predict interactions. In this method,
the co-existance of proteins in multiple species is considered, the rationale behind the
method being that if certain proteins only operate as a functional unit a functional com-
plex, then these the set will tend to be evolutionarily conserved in multiple genomes. The
drawbacks of this method are that the method relies on accurate determination of presence
or absence of similarly functioning homologues between species, thus relying on whole-
genome sequences. Furthermore, this method fails for essential proteins that are present
in all species [125].

PPIs can also be assigned directly from interactions that have been experimentally
verified in another organism, by assuming that conserved proteins take part in conserved
interactions. Such assumptions can also be made at the level of protein domains. For
example, the protein structural interactome map (PSIMAP) classifies these interactions
[127]. The Human Protein Interaction Database (HPID) has used both of these methods
to predict interactions between human proteins. They utilise protein interactions verified
in yeast and also domain assignments made by the Structural Classification of Proteins
project [128].

Proteins that interact with one another have a tendency to be co-expressed [129]. How-
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ever, relying on co-expression alone for assignment of interactions is clearly problematic,
as indirect functional relationships (as well as spurious relationships) will also be present
in the data. Despite this, co-expression can aid the prediction of PPIs [129].

Machine-learining methods are able to combine data such as co-expression, domain
interactions and sequence information in order to make predictions [130], a methodology
that has also been applied to prediction of HIV-1 protein interactions with host proteins
[131]. The advantage of these predictions is that they are inexpensive and quick to per-
form. However, while these methods perform better than random the predictions are still
subject to a considerable level of inaccuracy [130].

2.2.5 Composite interaction data sources

A study by von Mering el al. [124] compared the coverage attained by different large-
scale protein-protein interaction detection methods, including both laboratory assays and
computational inference, from a yeast system. Their findings indicated that the meth-
ods are biased towards detection of interactions between proteins of specific functional
categories, cellular localisations and factors such as protein abundance can also have a
significant effect. In every case, the overall coverage of each method is incomplete and
accuracy is surprisingly poor, e.g., as low as ∼10% for early Y2H screens [124]. Clearly
therefore, it is useful to consider data from a variety of sources in order to get a universal
set of interactions between proteins. Indeed, using a composite source, in order to gain
a set of interactions with greater confidence, it is possible to select interactions that have
been verified by independent studies, or ideally, by more than one method.

There are a number of databases that provide interaction data, from a variety of
sources, in an open-source and amenable format. These databases increase the poten-
tial usefulness of the data for the scientific community. Examples of such databases are
The Biomolecular Interaction Network Database (BIND) [132], The Molecular Interac-
tion Database (MINT) [133], BioGRID [134] and the HIV-1, Human Protein Interaction
Database (HHPID) [26, 27].

BioGRID currently holds approximately 400 000 reports of physical protein-protein,
gene-regulatory and gene-knockout interactions from a variety of organisms. These inter-
actions are deposited by the scientific community from both high-throughput and small-
scale detection methods in addition to interactions that are manually curated from lit-
erature. BIND contains networks, pathways, complexes and interactions [132]. Like
BioGRID, BIND contains data from both high throughput and small-scale sources and
is designed to be an open source, inclusive library of interactions. The MINT database
is a collection of >95 000 PPIs, involving >27 000 proteins from 325 organisms [133].
These PPIs are collected from experimentally verified sources; although 90% are from
high-throughput methods, the remaining 10% represents a large number of curated inter-
actions.

The HHPID contains experimentally verified interactions between HIV-1 and human
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proteins. The HHPID contains over 2589 unique HIV-1-human protein interactions, in-
cluding both direct physical and indirect regulatory events and all interactions were man-
ually are curated from primary literature – a seven year effort that involved the screening
of over 100 000 journal articles [27]. Furthermore, the interactions are not simply simply
binary events between two proteins, as every interaction includes a short description of the
biological outcome of the event, such as “upregulates” or “inhibits”, from a vocabulary of
68 such descriptions.

Though composite data sources provide a holistic, inclusive picture of biological in-
teractions, they are not without their drawbacks. Firstly, those studies that include data
from small-scale studies are subject to study bias. As, unlike a whole-genome screen,
small-scale derived interactions, though perhaps rigorously proven, are a product of hu-
man choice. For example, the p53 protein has been extensively studied, particularly for
the role it plays in preventing human cancers [135]. The p53 protein is the human protein
in 19 records in the HHPID, involving five different HIV-1 proteins. While these may be
bona fide interactions, the identification of such a large number of interactions is proba-
bly, in part, due to the interest the scientific community has in this protein. When testing
is carried out without correction for this study bias, the results are potentially liable to
report aspects of bias rather than of biology [136].

2.2.6 Biological annotation

Biological annotation is a highly valuable form of information. Genome and pro-
teome resources such as the National Center for Biotechnology Information (NCBI) and
the European Bioinformatics Institute (EBI) provide plethora of information about many
thousands of genes. On a small-scale this information is useful for obtaining specific gene,
transcipt and protein information, links to publications and further sources of information.

In large-scale analyses, biological annotation can also provide powerful insights. For
example, gene sets identified by large-scale experiments are almost invariably subject to
enrichment analysis, i.e., performing a statistical test in order to identify whether certain
biological features (and associated annotating terms) are over-represented. Indeed many
specific tools and packages have been developed to perform this exact type of analysis,
these software typically requiring little more than a list of gene identifiers to obtain de-
tailed results (for example [137, 138, 139]).

Probably the most widely used class of biological annotation in statistical and other
computational analysis is GO annotation [84]. GO is a structured method of gene anno-
tation, using a controlled vocabulary of annotating terms. Every GO term fall into one of
three ontologies: biological process, referring to a theme of activity; cellular component,
referring to a physical location that is associated with the gene product; and molecular
function, refering to the biochemical and enzymatic activity of the gene product. The
structure of each ontology is as a directed acyclic graph (DAG), where the vertices of the
graph are the annotating terms. The root of an ontology is a node referring to one of bio-
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logical process, cellular component or molecular function. Below the root node are more
specific ‘child’ terms from which extend further child terms. The nodes may have multi-
ple parent and child relationships but importantly, as a DAG, a node is never an ascendent
and descendent of another node, ensuring that the structure is acyclic. [84]

Genes can be assigned with any number of GO terms and the details of the method for
assignment of each term are available as one of about twenty evidence codes. These evi-
dence codes include a computational inference, experimental validation and hand-curated
term assignment. Annotation sets are available for a wide range of organisms, including
humans. The human annotation set, compiled by the European Bioinformatics Institute
[140], currently includes over 18 000 genes and over 200 000 gene-term associations and
certainly is, therefore, a large-scale source of biological data.

2.2.7 Short Interfering RNA technology

RNA interference screening was discovered in 1991 following experiments in which
double-stranded RNA (dsRNA) was injected into nematode worms and found to silence
genes with complementary sequence [141, 142]. Since that time the technology has devel-
oped, in particular, the use of shorter dsRNA strands (less than 30 base pairs) circumvents
activation of the innate antiviral immune response and has allowed RNA interference
studies of mammalian cells [142]. Gene silencing involves processing of dsRNA into
short-interfering RTNA (siRNA) by the RNase enzyme, Dicer. The siRNA is incorpo-
rated into an RNA-induced silencing complex whose activity is to silence complementary
messenger RNA [142].

Using scaled up, genome-wide siRNA screens, phenotypes that are associated with
the silencing of specific genes can be investigated. This screening procedure is highly
appropriate for the study of host-virus systems, as it enables identification of host fac-
tors that have a direct influence on virus replication (these are referred to as “dependency
factors"). Of particular interest are those dependency factors that are essential for repli-
cation of pathogenic viruses, as these factors present a clear opportunity for use as novel
host-cellular drug targets [143, 144].

A recent boom in siRNA screening of host-virus systems have identified dependency
factor sets for HIV-1 [144, 145, 146], Influenza [147, 148, 149], HCV [150, 151, 152, 153,
154] and Western Nile Virus [155]. A meta-analysis of three genome-wide screens of the
HIV-1 host system [144, 145, 146] by Bushman el al. [156] showed that the intersection
in the identified host genes, from all studies, was surprisingly small at just three genes.
Despite the apparent lack of overlap, through integration of PPI data and biological anno-
tation Bushman el al. identify functional components, such as subunits of the proteasome,
that are significantly represented by multiple studies and are therefore important for HIV-
1 replication. Their study illustrates that differences in experimental procedure can lead
to quite different results, but perhaps most importantly, that the greatest biological insight
is gained through integrative analysis of large-scale data.
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2.3 Data mining in biology

Large biological data sets allow robust computational analyses of biological processes
and cellular activity, including the study of virus infection. At a simple level this can
involve the use of classical statistical tests to determine aspects such as significance of
enrichment of biological annotation. Indeed, large experiments, such as whole genome
microarray, can not be uncoupled from computational analysis because the amount of data
created is so great that large-scale statistical and mathematical analysis are essential.

However, the data types currently presented, including genome-scale screens, net-
works of protein and regulatory interactions, structured systems of annotation and poten-
tially multiple layers of primary experimental and secondary inferred data, are unequivo-
cally the domain of intricate, integrative models of biology and methods of analysis that
are confined to computational studies. This type of study is often termed data mining.
Here, we describe some important biological data-mining concepts. Though data mining
encompasses a large variety statistical and algorithmic methods, here we focus primarily
on methods of data representation and data analysis that concern, or are compatible with
biological networks.

2.3.1 Biological networks

In the case where relationships can be defined between multiple entities, the resulting
data structure can be modelled by a network, otherwise known as a graph, where the
nodes (or vertices) of the network represent the entities and the edges between those nodes
represent relationships between the entities [157]. This concept is common in many varied
fields outside of biology, for example, diagrams of electrical circuits and topological maps
of railway stations are frequently represented by networks (figure 2.2).

The terms graph and network are, in this field, interchangeable – the former stressing
a mathematical concept and the latter stressing the application [157]. A particular ad-
vantage of modeling biological systems using graphs is that are then amenable to graph
theoretical analysis, an established field of mathematics. The following definitions de-
scribe some of the concepts of graph theory as describe in a review by Huber et al. [157]:

A graph is specified by a set of nodes V and edges E; each edge from E connects
two nodes from V (except in the case of hypergraphs, where edges can connect multiple
nodes). Node interactions (i.e., edges) can be directed or undirected. For example a
transcription activation complex acting to upregulate a certain protein could be considered
a directed interaction. Nodes of a graph are said to be adjacent if they are connected by
an edge.

An edge ending at a node is said to be an incident at node. The degree of a node is
the number of edge incidences at that node; a hub node has a relatively high degree. The
degree includes incidences caused by self-loops; where an edge has both ends at the same
node. A complete graph is one where all nodes are joined to all other nodes by an edge.
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A

B

Figure 2.2: Examples of networks. (A) Topological diagram representing a rail network
(Source: The Port of Authority, Creative Commons Attribution-ShareAlike 3.0 License,
GNU Free Documentation License). (B) Electronic circuit diagram. Both are examples
of networks, where nodes represent stations or electrical components and edges represent
rail links or flow of electricity, respectively. Neither diagram is to scale but importantly,
connections between nodes are clearly represented.

Two nodes are reachable from one another if one can traverse a set of alternating
nodes and edges between the two nodes in question; the alternating set of nodes and edges
between a pair of reachable nodes is called a walk between nodes. A graph is connected

if a walks exists between every node pair. Types of walks include; paths, walks with
no repeated nodes; trails, walks with no repeated edges and the distance is the shortest
possible walk between two nodes.

The connectivity of a graph is the minimum number of edges that can be removed be-
fore one node or nodes becomes disconnected from the rest of the graph , i.e., one or more
nodes are not reachable from the other nodes. The set of edges removed to disconnect a
graph is referred to as a cut. Therefore, to work out the connectivity one works out the

42



2.3. DATA MINING IN BIOLOGY

minimum cut. Graphs may have a connectivity of 0; as they may already have nodes that
are not reachable from others (a disconnected graph) – this is a fairly common feature of
current biological networks, as our knowledge of interactions is incomplete.

A well described feature of PPI networks is their “small world", scale free structure
(e.g [158]). A small world network is one where any one node can be reached from any
other node in a few steps; therefore, the mean shortest path length is small [158, 159]. In
addition, the average clustering coefficient in small world networks of nodes is higher than
would be found in a random network [158]. The clustering coefficient is a mathematical
term for measuring how close a node and all adjacent nodes are from forming a clique.
Therefore, a property of small-world networks is that they tend to have a high number of
cliques and cohesive-subgroups.

PPI networks also tend to have a few well connected ‘hub’ proteins with a high degree
and many proteins with a low degree. This property remains the same no matter what
the size of the network – the degree distribution is independent of the scale. As a result,
biological networks are often described as “scale free” [160]. The nature of these scale
free networks may explain some of their robust properties. For example, it has been
suggested that because most proteins are not highly connected, these proteins, unlike
hubs, may be removed without failure of the overall system [161].

Areas within graphs that have a high incidence of internal connections can be re-
ferred to as cohesive subgroups. A clique is a type of cohesive subgroup, formed by a
set of nodes, where every pair of nodes is connected via an edge. A clique that cannot be
made larger by the addition of more nodes is called a maximal clique. However, among
biological networks the presence of true cliques may not be common (especially given in-
complete interaction data). Therefore, other definitions for describing cohesive subgroups
have been developed. For example a k-plex is a subgraph containing x nodes where each
node is adjacent to at least n other nodes, where n = x− k.

Computational analysis using graph theoretical methods can be used to to make infer-
ences regarding the function and structure of biological networks. For example, network
module identification has attracted significant study. Modules are subnetworks that per-
form specific biological function, thus forming ‘building blocks’ for whole biological sys-
tems. Therefore, the ability to predict these modules in silico from network topology and
network parameters is potentially valuable for understanding biological systems. One of
the main problems with studying multi-body subgroups, is the computational complexity.
For example, there are about 1 × 1023 different 10-node subsets within a 1000-node net-
work [162]. Hence, predicting functional modules in biological networks is a challenging
research topic [163] though, successful studies in this field have been published.

For example, Spirin and Mirny [162] examined yeast protein interaction networks in
order to identify important functional modules. In their work they present an algorithm
to mathematically investigate cohesive clique-like subnetworks that are highly connected
within the subnetwork but poorly connected to the remaining network. By applying this
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algorithm, they discover over fifty statistically significant subnetworks, including some
modules with an established function and some novel modules. Most modules fell into
one of two categories; protein complexes, such as large transcription factors, and func-
tional units. The members of functional units perform the steps of a particular cellular
process but not necessarily at the same time or in the same subcellular location, such as
the proteins of a signaling cascade [162].

Some computational tools include analysis methods that specifically facilitate net-
work analysis. Perhaps the most used and versatile network analysis software package is
Cytoscape [164]. Cytoscape supports the integration of externally developed ‘plug-ins’.
For example, the NetworkAnalyzer plug-in [165] can calculate many network topology
parameters including clustering coefficients, path lengths, degree distributions and neigh-
bourhood connectivities. Furthermore, results from these calculations can be visualised
in a network context for ease of interpretation.

Networks in biology do not have to represent proteins or genes. For example Yildrim
el al. [166], present a network-based analysis of drugs and their targets, where nodes
represent either a drug or a drug-target and edges represent a targeting event. By inclusion
of drugs currently under development in their analysis, Yildrim el al. discover a trend
towards the targeting of more diverse proteins, that have not been previously targeted.
Thus, networks are useful for exploring a variety of biological data types.

Although mathematical distinctions can thoroughly describe features of graphs, the
method for their accurate and useful application to real biological systems is non-trivial.
Firstly, there are no rules on how to identify biological phenomena (such as functional
modules) using graph-theoretic methods, particularly as this is a relatively new field. In
addition, our knowledge of biological interactions is incomplete and may also include
error or study bias. Secondly, consolidation of significant graph theoretical results with
actual biological significance is problematic, as, by necessity, the network models are
abstractions of reality. Therefore, during results interpretation, limitations of the data
and the network model should be respected and should be performed with reference to
established biological knowledge.

2.3.2 Clustering and distance metrics

Clustering is an important tool in data-mining for inspection and analysis of large data
sets, as it has the ability to systematically arrange data points, of which there are likely to
be too many to consider individually, into fewer groups (i.e., clusters) that share similar
properties. By necessity, clustering must employ a distance measure in order to define
how similar, or associated individual data points are to one another.

Clustering methods are used frequently during analysis of large numerical data sets,
such as gene expression levels identified by microarray [98, 167], and also defining co-
hesive subgroups and functional modules in biological networks [168, 157]. Perhaps the
most popular type of image associated with gene expression data is a heatmap showing

44



2.3. DATA MINING IN BIOLOGY

Samples

Genes

Figure 2.3: Heatmap of clustered gene expression profiles. Samples are represented by
columns and genes by rows. Individual cells show the level of gene expression for the
given sample, where green represents a lower expression value and red a higher expres-
sion value, the intensity of the colour denoting a lesser or greater value, respectively.
Dendograms above and to the left show the clustering of samples and genes, respectively,
that were produced using hierarchical clustering.

expression levels of genes across different samples (as in figure 2.3). In these plots, the
genes tend to be clustered, according to their expression profile. Most examples of this
type of clustering first require the calculation of a distance (or similarity) matrix that enu-
merates the similarities between gene expression profiles. Similarities can be measured
using correlation statistics, such as Pearson’s or Spearman’s correlation, or alternatively
using an Elucidean distance measure [167].

Clustering of genes is often performed using hierarchical clustering, an agglomera-
tive approach whereby genes are put into groups and those groups are repeatedly merged
until a single cluster is reached. The groupings are, thus, hierarchical and can be dis-
played using a dendogram. An alternative to the hierarchical method is k-means cluster-
ing, whereby the number of clusters to be created, k, is predefined by the user. In this
method, genes are randomly assorted between k clusters and the mean inter- and intra-
cluster distances are calculated. Multiple iterations are then performed where genes are
moved between clusters to minimise intra-cluster distances and maximise inter-cluster
distances. Though a relatively simple algorithm, k-means clustering is quite computa-
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tionally expensive. In addition, it may be difficult to know what value for k will give the
most intuitive results. [98]

Principal component analysis (PCA) can also be used to define distances between
genes or samples. Importantly, PCA can reduce the dimensionality of the data, so that
differences may be more readily displayed and interpreted. For example, multiple-sample
microarray data can be reduced to two dimensions, so that samples can be plotted as
points on a regular scatter plot – a useful method for checking that replicate array samples
cluster together (figure 2.4A).

Network clustering algorithms can be used to partition networks into smaller subnet-
works, in order to identify cohesive subgroups of nodes. This approach has been applied
to successfully identify functional modules and protein complexes from yeast PPI net-
works [162] (described in greater detail in section 2.3.1). Network clustering has also
been applied to host factors essential to HIV-1 replication identified from seemingly dis-
cordant siRNA sceens. In this study, host factors from different screens were found to
be part of specific functional modules that are, therefore, essential components of HIV-1
replication [156].

A key aspect of cohesive subgroups within networks, is that they have a high internal
density of edge connections and relatively few edge connections to the remaining network
[168]. Hence algorithms to identify network clusters attempt to optimise these, or related
characteristics. Despite this shared aim, a diverse array of algorithms for identification of
network clusters have been developed. Two such algorithms are briefly described below.

Dunn et al. [169] developed a method known as edge-betweenness clustering, by
decomposing the network. In edge-betweenness clustering, edges through which many
shortest paths between nodes cross (known as a high betweenness coefficient) are repeat-
edly removed to cut the network into smaller subnetworks. This method tends the removal
of edges that connect dense subnetworks, resulting in their separation from the network.
Using GO enrichment analysis, these subnetworks were shown to be functionally cohe-
sive units [169]. One drawback of this method is that the betweenness coefficient for
every remaining edge must be recalculated after each edge-removal step. For large net-
works this is a computationally expensive process but a speed-up is possible by utilising
an heuristic algorithm to the calculate shortest paths between nodes, such as that proposed
by Dijkstra [170].

The Molecular Complex Detection algorithm (MCODE) [171] operates in a very dif-
ferent way to betweenness clustering, through a cluster building approach. MCODE has
three main steps. First, all nodes are scored based on their clustering coefficient. Sec-
ond, a seed node with the highest score is selected. Following this, neighbours of that
seed, that have a score greater than a given percentage of the seed node score, are added
to the cluster. This process continues until no more nodes can be added to the cluster.
A new high-scoring seed that has not been clustered is then selected and the process is
repeated. Post-processing steps remove clusters that fail to meet a criteria and, depending
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Figure 2.4: PCA plots of microarray samples plotted in both two and three dimensions.
Samples are represented by points on the plots and biological replicates are plotted in
the same colour. In (A), the first two principal components (PC1 and PC2) are plotted.
In (B), the first three principal components (PC1, PC2 and PC3) are plotted on a three-
dimensional scatterplot. Importantly, the plots highlight that the biological replicates tend
to cluster closer to one another than to other samples.
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on the user specifications certain unclustered nodes are added (termed “fluff”) and certain
poorly connected nodes are removed (termed “a haircut”). [171]

Because GO annotation conforms to a specific DAG structure, it is amenable to com-
putational analysis additional to gene set enrichment calculations. In particular, methods
that define a distance between annotating GO terms, and also between genes, have been
developed [172]. These measurements are termed semantic distance measures. Several
of these consider the information content (IC) of GO terms, where terms that are rarely
assigned have a higher IC. Other methods apply a vector-space model, where each term
corresponds to a dimension of the vector, on which a calculation is performed [172]. Per-
haps the simplest method is the term-overlap (TO) method [173], whereby the distance
between two genes is simply the sum of terms they have in common. Despite the sim-
plicity of TO, it has been shown to perform as well as other methods including those
that employ IC and vector-space calculations, at enumerating cohesiveness among sets of
biologically related genes [173].

Semantic distance measures have two obvious applications. First, the distances can
be used to define whether a given set of genes is more functionally cohesive than would
be expected by random chance and second, relatedly, whether one gene set is more or
less similar to a second gene set than would be expected by random chance. In addition,
these distances have also been used to inform gene layout algorithms for visualisation of
HIV-1 interacting proteins, so that genes of similar function are rendered close together
[174]. Similarly, Holden el al. [175] show that an evolutionary distance measure between
proteins can be used to produce informative layouts for PPI networks, in this case proteins
with greater sequence conservation appear more closely together than those proteins that
are more divergent.

2.3.3 Data visualisation

Data visualisation techniques can facilitate improved exploration, understanding and
editing of datasets by taking advantage of two aspects of human vision: firstly, the broad
bandwidth of the eye allows a vast amount of visual data to be dealt with at one time.
Secondly, the visual system of humans is exceptional at spotting patterns in terms of
size, space, colour and time [176]. Visualisation techniques are commonly used in the
field of bioinformatics, particularly as data sets are often large and can be complex. For
example, the Human Genome Browser at UCSC [177] allows customisable sections of
chromosomes or individual genes to be visually explored with reference to intron/exon
boundaries, cross-species homologies, expressed sequence tag alignments and more. An-
other commonly used visualisation technique in bioinformatics is viewing (and editing)
multiple alignments with the aid of colours to show columns of aligned elements, e.g.,
Jalview [178].

Results from clustering analysis, such as clustering of gene expression profiles, are
frequently displayed using heatmaps and graphical plots (figures 2.3 and 2.4) both for ease
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Figure 2.5: KEGG network representation of HCV replication [182]. This representation
shows cellular interactions that occur during HCV infection. Though this network does
not include every host factor that has been implicated in HCV infection, it does outline
established and important aspects of host-virus interaction.

of interpretation and presentation in scientific work [98]. Indeed, software applications
that perform clustering, be that for gene expression, network or general use, often provide
results graphically as well as in the form of raw data, such as gCLUTO [179], BicACT
[180] and jCLUST [181].

Dynamic and interactive visualisation techniques are frequently used to display bi-
ological networks, as these structures are difficult to envisage simply from source data.
For example, resources such as the Kyoto encyclopedia of genes and genomes (KEGG)
[182] and Reactome [183] are composite data sources that provide information on path-
ways and metabolic networks with corresponding visualisations, for reference material to
allow users to better assimilate this information. In addition, both KEGG and Reactome
provide such representations for relatively well established aspects of virus-host interac-
tion data for HIV-1 [182, 183] and HCV [182] (figure 2.5).
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KEGG and Reactome visualisations are provided in the form of a library of manu-
ally drawn, static networks. For creating user-defined, bespoke network visualisations,
specific software applications are available. In addition to providing interactive network
visualisations, these packages provide: (i) methods for analysis that are coupled with the
visualisation; (ii) automated network layouts (an essential feature for all but small net-
works); and (iii) integration of secondary data to enrich the information content of the
visualisations [184]. Figure 2.6 highlights the importance of network layouts and illus-
trates methods by which secondary data can be incorporated into network visualisations.

Software suites that are dedicated to network visualisation include Cytoscape, Osprey
[186] and Pathway Studio [187]. Cytoscape [164] is a widely used open-source Java
application. Cytoscape offers a wide range of viewing options, network layouts and visu-
alisation of additional data. Cytoscape can render large networks of 100K nodes [184].
Perhaps the greatest benefit of Cytoscape is the wide array of available plug-ins, created
by Cytoscape and third-party developers. These plug-ins fall into five categories; (i) net-
work analysis of existing networks; (ii) I/O plug-ins for importing or exporting network
data; (iii) network inference plug-ins for inferring new networks from data; (iv) commu-
nicating and scripting plug-ins and (v) functional enrichment plug-ins. In total there are
over 35 plug-ins available for download, making cytoscape an incredibly versatile tool.
Pathway Studio integrates data from several databases such as BIND [188], providing
customizable network visualisations and a flexible SQL-like query language for filtering
nodes and their attributes. However, Pathway Studio is not open-source software and is
only available as a Microsoft Windows application, making it less accessible to the public
than other resources, such as Cytoscape.

Biological networks are not necessarily just displayed simply as nodes and edges.
Holden el al. [175] present a variety of network visualisation techniques that incorpo-
rate phylogenetic data and adjacency matrices: Terminal nodes of phylogenetic trees can
be joined by arc-shaped edges to signify an interaction. Adjacency matrices can display
networks using a grid system, where hubs and densely connected subnetworks are high-
lighted in by linear and block structures, respectively [175].

2.4 A role for computational biology in understanding
host-virus systems

A major aim of studying pathogenic viruses, such as HIV-1 and HCV, is for discovery
of novel, or improved antiviral therapies. An idealistic pipeline for achieving this aim can
be summarised in three steps: (i) Identify factors (e.g., proteins) that are important in virus
infection; (ii) Identify the relevant functional roles that those important factors have; and
(iii) develop antiviral therapies that successfully exploit those factors or functions. Indeed,
this is not only an idealistic but also an extremely simplified pipeline – there are many
complicated parts in each of these steps and in reality this process is unlikely to be linear,
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Figure 2.6: Network visualisation examples. The visualisations displayed all represent
the same network. (A) A basic “ball-and-stick” network representation, where nodes are
drawn as circles and edges are drawn as lines between the nodes. (B) An information-
rich network visualisation. Here, nodes are labelled according to the biological entity that
they represent. Both nodes and edges are subdivided into categories based both on their
colour and shape (e.g., square nodes in this diagram represent HIV-1 proteins). Further-
more, edge widths and node sizes represent continuous data about nodes and interactions
(e.g., node size represents the degree of the node). (C) A network where the nodes have
been positioned at random. Very little information can be discerned from this network,
highlighting the importance of the network layout. The networks in (A) and (B) are much
clearer, having been laid out by a network layout algorithm and then manually edited. All
visualisations were produced using Cytoscape [185].
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as results from a later step are likely to inform knowledge of a previous step. However,
contribution to this, or a not dissimilar scheme of discovery, is frequently proposed as the
rationale behind many HIV-1 and HCV studies, e.g., [113, 126, 144, 175, 156, 26, 112,
154, 189].

The scientific community has become very adept at the first step in this pipeline of
discovery: gene expression studies, that have been carried out for both HIV-1 [110] and
HCV [111, 112, 113], can give a broad insight into host responses to viral infection and
provide an insight into both virus replication and pathogenicity; siRNA screens have al-
lowed detection of host factors that are essential for virus replication [144, 145, 146];
and PPI screens provide us with knowledge of the interface between the virus and the
host cell [126]. Furthermore these technologies are possible on a whole-genome scale.
In addition to large-scale experimental data, a vast amount of information is present in
small-scale studies of virus-host interaction. Therefore, literature-curated resources, such
as the HHPID, that catalogues HIV-1-host PPIs, are also hugely valuable to the research
community.

The second step is much more difficult to achieve, as there is no universal assay to
determine the function of a protein or gene. In fact, to determine the exact functions of
a given gene or protein, bespoke laboratory assays are required and these can not be per-
formed on a large-scale. Thus, the relevant function of many host factors linked to virus
infection, identified by large-scale analyses, remains unknown. However, computational
analyses are certainly not powerless, as they allow inference of active functions on a more
general scale. Indeed it is commonplace for articles that describe results from large-scale
experiments to have performed a meta-analysis of their results. Meta-analyses can help to
discern relevant protein functions through integration of secondary data, often including
functional annotation, PPI networks and results from other experimental studies. In addi-
tion, following the publication of new large-scale data sets, it is not unusual for additional
computational meta-analysis to be performed, in order to draw together current data sets
to gain a new perspective and insight into a biological system. A good example of such
a computational meta-analysis performed on host-virus data was that by Bushman et al.

[156], who successfully consolidate HIV-1 siRNA screen data to provide genuine biologi-
cal insight into cellular components and subsystems that are essential for virus replication
through use of PPI network data and biological annotation.

An alternative computational analysis of human-pathogen data was that performed
by Dyer et al., who perform a network based analysis of host-pathogen interactions.
Their study includes data from both viral and bacterial systems (although the vast ma-
jority of this regards HIV-1, coming from the HHPID). Dyer et al. assess the graph-
theoretical characteristics of pathogen-interacting human proteins and discover that they
have a propensity for having high degree and betweenness coefficients. In addition, they
identify enrichment for certain biological functions, such as involvement in the cell cycle.
While the study by Dyer et al. was both original and interesting, providing a high-level
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view of human-pathogen interacting proteins, the practical use of the results are some-
what limited. Firstly, the choice to pool data from more than one pathogen means that
the study is not specific to a certain disease. Secondly, it is difficult to assess the biolog-
ical relevance of graph-theoretical measures, such as degree and betweenness, especially
when no correction is made for study-bias [136]. For example it is unclear from the study
by Dyer et al. whether the pathogen-interacting proteins have a high degree due to the
amount of studies that document their activities, or for a genuine biological reason. Al-
though Dickerson el al., taking study bias into account, show that HIV-1 interacts with
cellular functions that are genuinely highly connected in the human PPI network [136].

In this thesis we perform integrative computational analyses using a variety of data
types. Broadly, our aim is to provide specific biological insight into mechanisms that
are important during HIV-1 infection and HCV infection. In order to obtain biologically
significant results we use bespoke computational methods and incorporate multiple types
of large-scale data. We intend that the following research chapters contribute to the overall
knowledge and ability required to develop new or improved antiviral strategies.
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CHAPTER

THREE

JNETS: EXPLORING NETWORKS BY INTEGRATING
ANNOTATION

3.1 Abstract

JNets is a network visualization tool that incorporates annotation to explore underly-
ing features of interaction networks. The software is available as an application and a
configurable applet that provides a dynamic online interface to a wide variety of network
data. As a case study, we use JNets to investigate approved drug targets present within the
HIV-1 Human protein interaction network. Our software highlights the intricate influence
that HIV-1 has on the host immune response.

3.2 Rationale

Interaction networks can be studied to gain a greater understanding of the biologi-
cal system that they represent [190, 161, 162, 163]. A common method for studying
interaction networks is through visualization, typically by representing a network as a
‘ball-and-stick’ graph [164, 187, 175, 191, 192]. Interactive visualizations can enhance
our understanding of networks and allow new patterns and trends to be discerned [176],
particularly when these tools offer network analysis capabilities. However, most pub-
lished network visualizations are static representations that do not permit the user to view
associated annotation let alone integrate other biological information in a useful manner.

The development of JNets was motivated by the need for an online, interactive protein-
protein interaction (PPI) network viewer for the HIV-1, Human Protein Interaction Database
(HHPID) [27, 26]. The HHPID is a valuable resource for the study of HIV-1 infection.
HHPID data is manually curated and in addition to the pairs of interacting HIV and hu-
man genes, contains details of the interaction type (e.g., ‘phosphorylates’ or ‘complexes
with’). A tool is required that can be deployed from a website as an applet and that is also
capable of useful network manipulation and analysis. This will aid in understanding the
mechanism of infection and the host-viral interactions involved in the HIV-1 life cycle.
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JNets thus has greater functionality than pure visualization software, such as InterView
[175], but remains ‘lightweight’ and easy to use.

JNets is available as a stand-alone application and a web-deployable applet and is ap-
plicable to any type of biological or non-biological network data. Analysis in JNets is
achieved by overlaying node and edge annotation on to the network. Groups of nodes and
edges can be created by filtering accompanying annotation, and properties of groups can
be explored, in terms of annotation, both visually and statistically. In addition, JNets is
configureable to allow web-deployed visualizations to be customized by a vendor. Specif-
ically, preset network visualizations can be defined and the JNets user interface altered.
Furthermore, JNets is Java software, so is platform independent.

3.3 The JNets system

JNets is available in two forms: a stand-alone application and a web-deployable ap-
plet. The latter has some features disabled (such as the ’File menu’) due to the security
requirements of Java applets. Certain advantageous features in JNets were inherited from
InterView [175], the software on which JNets is based. These include the animated spring
layout, a container layout [175], interactive ‘clickable’ nodes and the facility to export net-
work visualizations in PDF and PNG formats. In addition, the Java libraries responsible
for graph layout, network rendering and the legend panel also come from InterView. In-
terView uses libraries from the TouchGraph package. These drive the interactive network
display in JNets. The following sub-sections describe the main features of JNets in detail.
Where appropriate, examples are given using network data from the HHPID [27, 26]. In
addition, a diagrammatic summary that shows the organization of JNets is given in figure
3.1. JNets is available from http://www.bioinf.manchester.ac.uk/jnets, where an applet
can be launched to visualize and browse the HHPID network. Also available at this site
is a download package, including source code, documentation and example data file. The
JNets software package is also supplied in supplementary data S3.1. The main JNets
interface is shown in figure 3.2.

3.3.1 Subgroup Creation

An integral feature of JNets is the ability to edit and investigate subgroups of elements.
In the other lightweight viewers available, JSquid [192] and InterView [175], subgroups
are possible but are not dynamic, as they are predetermined in the input file. However,
in JNets, users can create novel subgroups of elements using a simple, flexible system of
filtering element annotation. To create a subgroup, three main components are considered.
Firstly the input group. This can be the whole network or a previously created edge
group, or node group. Note, the input group is the set of elements that will be filtered.
Secondly, the element filter. There are two types of filter in JNets: automatic filters
and manual filters. Automatic filters create an array of subgroups by taking the input
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group and dividing elements according to the value that they hold for a single annotation.
For example, in the HHPID, proteins could be automatically filtered according to their
taxonomic identifier. This would produce two subgroups of proteins: human and HIV-
1. Manual filters operate like SQL select statements, where the input group is filtered
according to any number of constraints concatenated with AND and OR operators, the
output being elements that are true for that statement. For example, the interactions in the
HHPID could be filtered to find those that are annotated as binding OR activation but NOT
phosphorylation interactions. JNets also allows nodes to be filtered according to edge
annotation (and vise versa) by taking into account edge incidences at each node. This
greatly increases JNets flexibility in creating subgroups. For example, by this method,
human proteins could be filtered according to whether they take part in an interaction that
is annotated as binding OR activation but NOT phosphorylation. The third component
is the output type. This can be nodes, edges or both nodes and edges. The output type
determines the type of element that is subject to regrouping. For example, HIV-1 proteins
could be filtered to find the HIV-1 accessory proteins Vpr and Vpu. Given an output type
of nodes and edges this would result in the creation of a new node group consisting of
Vpr and Vpu and a new edge group of interactions involving Vpr and Vpu. Therefore,
JNets allows users great freedom to create subgroups of interest. The subgroup creation
interface is shown in figure 3.3.

3.3.2 Network Manipulation

A key feature of JNets is the ability to manipulate the network to improve visualiza-
tions. Basic but very useful manipulations available in JNets include setting node and
edge colors, setting node sizes, turning node labels on or off, collapsing parts of the net-
work to form composite nodes, deleting elements and sticking nodes to prevent the spring
layout from acting upon them. Most of these features were previously available in Inter-
View, but acted upon the entire network only. With JNets these actions can also be applied
to novel subgroups of nodes or edges to tailor the visualization to the requirements of the
user.

