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Abstract

After decades of research, automatic facial expression recognition (AFER) has been shown
to work well when restricted to subjects with a limited range of ages, expressions, and
intensities of expression. Recognition of the expressions of subjects across a large range of
ages (including older people), expressions (compound emotions), and intensities (ranging
from a neutral expression to the apex of the target expression) is harder and, to date, has
not been studied in any particular depth.

This thesis focuses on studying the influence of these problems on the accuracy of
AFER. The main concern is to investigate the possibilities that can be used for modelling
facial expression recognition against the impact of the problems under study in order to
ensure the solution is more generalized and effective. Since the face image is a collection
of texture and shape parameters, the study starts by using texture measurement methods
to understand the influence of those problems on face texture features and hence on
texture-based AFER. Our first contribution shows that by using binary robust independent
elementary features (BRIEF) (Calonder et al., 2012), we can develop a new face descriptor
model that is able to describe face images and can generalize to new data sets. The BRIEF
descriptor is able to generate the discriminative features globally from the image with an
explicit shape. However, when BRIEF is used to generate feature from an image with
no explicit shape such as the face image, BRIEF is unable to generate discriminative
feature. We thus propose to use BRIEF locally to ensure that each pixel in the image
is evaluated locally to capture the local shape surrounding around it. Empirical and
comprehensive evaluation using three facial expression datasets demonstrates that this
model gives satisfactory performance compared to other local face descriptors techniques
evaluated on the same datasets. The study also shows that the patterns of the problems
under consideration have a significant effect on the face texture features and on the accuracy
of texture-based AFER.

The study is then extended by using shape measurement methods to investigate the
influence of those problems on the face shape features and hence on shape-based AFER.
Our second contribution shows that by using random forest regression voting in a con-
strained local model (RFRV-CLM) framework (Cootes et al., 2012; Lindner et al., 2015),
we can develop a fully automated facial expression localization (FEL) system that is able to
detect the facial key points in a multiple-stage (coarse-to-fine) scheme and can generalize
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accurately to new data sets with a wide range of variations of facial appearances. Empirical
and comprehensive evaluation using five different facial expression datasets demonstrates
that this model gives excellent agreement with ground truth data and outperforms the
results of alternative methods evaluated on the same datasets. The study also shows that the
patterns of the problems under study have a significant effect on the performance of FEL,
and that the FEL based on RFRV-CLM achieved good performance against that effect.
It also demonstrates that appearance-based AFER (combining shape with texture) gives
better results than texture-based AFER.

Our final contribution builds on the second and it is the development of an age-based
AFER system that explicitly estimates age group and expression in a single framework.
In this system, we show that by using the age information, in particular apparent age
since some people might look younger or older than their real age, as prior knowledge
to the expression recognition through using a weighted combination rule of a set of age
group classifier and age-specific expression classifiers, we can significantly eliminate
the influence of age features on the expression classification accuracy. Tested on three
age-expression datasets, we show that the results of our novel system were encouraging in
comparison to the state-of-art systems which ignore age and alternative models recently
applied to the problem.

In summary, the results of the BRIEF-based face descriptor, RFRV-CLM-based FEL,
and age-based AFER are encouraging and could be basic building blocks for many face
applications in computer vision such face detection, face recognition, ..etc.
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Chapter 1

Introduction

1.1 Introduction

The work on facial expressions was started by Charles Darwin (1872) in his book "The
expression of the emotions in man and animals", in which he claimed that there are six
Universal Facial expressions: happy, sad, angry, fear, disgust, and surprise plus the neutral
expression. In (Ekman, 2002), the authors described the face’s muscles movements that
are used to generate those expressions in a framework called the Facial Action Coding
System (FACS). FACS is one of the most common systems in behavioural sciences. It was
developed to describe the deformation of the musculature responsible for the appearance
of facial expressions. Ekman (2002) found that there was an encoding of 44 distinct action
units (AUs) that are anatomically related to contraction of specific facial muscles, each of
which is intrinsically related to a small set of localised muscular activations. Figure 1.1
illustrates the universal facial expressions and their AUs (highlighted in grey).

Fig. 1.1 Examples of universal facial expressions and their associated AUs. Those images
are from Cohn–Kanade (CK+) dataset (Lucey et al., 2010).
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1.2 Motivations

The universal facial expressions are considered an essential part of a non-verbal message
and a universal language of human life; they help us to recognise and understand emotions,
mood, and the mental states of others. Furthermore, Mehrabian (2008) and Kaulard et al.
(2012) have proved that non-verbal signals such as facial expression convey two-thirds of
human communication, as compared to the verbal message which conveys one-third. For
that reason, facial expression analysis has been an interesting topic of ongoing research,
primarily associated with the fields of neurology, and psychology. However, since the
computer has begun to be used to automate significant parts of our lives, to the extent that
our lives sometimes depend on it, automatic facial expression recognition (AFER) by a
machine such as a computer has become a crucial area of research in the fields of computer
science and machine learning.

AFER, which gives a computer the ability to interpret the user’s emotions, has a signif-
icant role in our daily activities, and it can enable various technologies and applications
in several domains including human behavioural science, human-computer interaction,
security, interactive games, computer-based learning, entertainment, telecommunication,
and psychiatry (Picard et al., 1995). For instance, in pharmacology, the effect of new
antidepressant drugs can be evaluated more accurately based on the information conveyed
via the patients’ facial expressions than by asking the patients to fill out a questionnaire, as
is currently done by Cohn et al. (2009). Moreover, Whitehill et al. (2008) described how
automatic facial expression recognition can be effectively used to estimate the difficulty
level of a delivered lecture. Consequently, facial expression recognition might enable a
new generation of teaching systems to adapt to the expressions of their students’ emotion
in the way that good teachers and instructors will themselves attempt to do. Furthermore,
in (Vural et al., 2007) expression recognition was used to assess the lassitude of drivers and
pilots, which might be a useful means by which to decrease the numbers of driving and
flying incidents. The state and intention of humans and their response would be assessed
by robot assistants that work through automatic recognition of facial expressions.

1.3 Research Problems

Although the computer itself has no ability to have emotion it can nevertheless recognize a
human’s expression of emotions in a similar way to the ability of one person to recognize
the feelings of another (Picard et al., 1995), the nature or characteristics of facial expres-
sions and the methods used for modelling facial expression are not easy, and indeed are the
most important challenges that need to be considered when recognizing expressions. In
other words, one can ask how we convert facial images with their various proprieties and
facial deformations associated with expression into a numerical form that gathers faces

32



1.3 Research Problems

with similar expressions together into groups. Historically, the majority of studies have
focussed on the analysis of properties and variations of the six basic expressions including
happiness, anger, disgust, fear, sadness, and surprise. However, there are several problems
(face deformations) that might impact on the characteristics of those expressions. This
thesis focus on the following problems:

• Human ageing: Research in psychology has shown that increasing age represents
one of the most significant problems in recognising facial expression (Ebner and
Johnson, 2009, 2010; Guo et al., 2013; Hess et al., 2012; Houstis and Kiliaridis,
2009). Ageing is a complicated process due to the biological changes in facial
musculature and skin elasticity with significant variations among individuals. These
changes might distort the appearance of an expression, instead making it appear
similar to the appearance of age. Age-related structural changes can overlap with
expression-induced changes. For example, the fold between the cheek and upper
lip can appear in the happy expression of young people and the neutral expression
of old people, or sagging eyelids in old people can appear in the sad expression of
young people (see Figure 1.2). Since both age and expression appearances start from
the same face image, the performance of AFER might be affected by the overlapping
between age and expression feature and vice versa.

Fig. 1.2 Illustration of the similarities between ageing and expression appearances of
happy, neutral, and sad expressions of old people (top row), and young people (bottom
row). Those images are from FACES dataset (Ebner et al., 2010).

• Compound emotions: Compound emotions also represent one of the difficulties
in AFER modelling (Du et al., 2014). Compound emotion is a very complex
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process in which several emotions are exhibited at once. Those expressions are
constructed by combining two or more basic expressions in order to create the new
non-basic expression as shown in Figure 1.3. The idea here is each one of the basic
emotions consists of some of the AUs, and if two of those emotions are combined
a new emotion will be created, and some of those AUs will be kept and some may
disappear in the resulting emotion. As a result, the compound emotion is partially
similar to the basic emotions which are used to generate it. These huge similarities
between the basic and non-basic expressions might lead to huge confusions and
hence to a poor performance in the AFER.

Fig. 1.3 Illustration of the similarities between the AUs of basic emotions (top images) and
compound emotion (bottom image). The AUs of the basic expressions that take part to
produce the compound emotion are labelled with a box in the compound emotions dataset.
This figure is adapted from Du et al. (2014)

• Expression’s intensity: Expression’s intensity is one of the most critical facial
expression characteristics (Adolphs and Tranel, 2004; Calder et al., 1996; Hess et al.,
1997; Hoffmann et al., 2010; Motley and Camden, 1988; Rotshtein et al., 2010).
Despite the process of detecting and recognising the presence of expression being
possible, estimating the intensity of that expression is a more difficult process. The
intensity of the expression increases gradually (not suddenly) until it reaches the
apex as shown in Figure 1.4. Therefore, an AFER system needs to be sensitive to
the subtle deformations of different intensities of a given expression.

Finding an optimal and generalised method or feature by which to distinguish among
emotions under a wide range of face deformations is one of the most difficult and chal-
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Fig. 1.4 Illustration of the expression's intensity. The image on the left has ≈ 0% intensity,
while the image on the right has ≈ 100% intensity of happy expression. Those images are
from the CK+ dataset (Lucey et al., 2010).

lenging tasks in computer vision due to the unknown variations in both the face and the
expressions, as described above. As a result, AFER is an area of research which is in
particular need of sensitive exploration in order to give machines the ability to interpret
human emotions in a more general and effective way. The goal of ongoing research is
to increase the robustness of the systems against different factors. Ideally, the aim is to
develop a facial expression recognition system which simulates the remarkable capabilities
of human visual perception.

1.4 Research Challenges

The following highlights some of the areas that currently draw research interest in AFER:

• Face representation: Representing a face image is one of the major problems in
facial expression recognition. The choice of methods used for face representation
significantly influence the level of expression recognition achieved. Shape-learning-
based, and texture-learning-based techniques of modelling a face have achieved
the highest success levels in AFER. Despite there being an enormous amount of
methods used for face representation represented in the literature, their ability to
recognise and their sensitivity to the massive variation of face deformation patterns
is not clear (Benitez-Quiroz et al., 2017).

• Facial feature points localization: localizing the facial feature points is the process
of using a facial landmark detector as an automated tool to predict the position
of every predefined feature in every image directly. This process is an essential
component for several expression analysis tasks, especially those with large datasets
and high accuracy requirements, in which annotating each image manually is a time-
consuming, laborious, and expensive process. The process of facial feature point
detection is difficult due to the rigid (translation, rotation, and scaling) and non-rigid
(age and expression) face deformations and as it requires an optimization in high
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dimensions, where appearance can vary widely between the faces of individuals due
to lighting conditions, image noise, resolution and intrinsic sources of variability
such as identity, age and expression. Although the results of some state-of-the-art
methods are comparable to a human’s in some datasets, their generalizability to the
real world conditions with a large range of shape variation remains unknown Wang
et al. (2018).

• Overlapping age with expression: Research in psychology has shown that human
ageing has a significant effect on facial expression recognition. This effect is simply
due to the overlap between the age and expression features. AFER thus needs to
be able to eliminate the impact of age appearance, such as wrinkles and furrows,
on expressions meaning. The process of eliminating these effects is not easy since
both age and expression features started from the same face image. Although a
few studies have jointly and successfully modelled the appearances of both age and
expressions, joint modelling of these different face deformations remains an open
research area and more investigation is required to reduce the negative effects of that
overlap.

• Real and apparent age: Recent research in computer-based age estimation systems
proved that the apparent age of someone’s face can be different from the chronologi-
cal age as it has been shown that ageing, health, and lifestyle affect facial appearance
(Antipov et al., 2016; Huo et al., 2016; Liu et al., 2015; Rothe et al., 2015, 2018;
Uricár et al., 2016; Zhu et al., 2015). Results from those studies also showed that
apparent age can be used as an alternative ground truth data to the real age for age
estimation task. These explorations regarding the apparent age and its differences
from the real age might increase the difficulties of modelling the age and expres-
sion. Therefore, the impact of apparent age on the performance of AFER needs
to be investigated and modelled, as it might help to increase the accuracy of facial
expression recognition performance.

1.5 Research Aims

This thesis's aim is to improve the state-of-the-art in the area of AFER. The general aim
is to create a system to automatically analyse and recognise the facial expression with a
high level of sensitivity to internal variations from the faces themselves including ageing,
compound emotions, and expression's intensity, allowing precise measurements of AFER.
The main focus is on the analysis of the human ageing’s impact on the performance
of AFER, aiming to capture and model the similarities and overlaps between age and
expressions’ appearances by jointly modelling age group estimation and age-specific facial
expression recognition in a single framework using the same face features, since both
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tasks start from the same face image. In so doing, we aim to achieve a more efficient and
effective AFER system compared to the previous methods. The thesis also focuses on the
analysis of the compound emotions effect on the performance of AFER, aiming to capture
and model the partial similarities between the basic and non-basic expressions. The thesis
also focuses on the analysis of the expression's intensity’s influence on the performance of
AFER, aiming to capture and model the expression category and its intensity.

1.6 Thesis Contributions

The following gives an overview of the main contributions of this thesis.

• A novel face descriptor: In this thesis, the BRIEF feature developed by Calonder
et al. (2012) is introduced to develop a new face descriptor for describing the face
image in general and facial expression in particular. We demonstrated that this
model gives satisfactory performance on the task of facial expression recognition
compared to the performance of alternative descriptors applied to the problem using
the same dataset. We also show that the BRIEF-based face descriptor outperforms
the alternative face descriptors in terms of generalisation capability to the new data
set of facial expression with different characteristics. Using BRIEF-based face
descriptor and some alternative face descriptor techniques we also figure out that
ageing, compound emotions, and intensity have a significant effect on the face
texture features and on texture-based AFER (see Chapter 4).

• A fully automated facial expression localization (FEL) system: In this thesis, the
RFRV-CLM developed by Cootes et al. (2012); Lindner et al. (2015) is introduced
to develop a fully automated FEL system that can detect the facial feature points
automatically by placing a set of points along the face and its component's con-
tours. Qualitative and quantitative results of five different facial expression datasets
demonstrate that this model gives excellent agreement with ground truth data and
outperforms the results of other detectors evaluated on the same datasets. During
the model building, the 2052 images of the FACES dataset were annotated manually
by the author of this thesis with 76 landmark points. These points are used to build
an automatic facial features points detector to produce the 76-points model used
on the test data. The produced points detector was used to automatically annotate
the Lifespan and NEMO datasets with 76 points. We can provide our labelled
landmark points for the three datasets to other researchers for further studies. Using
the prosed FEL system, the results show that the problems under consideration have
a significant influence on the face shape features and on the shape-based AFER (see
Chapter 5).
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• Fully automated age-specific AFER using real and apparent age: In this thesis,
we show that by using the age information, in particular apparent age since some
people might look younger or older than their real age, as prior knowledge to the
expression recognition through using a weighted combination rule of a set of age
group classifier and age-specific expression classifiers, we can significantly eliminate
the influence of age-related features on the expression classification accuracy. We
also show that our simple and novel system performs better than an equivalent system
which ignores age, or is otherwise comparable, to the results found for alternative
manifold-based and deep feature-based models recently applied to the problem. (see
Chapter 6).

1.7 Thesis Structure

The rest of the thesis is organised into the following structure.

• Chapter 2 reviews the related work on AFER system. First, it covers a wide variety
of frameworks and approaches from the vast literature and reviews which methods
are suitable for which circumstances and uses that to motivate our choice of approach.
Second, it provides both a better understanding of the phenomena and challenges in
AFER and a review of works which are relevant to the cases under consideration.

• Chapter 3 sets out how we evaluate our contributions. First, we cover the different
datasets that we used to evaluate our methods. Second, we discuss how a face
image is represented for facial expression recognition. Thirdly, we cover the image
features that we use to extract information from training images which are used for
comparison and validation purposes. Finally, we cover the classifiers that we use to
recognize the expression.

• Chapter 4 gives the first of our contributions. It describes the development of a
BRIEF-based face descriptor as well as the reasoning for choosing BRIEF. Ex-
periments performed to optimize BRIEF's free parameters for face representation
are evaluated in the task of AFER. A comparative evaluation of BRIEF and some
other state-of-the-art face descriptor methods in the task of AFER is presented. The
sensitivity of BRIEF and other face descriptor methods to the variations of age and
expression, basic and non-basic expressions are presented as well.

• Chapter 5 gives the second of our contributions. It describes the development
of the fully automatic FEL system using RFRV-CLM as a FFPD as well as the
reasoning for choosing RFRV-CLM. Experiments performed to optimize RFRV-
CLM's parameters for the problem of facial expression point localization, along
with a comparative evaluation of RFRV-CLM and some other state-of-the-art FFPD
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methods are presented. The sensitivity of RFRV-CLM and other FFPD methods to
the variations of age and expression with the basic and non-basic expressions , and
expression's intensity are presented as well.

• Chapter 6 gives the third of our contributions. It propose an algorithm of combining
sets of age group and age-dependent expression classifiers in a single framework. It
also studies the influence of apparent age on the performance of AFER.

• Chapter 7 concludes the thesis with a summary of its contributions, limitations and
suggests directions for future work.
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Chapter 2

Background and Literature Review

This chapter reviews previous research related to the work presented in this thesis. In
particular, it presents research in the area of AFER, aiming to show the limitations of
existing methods, and gives an opportunity to select efficient methods that can be used
for the present study. This overview starts by dividing the existing studies on AFER into
conventional-based AFER, where handcrafted features are used for face and expression
representation, and deep-learning based AFER, where deep features are used for the face
and expression representation. While discussing the existing systems, particular attention
is paid to the current studies on face representation methods as it is a key step in any AFER
system because the classification accuracy is limited by the quality and relevance of the
features used in the representation. Particular emphasis is paid also to the current studies
in terms of analysing the impact of some challenges including human ageing, compound
emotions, and expression’s intensity on the performance of AFER as these are the main
concerns of this thesis, and its proved that they have a negative impact on the success
of facial expression recognition. Figure 2.1 describes the conceptual framework that is
proposed in this thesis to analyse and compare the current state of the art in AFER studies.

Fig. 2.1 The proposed conceptual framework used in this thesis for the analysis and
comparison of existing systems.
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2.1 Introduction

Suwa (1978) made the first attempt to build a computer-based (machine-based) system
to automatically recognise and interpret the expression from a face image. That system
was called an AFER system. Since then, huge progress has been made to increase the
robustness of such systems. A complete description of previous work on AFER can be
found in abundant literature, for example published by Fasel and Luettin (2003); Kumari
et al. (2015); Martinez and Valstar (2016); Pantic and Rothkrantz (2000); Sariyanidi et al.
(2015); Sumathi et al. (2012), whereas this chapter is limited to presenting and analysing
the recent advances in AFER systems in order to put the work of this thesis into context.

2.2 Conventional-Based AFER Approaches

In conventional-based AFER approaches, handcrafted features are used for face and expres-
sion representation. Since the generic conventional-based AFER framework consists of
four main modules, namely (1) detecting the face, (2) registering the face, (3) representing
the face, and (4) classifying the expressions, this section reviews recent methods used for
each module by decomposing existing systems into their fundamental components.

2.2.1 Studies on Face Detection

Face detection is the process of finding whether there is a face in a given image and its loca-
tion. It is a major and critical requirement for facial expression recognition systems. This
is because it segments out the appropriate face region for subsequent modules (registration,
feature extraction, and classification). As such, the performance of the face detection
module will significantly affect the overall result of the facial expression recognition
process. Usually, most facial expression recognition systems assume that the input face
has been correctly detected and cropped during the face detection step. A great deal of
studies have been implemented to detect the face in an image of an arbitrary scene. The
reader is referred to (Zafeiriou et al., 2015) for a more complete survey of recent advances
in face detection. The two most popular approaches in the literature for face detection are
the face detector proposed by Rowley et al. (1996, 1998) and the seminal work by Viola
and Jones (2004).

In Rowley et al. (1996, 1998), the face is detected in two main steps, the first is the
preprocessing step, in which the image is subsampled into windows and the intensity
of each window is equalized to compensate for differences in camera input gains, and
improve the contrast in some cases. In the second step, the preprocessed windows are
passed through a neural network to decide whether the window contains a face. This
network consists of three types of hidden units: 4 of 10×10 pixels subregion, 16 of 5×5
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subregion, and 6 of 20× 5 subregion as shown in Figure 2.2. Each of these types was
chosen to allow the hidden units to detect local features that might be important for face
detection.

Fig. 2.2 Illustration of the face detection algorithm proposed by Rowley et al. (1998)

The face detector in the seminal work by Viola and Jones (2004) consists of four main
steps. The first step is the use of Haar features. The second step is the use of the integral
image algorithm to speed the process of Haar features calculation. The third step is the use
of AdaBoost learning to select which Haar feature should be used and put them in a linear
combination. Boosting is a method to find a highly accurate hypothesis by combining
many “weak” hypotheses, each with moderate accuracy. The final step is the training of a
cascade classifier which consists of a series of weak classifiers. Figure 2.3 shows the main
components of the Viola and Jones face detector. An implementation of the Viola and Jones
(2004) face detector can be found in the Open-CV library. Recently, this algorithm has
been used with many facial expression recognition systems such as the systems developed
by Dang et al. (2014); Lou et al. (2018); Majumder et al. (2013); Owusu et al. (2014);
Sariyanidi et al. (2013); Shan et al. (2009).

Fig. 2.3 Illustration of face detector method developed by Viola and Jones (2004). The
Haar features (left), the integral image (middle), and the Boosting with cascade (right).
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2.2.2 Studies on Face Registration

Face registration is the second critical requirement for a conventional-based AFER system,
i.e. aligning the face to a common position and orientation. This is especially important
in an uncontrolled context where subjects are free to move. Accurate registration is
needed where expressions are natural (spontaneous expression) or with the problem of
large displacement of the head, where just finding the face location in the image is not
sufficient to extract accurate features. Figure 2.4 illustrates the negative effect on the
feature matching due to misregistration. The goal of face registration is to find geometric
transformations or deformations which reduce the inconsistency between two or more
faces. In other words, the target of face registration is to minimize the differences in face
shapes between individuals due rotation and scale. The process of face registration can be
decomposed into two main steps: intra-subject registration and inter-subject registration.
Intra subject registration eliminates the shape variation within one subject, that is, the
variation caused by the head pose. Inter-subject registration aims to remove the differences
in shape between many subjects. This is usually done by mapping a subject’s face to a
reference face. Face registration approaches can also be divided according on their output
into a whole-face, part-face (eyes and mouth regions), and point-based approaches (Allaert
et al., 2018). Numerous studies have been implemented to align the face in an image of an
arbitrary scene. The reader is referred to (Jin and Tan, 2017) for a more complete survey
of recent advance in face alignment in the wild.

Fig. 2.4 Illustration of the failure to match features extracted from two images (a frontal
face (right) and an orientated face (left)) due to the head pose variations. The features
extracted using a general work flow that is often used with facial features extraction of
dividing the face into a regular grid of local patches from which features can be extracted.

2.2.3 Studies on Face Representation

Representing the face is another critical requirement for conventional based AFER systems,
and is the process of locating and extracting a set of important features from the face image
to effectively represent the face for use in further processes. The aim of representing the
face, or feature exaction, is to reduce the dimensionality of the problem space, encode
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the important features (information) and ignore irrelevant features (details) in order to
increase the robustness of the system against other factors such as illumination variation
and misalignments. Extracting an efficient feature from the face images is an important step
for successful AFER as the classification accuracy is limited by the quality and relevance
of the features used in the representation. The best features should maximize between-class
variations while minimizing within-class variations. If an inaccurate representation is used,
inaccurate prediction will result, even with the best classifier.

Different schemas have been proposed for representing the face for the purpose of
expression recognition. The face can in general be described by shape and/or texture.
Whilst texture (see section 2.2.3.1) encodes the gray level information, shape (see section
2.2.3.2) encodes the geometric information about the face . In some cases, and for compact
representation of hybrid features, the area around the face component’s contour can be
incorporated into the shape modelling (Cootes et al., 2001; Gao et al., 2010; Matthews
and Baker, 2004; Zeng et al., 2009). Recently many researchers have moved to use deep-
learning based features for face representation (see section 2.3) (Mollahosseini et al., 2016;
Yu and Zhang, 2015).

Each feature has different properties and levels of robustness against different factors.
Although geometric features are robust to the variations in illumination since the intensity
of the pixels is ignored, they are sensitive to tracking errors. Texture based features are less
reliant on initialization and can encode micro patterns in skin texture that are important
for facial expression recognition, but they are negatively affected by identity bias, and
can be affected by illumination changes. Deep learning approaches have been shown to
be useful in many applications. Training a deep network will typically require a huge
amount of data, in an expression recognition task it is not uncommon to use some tens of
thousands of images. Furthermore, the choice of parameters, topology and training is not
yet understood, so implementing a deep learning strategy is still somewhat haphazard. In
the following, recent advances in the uses of each feature will be presented.

2.2.3.1 Texture Representation

One way of representing a face is using texture-based feature methods in order to extract
the texture features. These methods encode pixel intensity and texture information such as
wrinkles, furrows and other patterns that are caused by face deformations associated with
an expression. Since a face image contains texture, texture analysis methods have become
an active topic in automatic face analysis tasks including face detection, face recognition,
and facial expression recognition. One of the key issues in these applications is finding a
robust representation/descriptor for several variations in facial appearance. This section
reviews the current advances in texture measurement methods for facial expression analysis
and recognition.

45



2.

In recent years, the most notable trend in analysing face images in general and in
particular facial expression is using low-level histogram representations based on local
descriptors. Examples of these descriptors are the Gabor filter (Lyons et al., 1999), local
binary pattern (LBP) (Ojala et al., 2002), local phase quantization (LPQ) (Ojansivu and
Heikkilä, 2008), histogram of oriented gradient (HOG) Dalal and Triggs (2005), bag
of words (BOW) (Lazebnik et al., 2006), quantized local Zernike moments (QLZM)
(Sariyanidi et al., 2013), and binary robust independent elementary features (BRIEF)
Calonder et al. (2012, 2010).

The Gabor filter representation is one of the first and most widely used features for
facial expression recognition (Glodek et al., 2011; Littlewort et al., 2011; Tong et al., 2010,
2007). Using the Gabor representation, the input image is convolved with several filters
of different scales and orientations to describe the spatial structure in the image. The
magnitudes of the responses of the filters at each pixel location are combined as a feature
vector. In spite of the robustness of this representation in extracting the local features in
both the spatial and frequency domains, it suffers from identity bias, high dimensionality
and high computational cost. This is because of the convolution of the input image with a
set of filters of different scales and orientations. Figure 2.5 shows the Gabor filter bank
with different scales and different orientations on the face image.

Fig. 2.5 Illustration of Gabor-based face texture representation. This picture is redrawn
from (Sariyanidi et al., 2015).