3.3.3 Customizing JNets

JNets can also be customized by providing a configuration file. The configuration
file is also in XML format. There are three main aspects of JNets configuration. Firstly,
simple user-interface customization. Much of the user interface can be disabled including
drop-down menus and right-click functions and the legend panel can be hidden or shown.
The ability to create novel subgroups of elements can be disabled, as can specific parts of
the subgroup edit and analysis panel. Secondly, the configuration file can determine what
data JNets will use from the input XGMML file, in terms of nodes, edges and annotations.
This configuration feature allows a single input file to be used, with a number of configu-
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Figure 3.3: The JNets subgroup creation interface. This interface is used to create a new
subgroups from already existing ones. The upper half of this panel is used to select some
simple options about the subgroups being created, such as whether the grouping should be
made automatically or manually, what the name of new subgroups should be and whether
new a new node group, edge group, or both should be created. The lower half of this
panel is used to select the annotation and set the filters through which new subgroups will
be created.
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rations, to produce a number of different networks. Thirdly, and most importantly, preset
network views can be determined in the configuration file. Network views are defined
in the configuration file as sets of annotation filters that encode the creation of new node
and edge subgroups in the network. These presets allow groups of nodes and edges to
be hidden, so that specific parts of the network can be highlighted. The presets appear in
new drop down menus on the main menu bar and on a mouse click will execute the filters
to alter the network view.

3.3.4 Network Analysis

In addition to visualization, JNets provides simple but powerful methods for analyzing
networks and the annotations that are attributed to network elements. The main analytical
capability in JNets is to examine subgroups of elements and assess annotation content us-
ing statistical significance methods. For example, using only the HHPID data and JNets,
it is possible to create a subgroup of HIV-1-human interactions that involve the Tat protein
and discover that there are 774 such interactions from a total of 2,588 unique PPIs. Fur-
thermore, the most statistically detectable over-represented interaction type in this group
is ‘enhances’, with a total of 53 interactions (p = 3.3 × 10−15), using all interactions as
the general population, including a correction for multiple tests. To produce such results,
JNets will either perform a two-tailed Fisher’s Exact test, or Chi-Square approximation
test, depending on the population size. The hypergeometric and chi-squared distributions
required to do these tests are calculated using classes from the open source Colt 1.2.0 Java
package. Where appropriate, correction for multiple significance testing is implemented
automatically, using the Benjamini-Hochberg false discovery rate method [193].

This system of analysis allows JNets to remain both flexible (as both the annota-
tion and the subgrouping used in the analysis are determined entirely by the user) and
lightweight (as these calculations are computationally simple), particularly important for
deployment as an applet. The following case study demonstrates the power of these anal-
ysis methods.

3.4 Case study: Drug targets in the HIV-host network

To demonstrate the utility of JNets as a network visualization and analysis tool, human
genes that code for products that are both HIV-1 interacting and approved drug targets
were examined, using the HHPID as a source for HIV-1-host interactions.

3.4.1 Case study: Introduction

To date, only one U.S. Food and Drug Administration (FDA) approved therapeutic
agent, maraviroc, developed by Pfizer, directly targets a host, rather than a viral protein
in the treatment of HIV-1 infection. Maraviroc is an antagonist of the CCR5 chemokine
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receptor and prevents CCR5-tropic strains of HIV-1 from binding this co-receptor and
entering host immune cells [77]. Other HIV-1 therapeutic agents may follow the lead of
maraviroc and target host, rather than viral proteins, in the treatment of HIV-1 infection.
For example, HMG-CoA reductase inhibitors (statins) are normally used to treat high
cholesterol but have been shown to increase CD4+ cell counts and decrease viral load in
HIV-1 infected patients. This action is thought to be due to the negative regulation of Rho
GTPase activity by statins, impeding viral entry and budding from the cell [194], further
evidence that targeting host proteins can disrupt HIV’s biology. It is also possible to target
HIV-host interactions directly. For example, disrupting the Vif-APOBEC interaction with
a small-molecule, RN-18, is a strategy that is currently being pursued [195]. Vif mediates
the degradation of the potent anti-retroviral APOBEC proteins (see review [196]) and in
the absence of Vif, HIV-1 virions are non-infective [197].

In this case study we use JNets to explore the HIV-1-interacting proteins that are
approved drug targets, as this may provide a useful insight for researchers investigating
new therapeutic strategies to treat HIV-1 infection and, at the very least, indicate that a
human protein that HIV interacts with is to some extent "druggable". Moreover, close
examination of the drug classes and drug targets in this intersect may highlight ways
that HIV-1 acts to perturb the host system. We consider both the details of the HIV-1
interactions and the types of drugs that target these human proteins.

3.4.2 Case study: Methods

HHPID data were downloaded from the National Centre for Biotechnology Informa-
tion (NCBI) on May 1st, 2008. These data included the update to the HHPID that includes
Env gene-product interactions (available November 13th, 2007). The HIV-1 interaction
type was taken from the ‘interaction’ column of this data file. FDA approved drug and
drug-target information was taken from the downloadable file ‘drugcard_set.txt’ from the
DrugBank database [198, 199] on June 3rd, 2008. Drug categories were extracted from
the ‘Drug_Category’ field and the Anatomical Therapeutic Chemical (ATC) classification
system code was taken from the ‘ATC_Codes’ field of the same file.

A single HIV-1-host, drug-target network was created to conduct the investigation.
The nodes in this network consisted of all FDA-approved drugs and all FDA-approved
drug-target genes, all human genes that code for an HIV-interacting product and all HIV-
1 elements (the term ‘elements’ is used because some of these are genes and proteins).
Genes present both in the drug-target and HIV-1 interacting groups were only represented
by a single node. There were two types of edges in this network: HIV-host interactions
and drug-target interactions. HIV-host interactions came from the HHPID. There were
3,939 distinct interactions between the nodes of HIV-1 and the host, distinct on the HIV-1
element, the host gene and the interaction type. Therefore by this definition, interactions
that are reported in multiple source articles, only count as one interaction. However, mul-
tiple interactions between the same nodes are possible as these may have significantly dif-
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ferent interaction types, e.g., ‘upregulates’ and ‘downregulates’. The nodes in the network
were annotated, where relevant, with drug classifications and ATC codes, the number of
distinct HIV-1 interactors and the number of HIV-1 interactions. The edges in the network
were also annotated where relevant, with information derived from the HHPID, such as
the interaction type and whether the interaction is agonistic, antagonistic or neither.

All results were produced by visualizing and analyzing the HIV-1-host, drug-target
network using the JNets application.

3.4.3 Case study: Results

The HIV-1-host, drug-target interaction network contained 3,492 nodes and 7,374
edges (figure 3.4). Of the nodes, 19 were HIV-1 elements, 2,391 were human genes and
1,082 were drugs. Of the 2,391 human genes, 1,434 coded for HIV interacting products,
1,194 coded for approved drug targets and 237 coded for products that were both HIV-1
interacting and drug targets (throughout, we will refer to this gene set as HIDTs, figure
3.5). HIDTs account for 17% of human genes that code for HIV-1 interacting products
and 20% of the genes that code for drug targets. Of these 237 genes, we found gene-
products of 178 to have one or more direct physical interactions with HIV-1, based upon
the interaction type. This network also contained 7,374 edges: 3,939 HIV-host interac-
tions and 3,435 drug-target interactions. The whole HIV-1-host, drug-target interaction
network is displayed in figure 3.4, where HIDTs are highlighted. A second network view
is shown in figure 3.5 in which JNets has been used to filter the network to show HIV-1
interactions with HIDTs.

Of the 237 HIDTs, the gene-products from 114 interact with more than one distinct
HIV-1 element. Using JNets, we showed that this is significantly greater than expected
(Fisher’s exact test, p < 0.001), given that from 1,434 human genes whose products are
HIV-1 interacting, 529 have interactions with more than one distinct HIV-1 element. From
237 HIDTs, the gene products of 125 are targeted by more than one drug. By performing
a Fisher’s exact test on the drug-target network, we showed that this is a significantly
greater proportion than expected at random (p < 0.001), given that 1,194 approved drug-
target genes were identified in DrugBank and only 501 of these are targeted by more than
one drug.

From 3,939 HIV-host interactions, 820 are between HIV-1 and HIDTs. We examined
the HIV-1 elements that are responsible for these 820 interactions. We found significantly
more Env-gp120 and Env-gp41 interactions and significantly fewer Tat and Integrase and
Rev interactions among drug target genes, than would be expected, given the 3,939 HIV-
human interactions as a parent population. See Table 3.1 for more details.

Next, we examined the drugs that target the products of HIV-1-Interacting-DTs, com-
pared to other drug target genes in the human genome. We found that drugs from certain
drug classes, according to level-2 ATC classifications denoted in DrugBank, are more
likely to target gene products of HIDTs than would be expected, given all human drug
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Table 3.1: HIV-1 interactions with approved drug target genes, by HIV-1 element. Here,
we show the proportion of interactions that HIV-1 has with genes that encode drug targets,
compared to total interactions, grouped by HIV-1 element. The statistical significance of
the difference in expected and actual figures, indicated by p-values, were calculated in
JNets, using Chi-square tests, corrected for multiple testing. We found significantly more
Env-gp120, Env-gp41, Nef and Capsid interactions and significantly fewer Tat, Integrase,
Rev and Vif interactions among drug target genes, than would be expected at random.

HIV-1 interactions with drug-target genes, by HIV-1 element
HIV-1 element Total interactions Interactions with drug target genes Corrected p-value
Tat 1394 (35%) 249 (30%) 0
Env-gp120 856 (22%) 239 (29%) 3.35× 10−13

Nef 311 (8%) 82 (10%) 4.42× 10−2

Vpr 275 (7%) 47 (6%) Not significant
Env-gp160 213 (5%) 49 (6%) Not significant
Env-gp41 190 (5%) 58 (7%) 1.14× 10−2

Rev 109 (3%) 7 (1%) 4.37× 10−3

Integrase 102 (3%) 5 (1%) 2.54× 10−3

Matrix 95 (2%) 15 (2%) Not significant
Retropepsin 89 (2%) 15 (2%) Not significant
Vif 77 (2%) 8 (1%) Not significant
Gag 72 (2%) 15 (2%) Not significant
Reverse transcriptase 45 (1%) 8 (1%) Not significant
Capsid 45 (1%) 16 (2%) Not significant
Vpu 27 (1%) 5 (1%) Not significant
Nucleocapsid 26 (1%) 4 (< 1%) Not significant
p6 18 (< 1%) 2 (< 1%) Not significant
p1 3 (< 1%) 0 (0%) Not significant
Pol 1 (< 1%) 0 (0%) Not significant

Table 3.2: HIV-1 interacting drug target genes, by drug category. Here, we show the
proportion of drug target genes that are HIV-1 interacting, compared to the total number
of drug target genes, grouped by level-2 ATC categories. We have only shown the top
ten most statistically significant categories. The statistical significance of the difference
in expected and actual figures,indicated by p-values, were calculated in JNets, using two-
tailed Fisher’s Exact tests, corrected for multiple testing. All categories are statistically
over-represented in the HIV-1 interacting group, except for ‘Vitamins’, that are under-
represented.

HIV-1 interacting drug target genes, by drug category
Level-2 ATC description Target genes HIV-1 interacting Corrected p-value
Immunosuppressive agents 36 (3%) 29 (12%) 1.86× 10−13

Antineoplastic agents 100 (8%) 47 (20%) 7.87× 10−9

Anti-inflammitory and antirheumatic products 27 (2%) 18 (8%) 3.02× 10−6

Stomatological preparations 30 (3%) 19 (8%) 3.35× 10−6

Lipid modifying agents 46 (4%) 23 (10%) 4.62× 10−5

Antithrombotic agents 65 (5%) 29 (12%) 4.08× 10−5

Drugs for obstructive airway diseases 25 (2%) 13 (5%) 3.44× 10−3

Vitamins 91 (8%) 6 (3%) 5.38× 10−3

Immune sera and immunoglobulins 10 (1%) 7 (3%) 6.81× 10−3
Immune sera and immunoglobulins 10 (1%) 7 (3%) 6.81× 10−3
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HIV-1 element

FDA approved drug

HIV-1 interacting human gene

Drug target human gene

HIV-1 interacting, drug target human gene

Interaction

Figure 3.4: The HIV-1-host, drug-target interaction network. This is the whole network
that was used for all analyses in our case study. Using the annotation that accompanies
nodes and edges, JNets can filter this network to create more focussed visualizations, for
example, the networks in figures 3.5-3.7.

target genes in DrugBank as a parent population. In total, we identified six such classes
that showed over-representation (p < 0.001, Table 3.2). We investigated three partic-
ular over-represented groups of genes in greater detail: (i) HIDTs that code for gene-
products targeted by immunosuppressive agents, this was the most overrepresented drug
category (p = 1.87 × 10−13); (ii) HIDTs that code for gene products targeted by anti-
neoplastic agents, the second most over-represented category (p = 7.87 × 10−9); and
(iii) HIDTs that code for gene-products targeted by statins – a specific subset of the cat-
egory ‘lipid modifying agents’. To identify as many HIDTs as possible whose products
are targeted by these three drug types, we widened our search to take into account level-2
ATC codes and drug classifications from DrugBank. Immunosuppressants were defined
with drug classification ‘immunosuppressive agents’, or, with the corresponding ATC
level-2 classification ‘L04’. Antineoplastic agents were defined with a drug classifica-
tion containing the word ‘antineoplastic’, or, with the corresponding ATC level-2 classi-
fication ‘L01’. Statins were defined with a drug classification of ‘HMG CoA reductase
inhibitors’ or ‘Hydroxymethylglutaryl-CoA Reductase Inhibitors‘, or, one of the level-3
ATC classifiers: ‘C10AA’ (HMG CoA reductase inhibitors), ‘C10BA’ (HMG CoA re-
ductase inhibitors in combination with other lipid modifying agents) or ‘C10BX’ (HMG
CoA reductase inhibitors, other combinations). After this redefinition, all three chosen
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p6

Capsid

Rev_Trans

Env_gp41

Vif

Retropepsin

Env_gp120

Vpu

Vpr

Integrase

Env_gp160

Rev

Gag

Tat

Nucleocapsid

Matrix

Nef

HIV-1 elements

2-4 HIV-1 neighbours

5-10 HIV-1 neighbours

1 HIV-1 neighbour

Interaction

Figure 3.5: HIV-1 interacting drug target genes. This network shows 237 human genes
that encode products that are HIV-1 interacting and FDA-approved drug targets. HIV-1
elements are labelled. Human genes are colored according to the number of distinct HIV-
1 elements with which they share an interaction (darker = more). 114 from 237 of these
human genes interact with more than one HIV-1 element. MAPK1 (mitogen-activated
kinase-1), interacts with 10 different HIV-1 elements in 23 distinct interactions. The
layout of this network was achieved by manually positioning the HIV-1 nodes, locking
them in position and allowing the JNets spring layout to reposition the remaining human
gene nodes. As a result, human gene nodes with multiple interactors are drawn to the
centre of the network.

drug groups were still statistically over-represented among drugs targeting the products
of HIDTs, compared to other human drug target genes (p < 0.001).

We found 21 HIDTs whose gene products are a target for HMG-CoA reductase in-
hibitors. This is 66% of all statin target genes given in DrugBank. This group shows a
relatively high degree in the HIV-1-host network; the average degree of a host node is 2.8
but for this group of nodes the average degree was 6.7. From these 21 genes, 13 code for
products that interact with Nef (over-represented where p < 0.001), 15 with Env gp120
and five with the Matrix protein (both over-represented where p < 0.05). In addition,
these 21 HIDTs have certain over-represented interaction types with HIV-1 (p < 0.05);
HIV-1 is activated by three, induces the release of five and upregulates the gene-products
of 12 HIDTs in this group. Among these 21 HIDTs were the HMG-CoA reductase gene,
whose gene-product is modulated by Nef and the ras homolog, member A (RhoA), whose
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gene-product is upregulated by Vpr and activated by Tat.
We found 73 HIDTs whose gene-products are a target for 81 different antineoplastic

agents. This is 43% of all antineoplastic agent target genes given in DrugBank. From
these 73 genes, the notable HIV-1 elements that their gene-products interact with are Env-
gp120 (41 genes) and Nef (23 genes), which are over-represented (p < 0.05). From this
group, no particular HIV interaction type was found to be statistically over-represented,
after correcting for multiple tests. However, the most abundant classes were ‘interacts
with’ (25 genes), upregulates (24 genes), activates (21 genes), inhibits (19 genes), binds
(19 genes) and downregulates (12 genes). The 81 antineopastic agents that target the
gene-products of HIV-1-Interacting-DTs were from a wide range of ATC classifications.
From those with level 2 ATC class ‘L01’, corresponding specifically to antineoplastic
agents, the most abundant were drugs from the ‘L01X’ level 3 ATC class, corresponding
to ‘other antineoplastic agents’. Therefore, a specific group of antineoplastic agents that
target the same gene-products as HIV-1, was not easily identifiable.

Given the nature of HIV-1 infection, the immune cells that become infected and the
detrimental effect that this infection can have on the immune response of the host, we
expect to see a high proportion of immune system proteins among HIV-1 interacting
drug targets. Indeed we found 35 genes in the HHPID whose products are a target for
immunosuppressants. This is 63% of all immunosuppressant target genes given in Drug-
Bank. From these 35, the outstanding HIV-1 elements that they interact with, as for
antineoplastic agent target genes, are Env-gp120 (25 genes) and Nef (15 genes), which
are over-represented (p < 0.001). However, the products of these genes also interact with
Env-gp41, 10 genes, and the capsid protein, four genes ( p < 0.05). From this group of 35
genes, HIV-1 acts to downregulate the products of 16 (over-represented, p < 0.001). This
was the only statistically significant HIV-1 interaction type detectable among this group
of genes after correcting for multiple tests. However, HIV-1 also inhibits 12, upregulates
15 and activates the products of five genes from this group. Figure 3.6 shows the drug-
target network, filtered to show only HIV-1-interacting immunosuppressant target genes,
the immunosuppressive drugs and the HIV-1 elements that target the products of these
genes. The human genes are colored according to the general action that HIV-1 infection
has upon their products. Three categories are defined: agonised (e.g., activate, upregulate
and enhance), antagonised (e.g., inhibit, downregulate and degrade), both agonised and
antagonised, or neutral/unspecified (e.g., binds, modulates and interacts with). The ago-
nised group contained 7 genes, the antagonised 11 genes, the agonised and antagonised
12 genes and five neutral genes, respectively. We found 25 immunosuppressive drugs that
target gene products that are HIV-1 interacting, 18 of these drugs have more than one such
target. The majority (14) of these 25 drugs have a level 4 ATC classification ‘L04AA’,
meaning that they are selective immunosuppressants. Figure 3.7 shows the same results
as in figure 3.6, however, for clarity, the drug nodes and human genes from the neutral
group have been removed.
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Figure 3.7: HIV-1 host network showing immunosuppressive agent target genes. Hu-
man genes that are both HIV-1 interacting and targeted by immunosuppressive agents
are shown. Only those genes that are explicitly agonised or antagonised by HIV-1 have
been included; human genes are colored according to this action. Seven host genes are
agonised, eleven are antagonised and twelve are both agonised and antagonised. These
distinctions are derived from the interaction description supplied with each HHPID HIV-
1-host interaction.

3.4.4 Case study: Discussion

As an example of the use of JNets, we have taken data from the HHPID and DrugBank
to research the cross section of genes that encode gene products that are both HIV-1
interacting and drug targets. We have shown that a significant proportion (237 genes,
17%) of genes that encode an HIV-1-interacting product also encode an approved drug
target (HIDTs), of which 178 code for products that have direct physical interactions with
HIV-1. In addition, a significant proportion of these interact with more than one HIV-1
element. This suggests that products of these genes are involved in important interactions
with HIV-1, rather than being incidental effects of HIV-1 infection. Thus, drugging HIV-
1 interacting proteins could disrupt the HIV-1 life cycle. These host proteins could be
explored in the search for new HIV-1 treatments.

Many of the HIV interactions involving HIDT gene products are with proteins from
the Env complex, Nef and Tat. Tat, the trans-activator of transcription, promotes viral
transcription and elongation [200]. As a consequence, Tat induces operation of the host
transcription machinery and indirectly, the production of other viral proteins. Therefore,
as a result of some direct interactions, Tat is also responsible for indirect, downstream
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responses in the host cell, many of which will be more directly due to the activity of
transcription and the presence of other viral proteins. Moreover, Tat interactions were
actually underrepresented among HIDTs. Therefore, it may not be Tat interacting human
proteins that are most interesting from a drug-discovery perspective. In contrast, inter-
actions with the Env complex were found to be over-represented among HIDTs. Env
proteins and Nef are known to interact with host proteins located in the membrane. For
example, the Envelope complex binds CD4 receptors and several co-receptors including
CCR5 [201]. Nef, or negative factor, is known to downregulate CD4 [202] and class I
MHC molecules [203]. Around 70% of drugs are believed to target membrane proteins
[204], which may explain the prominance of Nef and Env interacting drug targets and the
over-representation of Env interacting drug targets in our network.

Using JNets, we have shown that human genes that code for products targeted by
HMG-CoA reductase inhibitors, antineoplastic agents and immunosupressive agents are
over-represented in the HIV interaction data. HIV-1 interacts with the majority of targets
of HMG-CoA reductase inhibitors, including HMG-CoA reductase itself. The HIV-1
virion requires clustering of host lipid ‘rafts’, also known as DIGs (detergent-insoluble
glyco-lipid-enriched microdomains), for entry to and budding from the host cell [194].
Raft formation is believed to be controlled by Rho GTPases and remodelling of the actin
cytoskeleton. HMG-CoA reductase is required to prenylate and activate these GTPases.
Nef is thought to associate with these rafts and prime T-cells for activation and may pro-
mote HIV-1 replication [205]. However, due to the extensive crossover we have observed
between the targets of HMG-CoA reductase inhibitor and HIV-1 interacting proteins, it
seems likely that other mechanisms are active that give HMG-CoA reductase inhibitors
the ability to decrease viral load in infected patients. One indicator of this is that the
HMG-CoA inhibitor target genes have a particularly high degree in the HIV-1-host pro-
tein interaction network, suggesting that they are particularly important in the HIV-1 life
cycle. Env-gp120 has interactions with the products of 15 of these genes, which is unsur-
prising when we consider that Env associates with many host membrane proteins and that
these 15 host genes are likely to be involved in membrane raft formation and HIV-1 entry
and exit from the cell. One notable interaction that Env has with a host protein is with
coagulation factor II (thrombin). Thrombin has been shown to activate the Env complex
and enhance fusion of the virus to the host cell [206]. Thrombin is also a target to the
HMG-CoA reductase inhibitor simvastatin – a possible mechanism through which statins
may be effective drugs in the treatment of HIV-1 infection.

From our results it is not clear why antineoplastic agents and HIV-1 share many hu-
man targets. By manually examining the group of drugs that target the products of these
genes, it was noted that many are monoclonal antibodies, such as Trastuzumab (com-
monly known as Herceptin), that bind cell surface receptors. Trastuzumab action is be-
lieved to be involved with the mitogen-activated protein kinase (MAPK) cascade [207], a
pathway with which HIV-1 infection is also highly associated, for example, the MAPK-
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1 gene has 22 distinct interactions with HIV-1 in our network, with 10 distinct HIV-
1 elements. The systemic effects of antineoplastic agents and of HIV-1 infection may
utilise many of the same intrinsic cellular pathways. AIDs-related malignancies are not
an uncommon cause of death for HIV-1 infected patients [208, 209]. This suggests that
research into the use of antineoplastic therapies in HIV-1 infected patients, may bene-
fit from greater utilization of network-based approaches. Such approaches may lead to
improved treatment strategies that avoid provoking greater levels of infection and virus-
induced host cell perturbation. For example, to better understand crossover in specific
cellular pathways, host proteins could be annotated with pathway data, points of contact
with viral proteins, and drugs could then be identified and the network analysed further
using JNets.

Our analysis has shown that the majority of the targets of immunosuppressive drugs
are also HIV-1 interacting, an observation that we have shown to be statistically signif-
icant. In the case of HIV-1 infection, interaction with elements from the host immune
response is particularly likely, as HIV infects cells that are specific to this host system,
such as T-cells and macrophages. Therefore, HIV-1 requires a sufficient host immune
response so that it has cells to infect but may also downregulate elements of the host
immune response at the same time, presumably in order to evade other aspects of the im-
mune system. This complexity is exemplified in our results. Figure 3.7 shows that HIV-1
elements, particularly Nef, Tat and Env, act to both agonise and antagonise proteins that
are intrinsic to the host immune response. For example, there is no clear relationship that
defines HIV-1 action on interleukin receptors (i.e., IL2RA, IL1RA, IL2RB). This could be
due to a single, static network view being insufficient to expose variable aspects of HIV-1
infection, such as the point in the cell-cycle, the stage of HIV-1 infection and the infected
cell type – it is inconceivable that these interactions all occur simultaneously in a single
cell. Even so, this representation does suggest that HIV-1 possesses an intricate system
for influencing the host immune response that is necessary to maintain the infection.

3.5 Evaluating JNets

In our case study, we have integrated data from DrugBank and the HHPID to perform
analyses. We have demonstrated that JNets is capable of combining biological annotation
and interaction network data to allow specific statistical conclusions to be drawn, from
which biological inferences can be made. However, JNets is not designed to compete
with heavily developed network analysis packages, such as Cytoscape [164] and Pathway
Studio [187]. These applications incorporate a plethora of functions for the analysis of
biological networks. A drawback of such ‘heavyweight’ applications is that the utilities on
offer may fall beyond the scope of many users as adding greater functionality to software
can complicate user interfaces and make simple tasks less accessible. Rather, JNets is
designed to allow network visualization and some useful analysis to be carried out in a
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simple, web-deployable tool. By this system, vendors could use JNets as a ‘gateway’ to
allow users to interact with, and better understand, their own network data.

No part of JNets is specific to biological networks, making JNets useful across a wide
range of disciplines. JNets is also configurable, to allow preset network views and sub-
divisions of networks to be stored. This aspect of the applet makes use of the JNets
annotation filtering method, so that very different visualizations can be rendered from a
single input file, available to the user at a mouse click. Much of the JNets system is based
around the dynamic creation of subgroups by filtering network annotation. By offering
these features, JNets is quite different from any other web deployable network visualiza-
tion tool that is currently available. For example, WebInterViewer is designed to render
a large number of nodes with great efficiency, although annotation can accompany the
network [191]. JSquid [192] was primarily designed as an interactive viewer for the Fun-
Coup website (http://funcoup.sbc.su.se), though it can be used for viewing independent
network data. JSquid also makes use of node and edge groupings, however, unlike JNets
does not perform statistical analyses on user defined features of these groups.

In summary, JNets is a platform independent, interactive network visualization and
analysis tool, suitable for a wide range of network data and capable of being deployed
from a website as a customized applet or run as a stand-alone application. For further
information about JNets please visit http://www.bioinf.manchester.ac.uk/jnets.

3.6 Supporting material

Supplementary file S3.1 – the JNets software package. This folder contains both
JNets documentation and software.

71



CHAPTER

FOUR

PATTERNS OF HIV-1 PROTEIN INTERACTION
IDENTIFY PERTURBED HOST-CELLULAR

SUBSYSTEMS

Jamie I MacPherson, Jonathan E Dickerson, John W Pinney and David L
Robertson

4.1 Abstract

Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell
functions in order to replicate. This is mediated through a network of virus-host interac-
tions. A variety of recent studies have catalogued this information. In particular the HIV-
1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein
interaction detail. However, as a map of HIV-1 infection, the HHPID is problematic as
it contains curation error and redundancy, in addition, it is based on a heterogeneous set
of experimental methods. Based on identifying shared patterns of HIV-host interaction,
we have developed a novel methodology to delimit the core set of host-cellular functions
and their associated perturbation from the HHPID. Initially, using biclustering, we iden-
tify 279 significant sets of host proteins that undergo the same types of interaction. The
functional cohesiveness of these protein sets was validated using a human protein-protein
interaction network, gene ontology annotation and sequence similarity. Next, using a
distance measure, we group host protein sets in order to identify 37 distinct higher-level
subsystems. We further demonstrate biological significance of these subsystems by cross-
referencing with global siRNA screens that have been used to detect host factors neces-
sary for HIV-1 replication, and investigate the seemingly small intersect between these
data sets. Our results highlight significant host-cell subsystems that are perturbed during
the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that
contribute to these perturbations. Thus, our work disentangles the complex set of HIV-1-
host protein interactions in the HHPID, reconciles these with siRNA screens and provides
an accessible and interpretable map of infection.
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4.2 Introduction

Acquired immunodeficiency syndrome (AIDS), caused by HIV-1, is responsible for
millions of deaths every year. Therefore, research into HIV-1 biology is of critical im-
portance and research efforts are significant and ongoing. In order to replicate, HIV-1,
like all viruses, must use host-cellular machinery and induce production of viral genomic
material, viral proteins and ultimately new virions. This hijack and control over host cell
processes is mediated by HIV-1 proteins through a complex network of molecular events,
including virus-host protein-protein interactions (PPIs) [174]. Therefore, by developing
our knowledge of the virus-host interaction network, we can improve our current model
of HIV-1 infection and host-cell perturbation and use this information to aid develop-
ment of new antiviral treatments. One example of a successful antiviral treatment that has
come from understanding HIV-host cell interaction is the drug maraviroc [77]. Maravi-
roc is an entry-inhibitor that binds the CCR5 co-receptor, inhibiting gp120:CD4:CCR5
complex formation and thus entry into the host cell. Targeting a host protein in this way
demonstrates that the number of possible HIV-1 therapeutic drug targets is not limited to
the small viral proteome and that understanding the virus-host interface can lead to the
development of novel-acting therapeutic agents.

Our knowledge of HIV-1-host PPIs is extensive in relation to other pathogens [210].
A major source of HIV-1-host protein interaction data is the HIV-1, Human Protein In-
teraction Database (HHPID) [26, 27, 174]. This database holds over 5000 interactions
involving over 1400 human proteins, curated from primary literature on small-scale pro-
tein interaction studies. In the HHPID, an impressive level of detail is recorded, including
a short description of each interaction outcome, e.g., ‘phosphorylates’, ‘binds’, ‘activates’
etc. However, there are several problems associated with this data set:

(i) Interactions in the HHPID come from a large number of separate publications
over a wide date range and are derived from a diverse array of experimental procedures,
such that the quality of the data is varied and the proportion of false-positive interactions,
though presumably minimised by the small-scale nature of the contributing works, is
difficult to estimate.

(ii) The manual curation step introduces a potential for inconsistency and some anoma-
lies have been identified [211].

(iii) The database contains a large amount of redundant data, where the same inter-
action has been reported more than once in two separate records. For example, in the
HHPID there are 27 entries describing interaction between the HIV-1 Tat protein and the
human CDK9 protein, including five that describe binding and five more that describe
complexing, two describing activation and three describing stimulation, although from
these data it is not clear whether more than one interaction actually occurs.

(iv) A second level of redundancy exists due to downstream consequences of interac-
tions. For example, the finding that HIV-1 gp120 interaction with CD4 alters the activity
of transcriptional regulators and cytokine transcription [212] is present as nine entries in
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the HHPID, when this activity can be explained through a direct interaction at the cell
surface, causing downstream effects in the T cell receptor signaling pathways. However,
by simply taking direct interactions from this database to determine host cell perturba-
tion, important regulatory effects may not be considered or alternatively, perhaps falsely
extrapolated.

Due to these reasons, while the HHPID is a unique, detailed source of individual PPI
interactions that represents a large proportion of the knowledge in the published literature,
it does not immediately provide a logical and functional map of HIV-1-host interaction.

Recently, three high-throughput HIV-human protein interaction data sets have been
published that are the result of individual genome-scale siRNA gene knockdown screens
[144, 145, 146]. These studies each identify over 200 host-cellular factors that are neces-
sary for HIV-1 replication, termed ‘HIV-dependency factors’ (HDFs) [144]. A thorough
meta-analysis of HDFs has been performed by Bushman et al. [156]. Though the pair-
wise intersection of genes between the three sets of HDFs is statistically significant in
all cases [156], the number of genes confirmed by more than one study is only 34 and
just three genes are present in all sets. This seemingly small overlap is largely thought
to be due to differences in experimental procedure, including cell-type, choice of time
points analyzed and choice of filtering thresholds [146, 145, 174, 156]. Despite the ap-
parent small overlap between HDF sets, Bushman et al. demonstrate that certain cellular
subsystems are mutually identified, such as DNA repair and nuclear transport associated
proteins. This indicates the validity of the screen results and the value that can be gained
by combining these data to identify essential host-cellular functions required by HIV-1
for replication. In addition, their study shows that intersections between HHPID data and
the HDF sets, while significant are quite small at 39 [144], 54 [145] and 39 [146] genes.
However, while the work of Bushman et al. successfully consolidates information be-
tween HDF sets and validates these sets against the HHPID, the underlying differences
between the HHPID and siRNA screen results have not been explored in detail. In partic-
ular, cellular subsystems prevalent in the HHPID, but not present among HDFs, have not
been identified.

Our previous visualisations of the HIV-human PPI network show that there are no-
ticeable clusters of host proteins that take part in multiple interactions with the same set
of HIV-1 proteins [26, 213]. These groups possibly represent multiple interactions with
biologically related proteins, e.g., from functional pathways or protein complexes. In ad-
dition, highly connected subnetworks of host proteins, where some proteins are involved
in multiple HIV-human interactions, have also been identified using a combination of
human-human PPI data and HIV-human interaction data [145, 156]. These subnetworks
represent specific biological activities including the ubiquitin-proteasome pathway, tran-
scription, nucleic acid binding and nuclear import – all thought to be important in facili-
tating the early stages of HIV-1 infection [145]. However, in all of these studies, different
types of HIV-1-host interaction are not taken into consideration in the clustering method,
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despite the potential for interactions to be quite dissimilar. For example, subnetwork PPIs
may include direct binding interactions, indirect regulatory interactions and those with
opposing actions, e.g., inhibition and activation, such that no systematic outcome is iden-
tifiable.

In this work, we explicitly utilise host-virus interactions and interaction types, as pro-
vided in the HHPID, to identify significant patterns of viral perturbation of the host cell.
This permits us to gain meaningful insights into HIV-1 infection. Specifically, using a
biclustering approach, we define sets of host proteins that take part in a common set,
or ‘profile’, of HIV-1 interactions. Using a distance method to cluster these units, we
identify higher-level groupings. We show that these higher-level groups of proteins map
to specific biological subsystems in the host cell. By considering patterns of interaction
with host cell proteins, evidence within primary literature and by assessment of support
from global siRNA screens, we are able to infer the biological importance of these subsys-
tems in terms of HIV-1 replication, host cell perturbation and regulation of the immune
response. Thus, our work extracts a coherent functional map of core HIV-1-host inter-
actions from the HHPID and consolidates findings from the major HIV-1-host PPI data
sets.

4.3 Materials and methods

4.3.1 Data collection

HIV-human PPI data were obtained from the HHPID on 1st May 2009. Specifically,
distinct PPIs, based upon (i) the HIV-1 protein interactant, (ii) the human protein interac-
tant and (iii) the type of interaction, one of 68 short descriptions that characterise the PPI
outcome, were obtained [27, 26]. In cases where multiple transcripts of the same gene
take part in the same interaction (with respect to HIV-1 protein and interaction type),
only a single instance of the transcribed gene and interaction were used throughout our
analyses.

To test whether interaction types are uniformly distributed among HIV-1 proteins,
interaction types for each HIV-1 protein were counted and p-values were calculated using
two-tailed Fisher’s exact tests and corrected for multiple tests using the Benjamini and
Hochberg [193] method.

4.3.2 Bicluster identification

In order to perform biclustering, a binary matrix was created with one row per hu-
man protein and one column per HIV-1 interaction. We define an HIV-1 interaction to
include both the HIV-1 interactant and the interaction type, e.g., ‘capsid activates’ is one
such interaction. The presence of a given HIV-1 interaction, for a given protein, was rep-
resented in the matrix by a one and the absence by a zero (figure 4.2). To find sets of
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human proteins that share the same set of HIV-1 interactions in this matrix, biclustering
was performed using the Bimax algorithm [214]

The significance of biclusters was determined by Monte Carlo simulation. Specifi-
cally, the HIV-human PPI network was rewired at random, while the degree of each pro-
tein and interaction type frequencies were maintained. The resulting network was used
to produce a new matrix for biclustering. The matrix was biclustered using Bimax and
interaction types, HIV-1 proteins and the number of human proteins in each bicluster were
recorded. 50 000 iterations of this process were carried out. Using these simulations, we
were able to empirically calculate the probability of randomly finding a bicluster involv-
ing a given number of human proteins and the same (or larger) set of HIV-1 interactions.
Biclusters were deemed significant if they had a p-value of < 0.001, after correction for
multiple tests using the Benjamini and Hochberg [193] method.

4.3.3 Bicluster classification

All interaction types from the HHPID were organised into a hierarchy (see supple-
mentary file S4.1). This hierarchy included new parent terms. For example, a parent term
‘physical’ was created, the child terms of which all refer to more specific forms of phys-
ical interaction. In addition, every interaction was designated a direction, polarity and
control. Direction refers to whether it is the HIV-1 protein acting upon the human protein
or vice versa, e.g., ‘Tat inhibits p53’ has a forward direction, ‘Tat is inhibited by p53’ has
a backward direction and ‘Tat interacts with p53’ has a neutral direction. Polarity refers
to the biological action of the interaction, e.g., ‘Vpr activates p53’ has a positive polarity,
‘Vpr inhibits p53’ has a negative polarity and ‘Vpr interacts with p53’ has a neutral polar-
ity. Control refers to regulation within the interaction, additional to the polarity, e.g., ‘Tat
decreases phosphorylation of retinoblastoma 1’ has a positive polarity but due to the verb
‘decrease’ has a negative control, while ‘Tat increases phosphorylation of retinoblastoma
1’ has a positive control. For those interaction types with no additional control, we set
control as null.

This information was used to classify biclusters according to the hierarchical relation-
ship between their interactions. We defined three types of relationship between interac-
tions: two positive relationships, parental and sibling, and one non-relationship, indepen-
dence. Positive relationships refer to the same biological event within a given interaction,
described using a different and perhaps more, or less specific term. Independence, denotes
that two interactions describe distinct events, both providing additional information.

For any two interactions to be part of a positive relationship, they must link the same
two protein interactants, their directions must not be opposing, i.e., forward and back-
ward, their polarities must not be opposing and the control must be the same. Parental
interaction relationships are formed when one interaction is the descendant of another,
e.g., ‘Tat binds p53’ is a descendant of the interaction ‘Tat interacts with p53’. Sibling
interaction relationships are formed when both interactions have the same direct parent
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term, e.g., ‘Tat activates Cdk2’ is a sibling of ‘Tat enhances Cdk2’, as the parent term
for both interaction types is ‘protein regulation’. Interaction pairs that do not conform
to parental or sibling relationships have an independent relationship. These relationship
classifications give rise to five classes of bicluster. (i) Independent, where all interactions
have independent relationships. (ii) Parental, where all of the interactions are descendants
of one another. (iii) Sibling, where two or more interactions are siblings of one another
in the ontology, e.g., ‘Tat activates Cdk2’ is a sibling of ‘Tat enhances Cdk2’ (iv) Family,
where all of the interactions form a ‘family’ of parental and sibling relationships. (v)
Mixed, where independent interactions and sibling or parental interactions form a biclus-
ter.

4.3.4 Bicluster biological validation

We established a group of 692 proteins from the HIV-1 interacting set that could ap-
pear in the bicluster results. These proteins are limited to those that have more than one
distinct HIV-1 interaction. This set of proteins are important to our statistical analyses
and will be referred to as potential bicluster proteins (PBPs).

A human PPI network was created using protein interactions derived from multiple
sources: BioGRID [83], BIND [188] and HPRD [215]. All interactions were cross-
referenced using the ‘gene_info’ file provided by the Entrez Gene database to maintain
consistent accession labeling. These data sets were obtained in July 2009. The human
PPI network contained only one node per human gene, a maximum of one edge between
two nodes and a total of 9000 nodes and 30478 edges.

The number of shared edges, average shortest path length and largest connected com-
ponent (LCC) for the set of human protein nodes defined by each significant bicluster
were calculated from this network and statistical significance was calculated by Monte
Carlo simulation. In a single iteration of this simulation, a group of nodes numbering the
same as the bicluster in question were selected at random using rejection sampling in or-
der to maintain the group degree distribution. Following this, shared edge count, average
shortest path length and LCC were recorded. 10000 iterations of this simulation were car-
ried out per bicluster. The results of the simulation were used to estimate the probability
that a more tightly clustered set of nodes, of given size and degree distribution would be
found by random chance, p-values were corrected for multiple tests using the Benjamini
and Hochberg [193] method.

To analyze similarity between proteins within biclusters, we performed local protein
sequence alignments between all PBPs using the Smith-Waterman algorithm [216] with
a gap open cost of 10, a gap extension cost of 0.1 and the BLOSUM62 substitution ma-
trix. To analyze similarity in annotation between proteins within biclusters, we carried
out a semantic similarity measurement [217] between all PBPs using GO annotation for
all three ontologies – molecular function, biological process and cellular component. The
GO data was downloaded from the Gene Ontology on the 9th December 2008. We defined
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the distance between two genes using the method given in [218], using the semantic dis-
tance measurement defined in [217]. For both of these measures we compared the value
distribution for protein pairs that appear in the same significant bicluster to the equiva-
lent distribution for proteins that do not appear in the same significant bicluster using a
Mann-Whitney U test. We also calculated p-values for each significant bicluster, for both
of these measures, using Monte Carlo simulations. For a given bicluster of size n and a
mean average alignment score, or semantic similarity, s, 100000 and 10000 simulation
iterations, for the pairwise alignment and semantic similarity simulations, respectively,
were performed. In each iteration we selected a non-redundant random set of n proteins
from PBPs and calculated the average alignment score or semantic similarity and counted
whether this value was greater than, or less than s. By this method we were able to calcu-
late the probability of finding a set of proteins, by random chance, with greater similarity
than the proteins of a bicluster, both in terms of sequence and GO annotation. We cor-
rected the p-values for multiple tests using the Benjamini and Hochberg [193] method.
In addition, we identified groups of similar human protein sequences within significant
biclusters using single-linkage clustering; linking pairs of proteins that have > 40% se-
quence identity, determined by sequence alignments and selecting connected components.

4.3.5 Defining subsystems

The distance between any two biclusters, a and b, was calculated using the formula:

d(a, b) = 1− 2×|A∩B|
|A|+|B|

Where A and B are the set of interactions in biclusters a and b, |A| and |B| are the
number of interactions in sets A and B and |A∩B| is the size of the intersection between
sets A and B. Therefore, for two identical biclusters d(a, b) = 0 and for two biclusters
that have no common interactions d(a, b) = 1. Distances between all biclusters were cal-
culated, cubed to obtain a greater range of values and the resulting distances were used to
define relationships between biclusters using neighbor joining [219]. Meaningful groups
were determined, by examining bicluster proteins and interactions. These groups were
characterised and named using one of the following two methods. (i) Selecting one or
more over-represented GO term (p < 0.001), calculated using Fisher’s exact tests cor-
rected for multiple tests using the Benjamini and Hochberg [193] method. (ii) In the case
where the proteins of a subgroup are all homologs or isoforms of the same product and
no specific GO term pertaining to that protein product exists, a regular expression encap-
sulating the protein name was used to characterise the group and that group was named
after the protein. The method used to define each group is specified in supplementary file
S4.4.
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4.3.6 Comparison with siRNA screen data

Proteins from three siRNA studies [144, 145, 146], were cross referenced against the
identified host subsystems. These studies include 281 [144], 295 [145] and 290 [146]
genes. The genes not expressed in T cells or macrophages, designated group ‘H’ in one
study (reference [146]) were not included. The number of successful hits against each
subsystem and the direct intersection was counted for each of the three studies and p-
values for these counts were calculated using chi-square tests, using all genes annotated
in the gene ontology as the population, corrected for multiple tests using the Benjamini
and Hochberg [193] method. HIV-1-host PPI networks were constructed and visualised
using Cytoscape [164].

4.4 Results and discussion

4.4.1 Patterns of HIV-1-host interaction

We retrieved 1434 human proteins and 3939 distinct HIV-1-human PPIs from the
HHPID. In order to precisely reflect findings from HHPID source papers and to max-
imise our capability to discern patterns within the data, all 19 HIV-1 proteins were used
in our analysis. Not surprisingly, types of HIV-human PPI are not uniformly distributed
among HIV-1 proteins, due to the different molecular functions of these proteins. We
found that 18 from 19 HIV-1 proteins (all except Pol) take part in one or more interac-
tion type with a frequency greater than expected by random chance (p < 0.001). These
over-represented interactions include 47 of the 68 interaction types given in the HHPID
and 60 distinct interaction-type/HIV-1 protein combinations. To give some examples:
(i) The HIV-1 protein retropepsin is a protease required in the HIV-1 reproductive cycle
to cleave viral polyproteins [220]. In addition, retropepsin cleaves proteins of the host
cell [221, 222, 223, 224], hence, retropepsin is responsible for all but one of 61 distinct
‘cleaves’ interactions. (ii) The HIV-1 accessory protein Nef can impact expression lev-
els of multiple genes during the viral reproductive cycle including proteases, cell-surface
proteins, kinases, cyclins and transcription factors [225, 226]. Hence, Nef is responsible
for a greater proportion of both upregulatory and downregulatory interactions than would
be expected by random chance (p = 2.5e − 5). (iii) HIV-1 Tat is a transcriptional reg-
ulator that does not function alone [227], rather Tat works by recruiting other regulators
[228, 229] and hence takes part in a greater proportion of interactions with type ‘recruits’
(p = 1.1e−7) and ‘binds’ (p = 1.1e−4). This over-representation analysis indicates that
simple patterns of interaction (linking certain HIV-1 proteins to certain interaction types)
are present in the HIV-1-host interaction network.

To computationally identify more complex patterns of virus-host interaction, we in-
vestigated human proteins that take part in more than one distinct PPI with HIV-1 proteins.
An outline of our method for analysis of HIV-1 interaction is given in figure 4.1. As a first
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step towards identifying key host functions known to be involved in HIV infection, we use
biclustering to define groups of human proteins that share a common set (or ‘profile’) of
HIV-1 interactions, in terms of HIV-1 protein interactant and interaction type (figure 4.2).
The binary interaction matrix contained 1434 rows, 1292 columns and 3939 positive val-
ues, corresponding to human proteins, all types of HIV-1 interaction and all HIV-1-human
PPIs, respectively. Biclustering of this matrix yielded 1306 biclusters that include a min-
imum of two human proteins, each with a minimum of two distinct HIV-1 interactions.
We identified 279 from 1306 biclusters that were statistically significant (p < 0.001) by
Monte Carlo simulation. A table with details of all significant biclusters, including their
constituent human proteins, HIV-1 proteins, interaction types and links to the HHPID are
given in supplementary file S4.1. fsus

These biclusters define significant profiles of HIV-1 interaction and a corresponding
set of human proteins, or termed differently, significant sets of human proteins that un-
dergo similar perturbations during HIV-1 infection. Included in the significant biclusters
were 246 human proteins, 18 proteins of HIV-1 (all except p6) and 1665 distinct HIV-
1-human PPIs. According to the classes of bicluster, defined according to relationships
between interactions, we found 122 independent, 137 mixed, 11 parental, 9 family and
no sibling significant biclusters. Both independent and mixed biclusters, according to our
interactions hierarchy (see supplementary file S4.1), include a minimum of two unrelated
types of PPI between every HIV-human protein pair. This indicates that our study of
multiple interactions is informative and potentially valuable, as in > 90% of cases, bi-
cluster interaction profiles include two or more types of interaction that provide distinct,
additional information regarding the perturbation of the human proteins.

We expected significant biclusters to be enriched for well-studied, high-confidence
interactions, since they are likely to correspond to identifiable units of biological function
and well established modules that have been investigated more thoroughly than smaller,
insignificant biclusters or singleton interactions. This hypothesis was tested by counting
publications that support the interactions, as given in the HHPID. Whilst we do not re-
gard publication count to be an ideal measure, it is a reasonable and accessible estimate
for confidence in a given PPI. We found that interactions within significant biclusters had
a mean of 2.94 supporting publications, while other interactions with human proteins that
could potentially be in biclusters (these take part in at least two distinct interactions with
HIV-1 and are referred to as ‘potential bicluster proteins’ or PBPs) have a mean of 2.46
and interactions with all non-biclustered interactions had a mean of 2.29. Mann-Whitney
U tests performed on the publication count distributions of biclustered interactions ver-
sus PBP interactions and biclustered interactions versus all non-biclustered interactions,
demonstrated that the distributions were significantly different (p < 0.001, in both cases).
While we do not suggest that interactions outside of these biclusters are false positives
and that all interactions within these biclusters are of elevated importance, this finding
does indicate that the overall patterns of interaction defined by significant biclusters that
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Figure 4.1: Summary of methodology. This diagram provides an outline of our method,
stpdf are numbered according to the order in which they are discussed in the main text.

we discuss in this work, are likely to be biologically valid.

4.4.2 HIV-1 Interaction profiles define biologically cohesive sets of
human proteins

To validate the biological significance of host protein sets and their associated inter-
action profiles (as defined by biclusters), we determined whether human proteins from
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Figure 4.2: An example portion of the interactions matrix used in biclustering. (A) Shows
an example portion of the interactions matrix. Here, a ‘1’ represents the presence of
a given interaction and a ‘0’, the absence of that interaction, between a human protein
interactant, shown left, and an HIV protein, the interaction having a given outcome, shown
above. The entire matrix was biclustered to identify sets of host proteins that undergo the
same set of HIV-1 interactions. (B) Shows an example bicluster that would be found in
the portion of matrix given in (A).

within significant biclusters were more biologically similar to one another than expected
by chance, assessed according to three measures: PPI network clustering to infer a greater
then expected frequency of PPIs; semantic similarity in terms of shared Gene Ontology
(GO) annotation [84] to infer shared biological roles; and sequence similarity to infer ho-
mologous relationships, as functional modules, such as protein complexes, are known to
have a tendency to include paralogs [230]. These similarities were determined by compar-
ing the host protein groupings to randomly selected sets sampled from 692 PBPs. Results
for these measures are discussed below, followed by a summary of the three measures. In
addition, detailed results, per significant bicluster, are given in supplementary file S4.3.
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PPI network clustering

Integrating human proteins from significant biclusters into a human PPI network, we
identified 38 biclusters where the proteins share a greater number of interactions, 24 where
the proteins form a larger largest connected component (LCC) and 38 where the proteins
have a smaller average shortest path length than would be expected by random chance
(p < 0.05). A total of 66 biclusters appear in the union of these three measures and figure
4.3A gives details of their intersection.

These results show that HIV-1 has a tendency to interact in similar patterns with host
proteins that share interactions with one another, indicating the presence of multiple HIV-
1 interactions with host protein complexes or other closely associated host network mod-
ules. There are several prominent examples of complexed proteins that constitute all of
the host proteins defined by significant interaction patterns including; class II major his-
tocompatibility complex (MHC), general transcription factor IIH (TFIIH), casein kinase
II, adaptor-related protein complex 1, protein phosphatase 2A, N-methyl-D-aspartate re-
ceptor, microtubule subunits and RNA polymerase II (RNAP II). In some cases HIV-1 in-
teraction patterns with these complexes become significant due to the number of subunits
that undergo a set of interactions. For example, one significant combination of interac-
tions acts upon nine subunits of the RNAP II complex, hence, these proteins have more
shared edges than would be expected at random. In this case, the interactions are general,
pertaining to the complex rather than subunit specific, e.g., upregulation of RNAP II due
to HIV-1 gp120 [231]. However, we also identify peptides from complexes that undergo
subunit-specific interactions with the proteins of HIV-1. For example, one such bicluster
involves HIV-1 Tat binding and regulation of specific polypeptides of TFIIH [27, 26, 174].
Yet, there are five other transcription-related host proteins within this interaction combi-
nation. In this case Tat interactions affect a functional module in the human PPI network
(involving 18 interactions among the nine proteins, forming a single connected compo-
nent) that corresponds to proteins of transcriptional regulation.

Semantic similarity

Biclustered proteins are more similar in terms of their GO annotation than would be
expected by random chance in all ontologies; molecular function, cellular component and
biological function (p << 0.001). Semantic distance distributions for human protein pairs
from within biclusters and all other PBP pairings, for each ontology are shown in figure
4.4, graphs A to C. We identified 75 significant biclusters that include human proteins that
are significantly similar in their GO annotation, for at least one ontology, from a possible
204 significant biclusters that include two or more genes with GO annotation (p < 0.05).
Details of the intersection between results for each ontology are given in figure 4.3B.

These results show that HIV-1 interacts in a similar pattern with proteins that have
similar GO annotation. We are able to observe these similarities in all GO ontologies. For
example, protein kinase C (PKC) isoforms that comprise all human proteins of one biclus-
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Figure 4.3: Venn diagrams showing biological cohesiveness among proteins within sig-
nificant biclusters, using three measures. Counts refer to the number of biclusters that
include human proteins that are significantly biologically related (p < 0.05) from a pos-
sible 279. (A) displays three network clustering measures: Shared edge count; average
shortest path; and largest connected component. (B) displays semantic similarity in terms
of the three GO ontologies. (C) displays the overlap of all three measures of biological
cohesiveness; semantic similarity; network clustering and sequence similarity.
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Figure 4.4: Comparison of protein pairs within significant biclusters to other protein pairs.
Panels A, B and C show the semantic distance distributions for the three GO ontologies,
biological process, cellular component and molecular function, respectively, for (i) human
protein pairs from significant biclusters, shown in grey (ii) all other human protein pairs
from PBPs, shown in black. Panel D shows the pairwise sequence similarity distributions
for (i) and (ii). These charts show that human proteins from within significant biclusters
are more similar in their GO annotation and sequence than other protein pairs (p < 0.001
in a Mann-Whitney U test, in all cases).
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ter are annotated with the molecular function ‘protein kinase C activity’. Some cellular
component GO terms refer directly to protein complexes. Certain biclusters involving
complexes are therefore linked via common annotation, such as one that corresponds to
RNAP II, annotated with GO term ‘RNA polymerase complex’. Interestingly, we are also
able to observe HIV-1 interaction patterns that act upon specific biological processes in-
cluding the immune response, protein kinase cascades, lipid modification, transcription,
nuclear import and microtubule-based movement. The combinations of interaction that
affect these processes can highlight the molecular methods through which HIV-1 infection
perturbs cellular processes.

Sequence similarity

Human protein pairs within significant biclusters are more similar in their protein
sequence than would be expected by random chance (p << 0.001). Distributions for
sequence identity between human protein pairs from within biclusters compared to ran-
dom pairings are shown in figure 4.4D. We identified 101 significant biclusters where the
human proteins were more similar in their sequences than would be expected by random
chance (p < 0.05). No biclusters were significantly less similar in their human protein
sequences than would be expected.

We identify 58 biclusters for which a group of homologous proteins comprises more
than half of the members of that cluster. We defined these homologous relationships by
performing single linkage clustering on proteins, where proteins are linked if they share
> 40% sequence identity. This cutoff was chosen as previous work has demonstrated
that 40% sequence identity can accurately infer homology without the inclusion of an
unacceptable proportion of false positives [218]. We found that significant biclusters with
greater than expected sequence similarity among their host proteins (p < 0.05) were also
more likely to have at least one direct physical HIV-1 PPI (p = 7.81×10−5) and the mean
average proportion of direct HIV-1 PPIs among this group of biclusters was 25.5%, as
opposed to 11.8% for all other significant biclusters.

These results show that paralogous groups of host proteins have a tendency to be
subject to the same combinations of regulatory and physical HIV-1 interaction. Regula-
tory effects of HIV-1 interaction may be maintained across these groups, perhaps through
stimulation of specific pathways. For example, isoforms of PKC, a kinase found to act
in many, wide ranging signaling cascades [232], are the only host proteins among three
particular significant biclusters. HIV-1 gp120 has been shown to upregulate multiple
isozymes of PKC, possibly through classical signal transduction pathways [233], induced
by binding to cell-surface receptors such as CCR5 [234]. However, the prominence of di-
rect physical interactions among these homologous sets of proteins implies that there are
conserved binding domains on members of closely related homologous groups, to which a
HIV-1 protein can bind. For example, HIV-1 Vpr is designated in the HHPID to bind both
importin-α 1 and 2 isoforms, these proteins are > 40% similar in a pairwise alignment,
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therefore, it seems likely that Vpr would bind a particular conserved domain of these
proteins. However, various members of protein families can exert distinct phenotypic re-
sponses. In the case of PKC isoforms, cellular localisation and activation input can be
controlled by the specific domain structure [232]. Different members of protein families
may also exert distinct phenotypic responses due to their cellular background, caused by
differential expression, but also by activating downstream targets to different quantitative
levels, as shown for receptor tyrosine kinases [235, 236]. Therefore, to precisely deter-
mine HIV-1 perturbation, it remains important to distinguish what protein isoforms and
family members are dysregulated and in what cell type this activity occurs.

Summary for measures of biological cohesiveness

A summary of results from the three measures of biological relationship between pro-
teins, in terms of the number of significant biclusters, is given in figure 4.3C. We find 151
from 279 biclusters are significant by one or more measure. Therefore, these measures
are not mutually exclusive. In fact, in some cases, overlap may be due to a single bio-
logical phenomenon, e.g., homologous proteins that form a single complex are likely to
be involved in the same biological process, in the same cellular compartment, possibly
with the same molecular functions. For example, transcriptional regulators CREB bind-
ing protein (CBP), E1A binding protein (p300) and cyclin T1 are all found in one such
bicluster whose interaction profile includes binding of these proteins to HIV-1 Tat and
Vpr. CBP and p300 are > 60% identical in local pairwise alignment, however, rather than
binding Tat individually, they form a dimer (known as PCAF) [237]. Cyclin T1 shares
only a low level of sequence similarity (< 30% identity in local pairwise alignment) to
the other two proteins. Therefore among these three host proteins there is a known PPI, a
homologous relationship and all are transcriptional regulators involved with Tat mediated
transactivation of the HIV-1 LTR [238] and hence have some common GO annotation.
Furthermore, gene annotations including GO and PPIs may be attributed based on homol-
ogy to genes with experimentally validated actions, for example, GO evidence code ‘ISA’,
stands for ‘inferred from sequence alignment’ and is one of six codes describing compu-
tational assignment of annotation. Hence, the measures used here are linked. Some anno-
tation is electronically inferred without any manual curation and as a result is error-prone
[239], moreover, false positive annotations can be propagated electronically [240, 241].
However, we chose not to select manual annotation alone as the potential reduction in
false-positives is offset by an increase in false-negatives. For example, more than half
GO annotations of human genes have the evidence code ‘IEA’ meaning ‘inferred from
electronic annotation’ (see http://www.geneontology.org/GO.current.annotations.shtml).

We do not identify significant biological relationships among 128 biclusters. These
biclusters include significantly fewer human proteins on average (x̄ = 2.32) than the 151
biologically cohesive biclusters (x̄ = 4.14) (p = 2.2 × 10−16, Mann-Whitney U test).
Therefore, power to detect statistically significant biological relationships (despite their
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possible existence) among human proteins of these biclusters, is diminished, especially
where annotation is lacking. For example two subunits of the casein kinase II complex
(alpha 1 and beta) are found in one such bicluster. At the time of performing this work
neither of these subunits were GO annotated, they are not more than 30% similar by local
pairwise alignment and though they interact, this is insufficient to be called statistically
significant. However, in some cases, no biological relationship can be discerned, even
on inspection. Yet, of these 128 biclusters, 125 include fewer than three human proteins
and none include more than four. This indicates that our combination of methods for de-
tecting biologically cohesive human protein sets via biclustering and detecting biological
relationships among these biclusters performs well in terms of quality, where the number
of human proteins is four or greater.

4.4.3 Host functions among HIV-1-host interaction combinations

Owing to the specific biclustering method that we used for defining significant pro-
files of HIV-1-host interaction, multiple biclusters arise from slight differences between
protein sets that are essentially similar in their interaction profile. This is partly due to
differently annotated interactions, interactions that are not maintained across a group of
otherwise similarly interacting proteins, or even to missing interactions that have not been
experimentally proven or are missing from the HHPID, i.e., false negatives. For example,
in the case of two biclusters that include homologs of Akt (also known as protein kinase
B), one pertains to homologs 1 and 2, the other to homologs 1, 2 and 3. These two bi-
clusters occur because homologs 1,2 and 3 have been shown to share similar interactions
with HIV-1 gp120 and Vpr, however, while homologs 1,2 and 3 are activated by Tat, only
homologs 1 and 2 are shown to be upregulated by Tat in the HHPID [27, 26, 174]. There-
fore, by combining biclusters according to shared information, we can form an overview
of HIV-1 interactions with a given set of host proteins.

Higher-level relationships between biclusters were identified using a distance mea-
sure based upon overlap between biclusters. Using the resulting pairwise distances a tree
was constructed using the neighbor joining method [219] (see figure 4.5). This tree has
been partitioned into sections, representing 37 biological subsystems within the host cell
that are named according to over-represented GO terms, or after a specific protein (see
materials and methods for more detail). In the tree representation we can observe subsys-
tems that undergo a complex set of interactions during HIV-1 infection, these have a large
number of terminal branches, representing many distinct but related HIV-host interaction
combinations, where a single, clear pattern of interaction can not be simply defined, or
does not exists, e.g., the cytokine activity subsystem. Conversely, the v-akt subsystem is
relatively well defined including just two closely related HIV-host interaction combina-
tions.

The identified subsystems and their associated patterns of interaction take place at a
variety of levels within the host cell, including interactions at the cell surface and with
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Figure 4.5: Tree showing the relationship between significant biclusters and higher-level
host subsystem groupings. Individual biclusters are represented by terminal branches.
Relationships are derived using a distance measure based on the proportion of shared in-
teractions between significant biclusters and the tree was drawn using the neighbor join-
ing method. The tree is divided into sections that show the higher-level host subsystems,
largely derived using the tree structure. Subsystems of > 2 biclusters are colour coded
(see key), biclusters not labelled are those that have been placed in a biologically related
group not adjacent on the tree.

specific biological components such as the proteasome. Cellular processes and pathways,
including intracellular signaling cascades, apoptosis pathways and stimulation of the im-
mune response, better describe other subsystems. In addition, some subsystems can be
directly mapped to specific steps in the viral reproductive cycle, including viral budding
and transport of viral RNA across the nuclear membrane. Supplementary Table S3 gives
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details of each subsystem, including the number of biclusters, host and virus proteins.
Supplementary file S4.2 links individual biclusters and interactions to these subsystems.

Among these subsystems, there appears to be a central pathway of T cell signaling
interactions that are perturbed by the proteins of HIV-1 at multiple levels in the cell. This
pathway begins with inhibition of cell-surface receptor mediated signaling. For example,
HIV-1 gp120 binding to CD4 prevents typical host-host cell-surface interactions, such
as MHC-class II response to antigen binding [242], CD28-mediated co-signaling [243]
and CD3-induced leukocyte-specific protein tyrosine kinase (Lck) and phospholipase C
activation [244, 245]. In addition, HIV-1 Nef downregulates CD4, CXCR4, CCR5, CD28,
CD71, CD80, CD86 and MHC class I molecules via endocytosis [246, 247, 248, 249, 250,
251].

We find continued perturbation of T cell signals at other cellular locations. For ex-
ample in the MAP kinase subsystem we find Lck, a component of TCR signaling and
an activator of other cell signal transduction proteins including the ERK family of MAP
kinases [252, 253, 254, 255], is activated through gp120 binding to CD4 [256, 257, 258].
HIV-1 Nef also plays a role in the activation of the classical MAP kinase pathway via
binding and activation of Lck [259, 260] and also Vav, causing downstream activation
of JNK MAP kinases [261, 262]. Stimulation of these signaling cascades by proteins of
HIV-1 influences a variety of cellular responses that include activation of transcription
factors, for example [258, 263]. The nuclear factor subsystem includes nuclear factors of
activated T cells (NFATs), transcriptional regulators that induce production of cytokines
[264, 265]. We observe that NFATs are enhanced or activated at several levels within the
host cell, by HIV-1 proteins Vpr, Tat, Nef and gp120, causing dysregulation of cytokine
production [266, 267, 268, 269, 270, 30]. Altered cytokine signals will then be received
by cell-surface receptors, thus completing a cycle of viral perturbation.

To summarise the interactions between cytokines and proteins of HIV-1, we produced
networks of both upregulation and downregulation, taking interactions from the cytokine

activity subsystem, including interactions that are supported by more than one publica-
tion, as given in the HHPID (see figure 4.6). These networks illustrate the complexity
of cytokine dysregulation by HIV-1. From 53 distinct HIV-protein, host-protein pair-
ings in these networks, 30 pairs involve only cytokine upregulation, 12 pairs involve only
cytokine downregulation and 11 pairs involve both cytokine upregulation and downregu-
lation, in response to the HIV-1 protein interactions. Cytokine dysregulation is likely to
have major pathogenic effects on the host system. For example, an increase in plasma lev-
els of multiple cytokines during acute HIV-1 infection, coined an ‘early cytokine storm’,
is associated with peak viral loads and immunopathological consequences [271].

In these network visualisations there are distinguishable patterns of cytokine regula-
tion by HIV-1, such as: The largely stimulatory effects of gp120, Tat and Nef; upregu-
lation of TNF-alpha and Interleukins 1 and 6; the repressive action of Vpr and gp160;
and downregulation of interleukin 2 and interferon-γ. However, the overall picture of
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Figure 4.6: Cytokine regulation networks. These networks represent the pattern of cy-
tokine regulation in the cytokine-activity host subsystem that were defined through iden-
tifying significant patterns of HIV-host interaction. Edges represent PPIs, edge width is
proportional to the number of PPIs being represented. Here, for clarity, we only show
PPIs that are reported more than once in the HHPID. These networks show that cytokine
dysregulation due to HIV-1 infection is wide reaching and complex, affecting many host
cytokines, both via upregulation (left) and downregulation (right).

cytokine regulation during HIV-1 infection remains unclear. Future cytokine-wide stud-
ies of HIV-1 infected cells, preferably representing multiple different stages of infection
and possibly even a variety of HIV-1 strains, coupled with an accurate model of cytokine
action on the host system could improve our understanding of HIV-1 pathogenesis and
potential intervention targets, particularly if key HIV-host interactions are identified.

To present distilled views of the HHPID and provide an interpretable network of HIV-
1-host interaction, two HIV-1-host PPI networks were constructed. Both networks include
37 nodes that represent the characterised subsystems. The first network, shown in figure
4.7, has 18 nodes that represent the proteins of HIV-1. The second network, shown in
figure 4.8 has 49 nodes that represent interaction types. The edges in these networks rep-
resent HIV-1-host interactions that contribute to significant biclusters, the width of each
edge is proportional to the number of distinct interactions that are represented. Due to
the condensed host functions and filtering out of patterns of interaction that are not statis-
tically significant we can observe recognisable patterns of interaction in these networks.
For example: (i) The relationship between HIV-1 Tat and regulators of transcription that
are stimulated, activated and recruited by HIV-1 in the process of viral transcription. (ii)
The multiple sources of perturbation of T cell activation from HIV-1 Nef, Tat and the
envelope proteins. (iii) The large number of regulatory interactions between proteins of
HIV-1 and host cytokines.
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Figure 4.7: HIV-1-host interaction patterns, by HIV-1 protein. This network illustrates
core patterns of HIV-host interaction. The human host is depicted as a series of cellular
subsystems, represented by orange circular nodes, where the diameter of the node is pro-
portional to the number of host proteins within that subsystem. HIV-1 is depicted by the
viral proteome (blue triangles). Interactions between HIV-1 proteins and host subsystems
are represented by edges, where the edge width is proportional to the number of interac-
tions. For clarity, only those interactions that are shared by over half of the host proteins
in a subsystem are shown. *Indicates a host subsystem whose subsystem annotation cor-
responds to a statistically significant group among HDFs (p < 0.05). †Indicates a statisti-
cally significant intersection between the subsystem proteins and HDF set (p < 0.05).

4.4.4 Support for host subsystem functions among global siRNA data
sets

To assess support for the 37 host subsystems from HDFs identified by global siRNA
screens [144, 145, 146], we defined subsystem annotations that consist either of defining
over represented GO terms or a regular expression that encapsulates a common protein
name. Subsystem annotations are given in supplementary file S4.4. We found that 10 from
37 subsystem annotations also define statistically over-represented groups among either
all HDFs combined or a single HDF study (p < 0.05). We find that 21 from 37 subsystems
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Figure 4.8: HIV-1-host interaction patterns, by interaction type. This network illustrates
core patterns of HIV-host interaction. The human host is depicted as a series of cellu-
lar subsystems, represented by orange circular nodes, where the diameter of the node is
proportional to the number of host proteins within that subsystem. The action that HIV-1
has on these subsystems is depicted by a series of interaction outcomes (blue diamonds).
Interactions between HIV-1 and host subsystems are represented by edges where the edge
width is proportional to the number of interactions. The directionality of the interaction
is implicit in the description of the interaction outcome. For example, the edge linking
the MHC protein complex node and the ‘upregulates’ node represents ‘HIV-1 upregulates
the MHC protein complex’, whereas the edge linking the cytokine activity node and the
‘activated by’ node represents ‘HIV-1 is activated by cytokine activity’. For clarity, only
those interactions that are shared by over half of the host proteins in a subsystem are
shown. *Indicates a host subsystem whose subsystem annotation corresponds to a sta-
tistically significant group among HDFs (p < 0.05). †Indicates a statistically significant
intersection between the subsystem proteins and HDF set (p < 0.05).

include at least one protein that is also present among HDFs and only in three cases is the
intersection statistically significant (see supplementary file S4.4 for more details).
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Cellular subsystems supported by HDF sets

The 10 subsystems that are supported by HDFs are: Proteasome core complex; reg-

ulation of apoptosis; mRNA transport; endosome; RNA polymerase activity; peptidase

activity; regulation of transcription; ubiquitin; cAMP-dependent protein kinase complex;
and v-akt.

Subunits of the proteasome core complex are present among two of the three siRNA
screens [144, 145]. A meta-analysis of these HDF sets that incorporates data from the
HHPID, showed that the proteasome is an important cellular component for HIV-1 repli-
cation [156]. The role of the proteasome in HIV-1 replication remains unclear. However,
the interactions that we highlight between HIV-1 Tat and the beta-8 and beta-10 sub-
units may be important for determining proteasome composition, towards formation of
the immunoproteasome, a change that may cause increased presentation of subdominant
epitopes [272, 273].

Apoptosis is widely accepted as a mechanism for T cell depletion in HIV-1 infected
individuals [274]. By reviewing relevant literature, we find that several subsystems may
have a role in controlling apoptosis including: Regulation of apoptosis; glutamate recep-

tor activity; v-akt; lactate dehydrogenase activity; and peptidase activity. HDFs found
by one siRNA screen [146] are enriched for regulators of apoptosis. However, in our
results, we only identify one HDF, Cytochrome C that is GO annotated as a regulator of
apoptosis in addition to Akt and components of the glutamate receptor. We speculate that
prevention, rather than induction of apoptosis, is an essential part of HIV-1 infection, in
order to maintain a viral reservoir in the host [275]. In this case, HDFs may not include
the pro-apoptotic host proteins that we observe in these interaction patterns. In addi-
tion, proteins such as Akt and Cytochrome C have roles outside of apoptosis [276, 277],
therefore, the necessity for such proteins in HIV-1 replication is not necessarily apoptosis
related. However, we identify subsystems from the HHPID that can be linked to posi-
tive regulation apoptosis, such as regulation of apoptosis that includes the activation of
pro-apoptotic caspases by multiple HIV-1 proteins. The intensity of research to elucidate
key interactions responsible for T cell loss, via apoptosis, in HIV-1 infected individuals
is demonstrated by the prominence of pro-apoptotic HIV-host interactions in our results.
However, we suggest that a greater range of interactions between proteins of HIV-1 and
host regulators of apoptosis need to be investigated, particularly involving those host fac-
tors that are present among HDFs but not identified in our results.

Interactions in the mRNA transport subsystem all involve HIV-1 Rev. One of the roles
of Rev is to facilitate export of HIV-1 RNA from the nucleus to the cytoplasm. A nuclear
export signal present in the Rev protein binds to exportin 1, while an argenine-rich domain
(ARD) in Rev binds to a Rev-response-element (RRE) present in viral RNA. To undergo
nuclear export, an exportin-Rev-RNA complex docks at a nuclear pore complex (NPC);
this interaction is mediated by nucleoporins [36]. In the mRNA transport subsystem we
find interactions that are specific to this process including but not limited to: Binding
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[37] and recruitment [278] of exportin 1 by Rev; and direct interactions between Rev and
two nucleoporin proteins [279], including Rev mediated recruitment of these host factors
to the nucleus [280]. We find that there are a statistically significant proportion of host
factors involved in mRNA transport in two of the three global siRNA studies (references
[144, 145]). Furthermore, all host genes that make up this subsystem (total 5) are found
among HDFs (p = 0.00014). Down-modulation of these host factors, either in small-scale
experiments or by global siRNA screen, apparently inhibits the interactions described in
this subsystem, thereby preventing Rev-mediated RNA nuclear export and successful viral
replication.