The drawbacks of Gabor representation have motivated researchers to find simpler
features and representations such as LBP (Ojala et al., 2002). LBP works by labelling
each pixel in the image with a binary number. This number results from thresholding
the grey level intensity of neighbourhoods of each pixel with the intensity of the centre
pixel. Thresholded values are coded as 0 or 1 and are read systematically to form a binary
number which is used then to label each pixel with a decimal number, called an LBP
code, which represents the local structure around each pixel. LBP has been shown to
be extremely successful in face analysis tasks such as face recognition (Ahonen et al.,
2004) and expression recognition due to its robustness to illumination changes (Sandbach
et al., 2013; Shan et al., 2009; Valstar et al., 2011; Yang and Bhanu, 2011; Zhong et al.,
2012). Shan et al. (2009) find out that the LBP representation outperforms the Gabor
representation in a facial expression recognition application. Using LBP the texture is
described with varying scales depending on the size of the local area, a larger area will
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result in a longer descriptor. This will require more training data to get an accurate
distribution. LBP also suffers from some loss of information when extracted from a large
regions, as they ignore the pixels that remain inside the circular region due to the sampling
points being extracted from the circumference of the circle. Figure 2.6 shows an example
of face description using the LBP method.

Fig. 2.6 Illustration of LBP-based face texture representation. This picture is redrawn from
(Sariyanidi et al., 2015).

LPQ is another face representation method which was originally introduced by Ojansivu
and Heikkilä (2008) as a blur-invariant texture descriptor. The LPQ descriptor is used to
extract local phase information using the short term Fourier transform (STFT) computed
over a rectangular neighbourhood of each pixel of the image. A histogram of the resulting
code words is created and used as a feature in texture classification. LPQ obtained better
results than LBP in facial affect recognition, probably owing to its using a larger circular
region of 7 pixels diameter than the one used with LBP, and the dimensionality of the
descriptor is smaller than for LBP (Cruz et al., 2011; Valstar et al., 2013). Figure 2.7 shows
an example of face description using the LPQ method.

Fig. 2.7 Illustration of LPQ-based face texture representation. This picture is redrawn from
(Sariyanidi et al., 2015).

BOW (Lazebnik et al., 2006) is another texture representation method which is very
widely used in many computer vision applications. It describes local neighbourhoods
by extracting local features densely from fixed locations by dividing the image into
sub-regions hierarchically and computing histograms of local features found inside each
sub-region. Although this representation is computationally simple, it can have very high
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dimensionality. This is because the computation of the visual word is based on a search
of the visual vocabulary and depends on the vocabulary size and search algorithm used.
Sikka et al. (2012) have successfully used the BOW representation in facial expression
recognition and their results outperform the Gabor and LBP methods. Figure 2.8 shows an
example of the BOW representation schema on the face image.

Fig. 2.8 Illustration of BOW-based face texture representation. This picture is redrawn
from (Sariyanidi et al., 2015).

Another approach of local representation is HOG proposed by Dalal and Triggs (2005).
Using this approach, the image is represented by computing the local features of gradient
magnitudes and the edges’ orientations. Histograms of these local features are computed
from blocks of the image and concatenated to construct a global histogram. Dahmane and
Meunier (2011) and Li et al. (2017) have successfully used HOG features in expression
recognition tasks and found that HOG is better than LBP owing to its robustness to affine
transformations and to illumination changes. Figure 2.9 illustrates the HOG representation
schema.

Fig. 2.9 Illustration of HOG-based face texture representation. This picture is redrawn
from (Sariyanidi et al., 2015).

Recently, researchers have used QLZM for face representation; QLZM describes
a neighbourhood by computing its local Zernike moments. Each moment coefficient
describes the variation at a unique scale and orientation (Sariyanidi et al., 2013). In
general, moments describe numeric quantities at some distance from a reference point or
axis. ZM is used as a global descriptor of the image with explicit shape such character
or finger print by calculating the moments from the whole image, whereas in face image
applications the method is used locally by calculating the moments around each pixel
to obtain a new representation by exposing the intensity variation around each pixel.
In (Sariyanidi et al., 2013), QLZM representation achieved higher performance than
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the previous representations on the same dataset. Figure 2.10 illustrates the QLZM
representation schema.

Fig. 2.10 Illustration of QLZM-based face texture representation. This picture is redrawn
from (Sariyanidi et al., 2013) .

The above representations are evaluated in AFER tasks using different facial expres-
sions datasets of different characteristics and the results are summarized in Table 2.1.
These results show that the best result for recognizing facial expression was achieved using
the QLZM representation with an accuracy of 96.1% on the CK+ data set. Despite these
good results, the evaluation is limited to a small range of ages and expressions using the
MMI (Pantic et al., 2005) and CK+ datasets (Lucey et al., 2010).

In addition to the above texture representation methods, there are many other methods
are not tested clearly yet at the task of face description such as BRIEF developed by
Calonder et al. (2012, 2010). BRIEF has recently shown remarkable performance in multi-
ple domains including place recognition (Gálvez-López and Tardos, 2012), loop closure
detection (Galvez-Lopez and Tardos, 2011), optic disc segmentation in retinal images
(Mohammad et al., 2013; Mohammad and Morris, 2017), and real time facial expression
recognition application on mobile phones (Alshamsi et al., 2016). Its applicability to
multiple domains motivated us to investigate the possibility to use BRIEF features for
describing the face and facial expression.

Having understood face representation using texture-based methods and seen the
effectiveness of using texture features in automatic facial expression recognition, the next
section will focus on face representation using shape-based methods and their effectiveness
in face and facial expression modelling.
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2.2 Conventional-Based AFER Approaches

2.2.3.2 Shape Representation

Another way of representing the face is by using shape-based methods which extract the
shape features. In these methods, the face’s shape feature is found using a set of landmark
points located around the face components such as the eyes, eyebrows, nose, mouth, and
chin. There are different approaches to extracting the face shape features based on facial
points. For instance, Pantic et al. (2012) and Lucey et al. (2007) have described the face
image using the coordinates of 20 points and 74 points respectively, where the x and y

coordinates are concatenated to form the feature vector that represents the face’s geometry.
Another way to extract the geometric features of the face images is to compute the distance
between the landmarks instead of using the coordinates themselves. For example, Huang
et al. (2010) computed the angles of opening and closing mouth or eyes, and extract an
optimal set of triangular facial features to use for emotion recognition as described in
Figure 2.11. Historically a widely used scheme to describe the face shape and appearance
is to build an Active Shape Model (ASM) Cootes et al. (1995) or Active Appearance Model
(AAM) Cootes et al. (2001) and then use these models to extract the face features. For
instance, Lucey et al. (2007) extracted the shape and appearance features using ASM and
AAM respectively. The identity bias is then reduced by subtracting a feature of emotion
from the features of the neutral face as shown in figure 2.12.

Fig. 2.11 Example triangles chosen by statistical analysis: (a) Example triangles of hor-
izontal base, (b) Examples triangles of vertical base, (c) 12 optimal triangular features,
and (d) The other 13 optimal triangular features. This figure is adapted from (Huang et al.,
2010).
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Fig. 2.12 This figure depicts a visualization of shape (row 1) and appearance (row 2)
features. The peak and neutral frames for these different features can be seen in the left
and the middle columns respectively. The difference between the emotion features and
the neutral features can be seen in right column. This figure is adapted from (Lucey et al.,
2007).

The use of the shape-based feature methods is dependent on the availability of the
landmark points and their locations (x and y coordinates). Since the process of annotating
each image manually with the required of landmark is time-consuming, laborious and
expensive, an accurate and automatic facial features points detector (FFPD) is required
which is difficult to accommodate in many situations. The next section reviews the existing
methods used for FFPD.

2.2.3.3 Facial Feature Points Detection

FFPD is the process of using a facial landmark detector as an automated tool to predict the
position of every predefined feature in every image. This process is a useful component
for several expression analysis tasks, especially those involving large datasets and high
accuracy requirements, in which annotating each image manually is time-consuming,
laborious and expensive. The benefit of automation is due to the use of the detected
points to extract both the shape and texture features from a patch around each point or
from the whole face image to use for further processing such as expression classification
and synthesis. Detecting the facial feature points is a challenge task owing to rigid face
deformations (scaling, rotation, translation) and non-rigid face deformations (expression,
ageing). Usually, the error of rigid face deformation is suppressed by registering the face
as a whole entity. Then the error of non-rigid face deformation can be suppressed by using
local registration (facial feature point detection) techniques.

FFPD or face alignment has a long history in computer vision, and many methods
have been proposed by researchers to solve the problem. It started with ASM Cootes et al.
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2.2 Conventional-Based AFER Approaches

(1995), in which the pre-trained statistical shape model (SSM) from a set of images and
their points is used to fit the shape model to the initial position of all the points in a search
image. The ASM model has been expanded to the AAM Cootes et al. (2001), in which the
model of shape variation is combined with a model of the appearance variation. ASM and
AAM are widely and successfully cited for facial feature keypoint detection in the literature,
especially in a controlled scenario (Anderson et al., 2013; Asthana et al., 2011; Fanelli
et al., 2013; Hansen et al., 2011; Huang et al., 2012; Kinoshita et al., 2012; Martins et al.,
2010, 2013; Tresadern et al., 2012, 2010; Tzimiropoulos et al., 2012; Tzimiropoulos and
Pantic, 2013). These methods failed to localize the facial feature points in an uncontrolled
scenario such as the presence of wide range of pose and expression appearances. This
is because ASMs are very sensitive to the initial points’ positions, particularly in facial
images with a wide variation of appearances, e.g. due to ageing and expressions, which
prevent putting the points on the right positions of the object edge due to the non relevant
structures regarding the age and the expression which make the intensity patterns not
being sufficiently distinctive across the subjects. AAMs are very sensitive to the texture
variation between the training and testing images such as might be due to illumination and
pose changes. With respect to facial images, this might relate to texture's variations due
the presence of age and expressions’ appearances. Although several generative (Baker
and Matthews, 2004; Matthews and Baker, 2004) and discriminative (Liu, 2009; Saragih
and Göcke, 2009; Saragih and Goecke, 2006, 2007) modifications have been made to the
AAM, these methods have been shown to rely heavily on accurate initialization and data
dependent experiments.

Motivated by the limitations of ASM and AAM, Cristinacce and Cootes (2006) have
solved the problem by proposing the Constrained Local Model (CLM), where the SSM
and the local texture model for each point are combined in a single model, in which the
appearance variation around each point is considered independently and one response
image can be computed for each point and used to predict the final positions for all the
points. The shape model, generated from the training data, is then used to match to
the predicted points, selecting the overall best combination of points. The CLM was
extended in (Saragih et al., 2011) by proposing a fitting method, known as the Regularized
Landmark Mean Shift (RLMS), which exhibited superior performance over AAM in terms
of landmark detection accuracy and is considered to be among the state-of-the-art methods
for the generic face fitting scenario. Figure 2.13 illustrates the two main steps of the CLM
algorithm, where an exhaustive local search is first performed to obtain a response map for
each landmark. Optimization is then performed over these response maps, which admits
more sophisticated strategies compared to generic optimization methods that make no use
of domain specific knowledge.

Recently the researchers’ focus shifted to cascaded-regression-based models such as
in (Asthana et al., 2013; Cao et al., 2014; Kazemi and Josephine, 2014; Lee et al., 2015;
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Fig. 2.13 Illustration of Constrained Local Model (CLM) search algorithm. This figure is
adapted from (Saragih et al., 2011).

Ren et al., 2014; Tuzel et al., 2016; Valstar et al., 2010; Xiong and De la Torre, 2013) and
deep-learning-based methods such as in (Bulat and Tzimiropoulos, 2016; Fan and Zhou,
2016; Trigeorgis et al., 2016; Xiao et al., 2016; Zhou et al., 2013).

Cascaded-regression-based methods have shown remarkable performance in facial
feature keypoint detection especially with a large range of facial activities appearances
(Wang et al., 2018). The key idea of these methods is the use of a regressor instead of a
classifier to vote for the point position based on the information in nearby regions. Despite
learning the regressor being more difficult than learning a classier, the regressor can provide
more useful information about the target location, such as the distance of negative patches
from the positive patch, while the classifier only determines whether the image patch is
negative or positive. In recent years, random forests (RF) Breiman (2001) have proven
to be an important tool for solving challenging computer vision tasks efficiently, such as
anatomy detection and localization Criminisi et al. (2013, 2010), human pose estimation
from single depth images Shotton et al. (2013), and object segmentation by Schroff et al.
(2008).

Cootes et al. (2012) and Lindner et al. (2015) introduced random forest regression
voting (RFRV) to the constrained local models (CLM) for the application of locating
points on deformable objects and found that the RFRV-CLM framework outperforms the
alternative discriminative methods of classification-based (Belhumeur et al., 2011) and
boosted regression-based (Valstar et al., 2010; Yang and Patras, 2013) trained on the same
datasets. It has been applied successfully to automatic landmark points localization in face
(Lindner et al., 2015) and clinical (Bromiley et al., 2015a,b, 2016; Lindner and Cootes,
2015; Lindner et al., 2013) images. The reader is referred to Çeliktutan et al. (2013) and
Wang et al. (2018) for a complete description and discussion of FFPD and its literature.
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2.2 Conventional-Based AFER Approaches

The success of the RFRV-CLM framework in many computer vision applications
motivated us to introduce the RFRV-CLM method in this thesis to build an automatic FEL
system to use for facial expression points localization and feature extraction.

2.2.4 Studies on Expressions Classification

The last module in any conventional-based AFER system is the expression classification
module, in which a learning model is used to learn a description that is subsequently
used for output prediction. Typically, the output from such a system is a label of the
emotion or a label of an AU. The target label can be divided into frame-based labelling
or sequence-based labelling. In frame-based labelling, a separate label is given for every
frame, while in sequence-based labelling one label is given to all frames of the sequence.
The performance of the system depends on the quality and the quantity of the training
features and the method used for the learning. In general, there are three categories of
learning methods, depending on what to learn (Alpaydin, 2010; Mitchell et al., 1997;
Sutton et al., 1998). These categories are:

• Supervised learning: The model trains on labelled data to make predictions on
the new, unseen data such as classification in which the class of a new example
is categorized based on the pre-defined classes and regression in which a value is
predicted instead of the class.

• Unsupervised learning: The model trains on unlabelled data to learn and find
patterns to categorize and represent the data. Examples are clustering (find classes
in the data) and dimensionality reduction (compress the data to best represent the
patterns).

In this thesis, the focus is on supervised learning (regression and classification) for
facial expression localization and recognition. A difficulty in these categories is how to
find a method to provide a balance between memorising (using the training data to have
knowledge) and generalising (transferring the properties of this knowledge to unseen data).
Many possible classification techniques, or classifiers, have been successfully used for
expression classification such as support vector machines (SVM) (Vapnik and Vapnik,
1998), dynamic Bayesian networks (DBN) Tong et al. (2008, 2010, 2007), neural networks
(NN) and random forests (RF) (Breiman, 2001).

One of the most widely used classiers for AFER is the SVM (Vapnik and Vapnik, 1998)
due to the fact that in binary classification problems the SVM guarantees maximum-margin
separation with linearly separable and non-separable data (see Figure 2.14). SVMs were
originally developed for binary classification. The method was then modified to deal
with multiple classes classification. Currently there are two types of schemes for multiple
classes SVM. The first scheme is implemented by constructing and combining several
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binary classifiers (one-against-all), while the second scheme is performed by directly
considering all data in one optimisation formulation (one-against-one). SVM offer specific
advantages: the global optimality of the training algorithm, the existence of excellent
data-dependent generalization, and its success in non-separable cases. These advantages
made the SVM classifier a widely used tool for facial expression recognition as assessed
in many papers (Cruz et al., 2011; Dahmane and Meunier, 2011; Glodek et al., 2011; Li
et al., 2017; Littlewort et al., 2011; Lou et al., 2018; Sariyanidi et al., 2013; Shan et al.,
2009; Sikka et al., 2012; Valstar et al., 2013, 2011; Yang and Bhanu, 2011; Zhong et al.,
2012) (see Table 2.1). A complete description of the theory, parameter choosing, and
implementation of SVM methods can be found in the tutorial by Chang and Lin (2011).

Fig. 2.14 Illustration of separating hyperplanes using SVM classifier in separable and
non-separable cases

Despite the success of SVM, it does not extend naturally to problems with any number
of classes (Crammer and Singer, 2001; Torralba et al., 2007). On the other hand, Breiman
(2001) has discovered that the random forest decision trees work naturally (without modifi-
cation) with any number of classes. For instance, in Shotton et al. (2011) and in Shotton
et al. (2008) the random forest classifier has tested with ≈ 30 and ≈ 20 classes respectively.
Moreover, an empirical evaluation in (Caruana et al., 2008) proved that forests have shown
good generalization, even with the problem of high dimensional data. Furthermore, classi-
fication using RF has been applied successfully in a number of practical applications and
seems to be promising as a classification scheme as assessed in many papers (Criminisi
et al., 2009; Dapogny et al., 2015; Jia et al., 2016; Lepetit and Fua, 2006; Pu et al., 2015;
Rogez et al., 2008; Shotton et al., 2011). The fundamental idea behind a random forest
is to combine many decision trees into a single model. Decision trees were originally
developed by Breiman (1984); Quinlan (1993) and have been around for a number of
years. Breiman (2001) revived the method by discovering that ensembles of different trees
in a single model tend to produce a much higher performance (a phenomenon known
as a generalization) on the new data than the single decision trees. Each decision tree
in the forest considers a random subset of features and only has access to a random set
of the training data points. This increases diversity in the forest leading to more robust
overall predictions. Each decision tree in the forest is used to make decisions. When RF is
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used to make a prediction, it takes an average of all the individual decision tree estimates.
Therefore, a random forest predication is better than a single decision tree prediction. See
Figure 2.15 for an illustration of the RF method.

Fig. 2.15 Illustration of RF classification task: v is the input vector, c is the class type, and
p(c|v) is the probability that vector v belonging to class c.

2.3 Deep-Learning Based AFER Approaches

Recently, deep learning (DL) has emerged as a general and alternative approach to the
handcrafted features in many computer vision applications. The DL based AFER approach
enables an end-to-end learning framework from a single image as described in Figure 2.16.
In the figure, the input image is convolved with a collection of filters in the convolution
layers to produce the feature map. The feature map is then combined in a fully connected
network where the expression is recognised as belonging to a particular class (Walecki
et al., 2017). Generally, convolutional neural networks contain three types of layers:
convolution layers, max pooling (down-sampling) layers, and fully connected layers. The
convolution layers take an input image or a feature map to produce a feature map that
represents a spatial arrangement of the facial image. The max-pooling layers reduce the
resolution and the dimensionality of the feature map by averaging or by max-pooling. The
fully connected layers compute the class score or the class type (LeCun et al., 1989).

DL-based AFER approaches have become feasible owing to the large amount of data
available to train the learning methods and the advances in graphics processing unit (GPU)
technology. Recently, many facial expression recognition systems have used deep repre-
sentation such as the systems developed by Breuer and Kimmel (2017); Ebrahimi Kahou
et al. (2015); Graves et al. (2008); Hasani and Mahoor (2017); Jain et al. (2017); Jung et al.
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Fig. 2.16 Framework of the deep-learning-based AFER approach

(2015); Kim et al. (2017); Zhao et al. (2016). Although the usefulness introduced by the
deep features in solving facial expression recognition problem has been demonstrated, they
require a huge amount of data and power to implement and train (Liu and Deng, 2015;
Shwartz-Ziv and Tishby, 2017). Since the datasets used in this thesis are small as described
in Section 3.2, in this thesis the DL framework is described briefly since is not the focus of
this thesis.

2.4 Challenges

This section gives a particular emphasis on the recent advances and challenges to the
performance of AFER system. These challenges are human ageing, compound emotions
and the expression's intensity.

2.4.1 Studies on Ageing and Expression Modelling

Although there is a small number of recognisable expressions as described in the previous
sections, psychologists have recently observed that the age features (age-related structure)
have significant effects on human understanding of those expressions (Ebner and Johnson,
2009, 2010; Hess et al., 2012; Houstis and Kiliaridis, 2009; Mary and Jayakumar, 2016;
Wang et al., 2016). To increase the generality of the psychological studies' results, Minear
and Park (2004) collected a lifespan dataset of human faces, with ages ranging from 18 to
94 years. Ebner et al. (2010) captured another dataset called FACES with six expressions
and the age range of subjects from 19 to 80 years. Dibeklioğlu et al. (2012) also captured a
dataset called NEMO, from subjects whose ages range from 8 to 76 years. Each subject
recorded several videos of their expression changing from neutral to happy, spontaneously
and also deliberately.

Using these datasets, Guo et al. (2013) have realised that the expression performed by
old people is different from the expression performed by young people. In other words,
"The expressions of older adults are not so exaggerated as the young people" (Guo et al.,
2013). Another observation about the age effects on the facial expression recognition is that
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the wrinkles, folds, and reduction of facial muscles' elasticity can change the appearance
of the face and hence effect the expression' meaning as well.

Human age estimation and facial expression recognition are active research topics in
computer vision and machine learning, and they are related to each other since both tasks
start from the same face image and use the same feature' pattern. However, the facial
expression recognition results are easily affected by the age pattern and vice versa. This is
because both age and facial expression appearances overlap: they appear in a similar way,
resulting in misclassification in both tasks. For example, the fold between the cheek and
upper lip can appear in the happy expression of young people and the neutral expression
of old people as described in 1.3 and hence the neutral expression of old people might
be recognized as a happy expression and vice versa. Recently researchers have started
to analyse and study the interrelationship between age and facial expression in order to
achieve better results for both tasks. Some studies have focused on analysing the effect
of facial ageing and facial expression features on the performance of the age estimation
task (Guo and Wang, 2012; Osman and Yap, 2018). In this thesis the focus is on reviewing
the current researches in AFER under the age pattern effect as the concern of this thesis is
facial expression recognition and not age estimation. It is possible to divide the survey of
this section into real-age based automated facial expression recognition and apparent-age

based automated facial expression recognition, as recent studies found that the apparent
age of someone’s face can be different from the real age.

2.4.1.1 Real Age-Based AFER

Real age is the real chronological age of a person. To the best of our knowledge, there are
very few studies modelling the real age and the expression together, for example published
by Dibeklioğlu et al. (2015); Guo et al. (2013); Lou et al. (2018); Wang et al. (2016); Yang
et al. (2018). Guo et al. (2013) were the first who studied and analysed the influence of age
features on the performance of expression recognition. In their study, the subjects were
divided into four age groups and he considered each expression in each age group as a
separate class. For facial feature extraction, they manually labelled 31 fiducial points and
applied Gabor filters at the location of those points and features were extracted from which
a kernel SVM was trained to recognize expressions. Figure 2.17 illustrates the response
of the Gabor filters for both age and expression. They then proposed to remove the age
features such as wrinkles and furrows using image smoothing techniques as depicted in
Figure 2.18.

Dibeklioğlu et al. (2015) studied the usefulness of using age features along with
the other features in distinguishing between the posed and spontaneous smile expression.
Experimental results using the NEMO dataset proved that using the age feature significantly
helped to differentiate between the posed and spontaneous expression. Wang et al. (2016)
proposed a propagandistic model using a Bayesian network (BN) to classify the expression
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Fig. 2.17 Visualization of the Gabor filter response for expression and ageing. This figure
is adapted from Guo et al. (2013)

Fig. 2.18 Visualization of ageing details removal from the face image. This figure is
adapted from Guo et al. (2013).

with the help of age features. For facial expression feature extraction, they manually
labelled 18 fiducial points and geometric features were extracted from which a BN was
trained to recognize expressions. They proposed then to used multiple BNs to capture
the spatial information of expression patterns. Experimental results on the FACES and
LifeSpan datasets demonstrated that the proposed model of using geometric features only
has successfully recognized the expression with comparable performance to the previous
methods of using texture features only. In an attempt to improve the age estimation
system's performance against the impact of expression related structure, two methods were
very recently introduced by Lou et al. (2018) and Yang et al. (2018). These methods are
evaluated also in recognizing the expression against the impact of ageing features. In
Lou et al. (2018), a graphical model to jointly learn age and expression classes with a
latent layer between the age and the expression is proposed as depicted in Figure 2.19. For
feature extraction, the LBP features as described in Ahonen et al. (2006) are used. A multi
class support vector machine (MC-SVM) is used for age and expression classification.
Evaluation results for the age estimation task show an improvement in the performance
when the age is jointly learnt with expression in comparison to the age estimation system

60



2.4 Challenges

which ignores expression. The results also showed an improvement in the facial expression
recognition performance when the age is jointly learnt with expression in comparison to
the facial expression recognition system which ignores age.

Fig. 2.19 The graphical model to jointly learn the age and the expression. This figure is
adapted from Lou et al. (2018). x is the feature vector, h is the latent variables, ya and ye
are the corresponding age and expression respectively.

In Yang et al. (2018), a deep multi task learning model is proposed which consists
of two parallel columns composed of ConvNet and ScatNet, two fully connected layers,
and an output layer as shown in Figure 2.20. ConvNet and ScatNet provide feature
representations shared by the subsequent tasks. The multi-task learning formulation is
employed to simultaneously learn to predict age and to classify expression.

All the methods proposed in this section are evaluated using three age-expression
datasets: FACES (Ebner et al., 2010), LifeSpan (Minear and Park, 2004), and/or NEMO
(Dibeklioğlu et al., 2012) datasets, and the results are summarized in Table 2.2.

Despite the usefulness that was brought by the previously mentioned studies to the
AFER system to analyse the facial expressions across a large range of ages, they have
some limitations. The first limitation is that the systems developed by Guo et al. Guo
et al. (2013) and Wang et al. Wang et al. (2016) relied on the manually placed points to
extract the texture features only as in Guo et al. (2013) or the geometric features only as in
Wang et al. (2016), so was not automated and the demands of any automatic system are to
generate those points automatically which is a difficult task especially in the presence of
non-rigid face deformations related to age and expression.

Despite the usefulness that was brought by the previously mentioned studies to the
AFER system to analyse the facial expressions across a large range of ages, they have
some limitations (Dibeklioğlu et al., 2015; Guo et al., 2013; Lou et al., 2018; Wang et al.,
2016; Yang et al., 2018). The first limitation is that the systems developed by Guo et al.
(2013) and Wang et al. (2016) relied on the manually placed points to extract the texture
features only as in Guo et al. (2013) or the geometric features only as in Wang et al. (2016),
so was not automated and the demands of any automatic system are to generate those
points automatically which is a difficult task especially in the presence of non-rigid face
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Fig. 2.20 An overview of the deep network model for age and expression estimation. This
figure is adapted from Yang et al. (2018)

Table 2.2 An overview of the recent advances in expression recognition under the age
effect.