We observe two other subsystems that appear to have a role in transport of HIV-1
material into the nucleus, nuclear import and heat shock protein 70kDa. Briefly, the
nuclear-import subsystem involves a variety of interactions with members of the karyo-
pherin family and heat shock 70kDa chaperone protein (Hsp70). Karyopherins bind se-
quence motifs called nuclear localisation signals (NLS) of proteins, causing the protein to
be directed into the nucleus [281]. We observe that HIV-1 Integrase, Matrix, Tat and Rev
proteins are bound or imported into the nucleus by members of the karyopherin family.
In the case of Integrase and Matrix, these interactions may relate to karyopherin mediated
nuclear import of HIV-1 preintegration complexes (viral ds-RNA and associated proteins
known as PICs) [282], a mechanism that may also involve HIV-1 Vpr. Several isoforms of
the heat shock 70kDa chaperone protein (Hsp70) promote PIC import, possibly by stim-
ulating interaction between PIC complexes and karyopherin [283]. These two nuclear
import subsystems include support from siRNA screens. One of the three studies identi-
fied karyopherin-β [145] and two studies [144, 145] identified transportin 3 (TNPO3) –
a less definitively characterised member of the importin-β/karyopherin-β superfamily –
as HDFs. More recently, TNPO3 has been reconfirmed by yeast-two-hybrid pull-down as
a binding partner of Integrase, as an early-stage HDF in the viral reproductive cycle by
siRNA screen and a clear promoter of HIV-1 PIC import [284], though subsequent work
has shown that HIV-1 requirement for TNPO3 maps to interaction with Capsid rather than
the Integrase protein [285]. Therefore, current experimental data indicates that TNPO3,
is essential for PIC import, whereas the role for karyopherin-β in this process remains
unclear. Requirement for karyopherin-β observed in [145] could be indirect, perhaps for
transport of another HDF.

Budding – the release of the viral particle from the host cell plasma membrane – is an
essential step in the HIV-1 reproductive cycle. We identify two subsystems that have a role
in budding: Protein localisation and ubiquitin. Both of these groups include interactions
involving HIV-1 p6, a region of the Gag protein that contains a late domain (L-domain). L-
domains recruit host-cellular factors required by HIV-1 for budding. Our results indicate
that p6 (along with other viral proteins) is ubiquitinated at the L-domain by three forms
of ubiquitin (B, C and D). The p6 L-domain also interacts with subunits of the ESCRT-I
complex, possible via direct interaction with AIP-1/ALIX. These interactions, though not
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fully understood, have been shown to be important for HIV-1 budding [286] and are found
in our results. These host factors are not identified among HDFs. However, HDFs include
both ubiquitin-conjugating enzymes and ubiquitin-protein ligases. Therefore, it appears
that ubiquitination plays an important role in HIV-1 replication that can be linked to viral
budding.

In our results we define four subsystems where the host proteins and interactions con-
tribute to HIV-1 provirus chromosomal integration and HIV-1 RNA transcription, namely,
regulation of transcription, DNA helicase, RNA polymerase activity and DNA integration.
The largest of these groups is regulation of transcription that includes many direct bind-
ing and co-stimulatory interactions between HIV-1 proteins Tat and Vpr and host tran-
scriptional regulators including: Cyclin-dependent kinase 9 and cyclin T1 that form the
Positive Transcription Elongation Factor b complex, general transcription factors TFIIF
and TFIIH; NFκB; TATA box binding protein; cyclin-dependent kinase 9; CREB binding
protein; p300; and p300/CBP-associated factor [287, 25]. Both the size of the intersection
between this subsystem and HDFs and the proportion of genes annotated by GO as regu-
lators of transcription is statistically greater than expected by random chance (p = 0.0034

and p = 0.0038, respectively). Transcriptional regulators we identify that are also among
HDFs include cyclin t1, NFκB, p300, TFIIF and TFIIH, as well as subunits of the RNA-
polymerase II complex, as found in the RNA polymerase activity subsystem. Therefore,
these host factors appear to form an essential functional module, with a clear pattern of
interaction required for HIV-1 replication.

The DNA integration subsystem includes interactions between HIV-1 Integrase and
three host proteins: LEDGF, a transcriptional activator; hSNF5, a subunit of the SWI/SNF
ATP-dependent chromatin-remodeling complex; and embryonic ectoderm development
(EED) protein. Integrase is involved in binding interactions with both LEDGF and hSNF5.
LEDGF binds to Integrase and tethers it to host chromatin, an interaction identified as es-
sential to HIV-1 infectivity [288, 289]. However, LEDGF is not found among HDFs,
perhaps because this host factor is only required at a very low level, thus could elude
identification by siRNA knockdown screening [289]. This highlights the possibility that
more host proteins shown to be essential for HIV-1 replication in specific, small-scale
experiments may not be found among HDFs.

By cross referencing host proteins involved in significant patterns of interaction from
the HHPID we have found support among siRNA screen data for host subsystems that
can be linked to viral transcription, viral budding, PIC integration, transcription of viral
RNA, changes to proteasome composition, export of viral RNA from the nucleus and
regulation of apoptosis. However, of these, all but regulation of apoptosis and changes to
proteasome composition might be considered an essential molecular mechanism for HIV-
1 replication. Moreover, from our results it is unclear whether pro-apoptotic interactions
are essential.
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Lack of support for T cell signaling and immune-related subsystems among HDFs

The remaining subsystems are not well supported by data from siRNA screens, in
particular, those pertaining to cytokine dysregulation caused by HIV-1 infection. We do
not find that HDFs are enriched for components of the TCR or for proteins involved in
T cell activation. However, we do find that CD4 and CXCR4 have both been identified
by our interaction patterns and by two siRNA screens, probably as these receptors were
essential for virus entry in the two studies using HeLa cell lines [144, 146], whereas in
the third study, CD4 and CXCR4 were not identified, presumably because an engineered
mechanism for viral entry was employed [145].

There is little support for proteins involved in MAP kinase or PI3K-mediated in-
tracellular signaling among global siRNA data sets. We find no HDFs that are GO
annotated as having MAP kinase activity and just one HDF with lipid kinase activity
(phosphatidylinositol-4-phosphate 5-kinase type-1-γ), though we find two HDFs with
PKC activity (PKC-η and serine/threonine-protein kinase N2). These findings indicate
that knock-downs of single proteins from these cascades are generally insufficient to sig-
nificantly inhibit HIV-1 replication. However, we surmise these central cascades are able
to maintain signal transduction through multiple routes – the KEGG representation of
the MAP kinase cascade indicates this possibility [182, 290, 291]. Furthermore, HIV-1
interaction with these cascades is largely regulatory, rather than the result of direct inter-
actions. Therefore, HIV-1 may not require any one specific protein from a central signal
transduction cascade, such as a particular MAP kinase, for HIV-1 replication. Yet trans-
duction of virally induced signals through the host cell is almost certainly an important
mechanism in the proliferation of HIV-1.

We do not find that the subsystem annotations of any of cytokine activity, interleukin,
interferon-γ and nuclear factor subsystems represent statistically significant sets among
HDFs. However, among HDFs, we do find five genes that are designated by GO as having
cytokine activity including IL-1, chemokine-like factor, two additional interleukins (IL-18
and IL-22) and Interferon-related developmental regulator 2. These results indicate some
cytokines and chemokines are likely to enhance HIV-1 replication. However, in our re-
sults cytokines form a far larger and more prominent set of host proteins and interactions.
We suggest that this disparity is because while in vivo cytokines play a key part in modu-
lation of viral replication, by providing a pool of cells for infection [292], immune system
activation via cytokine release may not be essential for viral replication within any given
cell. Indeed, in vitro, HIV-1 regulation of cytokines is likely to be of diminished impor-
tance as there is no functional acquired or innate immune system for the virus to interact
with – either for the purpose of evasion or hyper-stimulation. Furthermore, small scale in

vitro studies that have been explicitly designed to test the significance of HIV-1 protein
interactions with cytokines and in vitro siRNA screens that test for HIV-1 dependence
on host factors on a global scale, are unlikely to reach the same conclusion, regarding
the relevance of cytokines to HIV-1 infection. The diminished importance of cytokines
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among HDFs is also indicated by the lack of support for the NFATs that promote cytokine
transcription.

Innate cellular immune responses, such as APOBEC activity, the interferon system
and TRIM22-induced interferon activation will be important in vitro [293, 294, 295, 296].
Though as these innate immune factors exert a negative effect on HIV-1 replication, they
are unlikely to be highlighted among HDF sets.

4.4.5 Conclusion

By capturing the published knowledge of HIV-host interactions, the HHPID repre-
sents a hugely valuable resource for HIV-1 research. However, redundancy and hetero-
geneity of the PPI data, in terms of experimental methods, age of findings and quality
of data, make the HHPID a difficult data set from which to draw conclusions about the
overall system of HIV-1 infection, such as the identification of specific host functions and
processes that are essential for HIV-1 replication. Using the strategy presented here, we
identify significant patterns of HIV-host interaction – sets of host proteins that take part
in similar, enriched combinations of interactions during the course of HIV-1 infection.
We have confirmed that these host protein sets, linked by their HIV-1 interaction profiles,
are biologically related, tending to include proteins with common biological processes,
proteins that share a high number of interactions with one another, subunits of the same
complex and paralogs. In addition, we find that by identifying significant interaction pat-
terns, we select for higher-confidence, well-studied interactions, based on the number of
supporting journal articles. Hence, the identified higher-level groups, based on shared in-
teractions, represent significant cellular subsystems used by HIV-1. Notably, our method
incorporates the biological action of each PPI. Therefore, unlike other studies that identify
cellular subsystems important to HIV-1 [145, 156, 174], the subsystems presented here,
respect specific activity-related patterns of viral perturbation.

By assessing these subsystems using scientific literature and support from three global
siRNA screen HDF sets, we have been able to describe systems of interaction that are in-
voked by HIV-1 to hijack host functions in order to successfully replicate including virus
entry, mechanisms for viral gene transcription, export of viral RNA from the nucleus,
viral budding and control of the proteasome. In addition, we also highlight mechanisms
through which HIV-1 infection perturbs host processes at multiple cellular levels through
a cycle of interactions that is not necessarily essential for viral replication, yet appear
detrimental and potentially lethal to the human host by damaging the host immune re-
sponse through dysregulation of cell surface receptor mediated signaling, signal trans-
duction pathways, host gene expression, cytokine release and cell death.

Our approach permits a detailed study of the overlap between significant patterns of
HIV-host interaction in the HHPID and HDFs. The modest overlap may be attributed to
the fundamental difference in the methods of construction between the source data sets.
The siRNA screens do not explicitly identify host cell proteins that undergo direct phys-
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ical interactions with the proteins of HIV-1 or whose expression is altered during HIV-1
infection, as with many of the host cell proteins given in the HHPID. Rather, these screens
are designed to identify host-cellular proteins that are required by the virus for replica-
tion. Therefore, HDF sets will not necessarily capture host proteins that are misregulated
during HIV-1 infection, i.e., may perturb normal cellular responses, or host proteins that
are potentially detrimental to HIV-1 infection, such as APOBEC3G [293]. In addition,
each study has its own intrinsic bias. Particularly, the HHPID will be subject to study
bias [297], where aspects of perceived medical importance, such as T cell depletion, re-
ceive greater attention. Whereas methods employed in each siRNA screen will be better
tailored to picking certain host proteins over others. For example, one siRNA screen was
specifically designed to discover host factors involved in the early stages of HIV-1 repli-
cation [145], another used a viral strain that expresses a truncated Vpr protein and does
not express Nef or Vpu [144]. In addition, the stage in the viral reproductive cycle is
also likely to be an important factor in determining the activation of PPI modules in the
host cell [298], therefore, not all studies may capture the same results. Hence, the lack of
overlap between these small and global-scale data sets is not unexpected.

The direct intersection between any one HDF set and the HHPID probably represents
a small set of high-confidence HIV-1 interacting host proteins important to HIV-1 replica-
tion, however, analysis of this intersection alone is unlikely to provide a thorough insight
into host defense mechanisms, perturbations caused by HIV-1 infection, or proteins that
are essential to virus replication. We suggest that future experimental work could expand
the core knowledge presented here. In particular, we suggest that proteins and pathways
that are indicated by siRNA screen to be essential for HIV-1 replication, though otherwise
poorly understood, are studied in greater detail to continue to bridge the knowledge gap
between high and low throughput data sources. A successful example of this approach
is conformation of TNPO3 as an essential protein for HIV-1 PIC import [284, 285] after
initial identification as an HDF [144, 145].

The HHPID data set has been used previously to validate HDF sets. Specifically
HHPID interactions and host factors have been used in conjunction with HDFs to aid
identification of well-connected subnetworks, corresponding to certain host cell functions
prevalent among HDFs [145, 156]. Several of these subnetworks represent functions
identified in our results including the proteasome and transcriptional regulation. However,
we are not aware of any other work in which core host cell functions, represented in
HHPID data, have been assessed in terms of their presence among HDFs.

In this study, we have used a computational approach to disentangle a complex set of
interactions to provide an accessible map of core HIV-1-host interaction patterns for virol-
ogists. Our methodology can be generalised and take PPI data from any source. Hence,
our work will contribute to defining core host subsystems for other pathogens, partic-
ularly as a reference against which results from increasingly prevalent high-throughput
data sources might be compared. In addition, aiding prediction of currently undiscovered
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host-virus PPIs using interaction profiles may be possible. This could be done by taking
the interaction profile of a given human protein, i.e., a ‘subject profile’, and comparing it
with interaction profiles from other human proteins, i.e., a set of ’query profiles’ to look
for common interactions that are missing for the subject profile that are common to many
other similar profiles (the distance measure in our work would be a method to quantify
this commonality). However, this would form just part of such a prediction process and
other established biological phenomena that impact upon PPI activity, such as interaction
interfaces and cellular localisation, would also have to be considered to make successful
predictions. Notably, our results and the potential predictive power to which we refer, are
reliant upon an accessible and structured description of biological action for each PPI, as
supplied in the HHPID. We have, thus, demonstrated that the inclusion of concise annota-
tion in large-scale data can enhance resolution and allow greater depth of computational
analysis.

4.5 Supporting material

Supplementary file S4.1 – hierarchy of protein interaction types. A hierarchy that
incorporates all of the interaction types found in the NCBI HIV-1, host protein interaction
database (HHPID) with the addition of parent terms for these types. HHPID interaction
types have a unique id, and polarity, direction and control attributes. These attributes
are explained in detail in the methods section in the main text of this article. Interaction
types found in the HHPID are present as instance elements, parent terms are designated
as interactionType elements.

Supplementary file S4.2 – table of significant biclusters and their HIV-host inter-
actions. A table of significant biclusters. Each row represents a single HIV-host inter-
action within a significant bicluster. The biclusters are divided into higher-level groups,
known as sub-systems, based on shared interactions and labeled according to the bio-
logical role of the included host proteins. From right to left, the columns show: name
of the sub-system; bicluster id; p-value for the bicluster; corrected p-value, calculated
using the Benjamini and Hochberg FDR correction method; entrez gene id correspond-
ing to the human protein interactant; name of the human protein interactant; entrez gene
id corresponding to the HIV-1 protein interactant; a string identifier for the interaction
type, consisting of a short HIV-1 protein name and a description of the interaction out-
come, separated by an underscore; the relationship of that interaction to other interactions
within the same bicluster; id for the corresponding interaction in the HHPID; the HHPID
description of the interaction.

Supplementary file S4.3 – table of biological cohesiveness measures for signifi-
cant biclusters. A table of biological cohesiveness measures. Each row represents a
significant bicluster. Sequence similarity, semantic similarity and network clustering are
measures pertaining to the proteins of a given bicluster. From right to left, the columns
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show: bicluster id; p-value for sequence similarity; corrected p-value for sequence simi-
larity, calculated using the Benjamini and Hochberg FDR correction method; number of
proteins found in the largest protein cluster, within that bicluster, determined by single
linkage clustering, using a linkage cut-off of 40% sequence similarity; as in the latter but
using a cut-off of 80% sequence similarity; p-value for human PPI network shared edge
count; corrected p-value for human PPI network shared edge count, calculated using the
Benjamini and Hochberg FDR correction method; p-value for human PPI network largest
connected component; corrected p-value for human PPI network largest connected com-
ponent, calculated using the Benjamini and Hochberg FDR correction method; p-value
for human PPI network average shortest path length; corrected p-value for human PPI
network average shortest path length, calculated using the Benjamini and Hochberg FDR
correction method; p-value for semantic similarity using the GO biological process ontol-
ogy; corrected p-value for semantic similarity using the GO biological process ontology,
calculated using the Benjamini and Hochberg FDR correction method; p-value for seman-
tic similarity using the GO cellular component ontology; corrected p-value for semantic
similarity using the GO cellular component ontology, calculated using the Benjamini and
Hochberg FDR correction method; p-value for semantic similarity using the GO molec-
ular function ontology; corrected p-value for semantic similarity using the GO molecular
function ontology, calculated using the Benjamini and Hochberg FDR correction method.

Supplementary file S4.4 – table of host subsystem details. A table of host sub-
system details. Each row represents a host subsystem. From right to left the columns
show: the name of the subsystem; the number of biclusters included in the subsystem;
the number of human genes in the subsystem; the intersection between the subsystem
and the Brass et al. [144] siRNA screen; p-value for the latter; corrected p-value for
the latter, calculated using the Benjamini and Hochberg FDR correction method; the in-
tersection between the subsystem and the Konig et al. [145] siRNA screen; p-value for
the latter; corrected p-value for the latter, calculated using the Benjamini and Hochberg
FDR correction method; the intersection between the subsystem and the Zhou et al. [146]
siRNA screen; p-value for the latter; corrected p-value for the latter, calculated using
the Benjamini and Hochberg FDR correction method; the type of subsystem annotation
used to identify the subsystem; the details of the subsystem annotation; the number of
human genes from the sub-system that fit the subsystem annotation; the p-value for the
subsystem annotation; a corrected p-value for the subsystem annotation, calculated using
the Benjamini and Hochberg FDR correction method; number of genes from the Brass
et al. siRNA screen that fit the subsystem annotation; p-value for the latter; corrected p-
value for the latter, calculated using the Benjamini and Hochberg FDR correction method;
number of genes from the Konig et al. siRNA screen that fit the subsystem annotation;
p-value for the latter; corrected p-value for the latter, calculated using the Benjamini and
Hochberg FDR correction method; number of genes from the Zhou et al. siRNA screen
that fit the subsystem annotation; p-value for the latter; corrected p-value for the latter,
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calculated using the Benjamini and Hochberg FDR correction method.
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CHAPTER

FIVE

AN INTEGRATED TRANSCRIPTOMIC AND
META-ANALYSIS OF HEPATOMA CELLS USED FOR

HCV CELL CULTURE

5.1 Abstract

Hepatitis C virus (HCV) is a global problem. To better understand HCV infection
researchers employ in vitro HCV cell-culture (HCVcc) systems that use Huh-7 derived
hepatoma cells that are particularly permissive to HCV infection. A variety of hyper-
permissive cells have been subcloned for this purpose. In addition, subclones of Huh-
7 which have evolved resistance to HCV are available. However, the mechanisms of
susceptibility or resistance to infection among these cells have not been fully determined.
In order to elucidate mechanisms by which hepatoma cells are susceptible or resistant to
HCV infection we performed genome-wide expression analyses of six Huh-7 derived cell
cultures that have different levels of permissiveness to infection. A great number of genes,
representing a wide spectrum of functions are differentially expressed between cells. To
focus our investigation, we identify host proteins from HCV replicase complexes, perform
gene expression analysis of three HCV infected cells and conduct a detailed analysis of
differentially expressed host factors by integrating a variety of data sources. Our results
demonstrate that changes relating to susceptibility to HCV infection in hepatoma cells
are linked to the innate immune response, secreted signal peptides and host factors that
have a role in virus entry and replication. This work identifies both known and novel host
factors that may influence HCV infection. Our findings build upon current knowledge of
the complex interplay between HCV and the host cell, which could aid development of
new antiviral strategies.

5.2 Introduction

Hepatitis C virus (HCV) is prevalent in approximately 3% of the human population,
though some countries, e.g., Eygpt, have a much greater prevalence [68]. The acute
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phase of infection is often asymptomatic whereas chronic infection is a major cause of
liver cirrhosis, hepatocellular carcinoma and liver transplantation. There is, however, no
HCV vaccine, as high level of virion production, combined with the error-prone HCV
RNA polymerase, causes frequent mutation of the viral genome resulting in production
of immune escape mutants. Treatment of chronic HCV infection is currently based on
interferon-α that evokes a general antiviral response and ribavirin, a nucleoside analogue.
In combination, these antiviral agents do not reliably eradicate HCV in infected patients
[71] and in addition, treatment is often interrupted due to the side effects that these drugs
cause [72]. Therefore, development of improved anti-HCV drugs would be of great ben-
efit.

Drugs that bind specific host proteins essential to the virus life cycle pose an attractive
approach in viral disease therapy, as these targets have less potential for mutation and
associated emergence of resistance than viral protein targets. Thus, anti-HCV drugs that
bind specific host proteins are currently in development. For example alisporivir, a Cy-
clophilin A inhibitor, has recently entered phase II trials [79]. Cyclophilin A is essential
for efficient HCV replication, probably due to direct physical interaction with NS5A and
mediation of the viral polymerase [154, 299]. Also, inhibitors to microRNA mir-122, a
molecule that regulates production of infectious virus particles, are also being investigated
[80, 81]. By developing a greater understanding of the complex interplay between HCV
and host cells, novel drug targets might be identified.

Significant advances in in vitro model systems to study HCV-host interaction have
been made in the recent past [59]. Model systems greatly accelerated HCV research and
led to production of a variety of genome-scale data sets including a host-virus interaction
network [126], infection-induced changes in gene expression [300, 113] and host factors
required for viral replication [154]. In addition to large data sets, numerous small-scale
studies that use in vitro model systems have captured important details of key viral pro-
cesses, such as virus cell entry [301]. However, we are still some considerable way from
fully understanding the HCV life cycle and the role for each implicated host factor.

The initial breakthrough in HCV model systems allowed study of genomic viral RNA
replication in vitro using replicons and permissive Huh-7 hepatoma cell lines [302, 303].
More recent HCV cell-culture (HCVcc) systems have permitted study of the entire virus
life cycle and rapid cell-to-cell transmission, using a specific combination of the JFH-1
HCV strain and a particularly permissive hepatoma cell line (Huh-7.5.1) [304, 59]. The
Huh-7.5.1 cells have a deactivating mutation in retinoic acid-inducible gene I (RIG-I), a
protein that would normally bind to HCV RNA and initiate an interferon based antiviral
response in the cell [305, 62]. Also, further subcloning of Huh-7.5.1 has led to the pro-
duction of a more permissive cell (designated Huh-7.5.1c2 [306]), though the underlying
mechanism of increased permissiveness in this subclone is not understood.

In addition to HCV susceptible cells, infection resistant Huh-7 derived cells have also
been produced. One HCVcc study by Zhong et al. [307], a prerequisite to this study,
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detected coevolution of JFH-1 HCV virus and Huh-7 and Huh-7.5.1 derived host cells. In
particular, evolution of an increasingly aggressive virus was associated with emergence
of several resistant cells. Follow-up analysis revealed that reduced cell surface expression
of the CD81 viral coreceptor [308, 10] was partly responsible for resistance in a subset
of these cells and that additional defects must be present that perturb the viral life-cycle.
Therefore, mechanisms of both HCV resistance and susceptibility for Huh-7 derived cells
are yet to be determined. This knowledge will be valuable for understanding specific
host-cell dependencies in the viral life cycle and developing novel antiviral strategies.

In order to elucidate mechanisms by which hepatoma cells are susceptible or resistant
to HCV infection we performed genome wide expression analysis of six Huh-7 derived
cell cultures that have different levels of permissiveness to infection (Figure 5.1). To
focus our investigation, we identified host proteins from HCV replicase complexes that
were present in small vesicles located in the membranous web – a specific membrane
alteration that is the site of HCV replication [309] – and also performed gene expression
analysis of three permissive HCV infected cells. We found that a high number of genes,
representing a wide spectrum of functions, including factors known to be involved in
viral entry were differentially expressed between cells with different permissiveness to
infection. Following this we conducted an in-depth analysis of differentially expressed
host factors by integrating multiple data sources. Using this approach, we demonstrate
that changes relating to susceptibility to HCV infection can be specifically linked to the
innate immune response, secreted signal peptides, known host factors that influence virus
entry and replication and putative, novel HCV infection-related host factors. In addition,
our study also helps to characterise Huh-7 derived cells which may aid interpretation of
results from subsequent studies that use HCVcc.

5.3 Materials and Methods

5.3.1 HCV-resistant cells R1.09, R1.10 and R2.1

R1 and R2 cells were obtained from stocks held at the The Scripps Research Insti-
tute, La Jolla, California, from a previous study [307]. Cryopreserved cells were thawed
and put in culture. Initially, both cells displayed very limited viability after two indepen-
dent thawing attempts of the original cryopreserved stock. Nevertheless, we were able to
rescue both cell lines by slowly expanding the surviving colonies, subsequently labelled
R1.1 and R2.1. To verify the resistance of these cell lines to HCV Con1 (genotype 1b)
subgenomic (SG)-replicon replication, R1.1, R2.1 and the parental Huh-7.5.1 cells were
transfected with the corresponding replicon RNA encoding a neomycin resistance gene
and the formation of G418 resistant cell clones was monitored. R1.1 and R2.1 cells are
partially resistant to HCV replication (supplementary Figure S5.2A). However, a higher
percentage of cell clones in the R1.1 and R2.1 cell lines seem to support HCV replica-
tion than was previously observed in R1 and R2 cells before cryopreservation [307]. To
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Figure 5.1: Tree of hepatoma cell cultures. Cell cultures are joined by arrows, going from
the parent to the descendent, that indicate a subcloning event (or in the case of Huh-7
to Huh-7.5.1 a series of subcloning events). (A) The relative susceptibility of these cells
to HCV infection where “+” represents susceptibility and “-” represents resistance and
more symbols represent greater susceptibility or resistance. (B) Differential expressed
genes between subclones. Differentially expressed genes were assigned to this tree ei-
ther directly from expression comparison between cells or indirectly using a parsimony
method. On each arrow, the first number indicates the total number of differentially ex-
pressed genes that have been attributed to the subcloning event. Below in brackets are the
number of these genes that are (i) downregulated following subcloning, (ii) upregulated
following subclononing.
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verify that this result was reproducible for other replicon RNA preparations, we repeated
the transfection experiment using Con1 full-length replicon RNA to select HCV replica-
tion resistant cell clones within the R1.1 and R2.1 cell populations (supplementary Figure
S5.2B). R1.1 and R2.1 cells were subcloned by limiting dilution on feeder cells. Indi-
vidual subclones were tested for resistance to subgenomic Con1 replicon replication and
subclones R1.09, R1.10 and original R2.1 cells were selected for further analysis (supple-
mentary Figure S5.2C). R1.09, R1.10, R2.1 and Huh-7.5.1 were harvested for microarray
analysis.

5.3.2 HCV susceptible cells, Huh-7, Huh-7.5.1 and Huh-7.5.1c2

Three Huh-7 derived cell cultures that can support HCV infection [310, 311] were
used in this study – Huh-7, Huh-7.5.1 and Huh-7.5.1c2. Cells were obtained from stocks
held at the The Scripps Research Institute, La Jolla, California. All cells have been used
in previous studies (Huh-7 [311], Huh-7.5.1 [304] and Huh-7.5.1c2 [306]).

The HCV susceptible cell types, Huh-7, Huh-7.5.1 and Huh-7.5.1c2, were infected
with wild type JFH-1 (genotype 2a) virus at an moi=0.05. Infected cells were harvested
for microarray analysis when virtually 100% of the cells were infected as determined by
staining of cells for viral E2 protein at 3 (Huh-7.5.1c2), 4 (Huh-7.5.1) and 7 (Huh-7) days
post inoculation (supplementary Figure S5.2D). Uninfected controls were harvested at the
same time point as infected cells. The infectivity of supernatant produced from infected
cells was measured at 2, 4 and 8 days post infection (supplementary Figure S5.2E). These
results show that Huh-7 has the lowest susceptibility and Huh-7.5.1c2 the greatest sus-
ceptibility to HCV infection. In addition, uninfected Huh-7, Huh-7.5.1 and Huh-7.5.1c2
cells were harvested at 20 hours post infection in order to perform direct comparisons of
their gene expression profiles by microarray analysis.

5.3.3 Preparation of microarrays

Cell cultures were centrifuged at 1000rpm for 5 minutes and the cell pellet was re-
suspent in 350µl lysis buffer (Qiagen). Each lysate was homogenised with a Qiashedder
column (Qiagen) and the RNA was extracted using the RNeasy Mini Kit following the
manufactures instructions. On-column DNA digestion was carried out by means of the
RNase-Free DNase Set (Qiagen) and the integrity of the RNA was confirmed via Agilent
(RIN of 9.7-10). 100ng of RNA from each sample was used to prepare cDNA with the
Affymetrix GeneChip 3Õ IVT Express Kit and hybridised to Affymetrix U133 Plus 2
microarrays following the manufacturer’s instructions.

The washing and staining procedure was performed in the Affymetrix Fluidics Sta-
tion 450. The probe array was exposed to 10 washes in 6xSSPE-T at 250C followed by 4
washes in 0.5×SSPE-T at 500C. The biotinylated cRNA was stained with a streptavidin-
phycoerythrin conjugate, final concentration 2 mg/ml (Molecular Probes, Eugene, OR) in
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6xSSPE-T for 30 min at 250C followed by 10 washes in 6×SSPE-T at 250C An antibody
amplification step followed using normal goat IgG as blocking reagent, final concentration
0.1 mg/ml (Sigma) and biotinylated anti-streptavidin antibody (goat), final concentration
3 mg/ml (Vector Laboratories). This was followed by a staining step with a streptavidin-
phycoerythrin conjugate, final concentration 2 mg/ml (Molecular Probes, Eugene, OR) in
6×SSPE-T for 30 min at 250C and 10 washes in 6×SSPE-T at 250C. The probe arrays
were scanned at 560 nm using a confocal laser-scanning microscope (Affymetrix Scan-
ner 3000 7G). CEL files were generated and used for further analysis. All microarray
procedures were done at AROS, Denmark.

5.3.4 Computational analysis of microarray probe set intensity data

All analysis of microarray intensity data was carried out using R statistical software
[312] including Bioconductor [313]. GeneChip R© probe sets definitions were assigned
using Entrez gene version 12.1 of a custom chip description file (CDF) from Psychia-
try/MBNI Microarray Lab [92, 93, 94, 95]. This CDF included 17726 probe sets that
correspond to an NCBI gene.

Initial quality checks of each chip were carried out using Bioconductor core tools
and package affyQCReport [314]. Quality checks and visual inspection of array intensi-
ties showed that the quality of the array data was acceptable. Robust Multichip Average
(RMA) expression values [100, 99, 95] were computed using the Bioconductor affy pack-
age. Genes that were called “not present" on all 39 GeneChip array data sets using Mi-
croarray Suite version 5.0 (MAS5) presence calls were removed [104], leaving a total of
13760 genes (supplementary table S5.10). This set was used throughout as a background
for statistical tests and will be referred to as the microarray gene set.

Exploration of RMA expression values across all microarrays chips was performed
by PCA using singular value decomposition (SVD). PCA was carried out using the Bio-
conductor package pcaMethods [315] and PCA results were plotted using the R package
scatterplot3d. PCA results (supplementary Figure S5.2) show that biological replicates
cluster together. The greatest variation is seen between replicates from experiment 1 that
have been in culture for a longer time period with no JFH-1 infection. However, replicates
that have been infected with JFH-1 cluster very closely, indicating a clear gene expres-
sion response to infection. Replicates from experiment 2 are all very tightly clustered and
Huh-7.5.1 replicates from experiment 2 generally cluster with other uninfected Huh-7.5.1
derived cells. The PCA analysis results showed no major outliers or unexpected results
and the array quality was shown to be acceptable. Therefore, the microarray data appeared
sufficiently reliable to conduct analysis to identify differentially expressed genes.

Probability, false discovery rate (FDR) [193] and fold-change values for differential
expression of genes between cells, using three biological replicates from each, were cal-
culated in a pairwise manner using the limma method [105]. Genes were defined to be
significantly differentially expressed if they achieved an FDR of < 0.01 and a minimum
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fold-change of 1.5. Hierarchical clustering of genes across cells was performed in R using
Pearson’s r correlation (genes) and Spearman’s rank correlation (cells) and results were
visualised using the gplots package [316].

The design of our experiment permitted HCV infected cells Huh-7, Huh-7.5.1 and
Huh-7.5.1c2 to be compared to uninfected controls harvested after 20 hours in culture
and also uninfected controls harvested at the same time point as infected cells. We define
those genes that are differentially expressed due to infection as genes that are significantly
differentially expressed in the same direction (up- or downregulated) over both compar-
isons, as this will filter out genes whose expression fluctuates due to additional time spent
in culture. We take the p-value, fdr and fold-change values from the comparison with the
most conservative comparison.

MIAME compliant raw and processed gene expression data is freely available for
download as a GEOarchive [87], accession number GSE29889.

5.3.5 Purification of crude replicase complexes (CRCs) for proteomic
analysis by mass spectrometry

CRC preparations were produced using a protocol described by Quinkert et al. [317].
Protein samples from purified, proteinase K-treated CRCs were fractionated by one-
dimensional SDS-PAGE and the gel was segmented according to molecular weight. Pro-
teins contained in gel segments were digested with proteinase (trypsin/chymoptrypsin)
prior to analysis by liquid chromatograph-mass spectrometry (WFZ Fungene, Greifswald).
Using this method, 236 host-encoded proteins were identified as components of HCV
replication complexes.

5.3.6 Collection of external gene sets

Four sets of genes that relate to replication of HCV were collected from external
sources:

(i) Genes that encode products that interact with proteins of HCV were retrieved from
two studies [126, 318]. We identified 465 such genes that correspond to an NCBI protein.

(ii) A non-redundant list of genes that have been identified by siRNA screen to play
a significant role in HCV replication were obtained from five separate studies [150, 151,
152, 153, 154]. This list contains 399 genes including 363 that were shown to be necessary
for propagation of HCV (proviral) in one or more study and 37 that have been shown to
be detrimental to HCV propogation (antiviral) from the study by Brass et al.. Brass et al.

identify 203 genes (193 proviral, 10 antiviral) that act during an early stage of infection
and 59 genes (44 proviral, 15 antiviral) that act during a late stage in the viral life cycle.

(iii) Human host genes that are differentially regulated due to chronic infection by
HCV were mapped from an in vivo study comparing chronically infected chimpanzees to
uninfected controls [319].
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(iv) 27 Cellular receptors and lipoproteins that are thought to have a role, either
via positive or negative, in regulating HCV virion cell entry or particle release were
manually curated from a recent review article [301]. These genes, by gene symbol
are CD81, CD209, CLEC4M, CLDN1, CLDN6, CLDN9, SCARB1, LDLR, VLDLR,
ASGR1, ASGR2, OCLN, APOC1, APOC2, APOE, APOB, MTTP, ISGF8, SAAL1,
SAA4, EIF2A, EIF2AK2, IFNA2, IFNA5, IFNA8, IFNA16 and APOC3.

5.3.7 Assignment of differentially expressed genes to a cell tree and
calculation of expression profile scores

A tree showing the lineage of relevant cells is shown in Figure 5.1. Changes in gene
expression were assigned to branches of this tree directly from comparison of the ances-
tor and descendent cell, except for those branches linking R1 to other cells, which were
imputed using a simple parsimony method. Genes identified as differentially expressed
in comparisons Huh-7.5.1 versus. R1.09, Huh-7.5.1 versus R1.10 or R1.09 versus R1.10
were assigned to: (i) The branch linking Huh-7.5.1 and R1 if the gene is called dif-
ferentially expressed and undergoes the same direction of regulation (up/down) in both
comparisons involving Huh-7.5.1. (ii) The branch linking R1 to a descendent cell if the
gene is only called differentially expressed with a given direction in just one of the two
comparisons involving Huh-7.5.1. (iii) The branch linking R1 to a descendent cell if the
gene is called differentially expressed in the comparison between R1.09 and R1.10; in this
case, the descendent and direction of regulation is chosen from the comparison involving
Huh-7.5.1 and a descendent where the largest fold change is observed.

To test whether genes appear more regularly on multiple branches of this tree than
would be expected by random chance a permutation test was used. In a single permutation
of this test we assign genes to branches of a model tree by randomly selecting them from
the microarray gene set, selecting the same number of genes per branch as observed in the
real tree. We then derive the frequency distribution for genes appearing in branches of the
model tree. The frequency distribution for the model data is compared to the frequency
distribution from the real data by Mann-Whitney U test to generate a p-value, testing the
hypothesis that the real data values will be greater than that of the model data.