Reference Features classifier FACES Lifespan NEMO

Guo et al. (2013) Gabor-filters representation SVM 97.89 96.79 -

Wang et al. (2016) Geometric representation DBN 95.74 96.53 -

Lou et al. (2018) LBP representation MC-SVM 92.19 93.68 98.0

Yang et al. (2018) Deep representation CNN 95.13 96.32 -

deformations related to age and expression. The second limitation is that using the texture
features only, such as those derived from the Gabor filter responses as in Guo et al. (2013)
or LBP as in Lou et al. (2018), can encode micropatterns in skin texture that are important
for age estimation and expression recognition but are negatively affected by identity bias.
On the other hand, using the geometric feature only as in Wang et al. (2016) might be
sensitive to registration error. Extracting deep features from a small dataset, in FACES
datasets there are approximately 114 images per expression per age, is not enough to make
a convincing conclusion since there is a concern that deep representation requires a huge
amount of data train and power to implement Liu and Deng (2015); Shwartz-Ziv and
Tishby (2017). For example, in Yang et al. (2018) the pre-trained model on the MORPH
dataset of 55,134 images was used to extract the age and expression features for age
estimation and expression recognition. Lower accuracy might be obtained if the deep
learning model was trained on the FACES dataset only. The other limitation is that one
way to eliminate the effect of age on the performance of expression recognition is to delete
the age information using image smoothing techniques before expression recognition as in
Guo et al. (2013). Using image smoothing techniques might lead to the loss of information
related to age and expression since there is a concern that image smoothing may cause loss
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of some image information. Another way is by using age information as prior information
to the expression recognition as in Dibeklioğlu et al. (2015); Lou et al. (2018); Wang
et al. (2016), in which the age information is required during training and testing as in
Dibeklioğlu et al. (2015), or to avoid the error in age estimation and by subsequent on
the expression recognition. In addition, all the previous studies are reliant on the real
age (chronological age) for dividing the data into groups and then for training and testing
the expression recognition classifiers; an error can occur if there is a difference between
the real age (chronological age) and apparent age; since recently there is a concern that
the apparent age of the individual might be different from his/her real age Antipov et al.
(2016); Huo et al. (2016); Rothe et al. (2015); Uřičař et al. (2016); Zhu et al. (2015)

2.4.1.2 Apparent Age-Based AFER

Recently, apparent age (how old does a person look) has been used as a new measurement
for the age estimation task. The only difference between real age and apparent age is
that the label of the apparent age is provided by an assessor whereas the label for the
real age is the chronological age of the person. The ChaLearn Looking at People (LAP)
competition on apparent age estimation was the first study on apparent age estimation and
was conducted by Escalera et al. (2015). The second edition of this competition was in
(Escalera et al., 2016), where the organizers won the first place in the competition. In this
competition, the organizers have collected a dataset of face images and developed a web
service to use by other people to label each image in the dataset with an apparent age. After
that, many researchers have used this dataset of the apparent age label for automatic age
estimation (AAE) task and showed that the apparent age is different from the real age and
has a significant effect on the AAE performance (Antipov et al., 2016; Huo et al., 2016;
Liu et al., 2015; Rothe et al., 2015, 2018; Uricár et al., 2016; Zhu et al., 2015). Figure 2.21
illustrates age estimation using real and apparent age.

Fig. 2.21 Illustration of the real and apparent age prediction. This figure is adapted from
Rothe et al. (2018)

63



2.

Inspired by this idea, in this thesis the apparent age is introduced into AFER with
the hope of presenting a novel and powerful method that can be used to eliminate the
effect caused by ageing features on the performance. The underlying assumption is that
the advantages that are brought by the apparent age to the age estimation task might by
consequence enhance the performance of the facial expression recognition task against the
impact of ageing since both tasks are correlated.

2.4.2 Studies on Compound Emotions Modelling

Most of the previous reviewed studies have focused on facial expressions defined by a
single component emotion such as happy, anger, sad, surprise, fear, disgust plus the neutral
as described above.

Recently the focus has moved from universal (basic) expressions to the non-universal
(non-basic) expressions such as the pain recognition proposed by Lucey et al. (2012) and
compound emotion classification proposed by Du et al. (2014).

Du et al. (2014) demonstrated that in addition to the 6-basic expressions there are
15-non basic expressions generated by combining two or more of the basic expressions.
They found also that the Facial Action Coding System (FACS) of 22 compound emotions
is different but consistent with the six basic categories. The aforementioned study demon-
strated that those differences are sufficient to be able to distinguish between 22 compound
emotions and that most of these categories are also visually discriminable from one another.
Table 2.3 describes the 22 basic and compound emotions and their AUs.

The EmotioNet challenge developed by Benitez-Quiroz et al. (2017) is the first to
assess the ability of computer vision algorithms in the automatic analysis of a large number
of images of facial expressions of emotion in the wild. The challenge was divided into
two parts. The first part tested the ability of current computer vision algorithms in the task
of automatic detection of 11 AUs. The second part tested the ability of the algorithms in
the task of recognizing 16 basic and compound emotion categories. The results of the
challenge demonstrate that existing computer vision and machine learning algorithms
are not ready to reliably solve these two tasks. In summary, the results of these studies
suggested that research is needed to determine if current algorithms need modification, or
whether a novel set of algorithms is required in order to be reliable in performing these
tasks.
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Table 2.3 Prototypical AUs observed in each basic and compound emotion category,
adapted from Du et al. (2014). AUs used by a subset of the subjects are shown in brackets
with the percentage of the subjects using this less common AU in parentheses. The
underlined AUs listed in the compound emotions are present in both their basic categories.
An asterisk (*) indicates that the AU does not appear in either of the two subordinate
categories. This table is adapted from (Du et al., 2014)

NO. Emotion Name Prototypical and variant AUs

a Neutral -

b Happy 12, 25 [6 (51%)]

c Sad 4, 15 [1 (60%), 6 (50%), 11 (26%), 17 (67%)]

d Fearful 1, 4, 20, 25 [2 (57%), 5 (63%), 26 (33%)]

e Angry 4, 7, 24 [10 (26%), 17 (52%), 23 (29%)]

f Surprised 1, 2, 25, 26 [5 (66%)]

g Disgusted 9, 10, 17 [4 (31%), 24 (26%)]

h Happily surprised 1, 2, 12, 25 [5 (64%), 26 (67%)]

i Happily disgusted 10, 12, 25 [4 (32%), 6 (61%), 9 (59%)]

j Sadly fearful 1, 4, 20, 25 [2 (46%), 5 (24%), 6 (34%), 15 (30%)]

k Sadly angry 4, 15 [6 (26%), 7 (48%), 11 (20%), 17 (50%)]

l Sadly surprised 1, 4, 25, 26 [2 (27%), 6 (31%)]

m Sadly disgusted 4, 10 [1 (49%), 6 (61%), 9 (20%), 11 (35%), 15 (54%),

17 (47%), 25 (43%)*]

n Fearfully angry 4, 20, 25 [5 (40%), 7 (39%), 10 (30%), 11 (33%)*]

o Fearfully surprised 1, 2, 5, 20, 25 [4 (47%), 10 (35%)*, 11 (22%)*, 26 (51%)]

p Fearfully disgusted 1, 4, 10, 20, 25 [2 (64%), 5 (50%), 6 (26%)*, 9 (28%),

15 (33%)*]

q Angrily surprised 4, 25, 26 [5 (35%), 7 (50%), 10 (34%)]

r Angrily disgusted 4, 10, 17 [7 (60%), 9 (57%), 24 (36%)]

19 Disgustedly surprised 1, 2, 5, 10 [4 (45%), 9 (37%), 17 (66%), 24 (33%)]

s Appalled 4, 10, [6 (25%)*, 9 (56%), 17 (67%), 24 (36%)]

t Hatred 4, 10, [7 (57%), 9 (27%), 17 (63%), 24 (37%)]

u Awed 1, 2, 5, 25, [4 (21%), 20 (62%), 26 (56%)]
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2.4.3 Studies on Expression's Intensity Modelling

Most systems designed to automatically recognize the facial expression seek to find a
discrete expression of the six basic expressions or discrete facial action of the 44 AUs.
Recently, researchers' focus has moved to find the expression's intensity or the facial
action intensity. As stated before, each expression is a combination of several muscles’
movements. In the case of continuous intensity, each movement is specified with a small
score when the movement is subtle and a large score when the movement is pronounced.

Studies proved that expression's intensity plays an important role in the meaning of
the expression. For instance, Prkachin and Solomon (2008) found that the intensity of the
expression has an important role in determining the pain level in the application of shoulder
pain detection. They used the summation of the intensity of four AUs to determine the
pain intensity level. These AUs are brow lowering, levator contraction, orbital tightening
and eye closure.

Some of the past work in the field of facial expression recognition has introduced
methods used for recognition of facial expression intensity level (Chang et al., 2006; Gunes
and Piccardi, 2009; Hess et al., 1997; Kim and Pavlovic, 2010; Koelstra et al., 2010; Li
et al., 2013; Lien et al., 2000; Shan et al., 2006; Valstar and Pantic, 2012; Yang et al.,
2009).

In (Hess et al., 1997), the author used the difference between facial images presented
at different stages and neutral or relaxed expression to determine the expression intensity
as relative to the difference corresponding to the neutral frame.

In (Chang et al., 2006; Li et al., 2013; Lien et al., 2000), the AFER system can recognize
facial expressions using the dynamic features through a probabilistic graphical model.
In (Lien et al., 2000), the system used Hidden Markov Models (HMMs) to classify the
expression over time using the AU or the AU combination that maximized the likelihood
of the extracted facial feature. In (Chang et al., 2006), an embedded manifold is applied on
the face features to embed the face representation from the high-dimensional space into a
low-dimensional space and the learned model is used for testing. Figure 2.22 illustrates a
3D expression manifold. In (Li et al., 2013), a dynamic Bayesian network (DBN) is used
to simultaneously and coherently represent the facial activity. This DBN is constructed
using three different levels of facial activities Bottom level: facial feature points, middle
level: facial Action Units (AUs), and top level: six basic facial emotions. The main
drawback of using a probabilistic model is the requirement for a huge amount of data of
facial expressions. For instance, (Chang et al., 2006) found that the optimal dataset for
completely modelling the six basic facial expressions should contain O(102) persons and
each person has O(103) images.

An alternative method to exploit the dynamic features in facial expression recognition
is through the use of spatio-temporal descriptors such as local binary patterns from three
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orthogonal planes (LBP-TOP) (Zhao and Pietikainen, 2007) and local phase quantization
from three orthogonal planes (LPQ-TOP) (Jiang et al., 2014, 2011) (without using prob-
abilistic modelling). The way to use these spatio-temporal descriptors is to exploit both
the spatial and temporal features by applying them independently to the three orthogonal
planes (XY plane: appearance, XT planes: horizontal motion, and YT plane: vertical
motion) in a video volume of the whole face region or local face region (see Figure 2.23).

Fig. 2.22 Illustration of the 3D expression manifold. The centre is the neutral frame. The
further a point is away from the centre point, the higher is the intensity of 3 expressions.
This figure is adapted from Chang et al. (2006)

Fig. 2.23 Left: Three planes in spatio-temporal space to extract neighbouring points. Right:
Concatenated histogram from three planes. This figure is adapted from Jiang et al. (2011)
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2.5 Discussion

This chapter has presented an in-depth description of different aspects of AFER. A review
of the techniques used in AFER was then presented followed by techniques to model
several challenges in AFER. According to the literature review, several areas can be
highlighted requiring more investigations and this thesis has contributed to filling some of
these gaps.

Firstly, in Section 2.2.3.1, a number of texture analysis methods used for the purpose
of facial expression representation have been reviewed. It can be noticed that these
representations have become very popular in recent years and highly useful for the task of
facial expression recognition, due to not only their robustness to generic image processing
challenges such as illumination and registration error but also to the implementation
simplicity. Although the robustness of these representations to discrimination among
several action units and basic expressions within a limited range of ages and spatial
intensity based on the datasets used for evaluation has been demonstrated, the generalisation
capability of these representations under a wide range of variations in facial activities
(face deformation) such the variations related to the problems under study are not obvious.
These deformations might reduce the representation ability and subsequently lead to poor
performance of the AFER system. In other words, a major problem with the texture
representation is that they stem from a limited amount of facial effect activities (3-7)
emotion and (4-26) AUs (see Table 2.1). Additional work still needs to be done to
investigate if the existing face descriptors are sufficient as they are, some modifications
are required, or a novel set of algorithms is required to represent these facial activities. A
further improvement in the aspect of texture-based AFER system could play a large role to
achieve the goal. BRIEF features, as we propose to use in this thesis, might contribute to
this gap of the literature.

Secondly, in 2.2.3.2, many facial features points localisation methods have been
reviewed. It can be noticed that these representations have become very popular in recent
years and highly useful for the task of facial expression localisation and feature extraction
due to their robustness to the variations in illumination since the intensity of the pixels
is ignored. Very recently, Wang et al. (2018) proved that although the results of some
state-of-the-art methods of FFPD are comparable to the human in some datasets, their
success in some real-world scenarios is not clear; scenarios such as the intrinsic variations
from people themselves such as those due to age and expression, and extrinsic variations
from the environment such as pose, and distance to the camera (image resolution). As a
result, a further investigation into this aspect of automatic facial expression localisation
could play a significant role to achieve the target. RFRV-CLM, as proposed to be used in
this thesis, will examine to contribute to this gap of the literature.
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Thirdly, Section 2.4.1 reviewed the studies that modelled the age and expression
together for facial expressions recognition. Although these studies have addressed this
issue successfully using the texture features only such as Gabor filter as in Guo et al.
(2013) and LBP as in Lou et al. (2018), geomtric feature only as in Wang et al. (2016),
or deep features as in Yang et al. (2018) the problem is not studied in depth, and more
investigations are required to explore the possibilities that can be used to model the age
and the expression. For example, to investigate the effect of the human ageing on the face
shape features or analyse the benefit from using apparent age on the accuracy of AFER
system. A comprehensive study is proposed in this thesis to study the problem deeply
using all the face information including both the geometric and appearance features.

Moreover, although a very limited number of studies have addressed the compound
emotions problem as described in Section 2.4.2, this issue is still open research and more
investigations are required to investigate the possible features or methods that can be
used for compound emotion representation and classification to make the solution to
automatically recognize expression more general and effective.

Finally, the expression’s intensity is also still open research and more investigations
are required to make the solution more reliable for real world applications. This is because
the intensity play an important role in the meaning of human expression.
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Chapter 3

Data and an Overview of the Proposed
Study

3.1 Introduction

The research problems and the literature review which were described in Chapter 1 and
Chapter 2 respectively have demonstrated that intrinsic variations from people themselves
such as ageing, compound expressions, and expressions's intensity have introduced many
difficulties to the task of facial expression classification. Therefore, the aim of this
thesis as described in Section 1.5 is to construct an AFER system that can recognize the
facial expressions under a wide range of face deformations, namely a wide range of age,
expressions, and expression's intensities.

Building such a system requires a comprehensive analysis and study to understand
the inner details and associated problems in order to explore the possibilities that can be
used for successful AFER. These investigations require a comprehensive facial expressions
dataset that contains a broad range of variations of face appearances. These data need to be
processed and prepared: the face object in each image in the dataset needs to be detected
and annotated. The detected/annotated face need to be processed (modelled) in order to
obtain a suitable representation (face parameters) for use with machine learning methods to
distinguish among expression categories. In order to recognize the facial expression from
the face image, a way of representing/modelling the face as a compact set of parameters
is needed. These parameters can be the shape parameters, texture parameters, or the
combination of the shape and the texture. Finding these parameters can be done by using
texture-based, shape-based, or appearance-based models.

With reference to the facial expressions and the research problems of this thesis, both
the texture and shape face features vary widely across the images and they are correlated.
These variations in texture and/or shape may be related to the difference in one or more
variables such as age, gender, identity, expression type, and the intensity of the expression.
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For a comprehensive understanding, investigation and analysis about these differences and
the problems under study, both the shape and the texture features need to be modelled
separately and in combination to obtain the inner details of the face.

Therefore, in this thesis, we divided our study into three parts. The first part uses
the texture measurements and machine learning methods to measure the influence of the
problems under study on texture features and to explore the possible ways of using textures
feature for facial expressions modelling. The second part uses the shape measurements and
machine learning methods to measure the influence of these problems on shape features
and to explore the possible ways of using shape feature for facial expressions modelling.
Based on the observations that are obtained from parts one and two of our study, the third
part focus on eliminating the effect of age on the accuracy of facial expression recognition
In the following, the data and the methodologies or hypotheses used throughout the project
are briefly described.

3.2 Datasets

There are many high quality facial expression datasets available to the public McDuff
et al. (2013). However, since our target is to understand and analyse the effect of some
problems including human ageing, compound emotions and expression's intensity on the
performance of facial expression recognition, the dataset needs to be representative and
reflect the conditions of those problems. Therefore, a specific facial expression dataset
with specific characteristics is used with each problem. These datasets are the age and
expression datasets, compound emotions dataset and expression's intensity dataset. The
details of each dataset is described below. Although each dataset of each problem is quite
representative, the data is very small for instance, there are 114 images per expression
per age group in FACES dataset and 100 images per expression in compound emotion
dataset. That why we restricted ourselves in this thesis to use handcrafted features, and it
prevented us from using Deep learning since the data is not enough to obtain a convincing
conclusion and since there is a concern that deep learning need a huge amount of data to
train, validate, and test and deep learning is data-based learning. Therefore, deep learning
is beyond the scope of this thesis.

3.2.1 Age and Expression Datasets

For analysing and modelling human ageing, we used three datasets: FACES (Ebner et al.,
2010) , Lifespan (Minear and Park, 2004) and NEMO Dibeklioğlu et al. (2012) which are
designed for research into both age estimation and facial expression classification.

The FACES dataset contains 171 people showing six expressions (anger, disgust, fear,
happy, neutral and sad) with uniform distribution of the expression classes. The ages of the
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subjects range from 19 to 80. In total there are 37 different ages unevenly distributed. The
subjects are divided into three groups according to their age: young: 19-31 years old (M =
24.3 years, SD = 3.5), middle-aged: 39-55 (M = 49.0 years, SD = 3.9), and older: 69-80
(M = 73.2 years, SD = 2.8). The faces in this dataset are frontal with fixed illumination
mounted in front and above the faces. Two examples of each expression were recorded
for each individual. In total the dataset consists of 2,052 frontal face images (Ebner et al.,
2010).

The Lifespan dataset contains face images from people of different ethnicities showing
eight different expressions with different subset sizes; neutral (N=580), happiness (N=258),
surprise (N=78), sadness (N=64), annoyed (N=40), angry (N=10), grumpy (N=9), and
disgust (N=7). The ages of the subjects range from 18 to 93 years and in total there are 74
different ages Minear and Park (2004).

The NEMO dataset consists of 400 male and female subjects and 1240 videos. The
age of the subjects ranges from 8 to 76 years. Each subject recorded several videos of their
expression changing from neutral to happy, spontaneously and deliberately (Dibeklioğlu
et al., 2012). See Figure 1.2 for an example from the age and expression dataset.

3.2.2 Compound Emotions Dataset

For compound emotions experiments, we use the compound expression dataset that was
developed in Ohio State University which has 6 basic and 15 non-basic expressions plus the
neutral expression with ground-truth labels. This data has been collected to study the effect
when several emotions are exhibited at once. This dataset was collected from 230 (male
and female) subjects showing 22 distinct expressions. Most ethnicities and races were
included: Caucasian, Asian, African American, and Hispanic individuals are represented
in the dataset (Du et al., 2014). See Figure 1.3 for an example from the compound emotion
dataset.

3.2.3 Expression's Intensity Dataset

We use the Cohn–Kanade (CK+) dataset for analysing the intensity of the expression. The
CK+ dataset is one of the most comprehensive datasets in the current facial expression
research community. The dataset consists of 123 university students aged from 18 to 30
years, 65% of whom were female, 15% were African-American and 3% were Asian or
Latino. Subjects were instructed to perform a series of 23 facial displays, six of which
were based on a description of prototypic emotions. Image sequences consist of the first
frame (containing a neutral expression) and the last frame (containing the expression at
peak intensity). The target displays were digitized into 640 by 490 pixel arrays with 8-bit
precision for gray scale values (Lucey et al., 2010). See Figure 1.4 for an example from
the Cohn–Kanade dataset. Table 3.1 summarizes the datasets and their characteristics.
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Table 3.1 Description of the datasets use throughout the project.

Dataset Age Range Examples Expressions Persons Modality Landmarks

FACES 19 - 80 2052 6 171 Image 76

Lifespan 18 - 93 1006 8 230 Image -

NEMO 8 - 76 1240 2 400 Video -

Compound emotions av:23 2200 22 230 Image 78

CK+ 18 - 30 327 7 118 Video 70

3.3 Data Setting

Once the data is collected, the face in each image needs to be detected and annotated.

3.3.1 Face Detection

Usually, in any face analysis application before any processing algorithm is applied to
the whole face image, the location of the face in that image should be found by using a
face detection algorithm. In this thesis, the face detector introduced by Viola and Jones
(2004) is selected since it is probably the best known and widely used nowadays for face
detection.

3.3.2 Manual Annotation

Manual annotation is the process of labelling and identifying the key points of an object in
the image. The choice of these points is an essential step of automatic shape modelling
since this relies on these points and their consistency across the samples of the dataset.
There are several important factors that should be considered in the process of image
annotation, including the number of points, the positions of the points, and the relationship
between the set of the points. The number of the points is varied depending on the accuracy
requirements. For example, for a high-level task such as facial expression understanding, a
large number of points are required, from 60 to 80. The position of these points should
be chosen carefully. The aim is to identify landmarks that can be placed repeatedly and
reliably across many images, and that will represent the variation in the face due to changes
of expression.

In the case of facial expression recognition, positioning of the points is more important
around the mouth and eyes areas since these areas are subject to the maximum variations
for different expressions. The variations with facial expressions’ annotations are not only
due to variabilities of framing of the person in the image, such as position, scaling, and
rotation, but also due to the expressions’ variabilities (anger, disgust, fear, happy, sad, and
surprise). In addition to these variabilities, there are some factors that might hinder the
process of manual annotation, such the presence of age-related patterns and their overlap
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with the expression pattern, spontaneous (genuine) or posed (faked) expressions, showing
two expressions (compound expressions) simultaneously, and showing the expression in
a different way depending on the person’s personality such as showing an expression in
different intensities. These hindrances will be discussed in the Chapter 5 in more detail.

In this thesis the 2052 images from the FACES dataset were manually annotated with
76 landmark points and we automatically detected the points of the Lifespan and NEMO
datasets using our model trained on the FACES dataset described in Chapter 5. Each frame
of each sequence of the CK+ data set was annotated with 68 landmark points. In addition
to these 68 points, and for the requirements of our prosed FEL, We manually added two
points in the centre of the eyes to make 70-points in total. For the compound emotion
dataset, 78 points were recorded by the author. Figure 3.1 shows an examples of manual
annotations for three datasets.

Fig. 3.1 Landmark annotation of FACES dataset (top left), compound emotions dataset
(top right), and CK+ dataset(bottom).
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3.4 Facial Expression Modelling and Problem Setting

This section covers the handcrafted face representation methods used in this thesis for face
features modelling. DL is not used in this thesis since the data is very small in number
and is not enough to obtain a convincing conclusion. For instance, there are 114 images
per expression per age group in the FACES dataset and 100 images per expression in the
compound emotion dataset.

3.4.1 Face Texture Modelling

Once the data is prepared, we start our study by using texture measurement methods in
which the grey/colour information of the face image is used for finding a suitable face
representation which can be used for further processing, such as to make measurements
or to classify patterns. The problem with the texture features of facial images, with the
presence of an extensive amount of skin texture deformations related to the expressions, age
and intensity patterns, is that the face texture has no explicit/global texture variations to get
useful description directly. For that reason, the texture needs to be modelled locally using
local description techniques, in which each pixel is evaluated locally with the neighbouring
pixels in order to capture the micropatterns of the face. This can be done by using histogram
representations based on local descriptors as reviewed in Section 2.2.3.1 and it is proposed
to use them in the thesis since they have the potential to satisfy our requirements.

In this thesis, three methods are selected for texture measurements and for representing
the face texture features. These methods are: Binary Robust Independent Elementary
Features (BRIEF) (Calonder et al., 2012, 2010), local binary pattern (LBP) (Ojala et al.,
2002), and Quantized Local Zernike Moments (QLZM) (Sariyanidi et al., 2013). The
BRIEF method is used to introduce a new face descriptor using the BRIEF feature, whereas
the LBP and QLZM methods are used for both comparison and validation purposes of
the BRIEF-based face descriptor. The LBP method is chosen because LBP is a widely
used technique in face applications and in particular in facial expression recognition and
it is very similar to the BRIEF technique. The QLZM method is chosen because it is
a widely used technique in computer vision applications such as character recognition
(Khotanzad and Hong, 1990), face recognition (Ono, 2003; Singh et al., 2011) and facial
expression recognition (Sariyanidi et al., 2013). In (Sariyanidi et al., 2013), the author
found out that describing the face images using QLZM outperforms the LBP (Ahonen
et al., 2006), Gabor (Littlewort et al., 2011), and BOW (Sikka et al., 2012) in a facial
expression classification task. In addition, the performance of QLZM in an AFER task
with 96.1% accuracy (Sariyanidi et al., 2013) outperformed the performance of HOG with
70% accuracy (Sariyanidi et al., 2015). The superior performance of the QLZM method
encourages us to choose it in our comparative study.
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Chapter 4 presents comprehensive details about the texture measurements performed in
this thesis regarding the problems under study, along with the methods used, motivations,
experiments, and findings.

3.4.2 Face Shape Modelling

We extended our study by modelling face shape features to analyse, understand and
explore the impact of the problems under study on face shape features and hence on the
performance of face components localisation and shape-based AFER. Face shape modelling
is the process of using the geometric information to find a suitable face representation
which can be used for further processing, such as to make measurements, segment the
object or to classify the object. Similar to the texture feature, the problem with the shape
features of facial images, with the presence of an extensive amount of rigid and non-rigid
face deformations related to the expressions, age and intensity patterns, is that the face
shape has no explicit/global shape variations to capture the precise facial feature points’
poses. For that reason, the shape needs be to modelled locally using local discriminative
techniques, in which each shape point is modelled locally and independently within the
patch around it in order to capture the best position of each point in the face image. This
can be done by using FFPD methods reviewed in Section 2.2.3.2 to localise the shape
features of the input face image.

In this thesis, we restrict ourselves to random forest regression voting constrained
local models (RFRV-CLM) Cootes et al. (2012); Lindner et al. (2015, 2013) to develop
an automated facial expression localization FEL system. RFRV-CLM is chosen since
has the potential to satisfy our requirements. RFRV-CLM attempts to model the points’
poses directly by learning a regressor from an image patch feature around the points
to predict the target pose from the nearby regions of the face image. It also achieved
remarkable performance in many computer vision application. The RFRV-CLM requires
hand-annotated images for training the model and can handle variations in points’ poses.
A sample of images were analysed to understand the variation in shape and orientation
of the face. Using this information a set of points was placed to describe the key shape
characteristics of the facial expression. Therefore, each image is annotated with n landmark
points as described in Section 3.3.2.

Chapter 5 presents comprehensive details about the shape measurements performed in
this thesis regarding the problems under study, along with the methods used, experiments,
and findings.
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3.5 Expression Classification

In this thesis the SVM and RF classifiers are selected for expression classification through-
out the project. The SVM classifier is chosen for the comparison and validation of the
BRIEF-based face descriptor since most of the previous face descriptor schemes which
were applied to the task of facial expression classification were evaluated using the SVM
classifier. With regard to the parameter selection of SVM, as suggested by Hsu et al. (2003),
we carried out grid-search on the hyper-parameters using 10-fold cross-validation. The
parameter setting producing the best cross-validation accuracy was picked.

In the rest of the thesis, the RF classier is used since it outperforms the SVM in many
computer vision tasks as reviewed in Section 2.2.4. See (Criminisi et al., 2012) for more
complete details about the performance of RF in several applications and its comparison
with SVM and boosted methods. In this thesis the random forest classifier is selected for
classifying the data into discrete classes. RF is an ensemble of random decision trees as
we described in Section 2.2.4. Each tree uses a subset of features to classify the data. In
each node the best split to classify the data is found by calculating the information gain I

for each feature which is calculated using the entropy of the features H(X). The equations
below illustrate a simplified measure of the information gain I and the entropy H(X):

I j = H(X j)− ∑
i∈{L,R}

|X i
j|

|X j|
H(X i

j) (3.1)

where j is the node, X is the features, and i is the leaf.