Using the tree and associated sets of differentially expressed genes, expression profiles
consisting of an integer score per gene were derived. Where a gene changes regulation on
a branch linking a more HCV susceptible parent cell to a more HCV resistant descendant
cell, the profile scores−1 if the gene is upregulated (antiviral) and +1 if the gene is down-
regulated (proviral). Where a gene changes regulation on a branch linking a more resistant
parent to a more susceptible descendant, the profile scores −1 if the gene is upregulated
and +1 if the gene is downregulated. The overall gene profile score is calculated as the
sum of these values over all tree branches. Genes that are present in the microarray gene
set but not among the differentially expressed genes on this tree were assigned a score of
zero.
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A permutation test was used to test the hypothesis that a given gene set comprises
genes with greater expression profile scores than would be expected by random chance. A
distribution of scores from a set of subject genes were compared against the distribution
of scores from all remaining genes from the microarray universe in a one-tailed Mann
Whitney U test to identify whether the subject set has significantly greater scores than
expected. The test statistic (U) for this test was recorded. We then repeated this test using
a subject gene set of randomly selected genes, recording U for every permutation. 1000
permutations were carried out. The p-value was determined to be the proportion of times
a more significant U value was generated by random permutation than for a real subject
gene set.

A permutation test was used to test if genes from a given set have greater absolute
expression profile scores given the number of times that the genes are differentially ex-
pressed, than would be expected by random chance. Using this measure we can ascertain
whether the subject genes have a genuine tendency to be proviral or antiviral, or if they
are simply hyper-variable in their gene expression. For each gene in the set we calculated
a normalised score (s-norm), being the expression profile score divided by differential
expression count. If the gene set has a significant tendency for the genes to be proviral or
antiviral rather than hyper-variable, we would expect the s-norm to be greater than those
for randomly selected genes. Hence, we test whether the genes of the subject set have a
greater mean s-norm than a gene set of the same size, selected at random from the mi-
croarray gene universe. When randomly sampling genes, we maintain the distribution of
differential expression counts observed in the subject gene set using rejection sampling.
The p-value for the test was determined to be the total number of times that the random
set has a greater mean average s-norm than the subject set, divided by the number of
permutations. 1000 permutations were performed.

5.3.8 Analysis of the biological function of genes

Gene sets were subjected to functional enrichment using the Database for Annota-
tion, Visualisation and Integrated Discovery (DAVID) version 6.7 functional annotation
clustering and functional annotation chart tools [137, 108]. In both cases a custom back-
ground population consisting of the microarray gene set was used. All remaining DAVID
6.7 tools settings were left as the default. The set of differentially expressed genes from
comparison between Huh-7.5.1 and R2 cells was limited to 3000 by selecting the set with
lowest p-values for differential expression, as this corresponds to the maximum gene set
size that can be analysed using DAVID. Annotation clusters were deemed to be signifi-
cant if the enrichment score was > 2, this corresponds to a geometric mean from all term
enrichment p-values of 0.01.

Functional clustering networks were produced using results from DAVID functional
annotation clustering. Significant annotation clusters were represented as nodes, where
the node diameter is proportional to the enrichment score. Edges signifying shared anno-
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tation were created between nodes where the annotation clusters being represented share
at least one quarter of annotating terms, where the edge diameter is proportional to the
fraction of shared annotation terms. Networks were visualised using Cytoscape [164].

5.3.9 Construction of HCV protein network neighbourhoods

Human protein interaction data was retrieved from multiple sources compiled by
the National Centre for Biotechnology Information (NCBI) and available as a down-
load (ftp://anonymous@ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz). NCBI in-
teractions data was downloaded on 10th August 2010. Physical protein-protein bind-
ing interactions were taken per gene, not including homo-dimer interactions (i.e., self
edges in the network). All retrieved interactions, were used to compile a global interac-
tion network where each interaction is treated uniformly, consisting of 48467 interactions
between 10360 genes. HCV-human PPI data was retrieved from two HCV-human inter-
action studies [126, 318], on a per HCV protein-human gene basis and consisted of 533
interactions including 465 human genes and 11 HCV proteins. HCV protein network
neighbourhoods were constructed that included specific differentially expressed genes
and data from additional data sets. First a node corresponding to a HCV protein was
created, next additional nodes corresponding to HCV-interacting host factors were added
and finally we added nodes corresponding to differentially expressed genes that share an
interaction with factors already present in the network. Finally, nodes that correspond to
those non-differentially expressed host genes that do not share an interaction with a dif-
ferentially expressed gene were pruned. The result is a network where the maximum path
length from the HCV protein is two and the maximum path length for a non-differentially
expressed host gene is one. Networks were visualised using Cytoscape [164].

5.4 Results/Discussion

5.4.1 HCV infection causes significant changes to gene expression

Expression analysis of three hepatoma cell cultures – Huh-7, Huh-7.5.1 and Huh-
7.5.1c2 – that are susceptible to infection was performed. By comparing infected and
uninfected cells we identified genes that are differentially expressed (false discovery rate
corrected p-value < 0.01), in all cell lines: 1743 genes in Huh-7 (1525 upregulated, 218
downregulated); 7025 in Huh-7.5.1 (3503 upregulated, 3522 downregulated); and 3891
in Huh-7.5.1c2 (1485 upregulated, 2406 downregulated, supplementary table S5.4). This
represents 7475 distinct genes – 54% of all genes analysed. 3835 of these genes (51%)
were differentially expressed in more than one cell and 1181 (16%) were differentially ex-
pressed with the same response to infection (up- or downregulation) in all three compar-
isons. A hierarchical clustering plot (Figure 5.2) shows a clear pattern of gene expression
that corresponds to infection by HCV. Intersections between these gene sets are shown in
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figure 5.3.
Previously, Woodhouse et al. [320] performed whole genome expression analysis of

Huh-7.5 cells infected with JFH1 HCV, harvested at the peak of infection and identified
1351 differentially expressed genes. Though we identify more differentially expressed
genes, our results overlap significantly with those of Woodhouse et al. for all three cells
(p < 0.01, Fisher’s exact tests) and the response to infection of genes identified in both
studies is well conserved at 90-99% for each cell line.

By performing functional annotation clustering on the subset of 1181 genes found to
be differentially expressed with the same response to infection over all infected versus
control cell comparisons (Figure 5.3, section G), we identifiy a core set of host cellular
functions that are affected by HCV infection (supplementary table S5.5). Interestingly, the
two most enriched clusters comprise genes involved in transcription. Zinc-finger domain
containing proteins are highly over-represented in this set (249 genes are annotated with
the SwissProt keyword “zinc-finger” [321], false-discovery-rate corrected p-value of 8.6×
10−29). The change in expression of such a large number of zinc-finger domain encoding
genes remains unexplained, particularly as many of these factors are not known to be
associated with viral infection. However, of these 249 proteins, 143 are also annotated
with the SwissProt keyword "transcription regulation". Given the scale of change in gene
expression between infected and uninfected cells, extensive change in the expression of
transcriptional regulators is fitting.

In addition, other cellular processes including microtubule organisation, ubiquitin and
ubiquitin-like (ubl) conjugation pathway and DNA repair (particularly DEAD and DEAH
box helicases) are enriched. HCV requires a functional microtubule network for entry
into Huh-7.5 cells and early post-entry steps of infection through interaction with tubulin
proteins [322]. We identify 11 tubulin isoforms that are either up- or down-regulated dur-
ing HCV infection, indicating that HCV infection may exert control over the microtubule
network at the level of transcription.

DEAD box helicases, RIG-I and IFIH1, are interferon stimulated genes (ISGs) that act
to detect RNA viruses and initiate further interferon production [62]. Another DEAD box
helicase, DDX3X, encodes a factor that is required for successful HCV replication [323,
151, 154]. However, DDX3X can also cause immune activation [324] and the role for this
protein in HCV infection is unclear. RIG-I is transcriptionally upregulated in Huh-7 and
Huh-7.5.1 cells but not Huh-7.5.1c2 following infection, and IFIH1 is transcriptionally
upregulated in Huh-7.5.1 cells but not Huh-7 or Huh-7.5.1c2 following infection. These
results indicate a potential weakness in the innate immunity of Huh-7.5.1c2 at the level of
gene expression.

Virally triggered RIG-I mediated antiviral signaling evokes the production of type
I interferon [325]. However, in our results we do not observe increase in transcription
of type I interferon in either Huh-7 cells that have functional RIG-I or Huh-7.5 derived
cells whose RIG-I gene has a known deactivating mutation [305]. This result suggests
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Figure 5.2: Hierarchical clustering plot displaying differentially expressed genes from in-
fected and control cells. Genes are represented by horizontal bands and cells by columns.
Infected cells are denoted with an asterisk (*). Bands are coloured blue if the gene is
downregulated and yellow if they are upregulated compared with the mean expression
level for that gene. Greater colour intensity signifies greater fold change. Infected cells
cluster with one another and gene clustering shows a clear pattern that corresponds to
HCV infection induced expression.
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Figure 5.3: Venn diagram showing the overlap in genes differentially expressed due to
HCV infection among susceptible cells. The absolute numbers of significantly differen-
tially expressed genes are given for Huh-7, Huh-7.5.1 and Huh-7.5.1c2 cells. The num-
bers in brackets refer to those genes that share the same direction of regulation (up- or
downregulated) following infection, across multiple comparisons.

that HCV successfully attenuates interferon production. The virus can achieve interferon
attenuation through several mechanisms including NS3/NS4A protease activity that dis-
rupts both RIG-I and toll-receptor signaling [325]. The regulation of ISGs following
infection of hepatoma cells was investigated. A list of ISGs was obtained from the ISG
database [114] and a total of 455 genes were present in the ISG data and also present in
our microarray gene set. We find that 62, 198 and 160 ISGs are differentially expressed
in Huh-7, Huh-7.5.1 and Huh-7.5.1c2 cells, respectively, following HCV infection. How-
ever, these values do not represent statistically significant enrichment of ISGs, consistent
with our observation regarding lack of significant transcriptional upregulation of inter-
feron.

Ubiquitin conjugation has been identified as an important cellular function for both
viral and bacterial pathogens [326]. Firstly, deubiquitylating enzymes (DUBs), such
as ubiquitin specific peptidases (USPs) can modulate host cell innate immunity [326].
Ubiquitin-like protein ISG15 is an ISG that is expressed following infection and target
proteins become “ISGylated” following conjugation of ISG15. Ubiquitin specific pepti-
dase USP18 is involved in deISGylation to attenuate innate immunity [327, 326]. Another
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USP, USP7, is targeted by viral proteins. USP7 interacts with both the herpes-simplex
virus protein ICP0 and Epstein-Barr nuclear antigen I and may have a role in regulation
viral replication [328, 329]. We find that 27 USPs (though not including those specific
USPs mentioned) are differentially expressed in one or more infected versus uninfected
comparison and given all comparisons there are 59 instances of differential expression of
these genes from which 56 instances identify USP as transcriptionally upregulated in the
infected cell.

Another DUB that has a role in pathogenic infection is CYLD. CYLD expression is
induced in cells infected with Haemophilus influenza and the absence of this gene confers
hypersensitivity to this bacterial pathogen [326]. In our results, CYLD is also upregulated
in all HCV infected cells. Therefore it seems likely that DUB upregulation is a significant
marker for HCV infection in these cells. Interestingly, HCV NS5A has been shown by a
yeast-two-hybrid assay to interact with USP19 [126], a DUB known to positively regulate
cell proliferation [330]. The functional role of this protein interaction is not known and
further experimental validation and investigation could provide valuable insight into HCV
infection.

Functional annotation clustering was repeated on gene sets from sections A, B, C and
F of the Venn diagram in Figure 5.3 (see supplementary table S5.5). The intersection of
genes regulated with the same response from Huh-7.5.1 and Huh-7.5.1c2 but not Huh-7
infection studies (Figure 3, section F, 1020 genes) is enriched for functions that can be
directly attributed to heightened HCV infection, e.g., transforming growth factor β sig-
naling [331] and a generally heightened metabolic state, e.g., positive regulators of tran-
scription. Interestingly, one function whose enrichment is found in section C of the Venn
diagram (corresponding to the set of genes differentially expressed following infection of
Huh-7.5.1c2 cells), but not sections A or B (corresponding to infection of both Huh-7 and
Huh-7.5.1), is apoptosis. More specifically, the most overrepresented annotation terms in
this cluster refer to the negative regulation of cell death and these genes are predominantly
upregulated in infected Huh-7.5.1c2. Specifically, there are 21 genes annotated with the
GO term negative regulation of cell death and 16 of these are transcriptionally upregu-
lated in infected Huh-7.5.1c2 cells. For example, NFKB and BCL2 genes are established
as anti-apoptotic proliferative factors in human cancers and both are upregulated in in-
fected Huh-7.5.1c2. Apoptosis is an important defense mechanism against infection that
is initiated by the innate immune response [332] and this result indicates that Huh-7.5.1c2
could be a more permissive host for HCV than either Huh-7 or Huh-7.5.1 by being less
prone to apoptosis.

5.4.2 Subclones of Huh-7 derived cells have significantly altered gene
expression

We performed gene expression analysis on six cell cultures that display a range of sus-
ceptibilities to HCV infection: HCV susceptible Huh-7, Huh-7.5.1 and Huh-7.5.1c2 and
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HCV resistant subclones of Huh-7.5.1, R1.09, R1.10 and R2.1. Differentially expressed
genes were detected in all comparisons with a false discovery rate corrected p-value of
< 0.01 and minimum fold-change of 1.5. To identify differences in gene expression be-
tween these cells, ‘parent-child’ cell comparisons were made (see table 5.1 for a summary
and supplementary S5.4 for full details).

Table 5.1: The number of differentially expressed genes identified in pairwise compar-
isons between hepatoma cell subclones. The genes were found to be differentially ex-
pressed with a false discovery rate corrected p-value of < 0.01 and fold-change > 1.5.

Original cell Subclone cell Total DE genes Downreg in subclone Upreg in subclone
Huh-7 Huh-7.5.1 2036 1148 888
Huh-7.5.1 Huh-7.5.1c2 187 119 68
Huh-7.5.1 R1.09 2830 1534 1296
Huh-7.5.1 R1.10 1714 771 943
Huh-7.5.1 R2.1 5682 2470 3212

The pattern of gene regulation highlighted in heatmaps (Figure 5.4) correlates with the
subcloning of these cells, where the ‘child’ subclone retains a significant proportion of the
gene expression profile of the ‘parent’. For example, many of the same genes are found
to be differentially expressed with the same direction of regulation in the comparisons: (i)
Huh-7.5.1 versus Huh-7 and Huh-7.5.1c2 versus Huh-7 (1479 genes in common) and (ii)
R1.09 versus Huh-7.5.1 and R1.10 versus Huh-7.5.1 (1424 genes in common). Therefore,
we represent cells and differential expression on a hierarchical tree structure (Figure 5.1).
This shows all six cells and the total numbers of differentially expressed genes, both
upregulated and downregulated. A full list of differentially expressed genes for each
branch is given in supplementary table S5.6. A total of 7503 genes are differentially
expressed following subcloning events. This represents a substantial proportion of both
all genes on the microarray (42%) and the subset of those that are expressed in these
cells (54%). This indicates that multiple changes in expression could contribute to the
susceptibility to infection found among the hepatoma cells.

Genes that are differentially expressed following subcloning events were found to be
enriched for specific biological annotation using functional annotation clustering. A brief
summary of the most significant annotation clusters identified among each set of genes is
given in table 5.2 and a full list of results is given in supplementary table S5.7. From table
5.2 it is clear that some areas of biological annotation are significantly enriched among
more than one set of genes. For example, an annotation cluster corresponding to secreted
glycoproteins and signal peptides appears in five out of the six sets and three out of five
also include an annotation cluster that corresponds to proteins of the acute inflammatory
response.

To assess (i) overlap in biological function between each set of differentially expressed
genes, (ii) overlap in biological function these gene sets may have with other genes that
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A B

Huh-7 Huh-7.5.1c2 R2.1 R1.09 R1.10

Figure 5.4: Hierarchical clustering plots showing the expression levels of differentially
expressed genes between hepatoma cells. Genes are represented by horizontal bands and
cells by columns. Bands are coloured blue if the gene is downregulated and yellow if they
are upregulated relative to their expression in Huh-7.5.1. Greater colour intensity relates
to a greater fold change. Black bands represent genes whose expression is a similar level
to Huh-7.5.1. (A) Comparison of gene expression levels between susceptible cells. Here,
the Huh-7.5.1c2 cell line is clearly more similar in gene expression to Huh-7.5.1 than
Huh-7. (B) Comparison of gene expression levels between resistant cells and Huh-7.5.1.
The R2.1 cell line is more divergent from Huh-7.5.1 than either R.109 or R1.10 in terms
of gene expression. R1.09 and R1.10 show similar patterns of gene expression.
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Table 5.2: Functional enrichment among significantly differentially expressed genes be-
tween original cells and subclones. Shown are the number of functional annotation clus-
ters that achieve an enrichment score (ES) of > 2 and the number of differentially ex-
pressed genes that these clusters include. The right-most three columns give details of the
top scoring annotation clusters (a maximum of 5 are shown)

Original cell Subclone No. clusters No. genes Top 5 clusters
ES > 2 ES > 2 ES No. genes Annotations

Huh-7 Huh-7.5.1 15 866

5.81 565 Extracellular and secreted; signal peptide; glycopro-
tein; disulfide bond.

4.93 119 Response to hormone stimulus and organic sub-
stance.

3.92 47 Response to steroid hormone and glucocorticoid
stimulus.

3.52 48 Response to extracellular stimulus, nutrients,
retinoic acid and vitamin A.

3.37 37 Complement and coagulation cascades; acute in-
flammatory and defense response.

Huh-7.5.1 Huh-7.5.1c2 2 108 7.09 83 Glycoprotein; signal peptide; secreted; disulfide
bond.

4.93 74 Response to hormone stimulus and organic sub-
stance.

Huh-7.5.1 R1.1 18 704

10.55 416 Extracellular and secreted; signal peptide; glycopro-
tein; disulfide bond.

5.03 88 Response to wounding; acute inflammatory and de-
fense response.

4.42 113 Mitosis; organelle fission; cell-cycle; M-phase.
4.23 54 Enzyme inhibitor; endopeptidase and protease in-

hibitor; SERPIN family; reactive bond.
3.60 50 Proteinaceous extracellular matrix; basement mem-

brane.

R1.1 R1.09 13 582

11.32 108 DNA replication and DNA metabolic process.
7.07 151 Mitosis; organelle fission; cell division; chromo-

some segregation;cell-cycle; M-phase.
6.41 96 Chromosomal part; centromeric region; chromatin.
5.46 140 DNA repair; response to DNA damage; stress re-

sponse.
4.85 45 Condensed chromosome; kinetochore; centromeric

region .

R1.1 R1.10 2 108 4.12 55 Extracellular space.
4.09 108 Secreted; signal peptide; glycoprotein; disulfide

bond.

Huh-7.5.1 R2 25 1325

6.34 165 Sequence-specific DNA binding; Homeobox DNA
binding domain.

4.97 95 Embryonic morphogenesis; appendage develop-
ment.

4.93 40 Acute inflammatory response; acute phase.
4.74 153 Acute inflammatory, wounding and defense re-

sponse.
4.59 73 Extracellular and secreted; signal peptide; glycopro-

tein; disulfide bond.

relate to HCV infection and (iii) to identify potential functions that contribute to suscep-
tibility to HCV infection, we created a functional clustering network using all significant
annotation clusters described in supplementary table S5.7. This functional clustering net-
work comprises 36 subnetworks, shown in supplementary file S5.1. These subnetworks
correspond to areas of shared, enriched biological function between the gene sets. Figure
5.5 shows 12 of these subnetworks that include at least three nodes, at least one node
corresponding to an enriched function from a subcloning event and at least one node cor-
responding to an enriched function from an additional data set linked directly to HCV in-
fection. These visualisations highlight the possibility that changes in expression of genes
of some of these particular functions may contribute to susceptibility to HCV infection
in more than one subcloning event. For example, Figure 5.5B shows that genes encoding
protein products that interact with proteins of HCV and also genes that are differentially
expressed between several independent subcloning events (corresponding to both increase
and decrease in susceptibility to HCV infection), are all enriched for extracellular and se-
creted disulphide-bond containing proteins and signal peptides.

The subcloning of hepatoma cells has caused extensive changes to transcriptional ac-
tivity, both in terms of the absolute number of differentially regulated genes and of biolog-
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Figure 5.5: Functional annotation cluster networks from differentially expressed genes
and other HCV-related data sources. These networks highlight areas of shared enriched
function between gene sets that we identify as differentially expressed between hepatoma
cells and also gene sets that relate to HCV infection. Nodes represent annotation clusters
from the data source denoted by the node colour. Edges represent shared annotation terms
between clusters. Only nodes that share at least 1/4 of annotating terms are connected
by an edge. Node diameter is proportional to the level of enrichment of the biological
function in the gene set. Edge width is proportional to the proportion of annotating terms
shared between two clusters. Subnetworks A-D are those with > 6 nodes, subnetworks
shown in E have between 3 and 6 nodes. Annotation clusters from two PPI data sources
are shown: PPI (1) from reference [126] and PPI (2) from reference [318].
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ical functions affected. In the case of Huh-7.5 cells, RIG-I mutation is known to increase
susceptibility to HCV infection and complementing these cells with wild-type RIG-I in-
duces greater resistance [305]. However, differential expression of over 2000 genes from
a variety of functions between Huh-7 and Huh-7.5.1 is not necessarily due to a single
mutation of RIG-I, indeed this seems unlikely. Therefore, it is impossible to say whether
Huh-7.5.1 derived cells are more susceptible than Huh-7 due to RIG-I alone, as change
in regulation of other genes may also play a role. Huh-7.5 derived cells are commonly
used for HCVcc but the extent to which subcloning-induced cellular alteration distances
these cells from hepatocytes that are being modeled warrants greater consideration given
the scale of change we report.

A previous study by Inoue et al. [333] made comparison of two Huh-7 subclones
that had varying HCV replication efficiency. Inoue et al. identify 17 genes that have an
increased level of expression and 19 genes that have a decreased level of expression in
the more efficient of the cells. Though the present study and that of Inoue et al. have a
shared aim, there is very little concurrence of results. This could be because Inoue et al.

observed a different mechanism causing change in susceptibility to infection but it could
also be due to the relatively small size of their result set. Regardless, our study has greater
power as six Huh-7 derived subclones rather than two were analysed and expression of
approximately 17 thousand genes, as opposed to approximately 8500 were assessed.

5.4.3 Host factors linked to HCV are differentially expressed in sub-
clones of Huh-7

HCV dependency factors

The 7503 genes differentially expressed following subcloning events are enriched for
genes shown by siRNA gene knockdown to be necessary for HCV replication [150, 151,
152, 153, 154], termed HCV dependency factors (HDFs). A total of 292 genes that are
expressed among the six cells are among HDFs and 176 of these genes are differentially
expressed (p = 0.050, Fisher’s exact test). This result indicates that differences in expres-
sion are likely to impact susceptibility of the cells to infection.

Cellular receptors and lipoproteins

Cellular receptors and lipoproteins involved in HCV entry are differentially expressed
in comparisons between both resistant and susceptible cells. Five genes – CLDN1, CD81,
LDLR, ASGR1 and APOE – that promote virus entry are differentially expressed in a
comparison between susceptible cells (Figure 5.6). Of these five genes, all except APOE
are downregulated in the Huh-7.5.1 cell, relative to Huh-7. APOE is transcriptionally
upregulated in Huh-7.5.1 relative to Huh-7 (a fold-change of 1.84) and ASGR1 is up-
regulated in Huh-7.5.1c2 relative to Huh-7.5.1 (a fold-change of 1.57). Therefore, only
APOE and ASGR1 are regulated in a manner that fits with the observed susceptibility to
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infection and neither undergo a substantial fold-change, thus, it does not seem likely that
enhanced viral entry is a cause of the relative permissiveness to infection in Huh-7.5.1
and Huh-7.5.1c2 cells.

CLDN1

CD81

LDLR

ASGR1

APOE

ASGR2

CLDN1

APOC1

APOB

LDLR

APOE

VLDLR

MTTP

ASGR1

CLDN6

APOC2

CD81

A B

R2.1 R1.09 R1.10Huh-7 Huh-7.5.1c2

Figure 5.6: Hierarchical clustering plots showing the expression levels of differentially
expressed HCV-linked cellular receptors and lipoproteins. Genes are represented by hor-
izontal bands and cells by columns. Bands are coloured blue if the gene is downregulated
and yellow if they are upregulated, relative to their expression in Huh-7.5.1. Greater
colour intensity relates to a greater fold change. Black bands represent genes whose
expression is a similar level to Huh-7.5.1. (A) Comparison of gene expression levels be-
tween susceptible cells. The majority of entry factors that undergo a significant change in
expression are found at a higher level in Huh-7 than either of the Huh-7.5.1 derived cells.
(B) Comparison of gene expression levels between resistant cells and Huh-7.5.1. R1.09
and R1.10 cells have have a lower level of expression of CD81 than Huh-7.5.1. Though
R2.1 cells have a relatively high level of CD81 expression relative to Huh-7.5.1, other
entry factors are expressed at lower levels.

Ten factors that influence HCV entry are differentially expressed in comparison be-
tween resistant cells and the Huh-7.5.1 parent (DD81, ASGR1, ASGR2, CLDN1, CLDN6,
VLDLR, LDLR, APOC1, APOC2 and APOE). CD81, an important coreceptor in HCV

122



5.4. RESULTS/DISCUSSION

cell entry [301], is downregulated in both R1.09 and R1.10 relative to Huh-7.5.1. CD81
expression is significantly greater in R2.1 than Huh-7.5.1. However, eight of the nine
remaining differentially expressed entry factors, all except for VLDLR, are downregu-
lated in R2.1 relative to Huh-7.5.1, including four by more than 32-fold (APOC2, APOE,
ASGR1 and CLDN1). These results are consistent with the findings of Zhong et al. who
identify that low ectopic CD81 contributes to the resistance of the original R1 (but not
R2) cell, from which R1.09 and R1.10 are descended. However, additional mechanisms
of resistance must exist, as transduction of R1 cells to express CD81 did not fully restore
the susceptibility to infection observed in Huh-7.5.1 [307]. From our expression analysis
it does not appear that R1.09 and R1.10 cells lack other cell entry factors. Therefore, the
mechanism of resistance to infection, additional to CD81-mediated entry in R1 derived
subclones, is unlikely to be due to viral entry. Zhong et al. attribute infection resistance
of R2 to processes other than CD81-mediated entry. However, we identify that many en-
try factors aside from CD81 are downregulated in R2.1. These factors include CLDN1,
a component of tight junctions, the silencing of which prevents HCV entry into Huh-7.5
cells [334]. CLDN1 is transcriptionally downregualted in R2.1 compared to Huh-7.5.1,
with a fold-change of approximately 36-fold, indicating impeded viral entry could con-
tribute to R2.1 resistance to infection. However, like R1 and Huh-7.5 derived cells, evi-
dence suggests that processes other than viral entry affect the permissiveness of R2.1 to
infection by HCV; particularly as Zhong et al. show that HCV replicon replication was
defective in R2 cells and over five thousand genes are differentially expressed following
subcloning of R2.1 cell from Huh-7.5.1. Indeed, MTTP and APOB are associated with
HCV particle formation and particle secretion [301]. Like the virus entry factors previ-
ously mentioned, both MTP and APOB are downregulated in R2.1 relative to Huh-7.5.1
by more than 32-fold. Therefore, it appears that R2.1 cells may also lack the ability to
support aspects of the HCV replication cycle that take place post-entry.

Proteins associated with the HCV replicase complex

Host proteins from crude HCV replicase complexes were identified by mass spec-
trometry. These host proteins correspond to 236 host genes that we term host replication
factors (HRFs, supplementary table S5.8). A total of 212 HRFs were expressed among
the cells that underwent microarray analysis and 145 of these are differentially expressed.
This is significantly more than would be expected by random chance (p = 3.8 × 10−5,
Fisher’s exact test). This result suggests that the ability of these cells to support replica-
tion of viral RNA is unlikely to be consistent between these cells. Interestingly, among
these 145 host genes are 12 (APOA1, APOE, CALR, CANX, FTH1, GNB2, HSPA5,
OS9, PFN1, PPIB, SSR4, and TUBB2C) that encode a product known to interact with
one or more HCV protein [126]. For example, Chang et al. show that APOE is required
for production of infectious HCV, probably for virion assembly rather than viral RNA
replication [335] and CANX is involved in the folding of HCV glycoproteins [336].
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Also among the 145 are two HDFs, DDOST and PPIA [154]. DDOST encodes a
subunit (dolichyl-diphosphooligosaccharide-protein glycosyltransferase) of the oligosac-
charyltransferase complex. DDOST is required during the late stages of HCV replication,
possibly to perform an essential glycosylation step on HCV envelope proteins, E1 and E2
[154]. PPIA encodes a cyclophilin A the protein target of anti-HCV drug alisporivir [79].
Both DDOST and PPIA are downregulated in the R2.1 subclone compared to Huh-7.5.1
with fold change 2.16 and 1.82, respectively. APOE encodes apolipoprotein E, a con-
stituent of lipoproteins. Surprisingly, the level of APOE gene expression in R2.1 cells is
lower than in Huh-7.5.1 by over 100-fold. Taken together, these results suggest that the
regulation of expression of DDOST, PPIA and particularly APOE might be sufficiently
altered in R2.1 such that the cell are unable to form a competent HCV replication com-
plex.

5.4.4 Gene expression profiles highlight host factors and biological
functions that are linked to HCV infection susceptibility

A significantly greater proportion of expressed genes appear on multiple branches of
the tree of cell subclones (Figure 5.1) than would be expected by random chance (no Mann
Whitney U test p-value exceeded 0.001 in 1000 permutations). This result indicates that
the likelihood of undergoing a significant change in expression following subcloning is
not equal for each gene. This may be due to a number of reasons including simple hyper-
or hypo-variability of certain genes, or, more interestingly, some genes being differentially
expressed multiple times during subcloning due to an effect they have on HCV infection
susceptibility, their change in expression having been selected by subcloning.

To distinguish factors that may alter HCV susceptibility and to identify specific bi-
ological functions and proteins that may contribute to HCV infection susceptibility, we
define a gene expression profile score that accounts for significant change in expression
following independent subcloning events (see Materials and Methods). A negative score
represents an antiviral expression pattern a positive score represents a proviral expression
pattern. The frequencies of attained scores are given in table 5.3 and a full list of scores
per gene is given in supplementary table S5.9. To demonstrate the significance of our
measure, we tested whether other gene sets that are linked to HCV virus propagation have
greater scores than would be expected. We find that HCV-linked cellular receptors and
lipoproteins (including many factors involved with cell entry), genes that encode proteins
that interact with HCV proteins and HRFs have a greater mean score than expected by
random chance. The test result was not significant for HDFs (see table 5.4). These results
indicate that our score is significant and is a useful measure for aiding identification of
host cell factors that affect susceptibility to HCV infection. Furthermore, these results
indicate that factors involved in virus entry into the cell, replication and those that have a
direct association with proteins of HCV are likely to be important.

Though our score does penalise expression profiles that exhibit both antiviral and
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Table 5.3: The frequency of gene scores. Here, we give the profile scores, the frequency of
the score among 7503 differentially expressed genes and the corresponding proportion. A
negative score represents an expression profile that indicates a possible antiviral activity,
whereas a positive score indicates a possible proviral activity.

Score Frequency total Proportion
-5 1 0.013%
-4 11 0.15%
-3 77 1.03%
-2 592 7.89%
-1 3039 40.50%
0 1042 13.89%
1 2054 27.38%
2 554 7.38%
3 113 1.51%
4 19 0.053%
5 1 0.013%

Table 5.4: Mean profiles scores. Details of the profile scores of four gene sets that we
predict may have a higher score than would be expected by random chance. These gene
sets are: HCV-linked cellular receptors and lipoproteins, the majority of which facilitate
virus entry (but also and particle formation and release, here labeled “receptors”), host
factors that we isolate from vesicles that harbour the HCV replication complex (HRFs),
host factors that are required for HCV replication determined by siRNA screen (HDFs)
and HCV interacting proteins (HCV interacting). For each gene set we show the mean
profile score and the significance of the score enrichment, determined by Mann Whitney
U test permutation. For all gene sets other than HDFs, the profile scores are on average
greater than we would expect by random chance, given a p-value cutoff of < 0.05.

Gene set No. of genes Mean profile score Permuted p-value
Receptors 14 0.5 0.0070
HRFs 173 0.283 < 0.001
HDFs 230 -0.0174 0.173
HCV interacting 465 0.0452 0.0030

proviral tendencies, we would still expect biological functions that comprise genes that
are hyper-variable in their expression in the hepatoma cell culture system to have a greater
range of scores than biological functions whose genes tend to be expressed at a constant
level. Therefore, we devised a test to ascertain whether the enriched functions that we
highlight in Figure 5.5 are simply hyper-variable or are consistent with a profile that
corresponds to antiviral or proviral action (see Materials and Methods for details of this
test).

We find that two areas of function are linked to the observed differences in susceptibil-
ity to HCV infection in more than one of the six cell cultures: (i) secreted signal peptides
and glycoproteins (343 genes, Figure 5.5B) and (ii) the acute and innate inflammatory re-
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sponses (71 genes, Figure 5.5D) were significant (p = 0.049 and p = 0.013 respectively).
The innate immune response and particularly interferon-stimulated pathways play an im-
portant role in cellular defense against viral infection [337]. “Secreted signal peptides and
glycoproteins” is a description relevant to proteins from a broad spectra of activities and
there are several important factors among these that are differentially expressed which
directly relate to HCV infection. These include TGF-β [338], low-density lipoprotein
receptors and their associated proteins that have previously been discussed and TNF and
serpin peptidase inhibitors [301, 339] (discussed in the next section).

We also define a set of ‘high-scorers’ – genes with an absolute score ≥ 3. There
are 222 high-scorers, representing approximately the top 3% of differentially expressed
genes. Genes that scored > 3 or < 3 are listed in table 5. Among high-scorers are
two HRFs, neutral cholesterol ester hydrolase 1 (NCEH1) and visinin-like 1 (VSNL1).
NCEH1 catalyses hydrolysis of intracellular cholesterol ester, to produce free cholesterol.
Free cholesterol may then be re-esterified or efflux to an extracellular cholesterol acceptor
[340]. We identify NCEH1 as differentially expressed comparisons corresponding to:
subcloning of Huh-7.5.1 from Huh-7, R1 from Huh-7.5.1, R1.09 from R1 and R2.1 from
Huh-7.5.1. NCEH1 follows an antiviral expression profile without deviation and scores
-4. Visnins are calcium sensor proteins that modulate multiple intracellular targets [341].
In contrast to NCEH, VSNL1 has a unanimously proviral expression profile of +3, as
it is differentially expressed in three comparisons corresponding to: subcloning of R1
from Huh-7.5.1, R1.09 from R1, and R2.1 from Huh-7.5.1. Both of these genes are also
differentially expressed in comparisons between infected and uninfected cells; NCEH1 is
upregulated in both infected Huh-7.5.1 and Huh-7.5.1c2 cells compared to the uninfected
cells, whereas VSNL1 is downregulated in Huh-7.5.1c2 cells following infection. Also
among high-scorers are three proviral HDFs: PROX1, GCAT and ATP10D. In agreement
with their HDF status, these genes have unanimously proviral expression profiles, each
scoring +3. These high-scoring genes that appear in multiple HCV-related data sources
may have a significant role in HCV infection.

5.4.5 Investigation of HCV protein neighbourhoods reveals plausible
mechanisms for change to infection susceptibility

Investigation of the network neighbourhoods of HCV proteins could identify plausible
mechanisms for change in HCV infection susceptibility (Figure 5.7). In order to focus our
search we only investigated differentially expressed genes from high-scorers or functional
clustering networks corresponding to (i) secreted signal peptides and glycoproteins and
(ii) the acute inflammatory response that we find to be significantly pro- and antiviral in
their expression. In addition, we only evaluated interactions between these differentially
expressed genes and HCV proteins, HDFs, HRFs and HCV-linked cellular receptors and
lipoproteins.
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Figure 5.7: Protein interaction neighbourhoods of HCV proteins. HCV proteins are de-
noted by yellow nodes. Host proteins encoded by genes from either the high-scorer set
or from significant antiviral and proviral biological functions are denoted by orange or
blue nodes, indicating proviral or antiviral expression profiles, respectively. Other HCV
interacting host proteins are denoted by grey nodes. Edges represent interactions between
these proteins.
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Control over STAT3 protein activation

Stat3 (signal transducer and activator of transcription 3) is a transducer for a variety
of signals including response to cytokines and growth factors. Upon activation by phos-
phorylation, Stat3 proteins dimerize and are translocated to the nucleus where they act as
activators of transcription [342]. Stat3 is among the host cell interactants of HCV NS3
and core proteins [126] and is activated by core through a direct interaction, causing pro-
liferation and possibly promoting tumorigenesis [343]. In addition, Stat3 has been shown
in two independent siRNA screens to be essential for HCV replication [151, 154]. In con-
trast, other work has shown that Stat3 activation following interferon or IL6 treatment can
prevent HCV subgenomic replicon replication by inducing an antiviral response [344].
Therefore, despite a clear importance, the effect of Stat3 signaling in HCV infected cells
has yet to be fully understood.

In both the NS3 and CORE protein networks, we identify three host proteins, encoded
by genes IL6R (interleukin 6 receptor), FGFR3 (fibroblast growth factor receptor 3) and
IFNAR1 (interferon-α receptor 1), that act as activators of Stat3 activity. IL6R is an
activator of Stat3, in response to interleukin 6 [342]. IL6 is included in gene sets taken
from functional clustering networks (Figures 5.5B and 5.5D) and has a profile score of +2.
Specifically, IL6R is upregulated in Huh-7.5.1 in comparison with Huh-7 (fold change of
2.6) and downregulated in R2.1 in comparison with Huh-7.5.1 (fold change of 6.1). This
change in regulation, combined with substantial fold changes purports a proviral action.
However, this is not consistent with the findings of Zhu et al. [344], who show IL6
mediated signaling to be antiviral. FGFR3 is also included in the gene set taken from the
functional clustering network (Figure 5.5B), has a score of +2 and is downregulated in
R2.1 (fold change of 1.6) and R1.10 (projected fold change of 1.8) following subcloning.
Conversely, IFNAR1 has an negative score of -2, as it is downregulated in both the Huh-
7.5.1 and R2.1 cells following subcloning, both with a fold change of 1.6. This activity
is consistent with the findings of Zhu et al. on the basis that the IFN-induced antiviral
activity can be mediated by this receptor.

Modulation of TNF-mediated signals and NF-kB activation

HCV modulates the host innate immune response using multiple strategies [345]. One
of these strategies involves regulation of TNF-induced NF-kB, a transcriptional regulator
and an important controller of inflammation and immune activation. Several HCV pro-
teins are known to regulate NF-kB including NS5A, NS5B, core and F [346, 347, 348, 64].
NF-kB activation is mediated through engagement of the TNF receptor. Upon stimula-
tion, components of a signaling complex are recruited to the receptor. Signaling complex
formation requires adaptor proteins including TRAF2 (TNF receptor associated factor
family 2) [349]. NS5A appears to negatively regulate TNF-α-mediated activation of NF-
kB through a direct interaction with TRAF2 [346]. However, TRAF2 has been shown
by siRNA screen to be necessary for HCV replication [150], therefore it is unlikely that
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HCV infection simply requires suppression of TRAF2 activity. The sphingosine kinase
1 (SPHK1) and its product, an anti-apoptotic lipid mediator, sphingosine-1-phosphate,
have recently been confirmed as important factors in TRAF2-mediated NF-kB activation
[350]. The SPHK1 gene is expressed at a greater level in Huh-7.5.1 cells when compared
to Huh-7 and resistant cells and is among the high-scorers with a score of +3, indicat-
ing that this gene may play an important proviral role in HCV infection, perhaps via
a link to TRAF2 and an involvement in NF-kB induction, prevention of apoptosis and
regulation of the innate immune response. We also identify two other genes among the
subset of differentially expressed genes that we investigated that interact with TRAF2:
CHMP2B (chromatin modifying protein 2B) and putative gene C5orf55. Both C5orf55
and CHMP2B have negative scores of -2 and -3, respectively, indicating a possible an-
tiviral link. This provides additional evidence that TRAF2-related processes may have an
effect during HCV infection.

Phospholipid scramblase 1 as an enhancer of interferon signaling

Interferons are important regulators of the innate immune response to viral infection
[337]. Indeed, interferon-α is used as a treatment to reduce viral load in HCV infected
patients [71]. PLSCR1 (phospholipid scramblase 1) is an interferon-stimulated gene that
contributes to the interferon-mediated antiviral response. Though the underlying mecha-
nism for antiviral activity of PLSCR1 remains to be fully understood, evidence indicates
that this action is dually mediated at the cell membrane, where PLSCR1 can alter the dis-
tribution of phospholipids and in the nucleus, where this protein binds to DNA, possibly to
potentiate transcription [351]. PLSCR1 appears in the gene set taken from the functional
clustering network (Figure 5.5D) and has a score of -2, as a result of being upregulated
in all resistant cells (with fold changes of between 1.6 and 2.2), relative to Huh-7.5.1.
In addition, PLSCR1 interacts with HCV core, indicating a mechanism through which
HCV may act to control PLSCR1 signaling [126]. Therefore, PLSCR1 is a candidate for
increased resistance to infection of R1.09, R1.10 and R2.1 cells.

Cholesterol efflux

A link between cholesterol efflux and HCV infection has been made previously. The
scavenger receptor SR-BI mediates cellular uptake of cholesterol and the flux of choles-
terol between HDL and the cell [352]. SR-BI is also an important HCV virus entry
factor, possibly promoting viral entry through regulation of plasma membrane organ-
isation, being a provider of cholesterol and interaction with other entry factors [301].
Virion-associated cholesterol is also a requirement of HCV infectivity [353]. We have
previously mentioned the antiviral expression profile of NCEH1 and it’s inclusion among
high-scorers and HRFs. Another host protein with a related role is ATP-binding cas-
sette protein (ABCA1). This protein is a cholesterol efflux pump for removal of cellular
lipids [354]. ABCA1 is among the gene set gene set taken from the functional cluster-
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ing network (Figure 5.5B) and unlike NCEH1 it has a proviral profile score of +2. The
ABCA1 encoded protein effluxes cholesterol to apolipoprotein A-I, a major constituent of
HDL and these two proteins interact directly. Apolipoprotein A-I is present among HRFs
and also interacts directly with HCV NS5A, probably as part of HCV-associated lipid
metabolism dysregulation [355]. This evidence suggests that enzymes with the ability to
alter balance of cholesterol efflux may also impact HCV infection. Therefore, ABCA1
and NCEH1 may have an effect on susceptibility to HCV infection in hepatoma cells.

Serpins as mediators of HCV NS3 protein activity

HCV NS3 protein is a serine protease that contains a helicase domain and a serine
protease domain. NS3 is responsible for cleavage of viral polyproteins and disruption
of host innate immune response [356]. NS3 protease action is inhibited by serpin C1
through a direct physical interaction [339] and serpin-mediated inhibition of NS3 has been
proposed as a possible anti-HCV therapy [339, 357]. However, we find that SERPINC1,
the gene that encodes serpin C1 and a second serpin encoding gene SERPINA6 are among
the high scorers with proviral expression profiles that score +4 and +3 respectively and
these instances of differential expression also include substantial fold-changes. Serpin
C1 has also been found to interact with the HCV F protein [358], NS3 also interacts
with other serpins G1 and F2, and serpins C1 and G1 are both found in the NS4B PPI
network neighbourhood (Figure 5.7). The latter serpin genes all have proviral expression
patterns. Furthermore we also identified that serpins encoded by genes SERPINH1 and
SERPINA1 are part of the HCV replication complex. These results raise the question of
whether serpins play an additional proviral role in mediation of NS3 (and possibly F and
NS4B) protein activity HCV life cycle, possibly as part of the HCV replication complex.

5.5 Conclusion

In this study we performed multiple genome scale expression studies of Huh-7 derived
hepatoma cells with the aim of identifying genes and biological functions that have a sig-
nificant role in HCV infection. This permitted a detailed account of changes to gene ex-
pression caused by HCV infection, determined key differences between commonly used
HCVcc cells and implicated novel host factors in determining cellular permissiveness to
infection.

Firstly, by comparing uninfected and infected hepatoma cells we identified a set of
host cellular functions that are regulated during HCV infection including proteins associ-
ated with microtubule organisation, ubl conjugation, zinc-finger domain-containing tran-
scription factors and proteins with helicase activity (supplementary table S5.5). Though
proteins involved in microtubule organisation ubiquitination and DEAD-box helicases
have previously been identified as differentially expressed following HCV infection of
hepatoma cells in vitro [113], the sensitivity of our study has highlighted the breadth of
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regulation of genes with these functions. In addition, we identify transcriptional upreg-
ulation of ubiquitin specific peptidases as a particular mark of HCV infection in Huh-7
derived cells. Furthermore our results indicate that transcriptional upregulation of anti-
apoptotic and proliferation stimulating factors may be a cause of increased permissiveness
to HCV infection in Huh-7.5.1c2 cells.

Secondly, we examined the expression profiles of six hepatoma cells that have been
subcloned from Huh-7, including three cell types that are resistant to HCV infection and
genes differentially expressed between subcloned cells and their parent cells were identi-
fied. We were able to confirm that cells derived from the R1 subclone have significantly
reduced levels of CD81 owing to a mechanism that acts at the level of gene expression.
Additionally, we identified 236 host factors that are associated with HCV replication com-
plex in the membranous web of infected cells (HRFs, supplementary table S5.8). This is
the largest set of HRFs that has been identified to date. From HRFs we implicate change
in expression of APOE, DDOST and PPIA in the resistance to infection of the R2.1 cell.
We also identify a subset of HRFs that interact with proteins of HCV, including APOE,
CALN that are known to be involved in production of HCV [335, 336]. We scored genes
according to their expression profile and used these scores to identify antiviral and provi-
ral candidate genes. Table 5 lists the top scoring genes that include both novel candidate
host factors and factors linked to HCV replication, such as tubulin-α [322] and two HRFs,
NCEH1 and VSNL1 – NCEH1 is a potentially antiviral factor and VSNL1 is a potentially
proviral factor.

Our analysis of HCV infected cells also highlighted the ability of HCV to attenuate
interferon upregulation, even in the Huh-7 cell that, unlike Huh-7.5 derived cells, is not re-
ported to have a defective RIG-I signaling pathway. However, when we performed a meta-
analysis of gene expression in the six uninfected Huh-7 derived cells, five of which are
subcloned from Huh-7.5, we identify that the acute and innate inflammatory responses,
as well secreted signal peptides and glycoproteins, are likely to be linked to differences
in susceptibility to infection between these subclones. Furthermore we can predict that
these mechanisms of susceptibility or resistance to infection are independent of RIG-I
signaling. Following these observations network neighbourhoods of HCV proteins were
explored and hypotheses for changes to susceptibility to infection were postulated that
involve novel HCV-related factors including ABCA1, SPHK1 and CHMP2B, in addition
to supporting previously implicated factors such as PLSCR1 [126] and STAT3 [126, 343].

Interestingly, we find that secreted proteins (particularly glycoproteins) are linked to
HCV infection: Genes with this annotation are over-represented among differentially ex-
pressed genes from multiple parent-child subclone comparisons and we identify these as
having more significant proviral and antiviral expression profiles than would be expected
than by random chance. Among these secreted proteins are factors involved coagulation,
such as complement components, serpins and coagulation factors and these factors have
largely proviral expression profiles (see table 5.5 for some examples). Indeed, members
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of complement and coagulation pathways have previously been identified as potentially
important cellular cofactors of NS4B through yeast two-hybrid and functional network
analysis [318]. Also, among HRFs are factors that have a role in folding and secretion
of coagulation factors, such as CALR and CANX [359] and CANX is also involved in
production of HCV glycoproteins [336]. Hence, changes in HCV infection susceptibility
could relate to the ability of the cells to produce viral glycoproteins. For example, HSPA5
encodes a heat-shock protein that is involved in protein folding and assembly in the en-
doplasmic reticulum [360]. HSPA5 is downregulated in all HCV resistant cell types com-
pared to Huh-7.5.1 with approximate fold-changes between 1.5 and 2, though with highly
significant probability (fdr < 1 × 10−7 in each case). Other host factors with chaperone
and protein folding activity that achieve high profile scores and appear in HCV protein
network neighbourhoods include heat-shock proteins DNAJC1 and HSP90B1 [361, 362].
Another heat-shock protein, Hsp90, has been shown previously to form a complex that
includes HCV NS5A and has an important role in HCV RNA replication [363]. Investiga-
tion of the ability of these chaperones to influence virus protein production will potentially
identify additional mechanisms important to HCV infection.

Overall, our study builds upon current knowledge of infection and our results may
contribute to the development of new antiviral treatments to counter the global HCV
problem, particularly where we identify potentially proviral proteins that could act as
drug targets. Further study, such as genomic sequencing of Huh-7 derived cells would
provide greater insight into the extent that these cells mutate in order to effect the ex-
tensive differences in gene expression that we observe following subcloning. Changes to
susceptibility to infection could then be attributed to gene-specific mutations, in the same
way that Huh-7.5 susceptibility has been linked to mutation of RIG-I. Genome sequencing
may also highlight other previously undetected mutations in Huh-7.5.1 as well as other
Huh-7 derived cells to further our understanding of HCVcc systems and their suitability
for modeling infection.

5.6 Supporting material

Supplementary file S5.1. Functional annotation cluster networks from differentially
expressed genes and other HCV-related data sources. These networks highlight areas of
shared enriched function between gene sets that we identify as differentially expressed
between hepatoma cells and also gene sets that relate to HCV infection. Nodes represent
annotation clusters from the data source denoted by the node colour. Edges represent
shared annotation terms between clusters. Only nodes that share at least 1/4 of annotating
terms are connected by an edge. Node diameter is proportional to the level of enrichment
of the biological function in the gene set. Edge width is proportional to the proportion of
annotating terms shared between two clusters.

Supplementary file S5.2. (A) Huh-7.5.1, R1.1 and R2.1 G418 resistant colonies
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Table 5.5: Genes with top-scoring antiviral and proviral expression profiles. Genes with
a profile score of < 3 (antiviral profile) are listed above and > 3 (proviral profile) are
listed below. Also given is the change in regulation of the gene in Huh-7, Huh-7.5.1
and Huh-7.5.1c2 cells (in that order) from uninfected versus infected comparisons, where
“n” represents no significant differential expression, “+” represents upregulation in the
infected cell and “–” represents downregulation in the infected cell.

Gene name Profile score infected vs. uninfected
trophoblast glycoprotein -5 n n n
GalNAc-T7 -4 + + +
sperm associated antigen 1 -4 + + +
tubulin, alpha 1a -4 n + +
neutral cholesterol ester hydrolase 1 -4 n + +
interleukin 17D -4 n n –
proline-serine-threonine phosphatase interacting protein 2 -4 n + n
discoidin domain receptor tyrosine kinase 1 -4 n n +
lectin, galactoside-binding, soluble, 1 -4 n n +
ependymin related protein 1 -4 n n n
MHC class I polypeptide-related sequence B -4 n n n
TIMP metallopeptidase inhibitor 1 -4 n n n
complement component 3 5 n – n
peptidoglycan recognition protein 2 4 – – –
potassium channel, subfamily T, member 2 4 – – –
coagulation factor XII (Hageman factor) 4 n – –
annexin A9 4 n – –
orosomucoid 2 4 n – –
complexin 1 4 n – –
hydroxysteroid (11-beta) dehydrogenase 2 4 n – –
transmembrane protein 86B 4 n – –
solute carrier family 7, member 10 4 n – –
haptoglobin 4 n – –
serpin peptidase inhibitor, clade C (antithrombin), member 1 4 n – –
haptoglobin-related protein 4 n – –
left-right determination factor 1 4 n – n
reelin 4 + n n
argininosuccinate synthetase 1 4 n – n
ATP-binding cassette, sub-family B (MDR/TAP), member 4 4 n n n
KIAA1462 4 n n n
orosomucoid 1 4 n n n
coagulation factor V (proaccelerin, labile factor) 4 n n n

transfected with HCV genotype 1b (Con1) subgenomic replicon encoding a neomycin
resistance gene. (B) Huh-7.5.1, R1.1 and R2.1 G418 resistant colonies transfected with
Con1 full-length replicon RNA encoding a neomycin resistance gene. (C) Huh-7.5.1,
R1.09 and R1.10 G418 resistant colonies transfected with HCV genotype 1b (Con1)
subgenomic replicon encoding a neomycin resistance gene. (D) Staining of HCV in-
fected cells for viral E2 protein at 3 (Huh-7.5.1c2), 4 (Huh-7.5.1) and 7 (Huh-7) days post
inoculation.(E) Infectivity of supernatant produced from infected cells at 2, 4 and 8 days
post infection.

Supplementary file S5.3. PCA analysis was carried out on RMA expression values
of each array. Principal components 1, 2 and are plotted for each array.

Supplementary file S5.4. Results of differential expression analysis including Entrez
gene ID, cell comparison in which the gene is differentially expressed, log fold change,
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p-value and corrected p-value.
Supplementary file S5.5. Output from DAVID 6.7 functional annotation clustering

on subsets of genes that are differentially expressed following HCV infection. Only an-
notation clusters that have an enrichment score > 2 are shown. Sheets A-G correspond to
the gene sets that are illustrated in Figure 5.3 in the main text.

Supplementary file S5.6. Differentially expressed genes assigned to branches of the
tree of cells. Shown are the Entrez gene IDs, the tree branch to which the differentially
expressed gene is ascribed and the cells in which the gene is up- and downregulated.

Supplementary file S5.7. Output from DAVID 6.7 functional annotation clustering.
The first six sheets show results for gene sets that are differentially expressed on a spe-
cific branch of the tree of cells. The following three sheets show results from genes that
are differentially expressed in HCV susceptible cells following infection. The remain-
ing six sheets show results for other HCV-related data sets: HCV-linked cell receptors
and lipoproteins, HRFs, HDFs, two sets of HCV-protein interacting factors (from stud-
ies [126] and [318], respectively) and genes differentially expressed during chronic HCV
infection [319].

Only annotation clusters that have an enrichment score > 2 are shown. Each sheet
shows results from a different branch and sheets are named accordingly.

Supplementary file S5.8. List of HCV replication factors (HRFs). Shown is the
Enrez gene ID, gene name and protein accession.

Supplementary file S5.9. Expression profile scores for genes that were differentially
expressed (DE) and assigned to a tree branch (supplementary table S5.6). Shown are
the Entrez gene ID, number of times the gene is found to be differentially expressed, the
overall pattern of gene regulation, the score (s) and normalised score (s-norm).

Supplementary file S5.10. The microarray gene set following removal of genes that
are not expressed in any cell type (see Materials and Methods for details). Shown are the
array annotation ID, Entrex gene ID, gene symbol and gene name.
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CHAPTER

SIX

DIFFERENTIAL GENE REGULATION NETWORKS IN
PATHOGENIC AND NATURAL HOST SIV INFECTIONS

6.1 Abstract

SIV infection of rhesus macaques (RMs) and HIV-1 infection of humans are similarly
pathogenic diseases, both causing immune dysfunction. Conversely, SIV infection of
“natural” hosts, such as African green monkeys (AGMs), are effectively non-pathogenic.
Studies have shown that innate immune regulation during SIV infection is different be-
tween natural host and pathogenic infections. Furthermore, gene-regulation is important
in determining the outcome of infection. In this work we perform expression profiling
of genes from CD4+ cells from two types of tissue from SIV infected RMs and AGMs,
and infer gene-regulatory relationships in order to further explore pathogenesis of SIV
infection. We define expression profiles for genes differentially regulated during SIV in-
fection. We show that the profiles include antiviral responses and cell-cycle dysregulation
in AGMs and RMs. Using a mutual information measure we identify gene-regulatory
relationships and employ a bayesian approach to infer 32 regulatory interactions, some
of which are supported by multiple samples. Using a network model incorporating host-
virus interactions, we infer 19 cellular genes, including interferon regulator IRF7, that
may be significant effectors of SIV-induced gene regulation. Our results highlight several
cellular host factors that appear to be be important in regulation of the immune responses
during SIV infection of AGMs and RMs. Using gene-regulatory networks, we show that
genes IFIT1 and ISG15 could be important for negative feedback during SIV infection
and we highlight the importance of IRF7 as an effector of immune activation. Our work
complements previous SIV studies by identifying gene regulatory networks related to re-
sistance and provides potential avenues for treatment of HIV-1 infection.
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6.2 Background

Type I human immunodeficiency virus (HIV-1) infection causes immune deterioration
through the infection and depletion of CD4+ T cells. Paradoxically, disease progression
is also associated with a greater level of T cell activation and chronic immune activa-
tion in infected patients. Increased immune activation is considered the driving force of
CD4 T cell depletion ultimately leading to acquired immunodeficiency syndrome (AIDS),
characterised by the inability to mount sufficient immune defense against opportunistic
infections [42, 364]. Although deterioration of the host immune response occurs over a
long time period and the onset of AIDS takes years if the infection is left untreated [365],
important events in innate immune responses and also dysregulation of immune activity
occur within the incubation and acute stages of infection, i.e., within the first few weeks
after contracting the virus [42].

Simian immunodeficiency virus (SIV) infection of natural host species, such as the
sooty mangabey and African green monkey (AGM), is usually not pathogenic [366].
However, SIV infection of “non-natural” host species, such as rhesus macaques (RMs)
is pathogenic and leads to immune system dysfunction and a condition similar to human
AIDS [367]. Hence, SIV infection of RMs is used as a model system, proximal to HIV-1
infection of humans, that is applied to better understand aspects of pathogenicity and host-
virus interaction [367, 366]. Similarly, natural hosts might provide better understanding
of AIDS resistance in human long-term non-progressors and elite controllers, allowing
the identification of potential targets for interference.

Three recent studies, including one of our own, compared temporal changes in gene
expression between the SIV infection of natural hosts (AGMs and SMs) and pathogenic
macaque hosts (RMs and Asian pigtailed macaques) [48, 189, 49]. These studies highlight
that the innate immune response to infection becomes activated in both species, despite
their different disease outcomes. This antiviral defense response includes robust produc-
tion of type-I interferon (IFN) and strong upregulation of many IFN-stimulated genes
(ISGs). However, the pattern of gene expression linked to a type I IFN response is quite
different between primate species. Interestingly, in a previous study [189] we identified
that induction of ISG expression is at least as rapid and as strong in AGMs as in RMs.
However, whilst ISG expression in AGMs is quickly attenuated (by the end of the acute
infection period), in RMs, ISG expression is more gradually, progressively upregulated
during acute infection. A similar pattern of expression was also observed by Lederer et al

[48].
Both our study [189] and Lederer et al. [48] conclude that a regulatory mechanism

that attenuates the innate immune response shortly after its activation, is probably active
in SIV infected AGMs but not RMs. Furthermore, it is assumed that this negative con-
trol mechanism could play an important role in preventing SIV infection from becoming
severely pathogenic by preventing chronic immune activation. The importance of rapid
antiviral response to SIV infection, as observed in AGMs, remains unclear. An early and
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strong innate immune response has been shown to have a limiting effect on SIV pathogen-
esis in mucosal tissue [368]. However, a study that compared another natural SIV host,
the Sooty Mangabey (SM), with non-pathogenic infection, to RMs, did not find that the
innate immune response to infection was activated more quickly in SMs than RMs [49].

Gene-regulatory relationships (and subsequently gene-regultory networks) can be in-
ferred from gene expression profiles using a measure called mutual information (MI)
[107, 116]. In this context, MI quantifies the mutual dependence that the expression of
two genes have upon one another, thus, a large MI value between two genes indicates a
high likelihood for the existence of a gene-regultory relationship. Though gene-regulatory
relationships identified using MI are not necessarily direct (they may preferentially iden-
tify, indirect “short-cuts” in regulatory pathways), MI methods compare favorably with
other gene-regulation inference methods, such as bayesian networks in terms of their
recall and accuracy [116]. In this work we retrieve gene expression data from SIV in-
fected AGMs and RMs, from both lymph node (LN) and peripheral blood (PB) CD4+
cells originating from our previous study [189] and use these data to further explore SIV-
induced gene regulatory patterns. Initially, we classified differentially expressed genes
based on their expression profiles. Following this, we use an MI method [107] to infer
gene-regulatory relationships between differentially expressed genes in order to provide
additional insight into pathogenic versus non-pathogenic SIV infection. We use gene on-
tology annotation [173] criteria and employ a bayesian approach to identify interactions
with improved confidence and also use a modeling approach that incorporates virus-host
interaction data [27] to infer significant cellular effectors of SIV-driven changes to gene
expression. Our work contributes to the understanding of pathogenicity and control over
immune activation during SIV infection.

6.3 Methods

6.3.1 Gene expression in SIV infected primates

Pre-processed gene expression data, from both PB and lymph-node (LN) CD4+ T cells
was obtained from our study of SIV infection among African green monkeys (AGMs) and
rhesus macaques (RMs) [189]. Gene expression data included expression levels from in-
dividual animals (typically six at each time-point) and also combined data giving mean
log2 expression levels for probes compared with baseline expression and statistical sig-
nificance for differential expression. Mappings between simian and human genes were
also present in the expression data. The raw expression data can be downloaded from the
MACE database (http://mace.ihes.fr) using accession numbers 3070984318 (AGM), and
2932572286 (RM).

137



6.3. METHODS

6.3.2 Clustering of gene expression profiles

Probe expression profiles, consisting of mean log2 gene expression values for all
mutually available time-points post-infection (1, 14, 28 and 65 days) from AGMs and
RMs, for both PB and LN CD4+ cells were selected for differentially expressed probes
(P < 0.1, at one or more time-point). Expression profiles, regardless of their source were
pooled and clustered using Mfuzz soft clustering with a “fuzzification” parameter of 1.25
[369] and a stringent within-error (α) of > 0.6, hence the choice of a permissive P value
cutoff for differential expression. Probe IDs were assigned to a single cluster that they fit
with the largest value for α. A full list of probe ID to expression profile ID mappings are
given in supplement S6.6.

6.3.3 Functional enrichment analysis

Functional enrichment analysis of clustered genes was performed using DAVID 6.7
[137, 108], taking the Benjamini and Hochberg [370] corrected P values as a measure of
significance. In addition enrichment for interferon stimulated genes (ISGs) was calculated
separately for each primate species-cell type combination, for each expression profile.
ISGs were retrieved from a database [114]. Clusters were tested for enrichment of ISGs
by Fisher’s exact test if they contained one or more ISG, using the number of genes
expressed for the given species-cell type source as a background population. Obtained P
values were adjusted for performing multiple tests [370].

6.3.4 Inference of regulatory interactions using mutual information
(MI)

MI values were calculated between probes using MRNet, implemented in the minet
software package [107, 119]. Pearsons’s correlation was used as the entropy estimator for
mutual information calculation. Using this method MI matrices were produced for both
AGMs and RMs, for PB and LN T cells, for each gene that was present in expression data
from all six samples and differentially expressed (P < 0.1) at one or more time point,
for the given species-cell combination . In each case, data from the maximum number
of available time-points were used from one up to 115 days post-infection. These criteria
allowed between 77 and 91 genes to be analysed using 24-42 samples, dependent on the
primate species and cell type.

SynTReN [371] was used to estimate the performance of MRNet for the given num-
ber of genes and samples, using the default settings and a gene regulatory network from
Saccharomyces cerevisiae comprising 795 unique gene-gene interactions. Simulated re-
sults show that TP/FP ratios for MI thresholds between 0.3 and 0.6 are approximately 0.5

(supplementary file S6.2).
Gene pairs that are involved in regulatory interactions (TP) are enriched for pairs

that have high semantic similarity using the term overlap (TO) measure [173] and GO
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annotation [84] data and GO annotation[84]. For example, 31 gene pairs have TO > 10

which constitutes a statistically significant enrichment (Fisher’s exact test P = 4.6×10−8)
given that there are 1711 gene pairs that meet this criteria from 131328 possible unique
gene pairs from 513 GO annotated genes from the 795 regulatory interactions. Thus,
improved (posterior) probabilities of identifying true positive regulatory interactions by
selecting gene pairs that have greater semantic similarity than a given cutoff could be
calculated using Bayes’ theorum:

P (A|B) = P (A1)P (B|A1)
P (A1)P (B|A1)+P (A2)P (B|A2)

Where: P (A1) is the probability that a regulatory interaction between two genes exists
above a given MI threshold. P (A2); is the probability that a regulatory interaction does
not exist above a given MI threshold, i.e., 1− P (A1). P (B) is the probability that a gene
pair has TO of greater than a given threshold. P (B|A1) is the probability that the TO
value is greater than a certain threshold given a correct regulatory interaction. P (B|A2)

is the probability that the TO value is greater than the threshold given given the lack
of a regultory interaction. P (A|B) is the probability that a regulatory interaction exists
between two genes given that the TO value is greater than a given threshold that we call
PTP : the probability that an interaction is a true positive given a given TO cutoff. P (A1),
P (A2), P (B), P (B|A1) and P (B|A2) can be ascertained using counts in the observed
data from the yeast model and PTP can be calculated.

Regulatory interactions networks were visualised using Cytoscape [185], incorporat-
ing HIV-1 regulatory interaction data from the HIV-1 human protein interaction database
[27, 26].

6.3.5 Computation of statistics between expression profile gene sets

An all-against-all comparison of clusters was performed and two statistics were calcu-
lated: (i) The number of probe IDs common to two clusters (i.e., from different microarray
samples) was identified. Where the intersection was larger than the expected proportion
under a null model, a P value was calculated using Fisher’s exact test. (ii) A statistic
to determine whether the MI values between probes from two clusters are greater than
expected by random chance. In this test the mean MI value from all probes of one clus-
ter against all probes from another cluster was recorded. Secondly, a set of MI values,
equal in size to the real data, was randomly generated where at least one of the probes of
each pair was a member of the non-random set and the mean MI was recorded. Mean MI
values for random sets were generated 1000 times and these values were compared to the
real mean MI using a one-sample, one sided T-test with the alternative hypothesis that the
real mean MI is greater than the randomly generated MIs. In both (i) and (ii), P values
were adjusted for performing multiple tests [370].
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6.3.6 Identification of regulatory relationships that differ between
primate species

Pairs of GO categories were selected along with the corresponding genes from those
categories for which MI values were calculated for all four species-cell type combina-
tions. The MI values for all gene pairs generated by comparing gene lists from two GO
categories were retrieved. From these MI values, mean MI was calculated for AGM and
RMs and the difference in mean MI was determined. This procedure was repeated using
randomly shuffled MI values and the probability of obtaining a greater difference in mean
MI for any pair of GO functions was obtained by permutation. 100 000 permutations were
performed and the obtained p-values were adjusted for performing multiple tests [370].

6.3.7 Detection of significantly sized virally activated cellular regula-
tory subnetworks

Regulatory networks were obtained from MI data by selecting edges with MI > 0.3.
Edges were assigned a probability, PTP for being a TP by utilising a Bayesian method
that takes GO annotation overlap into account (as described previously). Cellular genes
that are dysregulated during HIV-1 infection were selected as seed nodes. Dysregulated
genes were obtained from the HIV-1 host protein interaction database [27], selecting only
those cellular genes that are regulated, upregulated or downregulated by one or more
HIV-1 protein (excluding Vpu that is not conserved in SIV). Subnetworks consisting of
connected components of cellular genes containing each seed node were obtained and
statistical significance for subnetwork sizes were obtained using a permutation test. In
each permutation, a rewired (randomised) network was produced by repeatedly swapping
one of the two incident nodes between two randomly selected edges and a mean average
of 1000 swaps per edge was performed in each rewire. Subnetworks for each seed node
were also obtained from the randomised network. To take into account false positive in-
teractions, edges were removed with a likelihood 1 − PTP , from both randomised and
unperturbed subnetworks. The size of the connected component containing the seed node
was calculated for both randomised and original subnetworks. Following 100 permuta-
tions, subnetwork sizes for each seed node were compared for unperturbed and perturbed
networks by Mann Whitney U test. P values were adjusted for performing multiple tests
[370].

6.4 Results

6.4.1 Clustered expression profiles

Gene expression profiles for differentially expressed genes from SIV infected African
green monkeys (AGMs) and rhesus macaques (RMs) from both PB and LN CD4+ cells

140



6.4. RESULTS

were clustered using a fuzzy clustering algorithm [369]. Clustering was performed on a
gene set comprising 268 AGM-LN, 210 AGM-PB, 484 RM-LN and 338 RM-PB genes
that were differentially expressed during acute SIV infection (P < 0.1). To best represent
a variety of expression profiles we generated a set, limited to 15 to avoid sparseness, of
unique clusters (Figure 6.1). The clusters include 241 AGM-LN genes (90%), 193 AGM-
PB genes (92%), 464 RM-LN genes (96%) and 323 RM-PB genes (96%). The expression
patterns of the remaining genes did not cluster sufficiently closely in order to fit into one of
the 15 sets of clusters. However, the clusters represent a large majority of the expression
profiles of differentially expressed genes from all primate species and both cell types.

The genes from the primate species and cell-type combinations are not evenly dis-
tributed between clusters (χ2 test, P << 0.001, Figure 6.2). Indeed, some expression
profiles best identify a certain species (e.g., profiles 1, 7 and 11), others are characteristic
of a single source (e.g., profiles 3, 8, 10 and 12) and finally, some represent more general
expression trends across all four sources (e.g., profiles 4 and 14).

There are twelve statistically significant intersections (P < 0.05) between the expres-
sion profile gene sets (Figure 6.3A). Six of these significant intersections are between
gene sets of different sources that are present in the same expression profile cluster, i.e.,
the equivalent genes undergo a similar profile of expression in multiple cell types and
primate species (these relationships are denoted by self-edges). The remaining six signif-
icant intersections occur between different expression profiles. Interestingly, from these
six remaining intersections, three occur between gene sets of different primate species but
the same cell type, i.e., the intersection represents a gene set that has a consistent expres-
sion profile within a given primate species but a varied expression profile between the
two primate species. These three gene sets could be involved in key mechanisms through
which RMs and AGMs differ in their response to SIV infection.

6.4.2 Functional enrichment of clustered genes

A total of eight expression profile clusters comprise genes that are enriched for one or
more functional annotation term with a significance of P < 0.05 (profiles 1, 2, 6, 9, 11, 12,
13 and 14). Table 6.1 gives the most significant annotation in each case and supplement
S6.1 gives details of all significantly enriched terms. We find the most enriched term
from all expression profiles encompasses genes from two or more sources (Table 6.1). In
addition, all of these enriched terms are attributed to genes from different cell type sources
and the most enriched annotations from expression profiles 1 and 9 include genes from
both primate species. Therefore, in the majority of cases we show that expression profiles
cluster functionally related genes from multiple sources.

Two major functional themes are identified by the functional annotation enrichment
analysis: (i) response to viral infection and immune system functions (profiles 2, 11, 12
and 13); and (ii) control of cell cycle progression (profiles 1, 6 and 14). Furthermore,
profile 9, which is enriched for genes prominent in hematopoietic cell development also
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Figure 6.1: Clustered expression profiles. Each plot represents a set of microarray probes
clustered according to their expression profile following SIV infection. Each line repre-
sents the expression of a gene from either SIV infected AGMs or RMs from either blood
PBMC (PB) or lymph node (LN) CD4+ cells. Line colour indicates the goodness of fit
for genes to the given expression profile where red is the best fit, blue the least good fit.
Intermediate colours represent an intermediate fit.
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Figure 6.2: Composition of clustered expression profiles. Each plot shows the distribution
of gene sources (primate species and cell type) from a cluster, where AL = AGM-LN,
AP = AGM-PB, ML = RM-LN, MP = RM-PB. The y-axis values denote the number of
clustered genes from each source that are present in a cluster.
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Figure 6.3: Relationships between clustered expression profiles. Nodes represent clusters
1-15 (as numbered) and edges represent relationships between clusters. (A) Clusters that
have statistically significant intersection in their gene sets (Fisher’s exact tests, where
corrected P < 0.05) stemming from different sources, where AL = AGM-LN, AP =
AGM-PB, ML = RM-LN, MP = RM-PB, are linked. The first source in each label refers
to the genes from the cluster with the lowest numerical cluster ID, and the second source
refers to the cluster with the highest numerical cluster ID, i.e., the edge joining clusters 4
and 10 indicates that the genes from cluster 4 from the AGM-LN source have significant
intersection with those genes from cluster 10 from the RM-LN source. In addition, edge-
width is proportional to the Matthews Correlation Coefficient calculated from the gene set
intersections. (B) Similarly, clusters that have larger MI values than expected by random
chance between the genes of connected clusters are depicted.

Table 6.1: Most significantly enriched annotations from clustered genes

Profile Annotation Fold change Annotated Corrected P Sources

1 cell cycle process 3.7 11.7% 5.0× 10−8 AL, ML, MP
2 cytokine activity 19.6 21.7% 6.2× 10−3 AL, AP
6 M phase 11.0 20.1% 1.1× 10−17 ML, MP
9 hematopoietic cell lineage 9.3 5.3% 1.3× 10−3 AL, AP, ML, MP

11 response to virus 39.2 22.2% 3.6× 10−5 AL, AP
12 response to virus 20.1 12.5% 1.4× 10−7 AL, AP
13 response to virus 25.9 17.2% 7.6× 10−3 ML, MP
14 cell division 14.0 18.8% 5.7× 10−11 ML, MP

includes genes encoding cytoskeleton components, immune activation, cell death and re-
sponse to wounding, hence bridging both of the former categories.