H(X) =− ∑
c∈C

p(c) log p(c) (3.2)

where p(c) is the probability of data in each class c. During training, information that
is useful for predication during testing will be learned for all the leaf nodes and stored.
In the forest, all the trees are learned independently. During testing, each test point v is
pushed starting from the root through all trees until it reaches the corresponding leaves. All
the trees will make predictions and then will be combined into a single forest predication
and the average is calculated by

p(c|v) = 1
T

T

∑
t=1

pt(c|v) (3.3)

where T is the number of trees in the forest. All forest experiments presented in this
thesis were run with T = 100.
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3.6 Discussion

In this chapter we have discussed the specific details about how we represent facial
expressions. Firstly, we have described the five different facial expression data sets that
are used in our study to evaluate our models. Secondly, we have covered the face image
features that we used to extract the face image information relevant to facial expression.
Finally, the classifier that was used for expression classification is described. For easy
understanding, we describe the methods of each chapter in the chapter itself. Figure 3.2
illustrates an overview of the proposed methods and problem settings of our study.
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Fig.3.2
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Chapter 4

Development and Comprehensive
Evaluation of BRIEF-Based AFER

4.1 Introduction

As stated in Section 2.2.3.1, a robust face descriptor is essential for face image analysis
in general and AFER in particular, where the descriptor is used as a tool to extract the
texture features of an image to be used for further measurements such as segmentation,
classification, etc. This chapter introduces the BRIEF features as a new face descriptor.
BRIEF features are used in a similar way to the proposal of the well-known face descriptor
approach useing LBP developed by Ahonen et al. (2006) to account for the discriminative
information in various regions of the face such as around the mouth and eyes since
these areas contribute most to different variations of expressions. The first aim here is to
examine the development of a BRIEF-based AFER system, along with an analysis of which
combination of BRIEF's free parameters is suitable for describing the face image. The

second aim is to present a comparative study between the BRIEF-based face representation,
and some alternative face representation methods including LBP-based and QLZM-based.
This comparative study is used to first evaluate the ability and sensitivity of a texture-based
AFER system to accurately discriminate among facial expressions in the presence of a
wide range of age and emotions patterns, and secondly to measure the influence of those
patterns on the texture features and thus their impact on the performance of texture-based
AFER. For easy understanding, this chapter starts by giving our motivations for selecting
the BRIEF method for facial expression representation in 4.2 and then gives an explanation
of the BRIEF algorithm in 4.3.2. In Section 4.3.2, we introduce our BRIEF-based AFER
system. Section 4.4 presents results of the proposed system of BRIEF-based face descriptor
in AFER tasks under the effect of the problems under study with a comparison made against
the results of alternative methods evaluated on the same datasets. Finally, Section 4.5
concludes the chapter by providing a summary of the key findings.
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4.2 Motivations

This section presents the motivations for selecting BRIEF features for face texture descrip-
tion. BRIEF has proven to be highly discriminative, and it is very efficient both to compute
and to store, making it suitable for demanding image analysis tasks. It belongs to a broad
class of local binary descriptors. The most similar descriptor to BRIEF is LBP, the main
difference between the two is that instead of comparing the pixels on the circumference of
a circle against the one at the centre, BRIEF selects a subsample of pixel pairs at Gaussian
weighted random locations from the described area. This property gives it the ability to
visit the pixels inside the circle and to use a window with a larger diameter than LBP uses
with less loss of information than LBP (see Figure 4.1(a) and (b)). The other difference
lies in the ability of BRIEF to have more than one pixel contributing to a single descriptor
bit. Therefore, BRIEF's descriptor length is half of the LBP's descriptor, despite being
generated by the same number of pixels. For instance, 17 pixels (the centre pixel and the
16 neighbours) based on LBP contribute to a 16-bit descriptor, while 16 pixels based on
BRIEF contribute to an 8-bit descriptor (see Figure 4.1 (c) and (d)). Using a large window
and short descriptor can help to represent the texture locally and globally with a short
feature vector.

Fig. 4.1 Comparison between the LBP (left) and BRIEF (right) descriptors: (a) and (b)
describe the regular and random sampling pattern used by LBP and BRIEF respectively;
P, R, and S refers to the number of sample pairs, the radius of the circle and the size of
the window respectively; (c) and (d) show examples on 7×7 window of how the different
ways in which LBP and BRIEF are computed result in different descriptor lengths. (White
cells, red lines and green number on the red lines refer to the intensity of the pixel, the
pairs to compare and the sequence of pair wise comparisons to generate the binary value
respectively.
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Furthermore, Chai et al. (2013) showed that LBP's code is very sensitive to noise.
Conversely, we found out that BRIEF is less sensitive to noise. Figures 4.2 and 4.3
illustrate the sensitivity of LBP and BRIEF descriptors to noise respectively.

Fig. 4.2 Illustration of the sensitivity of Local Binary Pattern (LBP) to noise. This figure is
redrawn from (Chai et al., 2013).

Fig. 4.3 Illustration of the sensitivity of Binary Robust Independent Elementary features
(BRIEF) to noise.

Moreover, Heinly et al. (2012) performed comparative experiments among Binary
Robust Independent Elementary Features (BRIEF), Oriented FAST and Rotated BRIEF
(ORB) (Rublee et al., 2011), and Binary Robust Invariant Scalable Keypoints (BRISK)
(Leutenegger et al., 2011). The experiments were performed to evaluate a comparable
performance on pairs of images under various transformations including image blur,
exposure, JPEG compression, combined scale, and rotation, using the Oxford dataset and
simple rotation, simple scaling and illumination changes using their own dataset. They
found that the BRIEF method outperformed ORB and BRISK methods due to the fixed
pattern regarding the scale and the orientation and the accurate representation for the
gradient of image patch.

In addition to these characteristics, BRIEF has recently shown remarkable performance
in multiple domains including place recognition (Gálvez-López and Tardos, 2012), loop
closure detection (Galvez-Lopez and Tardos, 2011), and optic disc segmentation in retinal
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images (Mohammad et al., 2013; Mohammad and Morris, 2017). Applicability to multiple
domains can be attributed to the simplicity of the BRIEF method, with significant research
in feature extraction and a very good compromise between distinctiveness and computation
time, as well as its suitability for appearance recognition.

A strength that BRIEF brings to the table is the possibility to get pairs of pixels at
random positions based on the Gaussian distribution which proved to be superior to other
sampling patterns in terms of recognition rate (Calonder et al., 2012, 2010). Moreover, the
ability of BRIEF to map a pair of pixels to a single descriptor bit results in a short feature
vector, and it is independent of changes in illumination which help to give a good sampling
of the whole area of the patch.

In summary, these findings motivated us to investigate the suitability of using BRIEF
features for the problem of facial expression recognition in particular and for describing
the face in general. Our target is to use the BRIEF features for the AFER task. Having
that in mind, we must take into account also the evaluation of using the BRIEF features on
the effects of previously mentioned challenges (human ageing, compound emotions, and
intensity), since they are the focus of this thesis.

4.3 Method

This section describes the original BRIEF method and the BRIEF-based face descriptor
method which is proposed in this thesis.

4.3.1 Binary Robust Independent Elementary Features (BRIEF)

Binary Robust Independent Elementary Feature (BRIEF) Calonder et al. (2012, 2010)
is one of the best performing texture descriptors. BRIEF's basic idea is based on the
hypothesis that an image patch can be effectively classified on the basis of a small number
of pairwise intensity comparisons. The results of these tests are used to train a classifier
to recognise image patches from different viewpoints. BRIEF quantifies the texture of an
image patch as a binary string. Bits of the string are computed by comparing the values of
pairs of pixels within the patch. The formal definition of BRIEF is given in Equations 4.1
and 4.2. A test τ is defined on patch S of size s× s.

τ(S;x,y) =

1 if I(S,x) < I(S,y),

0 otherwise,
(4.1)

Where I(S,x) and I(S,y) are the pixel's intensities in a smoothed version of patch S at
locations x and y. Choosing a set of nd (x,y) location pairs uniquely defines a set of binary
tests. The BRIEF descriptor is then defined as the nd-dimensional bitstring, corresponding
to Equation 4.2:
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fnd(S) = ∑
1≤i≤nd

2i−1
τ(S;xi,yi) (4.2)

In the calculation of BRIEF, two factors need to be considered. First is the smoothing
kernel used to smooth the image patch and second is the spatial arrangement of the
pixel pairs. Smoothing is introduced to suppress noise, thus increasing the stability and
repeatability of the descriptor. For the spatial arrangement of the pixel pairs, there are
five methods proposed by Calonder et al. (2010) for selecting the points pairs as shown
in Figure 4.4. One of these methods (G II in Figure 4.4) is sampling the points from the
patch S randomly based on an isotropic Gaussian distribution (0,S2/25) which achieves
the best results in terms of matching results and recognition rate. For this reason, in all
further experiments presented in this chapter, it is the one we will use.

Fig. 4.4 Five different approaches to sampling patterns. This figure is adopted from
(Calonder et al., 2010).

BRIEF was originally used to match points in images with different viewpoints. In this
thesis, we propose BRIEF as a texture descriptor method used to measure and describe
face texture in general and facial expression in particular.

4.3.2 BRIEF-Based Face Descriptor

BRIEF features are widely used for texture description and classification, in which the
occurrence of local texture values (BRIEF code) is used to generate one histogram to
represent an image. This histogram is then used for classification among several classes
either by computing the histogram's similarities or by training a classifier to use on the
test image. Applying the same procedure for facial images results in losing some spatial
information, in particular information from locations such as the areas around the eyes
and the mouth. The reason for that loss is just because with a holistic approach the texture
descriptor aggregates over the whole image area. An alternative approach that retains
the information of spatial location is to use BRIEF features derived from distinct regions
to build several local descriptors and then concatenate them. Therefore, in the proposed
descriptor the BRIEF features are used locally folowing the proposal of Ahonen et al.
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(2006) to account for the discriminative information in spatial locations of the face image.
The processes of the proposed face descriptor are:

• Each pixel in the face image is evaluated locally using Equation 4.2 with a defined
number of sample pairs P and overlapping patch size S.

• The generated BRIEF image is then divided into grid of non-overlapping regions W .

• A histogram of each region is then calculated. A histogram H of the labelled region
I(x,y) can be defined as the following.

Hi = ∑
x,y

I( f (x,y) = i), i = 0, ...,n−1 (4.3)

in which n is the number of different labels produced by the BRIEF operator using
Equation 4.2, I(x,y) is the label value. This histogram contains information about
the distribution of the local micropatterns over the face image.

• For efficient representation, the histograms of all patches W0, ...Wm−1 (W is the size
of the patch and m is the number of patches) are then concatenated in a one histogram
to form a global representation of the face image as in Equation 4.4.

Hi, j = ∑
x,y

I{ fi(x,y) = i}I{(x,y) ∈Wj}, i = 0, ...,n−1, j = 0, . . . ,m−1 (4.4)

The final histogram represents a combination of three levels of local descriptions:
pixel description, patch description (local histogram), and an image description
(global histograms). This representation/description will be used to discriminate
one texture from another for facial expression recognition. Figure 4.5 illustrates the
proposed face descriptor.

Fig. 4.5 The framework of the proposed face descriptor using BRIEF features.
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4.3.3 BRIEF's Free Parameters Description

BRIEF initially used 256-pixel pairs to form a texture descriptor. In the present work
and since the idea is to use BRIEF features for building several local face descriptors,
small patches and a small number of sample pairs will be used. The optimum values of
those variables and their impact on the facial expression recognition task are not obvious.
Therefore, a grid search to find the most suitable values of BRIEF's free parameters to
describe the face image, in particular, is required. In the following, the proposed face
descriptor's free parameters will be explained in more detail followed by their optimal
values in Section 4.4.1.1.

Smoothing kernel size: The first parameter is the kernel which is used to smooth the
image patch. Smoothing is introduced to suppress noise, thus increasing the stability and
repeatability of the descriptor. Smoothing using a 9×9 Gaussian kernel with σ = [1−3]
is recommended by Calonder et al. (2010).

Patch Size: The second parameter is the division of the image into regions including
local overlapping regions S, which are used to evaluate each pixel based on BRIEF, and
global non−overlapping regions W which are used to build the final histogram. A large
number of small regions will produce a very local descriptor with high time consumption,
whereas using large local regions causes more spatial information to be lost. Larger sized
grids of global regions will result in fewer samples being derived from a given sized face
image and a sparser histogram, and therefore worse recognition. We choose to divide the
image with a grid of W0, ...Wm−1 equally sized square windows. The values of S and W

are the subject of the optimization experiment in section 4.4.1.1.
Spatial Arrangement of the (x,y) pairs: The third important parameter of the BRIEF

descriptor is the arrangement of the sampling pairs as explained in Figure 4.4. We randomly
select the pixel pairs (using an isotropic Gaussian distribution with parameters (0,S2/25))
from within the patch. The pairs locations are predefined during initialization, and then the
same locations are used for analysis of all texture classes.

Descriptor length: The fourth parameter of BRIEF is the descriptor length. Choosing
an arrangement of pixel pairs from the patch S that produces a large number of different
labels makes the descriptor longer and the learning operation slower. Using a small number
of labels makes the feature vector shorter but also means losing more information. For
instance, when finding the value of a pixel from 8 pairs (16 pixels in total), the descriptor
is 8-bits and its range is [0,28−1], for 16 pairs (32 pixels in total and 16-bits) and its value
range is [0,216−1] and so on. In the original work, 256 pairs were used to form a BRIEF
descriptor. Since our plan is to use the descriptor in a histogram framework, the use of a
256 bit descriptor will result in a very large and sparsely populated histogram. Therefore,
in our implementation a much shorter BRIEF descriptor is used. And as will be shown later,
a smaller number of pixel pairs is sufficient and able to demonstrate good performance.
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Experiments reported in section 4.4.1.1 will show how these parameters (descriptor
length, local patch size to find BRIEF features and global patch size to build the his-
togram ) can be empirically tuned and optimized. We denote a parametrized BRIEF as
BRIEF(P,S,W ) having P random pairs, a local square patch S and a global square patch
W . To summarize, the proposed face description is performed in two steps as shown in
Algorithm 1.