We identified several expression profiles that do not appear to form cohesive func-
tional groupings of genes. Most of these profiles are quite “simple”, involving up- or
down-regulation of the genes at a single time-point, i.e., profiles 3, 8, 10, and 15. “Sim-
plicity” referring here to the low number of observed regulatory events required to gener-
ate such an expression pattern over time. Such categories are thought to contain a higher
number of biologically non-relevant genes, as noisy expression or expression-detection
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is unlikely to generate more complex patterns. Therefore, identification of biologically
relevant genes within these profiles is more challenging than in those where the profile of
expression is statistically significantly different from baseline at more than one measured
time-point.

Expression profile 6, that illustrates a fairly consistent and steep increase in expres-
sion, comprises 28 genes involved in M phase of the cell cycle but also three genes linked
both to control of cell-cycle and apoptosis (BIRC5, BUB1 and CDC2). None of these
cell-cycle linked genes from AGMs are present in expression profile 6. A similar set of
observations can be made for expression profile 14, as it involves 16 cell-division and
M-phase linked host genes, all of which are only differentially expressed in RMs and all
undergo upregulation throughout acute SIV infection. Only expression cluster 1 encom-
passes cell-cycle linked AGM and RM genes (14 and 17 genes, respectively). Indeed
these genes are upregulated during infection but not to the same extent as those genes
in expression profile 6 or 14. Therefore, it appears that dysregulation of transition to M
phase of the cell-cycle is disrupted to a far greater extent in RM than AGM infection.

As a secondary and more specific investigation, we tested whether the genes in each
cluster were enriched for interferon stimulated genes (ISGs) [114], as the response of ISGs
is of particular importance during acute SIV infection [189]. This test was performed
separately for all combinations. We found that eight expression profiles (1, 2, 6, 9, 11,
12, 13 and 14), were statistically significantly enriched for ISGs (P < 0.05) and all of
these except for profiles 1, 2 and 9 are enriched for ISGs for each individual source.
Therefore, all expression profiles for which we previously detected functional enrichment
(Table 6.1) are also enriched for ISGs, including profiles 1, 6 and 14 that are enriched
for genes of the cell cycle. Note that indeed, some ISGs are involved in the control and
progression of the cell cycle [114]. From 23 ISGs present in expression profile 1, sixteen
in profile 6 and eleven in profile 14, there are four genes (BARD1, CENPE, PSMB10 and
RGS2), two genes (CENPE and MCM4) and zero genes, respectively, that are annotated
with the GO term “cell-cycle”. All three of these ISG subsets are enriched for proteins
involved in antiviral defense (Fisher’s exact test, P < 0.001). Therefore, the expression
patterns of cell-cycle regulators and interferon-stimulated virus response genes during
SIV infection are not mutually exclusive. Furthermore, genes that are both ISGs and cell-
cycle mediators could play an important role in effecting interferon-stimulated control
over cell-cycle activity during SIV infection.

Previously, we postulated that strength, rather than rapidity of innate immune response
is a determining factor in SIV pathogenesis [189], as induction of innate immune re-
sponses in SMs is not observed to be earlier than in RMs [49]. However, on further
inspection, we believe that this assessment should be treated with some caution, this is
because the maximum fold-change values post-infection for significantly differentially
expressed ISGs are not significantly greater in AGMs than in RMs (P = 0.1626, Mann-
Whitney U test). However, the time-points post-infection at which ISGs achieve their
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maximum fold-change are significantly greater in RMs than AGMs (P = 1.421 × 10−8,
Mann-Whitney U test).

6.4.3 Inferring regulatory relationships using mutual information

Mutual information (MI) between expression profiles can be used to infer gene-regulatory
relationships [119]. There are five instances where the MI values between the gene sets of
expression profiles are statistically greater than expected by random chance (represented
by edges in Figure 6.3B). Therefore, it is probable that gene regulatory relationships exist
between the expression profiles linked by these edges. Three of these links are internal to
the expression profile, denoted in Figure 6.3B by self-edges. The remaining two links are
between independent profiles.

True positive (TP) and false positive (FP) rates, among regulatory interactions inferred
from MI data, given the array sample sizes, were estimated for the nearest available char-
acterised model, Saccharomyces cerevisiae, available for a gene-regulation simulation
tool [371]. Simulated results in S.cerevisiae show that TP:FP ratios for MI thresholds
between 0.3 and 0.6 are approximately 1 : 2, i.e., the probability of a selected interac-
tion being a TP is approximately 1/3 (supplement S6.2). However, gene pairs that are
involved in a bona fide regulatory interaction are enriched for gene pairs that are semanti-
cally similar, estimated using the term overlap (TO) method [173]. Application of Bayes’
theorum indicates that when a gene pair with a given TO value is selected, interactions of
greater confidence can be obtained (Table 6.2). For example, by selecting potential inter-
actions between genes that have a TO of 10 or more, the probability of selecting a bona

fide gene-regulatory interaction from a set with prior probability of 1/3 is 0.61. Though
the precise probability of these events are not of great interest, as, owing to their origin in
a yeast model they can only roughly approximate equivalent values for the simian host-
virus system, it is clear that regulatory interactions of greater confidence are likely to be
identified using additional functional annotation criteria.

MI networks, using a minimum MI value of 0.3, were visualised for each cell type,
primate species, and all combinations thereof (supplement S6.3). By selecting only gene
pairs with biological process GO term overlap of > 10, 32 regulatory interactions are
inferred (Figure 6.5). Three host-host gene pairs are present in more than one species-cell
type source (IFIT1-ISG15, AURKB-UBE2C and UBE2C-BIRC5). Interestingly, several
of these genes are present in different expression profiles, dependent on the data source.
IFIT1 is a negative regulator of the innate immune response to viral infection and it can
downmodulate interferon stimulated genes (ISGs), including ISG15 [372]. These interac-
tions, detected in more than one data set, are likely to represent bona fide gene regulatory
events during SIV infection. Furthermore, these interactions have a specific expression
profile dependent on the cell type and species.

We identify a number of potential regulatory relationships between cell-cycle and
apoptosis linked genes and these are particularly prominent in the sets we identify for
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Table 6.2: Enrichment of GO term overlap and true positive bayesian proba-
bility estimates for regulatory interactions with MI > 0.3

TO Proportion (MI > 0.3) Proportion (all) Fold enrichment P (enrichment) P (TP interaction)

1 0.98 0.98 1.02 0.7 0.33
2 0.54 0.47 1.15 8.42× 10−5 0.37
3 0.38 0.28 1.35 2.32× 10−9 0.40
4 0.27 0.18 1.56 2.9× 10−3 0.44
5 0.18 0.11 1.77 1.17× 10−12 0.47
6 0.13 0.07 1.99 9.67× 10−14 0.50
7 0.11 0.05 2.35 2.28× 10−7 0.54
8 0.07 0.03 2.18 2.27× 10−7 0.52
9 0.05 0.02 2.57 2.05× 10−8 0.56
10 0.04 0.01 3.12 4.64× 10−7 0.61
11 0.03 < 0.01 3.45 2.60× 10−4 0.64
12 0.02 < 0.01 2.98 2.15× 10−5 0.60
13 0.02 < 0.01 3.90 4.05× 10−5 0.67
14 0.02 < 0.01 4.99 7.37× 10−6 0.72
15 0.01 < 0.01 5.72 1.32× 10−5 0.75
16 0.01 < 0.01 7.01 7.09× 10−6 0.78
17 0.01 < 0.01 9.22 7.48× 10−7 0.83
18 0.01 < 0.01 10.12 1.45× 10−6 0.84

RMs where more than half of the human genes involved come from cell cycle enriched
expression profiles (1, 6 and 14, figure 6.5).

From the small number of inferred high confidence regulatory interactions, it is not
possible to report on a genome-wide scale upon the differences among specific gene regu-
latory events between primate species. However, by pooling potential gene-gene interac-
tions according to their function we can observe more general patterns. By comparing MI
values from gene pairs from GO categories that are child terms of the biological process
GO terms “cell cycle” and “immune response” (corresponding to the two major functional
themes of differentially expressed genes), we identify fifteen GO term pairs for which the
MI values are statistically significantly different between RMs and AGMs (P < 0.05). All
GO terms among these fifteen pairs pertain to immune response. Of the fifteen significant
term pairs, one or both of the terms in the pair refer specifically to type I interferon activity
(supplement S6.4). This result indicates that the regulatory relationships between genes
involved in responding to type I interferon are significantly different between AGMs and
RMs during SIV infection, confirming previous observations [189, 48, 49].

6.4.4 Virus protein interactions among differentially expressed genes

To investigate specific effects of individual viral proteins on host gene expression
regulation, we included viral protein regulatory interactions described as “upregulates",
“downregulates" or “regulates", as obtained from a HIV-1 interaction dataset [27, 26], in
the gene regulatory networks (Figure 6.5). Notably, the majority of regulatory interactions
with these host proteins involve the Tat protein. Indeed, we find that seven expression
profiles are significantly enriched for genes that take part in specific viral protein-protein

147



6.4. RESULTS

Table 6.3: Enrichment for virus protein interactions among expression profiles

Profile Virus interaction No. of genes Fold enrichment Corrected P

13 Tat upregulates 10 7.0 2.2× 10−6

11 Tat upregulates 7 7.3 9.9× 10−5

6 Tat upregulates 12 3.2 2.9× 10−3

9 Tat upregulates 9 4.0 2.9× 10−3

12 Tat upregulates 8 3.4 0.022

1 Gag binds 3 10.0 0.040

8 Nef upregulates 2 23.5 0.044

6 Vpr inactivates 2 18.5 0.044

12 Matrix is stimulated by 2 17.9 0.044

12 Vpr competes with 2 17.9 0.044

interactions (PPIs) (P < 0.05) and the most significantly enriched are upregulation by
Tat, in profiles 6, 9, 11 and 13 (Table 6.3), four clustered expression profiles that are
represented in the regulatory interactions in Figure 6.5, two of which are significantly
enriched for genes involved in response to viral infection (table 6.1). This result indicates
that regulation of immune activation, relevant to SIV infection in RM and AGMs, might
probably be mediated by mechanisms responsive to the viral Tat protein.

6.4.5 Inferring cellular effectors of SIV-induced changes to host gene
expression

It appears that some cellular genes which undergo a regulatory interaction with a virus
protein may be responsible for effecting infection-induced change in gene expression over
a wider subnetwork of cellular factors. For example, PPP2CB, the catalytic subunit of
protein phosphatase 2A, is upregulated by HIV-1 Vpr in an interaction that is believed
to be part of the process of Vpr-induced G2 arrest [373]. PPP2CB is the only host gene
known to be dysregulated by HIV-1 within a subnetwork of seventeen host factors from
the RM-PB regulatory network (see Figure 6.4 and supplementary Figure S6.3 for further
examples). In order to identify those host factors and virus-host interactions that might
be playing an important role in dysregulation of cellular gene expression, we calculated
the statistical significance of the HIV-interacting cellular gene subnetwork sizes, for both
RMs and AGMs over both LN and PB CD4+ cell types. Our method takes the estimated
likelihood of cellular regulatory interactions (Table 6.2) into account. We find significant
cellular genes (P < 0.05, by permutation test, including correction for multiple tests)
and corresponding subnetworks for each cell source. Nine of these genes are statistically
significant in more than one source, five which are statistically significant across both
primate species and eight across both types of cell types (Table 6.4 and supplement S6.5
for greater detail).
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Figure 6.4: Upregulation of PPP2CB by viral protein Vpr potentially effects a changes
to host cell gene expression. Genes are represented by nodes. Round nodes represent
cellular genes and the square node represents the viral Vpr gene. Potential gene-regulatory
interactions are represented by edges.

IRF7 is a virally induced transcription factor that acts as a “master regulator” of type-I
interferon-induced responses, as it is essential for ISG induction and is essential for both
virus-activated (MyD88 independent) and Toll-like receptor (TLR) activated (MyD88 de-
pendent) pathways [374]. In addition, we infer that IRF7 is a significant effector of virally
induced change in gene regulation in AGM-LNs and also RMs during SIV infection. In
addition, IRF7 from both RM cell types forms is part of expression profile 6, hence, IRF7
is likely to have a role in driving the progressive continual upregulation of virus response
genes in RMs in acute and chronic infection. We find that IRF7 expression at day one
post infection is significantly greater in AGMs than RMs (P = 0.00014 by T test, Figure
6.6). Therefore we suggest that IRF7 could be part of a positive feedback loop that en-
hances the initial interferon response in AGMs. However, as IRF7 was only differentially
expressed in four from six AGMs at day one, the relevance of this finding, in contributing
to the lack of AIDS onset is unclear. It is possible that IRF7 upregulation in the remaining
AGMs did occur between samplings but was, thus, not observed .

6.5 Discussion

In this work we have defined fifteen expression profiles for genes that are differen-
tially expressed during SIV infection of RMs (pathogenic) and AGMs (non-pathogenic).
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Table 6.4: Virally regulated cellular genes that are part of a significantly
sized and robust subnetwork of regulatory interactions.

Cellular gene Virus protein ML MP AL AP
ISG15 Tat • • • •
ISG20 ISG20 •
IRF7 Tat • • •
IFI27 Tat • •
IFIT3 Tat • •
IL1B Tat, Nef, gp160, gp120, gp41 •
IL8 Tat, Nef, gp120, Vpr •
CXCR4 Tat, Nef, gp120 • •
CXCL10 Tat, Nef, gp120 •
CCL3 Tat, Nef, gp120, gp41, Vpr, Matrix •
MX1 Tat • • •
BIRC5 Vpr • •
CDC2 gp120 •
CDC20 Tat •
HSPA1A gp120 • •
HSP90AA1 Tat •
STAT1 Tat • • •
PSMB10 Tat •
PPP2CB Vpr •

Several of these profiles capture the expression of specific biological sub-functions, no-
tably genes of the immune response to viral infection, such as type I ISGs, and cell cycle
control genes.

We observe patterns of gene expression pertaining to virus response genes in AGMs
and RMs that were previously identified for both this data set [189] and also in an indepen-
dent study of pathogenic versus non pathogenic SIV infection in SMs [48]: Expression
profiles 11 and 12 appear to capture the innate virus defense response in AGMs. Indeed
these two profiles are similar, differing only in their relative fold-changes, with a large
initial upregulation at day one post-infection, followed by rapid downmodulation during
the remaining acute infection period. From genes that comprise expression profiles 11
and 12, only two and ten genes, respectively, are those differentially expressed in RMs.
Furthermore, none of these genes from AGMs are present in expression profiles 11 or
12, rather only two of these genes, KIF2B and TTC39B, are differentially expressed in
AGMs, neither of which have any clear immune-response related activity. The strong and
rapid antiviral response that can be observed in AGMs, is absent at these early time points
in RMs. Conversely, expression profile 13, that also includes a large proportion of virus
response genes and shares a statistically significant proportion of the same genes with pro-
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Figure 6.5: Gene regulatory networks, detected for each type of CD4+ cell. Genes are
represented by nodes. Round nodes represent cellular genes and square nodes viral genes.
Cellular genes are colour coded according to the expression profile from which they are
derived, as given in the key at the bottom of figure. Solid edges represent gene regulatory
relationships between host cellular genes, obtained using a mutual information method.
Broken lines represent established host-virus gene regulatory interactions. Interaction
counts for virus-host (vh) and host-host (hh) interactions are displayed for each network.

file 11 for RM infection (Figure 6.3), undergoes upregulation > 1 days post-infection and
these genes continue to be upregulated in RMs throughout acute infection and through
transition to chronic infection.

We previously found that low levels of interferon-α can induce strong ISG upregula-
tion in AGM cells leading to amplification of interferon-α production, and thus proposed
that a positive feedback loop is present [189]. Indeed, IFN control during SIV infection
appears to differ between AGMs and RMs, and leads to contrasting expression patterns
for initial induction of innate immune response genes [189, 48]. However, it remains
unclear whether rapidity of innate immune response is likely to be a determining factor
in SIV pathogenesis. Indeed, it also remains to be clarified whether differences between
antiviral response kinetics between AGMs and RMs is due to a differences in immune
activation independent of the SIV serotypes used in the initial study.

Assuming aspects of initial triggering (including rapidity and strength) of ISG in-
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Figure 6.6: IRF7 gene expression in AGMs and RMs at days one and 28 post-infection
(p.i.). Log expression values, relative to baseline expression, for all RM and AGM animals
in both LN and PB CD4+ cells is shown. AL = AGM-LN, AP = AGM-PB, ML = RM-
LN, MP = RM-PB. At day one, IRF7 gene expression is clearly upregulated in AGMs but
remains at baseline level in RMs, in both cell types. At day 28, IRF7 expression is greater
in RMs, particularly in the LN cell type.

duction is important to pathogenicity of infection, we propose that two major questions
relating to type I ISG induction in pathogenic versus non-pathogenic SIV infection re-
main to be answered. Firstly, what is the mechanism of activation and positive feedback
that is linked to ISG expression and why does it differ between the progressor and the
non-progressor species? Secondly, what is the mechanism of attenuation of the immune
response that is present in non-pathogenic but not pathogenic SIV infection? By combin-
ing expression profile information with inferred gene regulatory relationships and virus
protein-induced cellular gene regulation data we are able to capture regulatory events that
are potentially important for disease progression during acute SIV infection.

The initial activation of the innate immune response by the virus is likely to involve
viral proteins and their expression in host cells. The viral Tat gene has been suggested to
play a central role in perturbing the host immune response, particularly through dysreg-
ulation and activation of cytokines including type I interferons and regulators of inflam-
mation, such as interleukins and TNF-α [31]. Furthermore, expression of HIV-1 Tat in
dendritic cells can induce expression of many interferon-inducible genes [115]. However,
other viral proteins are also implicated in immune dysregulation including envelope gy-
coproteins, Nef and Vpr (e.g., [375, 376, 377]). The expression profiles from both RMs
and AGMs that comprise immune-related genes are enriched for cellular factors whose
expression is altered by HIV-1 Tat. Hence, it appears that immune dysregulation in both
pathogenic and non-pathogenic infections involve Tat. Using MI networks, we infer cel-

152



6.5. DISCUSSION

lular effectors of virally induced changes to cellular gene regulation (Table 6.4). Indeed,
fifteen from nineteen of these effectors are regulated by Tat and nine are regulated by at
least one other HIV-1 protein. All but six of these fifteen genes (HSP90AA1, CDC20
and CXCR4) are ISGs [114]. Therefore, it is probable that these genes may be part of a
greater interferon stimulated network of regulatory interactions.

Interferon-regulatory factor 7 (IRF7) is perhaps the best documented positive regula-
tor of IFN-α induction [378, 374, 379]. Our results highlight that IRF7 potentially has a
role in driving the initial interferon response in AGMs and also the progressive continual
upregulation of virus response genes in RMs, possibly via a positive feedback loop. How-
ever, what remains unclear is why the feedback loop that includes IRF7 and interferon-α,
has a different response in RMs compared to AGMs. Multiple IRF7-dependent sensory
mechanisms are active during HIV-1 infection including TLR7 activation and cytosolic
sensors [374, 380]. Therefore, the role that these different sensory mechanisms have and
also the impact that viral proteins (including Tat and also Vpr that is known to stimulate
TLR4 [381]) have upon both initial and progressive immune activation during pathogenic
and non-pathogenic SIV infection is of great interest and should be subject to further
study.

Our results highlight that significant differences exist between gene regulatory rela-
tionships of type I interferon related genes between RMs and AGMs, suggesting that type
I interferon mediated responses could be important for determining the outcome of SIV
infection. We identify a significant relationship between IFIT1 and ISG15 in all but RM
LN cells. ISG15 is a type I interferon induced ubiquitin-like protein that is conjugated
to other proteins in a process known as ISGylation as a mechanism in cellular antiviral
response. ISGylation can lead to gain or loss of function among target substrates that are
known to include antiviral ISGs such as RIG-I [305], proteins that have a role in HIV-
1 release from the cell via endosomal trafficking [382] and also viral proteins such as
influenza NS1 [383, 384]. Indeed, IFIT1 is among the targets of ISG15, although the pre-
cise nature of IFIT1 ISGylation remains to be determined [383]. IFIT1 (otherwise known
as ISG56), is expressed during virus infection and in response to type I interferon [385].
IFIT1 has been shown to regulate cellular antiviral responses through a negative-feedback
mechanism involving inhibition of type I IFN [372] and is therefore potentially important
in mediating SIV pathogenesis. Indeed, virally induced expression of ISG15 is enhanced
when IFIT1 is knocked down via RNA interference [372]. Although initial expression
profiling does suggest that IFIT1 is upregulated in concert with other viral response genes
in RMs (being of expression cluster 13), expression of IFIT1 in LN CD4+ cells, unlike
the other cell types studied, is not statistically significantly upregulated (P > 0.1) during
acute SIV infection in RMs, e.g., 0-28 days post-infection, indicating that the levels of
IFIT1 are inconsistent between samples. A lack of significant induction of IFIT1 could
curtail immune modulation in these cells and contribute to SIV pathogenicity. Therefore,
we suggest that the roles of ISG15 and IFIT1 during SIV infection and in particular any
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regulatory relationship that exists between these two genes should be further investigated.
Both SIV and HIV exert an intricate system of control over the cell-cycle. The Vpr

protein of both HIV-1 and SIV induces cell cycle arrest in the G2 phase of mitosis. It is
believed that Vpr-induced cell-cycle arrest results in increased viral replication by upreg-
ulating transcription and translation of viral genomic material. Vpr also causes apoptosis
through induction of the intrinsic pathway, an effect that is causally linked to cell-G2 cy-
cle arrest and T cell loss [40]. Vpr carries out these activities through a sizable set of
direct physical and regulatory interactions with host proteins (179 host protein interac-
tion partners are catalogued in the HIV-1 human protein interaction database [27, 26]).
Furthermore, as with immune dysregulation, perturbation of the cell-cycle and host cell
apoptosis by HIV-1 is not limited to the activity of a single viral protein as other HIV-1
proteins (additional to Vpr) are also implicated, including Tat [386, 387] and envelope
glycoproteins [388]. Therefore, the presence of expression profiles that illustrate changes
in regulation to cell-cycle related host genes in our results was not unexpected.

Our results indicate that dysregulation of transition to M phase of the cell-cycle is
disrupted to a far greater extent in RMs than AGMs during SIV infection. In addition, we
find that cell-cycle and apoptosis linked genes are particularly prominent among the gene
regulatory relationships that we detect for RMs (Figure 6.5). BIRC5 encodes Survivin,
a negative regulator of apoptosis [389]. BIRC5 expression is upregulated by HIV-1 Vpr,
possibly in order to increase the viability of HIV-1 infected cells [390]. UBE2C encodes
a ubiquitin-conjugating enzyme that is also known to have anti-apoptotic characteristics
[391]. AURKB encodes one of three known members of the aurora kinase family, that
play a role in mitosis, the over-expression of which can induce defects in spindle forma-
tion and lead to apoptosis [392]. UBE2C, BIRC5 and AURKB are all regulated through
the cell cycle and the existence of regulatory relationships between these genes during
SIV infection is highly plausible and could be linked to the Vpr activity.

Interestingly, despite our inference of a greater number of intra cell-cycle regulatory
relationships in RMs than AGMs, we do not detect significant differences between their
gene regulatory relationships. This result suggests that in general, gene regulatory rela-
tionships between cell-cycle linked genes act in the same manner in both AGMs and RMs
during SIV infection, though in the latter, cell-cycle regulation is more active. Therefore,
we propose that while cell-cycle components are indicative and probably also causative of
pathogenicity through promotion of increased virus replication and apoptosis, these genes
do not explain the mechanism through which AGMs and RMs differ in their response to
SIV infection.

6.6 Conclusion

Our study confirms that viral response genes undergo strong upregulation in AGMs
SIV infection and a more progressive continuous upregulation in RM infection. Our re-
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sults indicate that significant differences in cellular gene regulatory relationships exists
between AGM and RMs and we surmise that these differences cause the contrasting re-
sponses between the AGM natural SIV host and RMs. In addition, cell-cycle components
are progressively upregulated to a far greater extent in RMs than AGMs following in-
fection and that this could be synonymous with a pathogenic phenotype. Importantly,
we identify several gene-regulatory relationships that could potentially play an important
role during SIV infection, including a potential negative feedback mechanism involving
ISG15 and IFIT1 and relationships between cell-cycle linked genes BIRC5, UBE2C and
AURKB, whose expression could be altered via the viral Vpr protein. Our work adds to
a growing base of knowledge on describe retrovirus-host interaction that be applied to
HIV-1-human system in order to better characterise and treat this pathogen.

6.7 Supporting material

Supporting file S6.1. A folder containing the results from DAVID functional enrich-
ment charts, for all clusters.

Supporting file S6.2. A folder containing plots of true-prositive:false-positive ratios
at different MI thresholds, estimated using a yeast model, given data sets equal in size to
the differentially expressed gene sets for each primate species and cell type.

Supporting file S6.3. A folder containing visualisations of regulatory networks for
each primate species and cell type, where all edges with an MI value > 0.3 are in-
cluded. Probes are represented by nodes and gene-regulatory interactions are represented
by edges. Node colour represents the membership of the gene to a particular expression
profile cluster, as designated in the key file within the folder.

Supporting file S6.4. A tab-delimited text file with results used to identify regulatory
relationships that differ between primate species. Columns show: (i) a unique id for the
test; (ii) the name of the first GO term; (iii) the name of the second GO term; (iv) the
number of gene pairs that match the two terms that appear in the data for both AGMs and
RMs; (v) mean MI values for AGM gene pairs; (vi) mean MI values for RM gene pairs;
the permuted P value; the corrected P value.

Supporting file S6.5. Tab-delimited text results for the permutation test to assess what
virus-interacting genes might be controlling virally activated cellular regulatory subnet-
works, for each primate species and cell type. Columns show: (i) the probe ID for the
gene; (ii) the Entrez gene ID and gene symbol; (iii) the average subnetwork size for the
original network following edge removal; (iv) the average subnetwork size for the random
network following edge removal; (v) the P value; (vi) the corrected P value.

Supporting file S6.6. Tab delimited text file showing the assignment of probes to
clustered expression profiles. A cluster ID of zero denotes that the probe did not suffi-
ciently match any one of the 15 clusters.
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CHAPTER

SEVEN

NETWORK-DRIVEN PERSPECTIVES OF BIOLOGICAL
FUNCTION

7.1 Abstract

Systems biology research concerns the dynamic network of interactions that take place
between functional subunits such as genes and proteins. Genome-scale interaction data
can effectively show the “wiring” of cellular systems, such as protein-protein interactions
(PPIs) networks, or epistatic relationships between genes (genetic interactions). However,
these perspectives are undoubtedly limited by the scope of the given data type. As a result,
contribution of any one unit to a given functional process remains difficult to ascertain.
Thus, studies that integrate multiple data types may provide greater insight into biological
function. Currently, it is unclear exactly what facets of biological function are captured
by single-perspective interaction networks, let alone what added insight can be gained
by integrating multiple networks. In this work, we identify functional subnetworks that
can be captured from the interaction networks of yeast, Saccharomyces cerevisiae derived
from (i) PPI, (ii) genetic and (iii) gene co-expression data. We explore the intersections
between subnetworks and investigate an integrated network composed from all three types
of interaction. We find striking differences in both the ability of different networks to
capture certain areas of function and also the total functional space that is covered by
each network. In paricular, we identify transcendent functions that require integrated
information in order to be accurately represented. Thus, capture of biological function
by network clustering is heavily influenced by choice of data set. Crucially, integration
of interactions from multiple sources is essential to attain a comprehensive map of the
complex and modular nature of function at the molecular level.

7.2 Background

In their seminal article, Hartwell and colleagues set out the case for the modular and
interconnected nature of molecular function [393]. This systems-level understanding of
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function has been confirmed by a multitude of biological studies in which networks have
become the primary paradigm of representation, reviewed in [160]. Indeed computational
analysis of large-scale data sets is undoubtedly revealing an increasingly complete func-
tional map of the cell [394]. Usually functional modules and sub-networks are assumed
to be one and the same. For example, a range of graph-properties based approaches have
been developed that identify clusters in protein-protein interaction [395], metabolomic
[396], gene expression [397] and genetic interaction data sets [398]. Unfortunately di-
rect physical interactions will not necessarily occur between all molecules in a functional
module and different data types will capture different types of biological event which
can have varying degrees of contribution to a specific function. For example, genetic in-
teraction data sets are informative in terms of understanding epistatic interactions, gene
expression data for studying cells under different condition and protein interactions for
determining physical binding and protein complex membership.

The available data sets have, however, for the most part been studied independently
and, despite some attempts to integrate distinct data types, e.g., [399], an integrated un-
derstanding of molecular and cellular function remains elusive. For example, there is
currently reported to be very low overlap between genetic interaction and protein interac-
tion data [398], despite both being clearly linked to molecular phenotype. While it is clear
that genetic interactions, are best explained by considering epistasis within and between
modules rather than individual genes or their individual gene-products [396, 400], too
much emphasis has been placed on reconciling data types as opposed to delimiting the
molecules (interacting or not) that comprise a specific function. For this reason a greater
effort must be applied to integrating different data types.

Biological annotation, such as Gene Ontology (GO) terms [84] are widely used to
analyse functional characteristics of data sets. For example, annotation enrichment meth-
ods for characterising protein or gene sets are widespread [401] and have also been used
for determining the functions of network clusters [402]. However, biological annotations
are, necessarily, a proxy for true function, derived from observable traits that have been
deemed important by the research community. Also, the resolution and depth of annota-
tion schemes rely mainly on the number and structure of annotating terms. It is, there-
fore, import to ascertain whether network topologies can reliably “capture” the model
functions defined by annotation and if so, to what extent. Furthermore, as a range of
large-scale network-based data sources are available, the functional capture of different
sources, including composite, multi-source data can be assessed.

Here we use a clustering approach combined with annotation enrichment to iden-
tify how different interaction data types capture function at the molecular level, using
S.cerevisiae as a model. Three interaction networks were constructed using: (i) protein,
(ii) genetic and (iii) gene coregulation interaction data. In addition, a combined net-
work was created by integrating interactions from these networks. Each network was
exhaustively clustered using graph partitioning. Biological functions represented by each
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cluster were identified using GO annotation. A Voronoi tree mapping method was used
to visualise annotation coverage by cluster sets. Our results show striking differences in
both the ability of different networks to capture certain areas of biological function and
also total functional space that is covered by each network. We demonstrate that PPI
networks currently present the most functionally information-rich networks, though our
results also demonstrate that genetic interactions also provide reasonable means for cap-
turing process- and component-related functions. Furthermore, we show that integration
of network data is essential for gaining the greatest coverage over the modular and often
transcendent nature of biological function.

7.3 Methods

7.3.1 Network Generation

Four interaction networks were assembled where nodes represent genes and edges
represent interactions between genes:

(1) A PPI network was assembled with physical interaction data from the BioGRID
database [83]. Interactions were only included in the network if there was evidence for
that interaction from multiple sources. The PPI network therefore represents a high con-
fidence set of physical interactions.

(2) A genetic network was built using data from [398], which was downloaded from
SGD. The network was built using a stringent P value cutoff for a genetic interaction of P
< 0.001.

(3) A coregulation network was built using expression profiling data from [403] where
300 separate treatments were performed and gene expression was recorded. Two genes
were defined to be coregulated if they achieved a P value of < 0.01 for expression using
gene-specific error model from a single treatment. Gene nodes were connected by an
edge if they were coregulated. Edges were weighted according to the frequency with
which they are coregulated across all treatments, where a greater weight denotes a greater
frequency, defined by:

weight = 1000× 2×|c(a,b)|
|c(a,!b)|+|c(b,!a)|

Where a and b are coregulated genes and |c(a, b)| is the number of times a and b are
coregulated over all treatments and |c(a, !b)| is the number of times a is coregulated but
not with gene b over all treatments. For the purposes of clustering, weight values were
rounded to the nearest whole number.

(4) A combined network was created by pooling all data from the PPI, genetic and
coregulation networks. Edges from the different networks were weighted and weights
were normalised so that the sum of edge weights contributed by each network was equal.
Edges in the combined network were assigned a weight equal to the sum of weights for
that edge in all contributing networks.
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Note, genes were only included in the networks if they corresponded to an open read-
ing frame in S.cerevisiae Genome Database (SGD, www.yeastgenome.org).

7.3.2 Cluster generation

Clusters were generated from networks using a k-way graph partitioning algorithm,
kmetis [404]. For a networkG(V,E), with V nodes and E edges, kmetis aims to partition
nodes into sets of roughly equal size and minimise the number of edges that connect node
sets. Resulting node-sets and the edges that link those nodes comprise a subnetwork. For
a given network we identified the set of average node-set sizes S for every given partition
that could be obtained using k-way partitioning where k ∈ N and 0 < k < |V |. For
all i ∈ N where 2 < i < |V |

2
we selected s ∈ S nearest in value to i and recorded

the value for k corresponding to s. We performed k-way partitioning on the network
using all distinct recorded values of k. Clusters were obtained by selecting non-redundant
largest-connected-components that comprise more than two nodes from the subnetworks
produced by partitioning.

Kmetis will always partition the whole graph into k parts, therefore it is likely that
some of the clusters we produce do not represent bona fide localities within the network.
Therefore, clusters were scored based on comparison between mean internal path length
and path lengths to other clusters from the same partition. Specifically, the path length
between all nodes was calculated using the Dijkstra method [170]. The mean intra-cluster
path length for all nodes was computed for all clusters and mean inter-cluster path lengths
were computed between every pair of clusters from the same partition. Following this,
a one-tailed/one-sample t-test was used to ascertain whether the mean intra-cluster path
length is significantly smaller than the mean inter-cluster path lengths, for a given cluster.
Any cluster that did not achieve a P value of < 0.05 was discarded.

The edge density, d, for a cluster, with e edges and n nodes, from an unweighted net-
work was defined as the proportion of all possible gene-gene interactions that are present,
calculated by:

d = 2e
n(n−1)

Similarly, weighted density, h, for a cluster, with sum edge weight w edges and n
nodes, from a weighted network that has mean edge weight w̄, was defined as:

h = 2w
w̄n(n−1)

7.3.3 Functional enrichment in network clusters

We assigned function to identified clusters using the Gene Ontology (GO) [84]. GO
annotation was retrieved from the GO download site. We used Fisher’s exact test to
identify overrepresented GO terms for each cluster. All P values were false discovery
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rate corrected using the method described in [370] with a significance cutoff of P < 0.05.
Additionally, we used the Matthews correlation coefficient (MCC) [405] as a measure of
accuracy of our clusters for each overrepresented term.

Relative enrichment of GO terms with respect to the number of genes represented by a
term was calculated for clusters from each network. First, terms were binned according to
the number of genes they represent in the network data set and the proportion represented
by each bin was calculated. Next, the same process was carried out for enriched terms
represented by clusters with MCC> 0.2. Enrichment was defined as the proportion for
enriched terms minus the proportion for all terms, for each bin. Hence, enrichment values
across all bins sum to exactly zero.

In order to visually compare network coverage, semantic similarity (Lord et al., 2003)
was used to determine the functional distance between genes and a tree-structure gener-
ated using neighbor-joining and represented in two dimensions using Voronoi Treemaps
(Balzer and Deussen 2005; Balzer et al. 2005), implemented with GLASS (available at
http://www.bioinformatics.ic.ac.uk/glass/). In this visualisation each cell represents a GO
term, whose location within the panel is determined by the semantic distance to all other
terms. A cell is coloured if one or more clusters from a particular network display enrich-
ment for that term. The intensity of the colour is determined by the MCC of that cluster
for the enriched term.

7.3.4 Identification of congruent network clusters

Clusters from different networks (excluding the combined network) were cross-referenced
against one another and the statistical significance of the intersection in genes between two
clusters was calculated by Fisher’s exact test. To limit the number of comparisons to those
of reasonable validity, two clusters were only compared when the size of the two gene sets
was not greater than ten-fold different. MCC values were calculated to quantify the pre-
cision and accuracy of the cluster intersection. To reduce the number of statistical tests
performed, P values were only calculated if the intersect between clusters (true positives)
was > 2 genes and the MCC was > 0.2. Resulting P values were corrected for having
performed multiple tests [370]. For each cluster from a network that had at least one sta-
tistically significant intersection (corrected P< 0.05) with clusters from another network
a “best hit” was assigned to the cluster intersection with greatest MCC score. Reciprocal
best hits were defined as two best hits between clusters from different networks.

7.3.5 Network visualisation and analysis

All network visualisations were produced using Cytoscape [185]. Edge and node
betweenness coefficients were calculated using the NetworkAnalyzer Cytoscape plugin
[165].
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A network with a node set of size s produced by k-way partitioning.

k = 2,  s ≈ |V| / 2

k = 2,  s ≈ |V| / 3

× k, where k is calculated so that s ≈ 3
× k, where k is calculated so that s ≈ 4

Parent network G 
where G has node set V,
i.e., k=1, s = |V|, 

.....choosing every value of k until the 
 change k causes change in s of < 1.
 Following this k is calculated so to
 approximate a set value for s, e.g., 

× k, where k is calculated so that s ≈ 5

increase k
decrease s

Figure 7.1: Network partitioning methodology. Interaction networks were partitioned by
using k-way partitioning. Many different values for k were used in order to produce an
extensive set of partitions with a wide range of sizes. Clusters were selected from network
partitions (see Methods for more detail).

7.4 Results

7.4.1 Interaction networks and clustering

Four interaction networks were assembled from large-scale S.cerevisiae data: a protein-
protein interaction (PPI) network consisting of 12182 interactions between 3339 genes, a
genetic interaction network consisting of 42546 interactions between 3529 genes, a coreg-
ulation network consisting of 3006725 weighted interactions between 4358 genes, and a
combined network consisting of 3052053 unique weighted edges between 5489 genes.
Network clusters, corresponding to connected subnetworks, were produced for all these
interaction networks (Figure 7.1). A total of 9590, 9227, 12889 and 11383 unique clusters
were obtained from the PPI, genetic, coregulation and combined interaction networks, re-
spectively. These clusters include from 3 to ∼ 3000 genes and represent an extensive and
thorough breakdown of each network into connected subnetworks. Furthermore, these
subnetworks were filtered to ensure that each subnetwork represents a genuine locality
within the network.

In order to validate the clusters we investigated their edge density. Cluster density
plots are shown in Figure 7.2. Figures 7.2B and 7.2D highlight that more than 5% of
clusters of up to ∼25 genes from both the genetic and PPI networks consist of densely
connected cliques where around half of all possible gene-gene interactions are present.
In the case of the coregulation and combined (weighted) network clusters, we define a
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Figure 7.2: Summary of network cluster characteristics. Two types of plot are shown: (i)
cluster size against cluster frequency (A, B, C and D), and (ii) cluster size against cluster
density (top 95th percentile, charts E, F, G and H).

weighted density measure that takes intra-cluster edge weights and overall mean edge
weight into account (Figures 7.2F and 7.2H, respectively). An accellerated decrease in
weighted density, as cluster size increases, is clearly apparent for clusters with >∼40
genes. Therefore, clusters of a range of sizes successfully capture cohesive subgroups of
interacting genes.
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Table 7.1: Average MCC scores of clusters with overrepresented
GO terms

Network

PPI Genetic Coregulation Combined

BP

Enriched terms 2271 2265 2169 2639

Total terms 2710 2736 2655 2694

Coverage (%) 84 83 82 98

Average MCC 0.43 0.25 0.19 0.31

MF

Enriched terms 893 1006 1012 1237

Total terms 1541 1457 1346 1333

Coverage (%) 58 69 75 93

Average MCC 0.42 0.25 0.22 0.29

CC

Enriched terms 682 558 556 651

Total terms 660 632 629 713

Coverage (%) 93 80 80 97

Average MCC 0.60 0.26 0.19 0.45

7.4.2 Functional enrichment in network clusters

To investigate what biological functions are captured by network clusters we per-
formed GO enrichment analysis on each cluster. Many network clusters consist of gene
sets that are enriched for specific biological functions. Table 7.1 summarises functional
enrichment for clusters from each network, for each of the three ontologies: biological
process, molecular function and cellular component. Matthews correlation coefficient
(MCC) was used to measure the accuracy with which clusters capture specific GO term
annotations. MCCs were significantly different for enriched terms for different networks
across all three ontologies (Kruskal-Wallis rank sum, PPI, Genetic and Coregulation all P
< 2.2e-16). This result indicates that the network data sources have significantly different
abilities to capture the biological functions represented by GO. Clearly, the PPI network
captures functional annotations with the greatest accuracy, however, the greatest coverage
of GO is captured using a combination of data sources.

GO terms can refer to very common functions, i.e, be assigned to a considerable frac-
tion of all genes; refer to specialist functions, i.e., be assigned to very few genes, or lie
somewhere between these two extremes. In order to ascertain whether the functional cate-
gories enriched in clusters from different networks were biased towards capturing general
(or more specialist) functions, using the number of genes represented by a terms as a mea-
sure. Two types of plot were produced: first, bar plots A-D in Figure 7.3 show the relative
abundance of enriched GO terms against the number of genes represented by the term,
for clusters of each network. Here, a positive value represents relative over-representation
while a negative value represents relative under-representation. Second, density plots E-H
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in Figure 7.3 show how accurately captured enriched GO terms are by the clusters of each
network, using the maximum MCC score achieved by each enriched term as a measure
of accuracy. Dense shading represents a greater frequency of GO terms. The bar plots
show that PPI clusters and clusters from the combined network capture functions with
relatively less bias than either the genetic or coregulation clusters; the genetic network
clusters displaying a bias for capturing medium specificity functions at the expense of
highly specialist functions, whereas a roughly opposite trait can be observed for coregu-
lation network clusters. Density plots indicate that the PPI network and to a lesser extent
the combined network clusters, outperform the genetic and especially the coregulation
network clusters at accurately capturing more general GO terms, i.e., assigned to > 10

genes. However, from the bar plots it is clear that very general functions with a mem-
bership of over ∼100 genes are difficult to capture from any of the networks, relative to
more specialist functions with fewer members. Furthermore, the density plots indicate
the accuracy with which the function is captured diminishes where the function is more
general.

To further investigate the capture of functional categories by network clusters, we
visualised gene ontology terms using a Voronoi tree-mapping approach (Figure 7.4, see
Methods for details). In the tree maps, each cell represents a GO term, where the layout
is determined by the semantic similarity between the terms, i.e., cells that are grouped
together represent a similar function. Tree-maps were created for each GO ontology and
identical maps were used for clusters of each network. Thus, maps from different net-
works are directly comprarable, the equivalently positioned cells from each representing
the same GO terms. The intensity of cell shading indicates the greatest accuracy with
which the GO term is captured by a network, using MCC score as the accuracy measure.

These maps highlight the disparity between the ability of network clusters to capture
certain types of functional data: cellular component annotation appears to be the easiest
type of biological function to capture, using any any type of network data. Conversely
molecular function is more difficult to capture. However, this tree-mapping approach also
highlights that certain functional areas within each ontology can be either successfully
captured, or are difficult to capture, using the network data. For example, a section of
∼ 20 cells near the top left corner of the map for cellular component functions captured
by genetic network clusters are not shaded, whereas the equivalent cells are predominantly
shaded in both maps for coregulation and PPI networks. In contrast, some areas are clearly
shaded in all maps from the same ontology. Therefore, the ability of different networks
to capture functional relationships, is not only related to the type of network data but the
functional area in question.

Creation of a composite tree-map, where the cell colours represent the network from
which the terms are most accurately captured, allows for further comparison (Figure 7.5).
From the trees on which the maps are based, we can identify “clades”, defined as mono-
phyletic areas within an ontology, that are best characterised by clusters from a single
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Figure 7.3: GO enrichment among network clusters. Two types of graph are shown: (i)
bar plots A, B, C and D show the relative level of enrichment of GO terms pertaining
to more specialist, or general functions, measured by the number of genes represented,
from each network. Here, a positive value represents relative enrichment of GO terms of
the given size, while a negative value represents relative lack of GO terms of the given
size. (ii) Density plots E, F, G and H show overall relationship between the number of
genes represented by the GO term (x-axis) and the maximum accuracy with which the
term is captured by clusters from each network, measured using MCC (y-axis). Denser
of shading represents a greater number of GO terms.
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Figure 7.4: GLASS visualisation of enriched GO terms. Each cell represents a GO term
and is coloured blue, red, yellow or green if one or more clusters are enriched for that GO
term in the PPI, genetic, coregulation or combined networks, respectively. The intensity
of each coloured cell shows the best MCC of the clusters with enrichment for that term.
Grey coloured cells are those GO terms which have only one or no associated genes in
that network.

166



7.4. RESULTS

network. Examples of these clades are outlined in Figure 7.5. Both biological process
and cellular component ontologies are both predominantly best represented by clusters
identified in the PPI network. Indeed, in the biological process ontology the largest clade
that is characterised by a single network consists of 14 terms associated with gene si-
lencing all of which are enriched in clusters from the PPI network. Likewise, 20 terms
associated with the proton transporting ATPase complex of the cellular component on-
tology are all enriched in clusters from the PPI network. These findings indicate that
annotation of biological function using GO is centered around physical PPIs.

Despite the dominance of PPI network clusters for accurately capturing functional
annotation, there are also clades from each ontology that are most accurately captured
by clusters from other networks. Clusters from the combined network best represent 12
terms associated with nucleoside and ribonucleoside biosynthesis in the biological pro-
cess ontology, whereas in the molecular function ontology we can identify a clade of four
terms associated with oxidoreductase activity that are best characterised by clusters in the
coregulation network. These findings indicate different areas of biological function my be
best represented by different types of biological data, including protein interactions, ge-
netic interactions and coregulatory relationships. Interestingly, all three ontologies have
areas that are best represented by clusters from the combined network. Therefore, the in-
tegration of data from multiple biological networks can improve recapitulation of certain
biological functions, when compared to analysis of any network in isolation.

Examples of clusters that best characterise a single GO term can be found in Figure
7.6. The mitochondrial small ribosomal subunit cellular component term is well charac-
terised by a PPI cluster with 28/30 members annotated with the term and a MCC of 0.94
(Figure 7.6A). The Inosine monophosphate (IMP) biosynthetic process term is best char-
acterised by a cluster from the genetic network (Figure 7.6B). Here, four out of six genes
in the cluster are annotated with the term and represent enzymes in the purine biosynthe-
sis pathway. Terms from the molecular function ontology are enriched with the greatest
coverage by the clusters from the combined network (Table 7.1). The synaptosomal-
associated protein (SNAP) receptor activity molecular function term is best represented
by a combined network cluster which incorporates edges from all other networks (Figure
7.6C). These examples further demonstrate that successful capture of functional relation-
ships by network data depends on a combination of the specific biological function being
sought and the type of network data being interrogated.

7.4.3 Congruent network clusters

As a second line of study, and omitting the combined network, we investigated whether
the clustering of different networks had resulted in the production of congruent clusters,
i.e., pairs of clusters from different networks that have significantly intersecting gene sets.
By comparing clusters from the PPI, genetic and coregulation networks, we identified
statistically significant gene intersections and subsequent “best hits” and “best reciprocal
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Figure 7.5: GLASS visualisation of enriched GO terms. Each cell represents a GO term
and is coloured according according to clusters that have the highest MCC for the enriched
term. Blue, red, yellow and green colours indicate that the cluster with the highest MCC
is from the PPI, genetic, coregulation or combined network, respectively. Grey coloured
cells are those GO terms which have only one or no associated genes in any network.
Areas ringed in black show complete areas of the ontology which are best characterised
by a single network.
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GO:0005484	
SNAP receptor activity
MCC	 0.66

GO:0006188	
IMP biosynthetic process
MCC	 0.72

GO:0005763	
Mitochondrial small 
ribosomal subunit
MCC	 0.94

A

C

B

Figure 7.6: An example of functions best characterised by a certain type of network data.
The mitochondrial small ribosomal subunit GO term is best represented by a cluster from
the PPI network (A). A genetic cluster best represents the IMP biosynthetic process term
(B). Finally, the GO term, SNAP receptor activity, is best represented by a cluster in the
combined network, created from all nodes and edges in the PPI, genetic and coregulation
networks (C). Nodes are coloured blue, red or green if they are present in the PPI, genetic
or combined network respectively and are associated with the enriched GO term. White
nodes represent nodes in a cluster that are not associated with the enriched GO term.
Edges are coloured blue, red, yellow or green if they are present in the PPI, genetic,
coregulation or combined network.
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Figure 7.7: Results from best hits analysis. (A) Number of clusters from one network
(named outside of the intersection) that are a best hit to a cluster from another network
(named within the intersection). (B) Number of best reciprocal hits between clusters from
two networks.

hits” (see methods for details) between the clusters of two networks, using MCC score as
a measure for accuracy. A best hit represents a significant gene intersection between two
clusters where one cluster best matches the other (determined using the maximal MCC).
A best reciprocal hit, again, represents a significant gene intersection, though in this case
both clusters are the best match to one another. Thus, best reciprocal hits indicate the
strongest congruence between clusters from different networks. A summary of best hits
and best reciprocal hits are given in Figure 7.7.

To obtain a high-level insight into the congruence relationships between clusters from
different networks, we visualised best hits (and best reciprocal hits) using a network,
where nodes represent clusters and edges represent the hits (Figure 7.8). From a total of
4669 clusters that are involved in a best hit with one or more clusters, 3689 clusters are
involved in a best hit with just one other cluster, however, some clusters have many more
best hits. Indeed, the node degree fits a power-law distribution (figure 7.9).

A repeated topological pattern of this network is for the cluster of one network to be
connected to a large number of clusters from one other network e.g., Figure 7.8, sections
A-D. There are 115 clusters that have a degree > 7 (top ∼ 2%). These clusters, that
we refer to as high-degree clusters are a particularly good hit to a core gene set that is
repeatedly identified by k-way clustering, for different values of k, from another network.
Therefore, high-degree clusters and their hits appear to be robust subnetworks of genes
that transcend multiple networks. Thus, we hypothesised that high-degree clusters might
have particular functional significance. Indeed, high-degree clusters and the clusters that
are their best hits (together termed high-degree neighbourhoods) are: (i) significantly
more likely to be enriched for one or more GO term and (ii) capture GO functions with
significantly better accuracy than clusters that are not conserved, in all networks (P <

2.2 × 10−16, two-tailed Mann Whitney U test, in all cases). This result indicates that
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B

C
D

A

Figure 7.8: Network of “best hits” between clusters of PPI, genetic and coregulation
networks. Nodes represent clusters and edges between clusters represent a statistically
significant intersection of > 2 genes with an MCC > 0.2. Only the best intersection
between each network comparison, defined by MCC score, is shown. A-D highlight
high-degree neighbourhoods that consist of a node with degree > 7 and all neighbours of
that node.

the conserved clusters are more likely to be bona fide functional modules. Furthermore
this result highlights the value of integrating information between networks in order to
validate network clusters.

To further investigate the merits of integrating network data, we devised a method
for testing whether new, biologically relevant functional links can be made by merging
strongly congruent clusters. Network clusters from all networks are frequently enriched
for multiple biological functions (Table 7.2), we term this co-enrichment. Interestingly,
many pairs of GO terms are co-enriched in each network, including pairs from the same
and different ontologies and also from both related (descendent or ascendent) and unre-
lated GO terms from the same ontology (table 7.3). New co-enriched GO term pairs are
produced by merging best reciprocal hits from each network combination ((table 7.2).
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r   = 0.9132

Figure 7.9: Node degrees of the network of best hits fit a power-law distribution. The
power law distribution indicates that a large number of nodes have a small degree and
only a small proportion of nodes have a high degree in the network.

Table 7.2: GO term enrichment among conserved clusters

Source network Clusters Number Mean no. of enriched GO terms Mean max MCC per cluster

PPI
high-degree neighbourhoods 2801 135.2 0.509
all 9591 101.4 0.468

Genetic
high-degree neighbourhoods 1567 81.4 0.256
all 9228 24.9 0.157

Coregulation
high-degree neighbourhoods 601 15.4 0.138
all 12889 7.1 0.095

These new pairs represent biological functions that are only co-enriched in subnetworks
that comprise interaction data from more than one source.

For example, Figure 7.10 shows a PPI and a genetic cluster that are best recipro-
cal hits, merged into a subnetwork. Several of the nodes identified by both clusters
are clearly highly central to this subnetwork and have high node betweenness coeffi-
cients, e.g, YCL061C, YMR048W, YLR288C and YPL194W. Furthermore several ge-
netic interactions between these central genes also have high edge betweenness coeffi-
cients. Individually, both clusters are significantly enriched for genes involved in DNA

Table 7.3: GO terms that are co-enriched in network clusters

Co-enriched GO term pairs
Source Network All Same ontology, related Same ontology, unrelated Different ontology

Whole network
PPI 3910331 1.1% 41.8% 57.0%
Genetic 1035343 3.0% 41.2% 55.8%
Coregulation 224188 6.6% 39.2% 54.3%

Best reciprocal hits
PPI vs. Genetic 56154 0.3% 38.5% 61.3%
PPI vs. Coreg 17201 0.2% 34.4% 65.5%
Genetic vs. Coreg 3817 0.03% 41.2% 58.8%
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Figure 7.10: A subnetwork that represents merged clusters that are best reciprocal hits.
Nodes represent coding genes. Blue nodes genes from a PPI network cluster, red nodes
represent nodes from a genetic network cluster. Nodes shown in purple represent genes
that are present in both the PPI and genetic clusters. Node diameter is proportional to the
node betweenness. Blue edges represent PPIs between encoded proteins and red edges
represent genetic interactions between genes. Edge diameter is proportional to the edge
betweenness coefficient. This network is a functional module involved in control of DNA
replication.

replication and cell cycle control (GO:0006260 and GO:0007049). However, by combin-
ing these two clusters 81 new functional links are made between GO terms that are not
co-enriched in clusters from any single network. Specifically, presence of Sir2 family
genes (YOR025W and YDR191W) that are NAD(+)-dependent histone deacetylases in-
volved in cell cycle progression [406] – cause the new links, such as linking NAD binding
(GO:0070403) to S phase of mitotic cell cycle (GO:0000084) and DNA replication factor
C complex (GO:0005663). The Sir2 family members genetically interact with several
proteins that are central to the subnetwork, including YCL061C (S-phase checkpoint pro-
tein) and YMR048W (replication fork associated factor). Hence, by integrating network
data novel, biologically meaningful functional links are made.
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7.4.4 Discussion

From the three networks containing a uniform type of data, biological functions,
whether specialist or general, are most accurately and completely captured by the PPI
network (Table 7.1 and Figure 7.5). Unsurprisingly, this includes cellular component GO
annotations – an ontology that characterises physical cellular components, such as protein
complexes [84]. In contrast, the molecular function ontology, that gives enzymatic and
biochemical properties of gene products is only partially captured by PPI interactions,
indicating that subnetworks that represent physical components and protein complexes
contain both biochemically similar or unrelated subunits. More remarkable however, is
the almost complete extent to which PPI clusters captured functional annotations from
both the cellular component (93%) and biological process (84%) ontologies (Table 7.1).
The biological process ontology embodies quite pragmatic, tangible notions of cellular
function, such as apoptosis (GO:0006915) and glucose metabolism (GO:0006006) [84].
Our results show that the combinatorial activity of proteins is prevalent in the majority
of established GO biological processes. Moreover, this finding shows that the content of
the PPI network for S.cerevisiae is sufficient in coverage and functional information to
capture subnetworks from the majority of biological processes and cellular components.

All explanations for bona fide genetic interactions imply a functional relationship
between genes. Undeniably, these relationships have, from a organismal perspective,
some functional relevance, as they are expressed phenotypically. For example, Chen and
Thorner [407] show that epistatic interactions exist both within and between genes of two
given pathways; a mitogen-activated protein kinase pathway and a protein kinase A path-
way. The functional processes influenced by these pathways, include cell elongation and
cell adhesion.

A systematic study to detect within- and between-pathway genetic interactions in
S.cerevisiae was performed Kelley and Ideker [399]. In their work, the “pathways” they
assess actually refer to a cohesive subnetwork of proteins in a PPI network, and thus, their
pathways are theoretically equivalent to the PPI network clusters that we investigated.
Kelley and Ideker classify genetic interactions as within-pathway or between-pathway,
the former indicating a genetic interaction between elements of the same subnetwork and
the latter indicating a genetic interaction between elements from a separate subnetwork.
Thus, within-pathway genetic interactions are indicative of a functional PPI subnetwork,
such as a protein complex. Kelley and Ideker [399] identify that many between-pathway
interactions link interdependent functional relationships. Thus, between- pathway inter-
actions indicate functional PPI submodules that are essential agents for achieving a single,
greater functional process. Theoretically, if this notion were entirely upheld by GO anno-
tation, genes involved in bona fide genetic interactions should always both be attributed
with a given process or component annotation that captures their common cellular ac-
tivity, be that either a relatively specialist or a very general function. Indeed, we show
that 83% of the biological process terms and 80% of cellular component terms are cap-
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tured by genetic interactions. Therefore, the interaction network derived from genetic
interactions is clearly a reasonable choice of data for capturing physically interacting and
process-related functions.

The PPI data is a from a compendium of experimentally validated PPIs, whereas the
other data sources are extrapolated from high-throughput experiments. Therefore, the
quality of the derived networks, in terms of type I and type II error rates, are unlikely to
be equivalent. Hence, direct comparison of the performance of each network at capturing
aspects of biological function will undoubtedly not only reflect the information available
from the type of interaction but also the error rate.

Clearly, the co-regulation network performed least effectively overall at capturing bi-
ological functions. However, this may be an unavoidable feature of gene expression data.
As a measure of transcript abundance, gene expression data can only provide an esti-
mate for the relative change at the level of the protein. Any errors are likely to affect the
co-expression network. Despite these drawbacks, like the genetic and PPI networks, the
co-expression network captures the majority of functions embodied by biological process
and cellular component GO ontologies. Interestingly, the co-expression network captures
more molecular function GO terms than either the PPI or genetic networks (Table 7.1).
Indeed, studies that investigate genes encoding enzymatically similar proteins may benefit
from utilising gene co-expression information.

Our combined network is a weighted union of the PPI, genetic and co-expression net-
works. Although a more refined method for integrating these data could be developed,
this network permits direct comparison between the integrated and uniform networks.
The most notable aspect of the integrated network is that the coverage of captured anno-
tations is almost complete for each GO ontology. Furthermore, molecular function GO
annotations especially, are more successfully depicted by combined data than by any other
network we investigated (Table 7.1). However, the accuracy with which these functions
are captured is generally not as great as for the PPI network (Table 7.1). This is perhaps
due to a greater level of noise in the combined than PPI network, stemming from the co-
expression and genetic interaction data. Yet it is conceivable that a more refined data in-
tegration method, involving, for example, machine-learning of bona fide functional links,
could attenuate the error rate. Both the clusters derived from the combined network, and
congruent clusters represent functional subsystems that transcend multiple types of inter-
action data. Investigation of congruent network clusters revealed that biologically relevant
functional links can be identified by integrating data from multiple sources. Therefore,
complete perspectives on the integrated nature of biological functionality is only accessi-
ble using a composite data source.

In conclusion, despite the potential for different error rates in the datasets, our re-
sults show that each network is capable of caturing certain areas of biological function
with greater accuracy than the other networks that were investigated (Figure 7.5). Thus,
the choice of interaction dataset directly influences the ability of networks to depict spe-
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cific functional relationships. Importantly, we have shown that combined network data
can represent a greater range of biological functions than networks that utilise a single,
uniform data source.
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CHAPTER

EIGHT

FINAL DISCUSSION

The majority of work in this thesis concerns the interaction between viruses and their
host cells. Specifically we researched HIV-1, HCV and SIV, using large-scale data sources
and involving computational analysis. We have presented biological insights into virus
infection, generated reusable data sets, produced publicly available software, developed
novel methodologies for analysis of host-virus interaction data and made findings that
could potentially be important for the development of novel or improved antiviral strate-
gies. Specific contributions to these areas are briefly summarised:

Insights into virus infection have been made throughout the research in this thesis. In
chapter 3 section 3.4, our use-case study for JNets, we explore the co-targeting of human
proteins by FDA-approved drugs and HIV-1 proteins. We find that HIV-1 targets many of
the same host factors as antineoplastic agents and immunosupressive drugs, a result that
illustrates the pathogenic mechanisms by which HIV-1 disrupts the immune response and
possibly also promotes malignancy. In chapter 4, using a clustering approach, we discov-
ered that there are certain patterns of interaction and HIV-1-induced perturbation associ-
ated with specific cellular subsystems and provide simplified and coherent networks that
describe the interaction of HIV-1 with these subsystems. In chapter 5 we use microarray
analysis to identify differences in gene expression between HCV infected and uninfected
cell types, from which we make novel findings, both in terms of the genes and the func-
tions that are differentially regulated due to infection, such as an enrichment for genes
encoding zinc-finger transcription factors. Furthermore, we identify novel host factors
that are potentially anti- and pro-viral. Finally, in chapter 6 we identify gene expression
profiles specific to SIV infection in natural and pathogenic SIV infections, to which we
link specific functional significance and we also identify active gene-regulatory relation-
ships between differentially expressed genes that play a role in regulating the immune
response of infected monkeys. We show that immune gene-regulatory relationships are
likely to be important factors for determining the outcome of SIV infection, a feature of
infection that is likely to have parallels in HIV-1 infection of human hosts.

Generation of new, publicly available data sets is an important part of scientific re-
search, as it allows subsequent studies to integrate new information to provide additional
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perspectives on data elements and improved insight into results. For example, in our re-
search we have used results from siRNA screens in chapters 4 and 5, in order to indicate
host factors essential for virus replication and throughout we have used Gene Ontology
[84, 140] annotation to infer the functions of gene sets.

We have generated gene expression data from HCV infected and non-infected hep-
atoma cells has been made publicly available in a MIAME compliant format [408]. This
gene expression data could be used for research into HCV infection and also research
that considers the differences in gene expression between hepatoma cells used in HCV
cell-culture. In addition, we have published a list of host factors that are present in HCV
replicase complexes which is the first large-scale data set of this kind and a valuable re-
source for further investigating HCV replication.

In addition to these primary data sources, secondary data sets have been produced
such as HIV-1 interaction patterns and their associated subsystems – this meta-data may
be useful in subsequent studies that require classification of HIV-1 interacting host fac-
tors, or HIV-1 interactions into functionally related subsets. For example, in the case
where an additional set of host genes has been identified as important to HIV-1 infection,
cross referencing the genes from this set against the host subsystems that we define would
indicate what HIV-linked host-cellular functions are present in the data and also indicate
prominent sets of HIV-1 interactions. As a second example, we define lists of potentially
anti- and pro-viral host factors, though these are not experimentally confirmed, they could
still be useful in integrative analysis, or alternatively, to contribute to the scientific ratio-
nale behind more intensive, small-scale experimental research of host factors involved in
HCV infection.

Production of publicly available software is also hugely valuable to researchers. In-
deed in this research we have employed many publicly available software tools and pack-
ages, including Cytoscape [185], R statistical software including several biology-specific
Bioconductor packages [312, 313] and tools from the database for annotation, visualiza-
tion, and integrated discovery (DAVID) [137]. In this thesis we have presented JNets, a
software tool for network visualisation with a linked annotation enrichment analysis func-
tion. As a stand-alone application JNets was not intended to compete with Cytoscape, that
outperforms JNets both in terms of functionality and extensibility. However, until the re-
lease of Cytoscape Web [409], JNets was unique in its functionality as a web-deployable
network-visualisation applet, with the ability to customise visualisations and inspect an-
notation. However, JNets does remain the only web-deployable network visualisation
software that performs enrichment analysis.

In addition to new software, we have developed novel methodologies for data analysis,
that may be copied, adapted or simply inspire a related research method in the future. In
chapter 4 we use a novel implementation of biclustering combined with a network-based
permutation test to identify statistically significant patterns of HIV-1-host interaction pat-
terns, we then apply a distance-based tree inference algorithm to the significant clusters
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in order group them into higher level functional sets (figure 4.1). Though there are estab-
lished methods within this pipeline, this is a unique scheme for analysis of interactions
and clearly demonstrates that HIV-1 interactions are specific to certain host subsystems.
Likewise, in chapter 5, we use an established functional enrichment measure [137] com-
bined with a network approach as a simple method to visualise and identify functional
overlap between sets of genes (figure 5.5).

Chapters 4, 5 and 6 of this thesis discuss specific host functional subsystems, cellular
pathways or individual factors that may play an important role in viral infection, with
a focus towards identifying prospective drug targets. Though it is merely speculative to
suggest how these chapters may contribute to the development of new antiviral drugs, fu-
ture work may be influenced by the results presented. Thus, we briefly highlight aspects
of these chapters that are most likely to provide relevant insight in the field of target dis-
covery. In chapter 4, we identify host subsystems that engage with HIV-1 through certain
patterns of protein interaction that comprise host factors enriched for those essential for
HIV-1 replication (e.g., mRNA transport components, see section 4.4.4). Perturbation of
these subsystems could disrupt these essential subsystems and prevent a necessary set of
HIV-1 interactions from occurring. Proteins that are part of, or have an influence over
these essential host subsystems could be targeted by a novel antiviral agent. In chapter
5, we discuss a number of cellular factors that are potentially pro- and antiviral during in

vitro HCV infection of hepatoma cells. Though the importance of these factors requires
further investigation, our work provides a set of putative genes and proteins that might
be exploited by an anti-HCV treatment. Such a treatment could operate by targeting and
directly antagonising proviral proteins, or by mimicking or even enhancing the functional
activity of antiviral proteins. Lastly, in chapter 6, we highlight potential gene-regulatory
interactions that could be important determinants for disease outcome in SIV infection.
For example, we highlight an interaction between ISG15 and IFIT1 that appears to have
a role in negative regulation of the interferon-mediated immune response. Elucidation
of specific pathways and interactions that influence disease progression in SIV infection
may provide valuable insight for researching and developing drugs that curtail the onset
of AIDS in HIV infected patients.

The research in this thesis has involved the integration of a wide variety of data types
and measures, including experimental data, functional annotation, distance measures,
protein-protein interaction data and gene-regulatory relationships. Indeed, data of multi-
ple types has been used to perform integrative analyses, where network-based analysis ap-
proaches are frequently employed. One major drawback of many current network-based
studies, including those described presently, is the static nature of the networks. Typically
a single network is used to express the possible interactions being made in a given bio-
logical system, when in reality all of these interactions may not be possible, dependent on
aspects such as cell-types, environmental factors and temporal aspects of biological pro-
cesses. For example, HHPID interactions may be cell-type specific or specific to a certain
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disease stage, though currently only by manual inspection of the source articles can these
aspects be identified. Hence, studies such as that in chapter 6 and studies carried out by
other research groups (e.g., [410, 411]) have tended to treat interactions equally, filtering
only on the available interaction type description provided by the HHPID. Ideally, net-
work analyses, whether for host-virus interplay, or for single organisms should be more
dynamic, enabling relevant temporal, spatial and physiological differences between the
states of biological systems to be discerned. However, we have far from exhausted our
search for human protein-protein interactions in the simplest binary format (i.e., protein
A interacts with protein B) [412], let alone annotated the interactions with the necessary
meta-information that would be required to produce specific subsets based on their spatial
or temporal activity.

Indeed, in order to successfully merge any data obtained from multiple separate sources
(such as public databases), certain variables may be omitted, and simplifications and com-
promises are inevitably made. Therefore the problem of data-merging is not limited to
network-based analyses but to large-scale data integration procedures in general. One
method for circumventing this problem is to carry out multiple assays simultaneously.
For example, to study HCV replication Blackham et al. [113] perform coordinated ex-
pression profiling and siRNA screens so that their data sets are complementary. However,
this mode of study provokes production of redundant results as it requires that experi-
ments are repeated for each new study. An alternative solution is that newly published
biological data is consistently rich in meta-data, such that a wide range of specific details
may be computationally retrieved and used for annotating and filtering. This is not a new
idea, projects such as Minimum Information About a Microarray Experiment (MIAME)
publish specifications for microarray data whilst repositories such as Gene Expression
Omnibus (GEO) [87] store MIAME compliant microarray data from a wide variety of
sources in a systematic format that allows user selection based on a range of biological
and technical criteria. In addition biological pathway data may also come in standard-
ised formats, such as BioPax [413] that allow a wide variety of meta-data to be linked to
events. Furthermore, projects such as BioMart [414] provide easy access to current map-
pings between biological entities and meta-data including as protein, transcript, genes,
biological annotation, allowing cross-data-type queries to be handled with relative ease
and importantly, with accuracy.

Resources that provide subject-specific insight from a range of large-scale data types
are also possible. For example, GPS-Prot has effectively combined different large-scale
HIV-1 data sources, including siRNA screen data and protein interaction data, into a single
integrated research platform, from which additional custom information may be overlaid
and results visualised using a network approach [415]. However, it is yet to be proven
whether GPS-Prot will provide a continually up-to date, sufficiently flexible and in-depth
resource such that detailed research projects make significant use of this software plat-
form. Regardless, GPS-Prot provides an effective overview of HIV-1 host interaction,
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insight into the data types that are available in this field of research and also a window
into how the various data sets overlap and integrate to form a more detailed view of HIV-1
infection.

There are some data types and related analysis perspectives that are prominent in
computational biology research that have not been significantly exploited in this thesis.
Although protein sequence data was briefly used to biologically validate results from bi-
clustering analysis (chapter 4), we have not made extensive use of this data type. Sequence
data is a hugely valuable resource for biological research to study evolution, particularly
as, owing to rapid advance in technology, genomic sequencing has become much cheaper
and quicker to perform. Sequence information has been used extensively to study virus
evolution and the applications of sequence analysis are too numerous to mention but in-
clude identifying the origin of virus strains through reconstruction of phylogenies (e.g.,
[416]), identification of drug resistance mutations using a deep sequencing approach (e.g.,
[417]) and studying sequence diversity in relation to protein structural constraints (e.g.,
[418]). Evolutionary information is certainly appropriate for use in host-virus interac-
tion studies. For example, Sauter et al. [419] show that pandemic HIV-1 may be reliant
on the evolution of new virus-host interaction. The SIV ancestor of HIV-1 antagonises
chimpanzee antiviral tetherin through interaction with the viral Nef protein. However,
Sauter et al. identify that an evolutionary switch took place whereby tetherin antagonism
was effected by viral Vpu, a mechanism that could have promoted the spread of pan-
demic group M HIV-1. Their study demonstrates that evolutionary studies of host-virus
interaction have considerable potential particularly for linking these interactions to viral
phenotypes. Thus, it would be both interesting and valuable to ascertain how the wider
interaction networks of viruses, like HIV-1 and HCV, have evolved.

Because the scientific literature base is continually growing, text mining, though not
directly employed in our methods, is also of increasing importance in biological research.
For example, the HIV-1, Human Protein Interaction Database (HHPID) [26, 27] was man-
ually curated from literature where over 100 000 journal articles were screened [27].
However, this feat was extremely time-consuming (the HHPID took 7 years to compile)
and inevitably expensive, furthermore (and probably relatedly), no significant database
updates with new data have been made since the initial publication. If an accurate text
mining procedure were developed to capture host-virus interactions from primary litera-
ture, the process of compiling these interactions could be automated. Furthermore, the
primary articles that are currently linked by the HHPID to specific protein interactions
offer a ready-made curated set on which to train such a text mining method. Such a pro-
cedure could be tailored to identify interactions from viruses other than HIV-1 in order
to developed wholly new virus-host interaction networks. Indeed, such an initiative has
begun in our research group, though the project is in its infancy.

In our study of host-virus interaction, we frequently use interaction network models
and systematic functional annotation. Indeed, combining these sorts of data is not an un-
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common scheme of analysis for understanding host-virus systems, either in the case of
HIV-1 (e.g., [298, 145, 156, 410, 415]), or HCV (e.g., [126, 318]). Studies such as these
rely not only on the strength of the virus-host interaction data, but on the strength of the
network model for the host cell. The study we presented in chapter 7 is the most thorough
investigation of which we are aware into the relationship between function and large-scale
interaction data. Perhaps the most important finding from this study was that certain as-
pects of biological function transcend multiple types of network data. Therefore, improv-
ing our cellular network models, and especially developing more refined and accessible
integrated models of cellular function, are areas of computational biology that warrant
further research. This should include the development of more refined, yet accessible
integrated network models of the cell and continued development accurate, large-scale
assays to explore the specific molecular characteristics of cellular factors. Such research
will not only drive our understanding of host-cellular function but a wider understanding
human diseases, including pathogenic viral infections.

In summary, the work presented here has utilised computational analyses of large-
scale biological data to provide insight into viral infection of host cells by both HCV and
HIV-1 viruses. In particular, the presented research has utilised interaction networks as a
basis for data integration and bespoke data models to test hypotheses, in doing so we have
developed new software and pioneered novel methodologies for data analysis. Ultimately,
a major aim of biomedical research into pathogenic viruses is to develop preventative
measures and effective treatment methods. In our work we hope to have contributed to
this field by both providing broad insight into virus molecular biology and by highlight-
ing biological subsystems, cellular functions and even specific host factors that may be
exploited in the search for new antiviral strategies.
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