Algorithm 1 . BRIEF-Based Face Descriptor.
Input :A face image I of width w and height h, BRIEF-patch-size S, and pairs P,

histogram-patch-size W .
Output :A histogram H.
Initialization :P = 0, a BRIEF image Î = 0, H = 0.

Step 1:- Calculate the BRIEF image Î for the input face image I
for i → 0 to w do

for j → 0 to h do
1: From the input face image, crop a patch of size S× S with length equal to
((S−1)/2)) around the current pixel(i,j).

2: if P is empty then
Generate P pixel pairs from within the current cropped patch S × S using an
isotropic Gaussian distribution with (0,S2/25).
else got to 3:

3: Compute the pixels's BRIEF value from Equation 4.2 within the current patch
S×S and pairs P.

4: Transfer the result of BRIEF value for each pixel from the face image I to
BRIEF image Î.

end
end
Step 2:- Calculate the histogram H
for i → 0 to w do

for j → 0 to h do

1: Divide the result BRIEF image Î into cells of size W ×W .

2: Compute the histogram of the BRIEF values occurring over each cell using
Equation 4.3

3: Concatenate histogram of all cells using Equation 4.4., giving the feature vector
of histogram H for the face image

end
end

4.4 Experimental Evaluation

This section describes experiments performed for evaluating the performance of the
proposed face descriptor using BRIEF features. The performance was evaluated in the
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AFER system described in Figure 4.6 which consists of (i) face detection using the Viola
and Jones detector (Viola and Jones, 2004), (ii) BRIEF feature representation and extraction
using the method described in Algorithm 1, and (iii) expression recognition using kernel
SVM (Chang and Lin, 2011; Vapnik and Vapnik, 1998). For fair comparison with the
previous facial representations methods, faces were detected automatically using the Viola
and Jones detector, and were downsampled to 150 * 150 pixels based on the location of
the eyes and SVM classifier was used for expression classification.

Fig. 4.6 BRIEF-based AFER system diagram

Datasets: The proposed descriptor is evaluated using three different facial expression
datasets, including the FACES dataset for ageing and expression described in 3.2.1, the
compound emotions dataset for compound expressions described in 3.2.2, and the CK+
dataset for expression and its intensity described in 3.2.3.

Evaluation Metric: For expression classification, both the average of all expressions
classes with the standard error and per-class (confusion matrix) classification accuracy
between the ground truth label and the predicted label are reported. To avoid over-fitting
and identity bias issues, 10-fold cross validation (person independent) experiments are
applied. For validation purpose of the texture-based AFER, simple and complex cases of
facial expression recognition are considered. A comparison of BRIEF-based performance
with the performance of some other methods is also reported.

4.4.1 Evaluation in Simple Cases

In this thesis, the simple case refers to the model that is trained and tested using 6-basic
expressions and a limited range of ages of static images.

4.4.1.1 Experiment 1 - BRIEF's Free Parameters Optimization

Case Description: The objective of this experiment is to find the optimal values of BRIEF's
free parameters that give the best accuracy in the task of facial expression recognition.
Three essential design parameters which must be considered when extracting the BRIEF
features are the number of sampling pairs P and the patch sizes (local patch size S and
global patch size W ). We would expect these parameters to directly affect the size of
the feature vector and the runtime of the model. Their effect on the accuracy of the
model is less obvious. In order to maximise the throughput of our classifier (system), it is
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necessary to minimise the size of the feature vector, while maintaining acceptable accuracy.
The parameters of P are set to a sample pair of (1,2, ...,9), S and W are set to sizes of
(52,72, ...,212) pixel. The rationale behind running the experiment with an exhaustive
combination of parameters was to ascertain the degree to which the performance of the
algorithm depends on the chosen parameters. The optimal parameters are then used to
extract the expression features in future experiments.

Using the peak frames of 327 sequences of six facial expressions from CK+ dataset,
similar to the other approaches in the literature, a sensitivity analysis of BRIEF-based
AFER was carried out in order to estimate the optimum values of the BRIEF free parameters
including: pixel pairs P, the local window size S and global window size W , along with
their sensitivity to the face representation and hence their impact on expression recognition
performance.

Results: Figure 4.7 shows the mean recognition rates of AFER using BRIEF features as
a function of the windows size S and number of sample pairs P. These results demonstrate
that a small P value such as 5 or 6 is sufficient to obtain good accuracy and a very short
feature vector. We found that building the histogram from W equal to S gives better results.
Overall, the sensitivity analysis shows that BRIEF representations are not very sensitive to
parameter changes, and a small P value can be chosen to keep the dimensionality relatively
low. In this thesis the BRIEF(6,11,11) is chosen since it achieved the best performance.

Fig. 4.7 The mean recognition rate for the BRIEF-based AFER as a function of local
window size S, global window W , and sample pairs P (BRIEF(P,S,W ))
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4.4.1.2 Experiment 2 - Comparison to LBP Face Representation

Case Description: The objective of this experiment is to validate and compare the perfor-
mance of BRIEF features to the LBP features in the task of facial expression recognition.
For both methods, we trained and tested the system using images of 118 subjects from
the CK+ dataset. Both methods are evaluated using similar configurations regarding the
descriptor size and matching windows.

Results: Figure 4.8 illustrates the performance of BRIEF versus LBP. Going from
the worst to the best performance of the BRIEF and LBP descriptors, it can be seen that
the overall worst performance is provided by LBP(8,1) with 8-bit descriptor length. It is
followed by LBP(8,2) which provided better results than the LBP(8,1) due to the larger
radius of window matching with the same descriptor length. It is followed by BRIEF(4,5)
with a 4-bit descriptor length and BRIEF(5,5) with a 5-bit descriptor length, both of which
provided comparable performance to LBP despite their shorter descriptors’ length. It is
finally followed by BRIEF(6,5), BRIEF(7,5) and BRIEF(8,5), all of which provided better
performance than LBP with descriptor-bits length shorter than or the same as LBP (see
Figure 4.8 b). The rationale behind this comparison was to demonstrate that the advantage
of BRIEF over LBP is that BRIEF can provide comparable or better performance than
LBP with a shorter bit string.

Fig. 4.8 The mean recognition rate for the BRIEF-based AFER versus LBP-based AFER
as a function of window size S and sample pairs P using CK+ dataset: (a) the performance
of AFER and (b) bits and bin numbers required for constructing the descriptor and the
histogram respectively.

4.4.1.3 Experiment 3 - Comparison to Other Face Representation

Case Description: The objective of this experiment is to compare the performance of
BRIEF-based AFER to the performance of some other face representation methods reported
by Sikka et al. (2012) and Sariyanidi et al. (2013) of using Gabor (Littlewort et al., 2011),
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LBP (Shan et al., 2009), BOW (Sikka et al., 2012), and H-QLZM (Sariyanidi et al., 2013)
on the same datasets with the same configurations of the training and testing (the peak
frame of CK+ dataset with leave-one-subject-out evaluation).

Results: The results of this experiment are summarized in Table 4.1. These results
show that the performance of the proposed method significantly exceeds that of Gabor
and LBP with an improvement on the mean recognition rate of over 4.2% and 13.6 %
respectively. We obtained comparable performance to the BOW and QLZM but with a
smaller standard deviation from the mean recognition rate, suggesting that the BRIEF
representation is more stable.

Table 4.1 Comparison of the BRIEF method with other methods tested on CK+ dataset.

Methods Classifier Recognition rate %

LBP (Shan et al., 2009) SVM polynomial 82.4±2.3

Gabor (Littlewort et al., 2011) SVM Linear 91.8±2.0

BOW (Sikka et al., 2012) SVM Linear 95.9±1.4

H-QLZM (Sariyanidi et al., 2013) SVM RBF 96.1±1.6

BRIEF (present work) SVM RBF 96.0±0.7

Tables 4.2, 4.3, and 4.4 show the confusion matrices of expression recognition using
LBP, QLZM and BRIEF features respectively on the CK+ data set. Results in these tables
show that the BRIEF-based AFER system outperforms the LBP-based and QLZM-based
systems in most of the emotions.

Table 4.2 Confusion matrix for expression classification results using LBP feature on CK+
dataset.

Data Anger Disgust Fear Happy Sad Surprise

Anger 95 2.9 1.1 0 0 1

Disgust 9.7 97.9 11.3 0.1 0 0

Fear 1.9 4 94.1 0 0 0

Happy 0 0 0 100 0 0

Sad 0 3 17 0 80 0

Surprise 0 0.3 3.4 4.3 2 90
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Table 4.3 Confusion matrix for expression classification results using QLZM feature on
CK+ dataset.

Data Anger Disgust Fear Happy Sad Surprise

Anger 100 0 0 0 0 0

Disgust 7.2 91 0 0 0 1.8

Fear 0 3.9 87.5 0 8.6 0

Happy 0 0 0 100 0 0

Sad 0 0 14.3 0 85.7 0

Surprise 0 0 0 0 0 100

Table 4.4 Confusion matrix for expression classification results using BRIEF feature on
CK+ dataset.

Data Anger Disgust Fear Happy Sad Surprise

Anger 98 1 1 0 0 0

Disgust 2 98 0 0 0 0

Fear 0 0 97.4 0 0 2.6

Happy 0 0 0 100 0 0

Sad 0 0 13.4 0 86.6 0

Surprise 0 0.6 2.2 0 1.2 96

4.4.2 Evaluation in Complex Cases

Having understood the ability of the BRIEF feature with the optimal parameters and its
effectiveness concerning the satisfactory recognition rate using small feature vectors in
simple cases of facial expression recognition, we move to investigating more complex
cases. In this section, the sensitivity and robustness of the BRIEF-based AFER with the
optimal parameter are validated in more complex cases of facial expression including
human ageing and compound emotions of a rich set of 22-compound emotions patterns
(6-basic with 15-non-basic plus the neutral expression). Furthermore, a comparative study
among the BRIEF-based, LBP-based, and QLZM-based AFER systems on the problems
under study is presented.

4.4.2.1 Experiment 4 - Ageing Effect on Texture-Based AFER

Case Description: The objective of this experiment is to analyse and understand the effect
of human ageing on the expression's appearance and hence on the performance of the
AFER. The second objective is to assess the robustness of texture face descriptors including
BRIEF, LBP, and QLZM and their ability to accurately discriminate among the expressions
in the presence of an extensive range of age patterns. The idea here is that the presence of
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ageing features which manifest themselves in a similar way to some expression features
might make the system confuse the expression categories due to the similar texture patterns
which will lead to poorer performance in the AFER task. For example, the fold between
the cheek and upper lip can appear in the happy expression of young people and the neutral
expression of old people and thus they have a very similar texture code as shown in Figure
4.9.

BRIEF(6,11,11) parameter settings, which resulted in a 96.0% successful recognition
rate is selected since it yielded a good trade-off between performance and vector length
(see Figure 4.7). We split the subjects from the FACES dataset (described in 3.2.1) into
three age groups. We trained three age-group-specific expression classifiers (one for each
age group) and one age-agnostic classifier (by combining the training sets of each age) on
BRIEF features using the selected parameters. We then tested each classifier on each of
the age group test sets.

Fig. 4.9 Illustration of the similarity between the expression features of young people with
the happy expression (second row) and the ageing features in old people with a neutral
expression (third row). Original image (left) and BRIEF response (middle and right)

94



4.4 Experimental Evaluation

Results: The performance of the age-specific and age-agnostic classifiers is sum-
marised in Table 4.5. These results show that:

• Performance is best on the age-group for which the system was trained, and degrades
as the age difference increases, concluding that ageing has a significant effect on the
system performance.

• Performance on the older group is worse than that on the young and middle-aged
groups, suggesting that it is harder to extract texture expression features accurately
from older faces than younger.

• BRIEF performance using the optimal parameters is stable to some extent with the
FACES dataset compared to the CK+ dataset in the previous experiments.

Table 4.5 Expression classification results BRIEF-based AFER for age-specific and age-
agnostic models.

Test

Groups Young Group Middle Group Old Group All Groups

Tr
ai

n

Young Group 99.8 79.2 65.4 62.5

Middle Group 81.7 96.2 73.3 60.2

Old Group 64.2 80.0 83.5 60.8

All Groups 55.05 58.42 53.3 90.1

Table 4.6 summarizes the results of Table 4.5 concerning the age effects in three cases:

• Within age group (the average accuracies over the diagonal three elements from
Table 4.5).

• Across age group (the average accuracies over all off-diagonal elements from Table
4.5).

• Mixed age group (the average accuracy when all age groups are mixed without
separation).

Going from the worst to the best performance of the classifier, it can be seen that the
overall worst performance is provided by across age group with 73.96% since training
using one age group of the data cannot provide all the expected variation from other groups.
The second best performance is provided by mixed all ages with 90.1%. Finally the best
performance is provided by within age group with 93.1% since the training and the testing
use the same age group data.

We then compare these results to the previous results published by Guo et al. (2013)
and Lou et al. (2018). This comparison shows that:
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• The best performance of within age group is obtained by the method developed by
Guo et al. (2013) with 97.85% using Gabor features.

• The best performance of across the age groups is obtained by the method developed in
this thesis with 73.96% using BRIEF features, suggesting that the feature developed
here is less effected by the ageing features.

• The best performance on all the age groups mixed is obtained by the method
developed by Lou et al. (2018) with 92.1% using LBP features, suggesting that
the approach developed here is less effected by the ageing features.

Table 4.6 Comparison to previous work on FACES dataset.

Reference Within age group Across Age Group Mixed All Groups

Guo et al. (2013) 97.85 64.04 88.80

Lou et al. (2018) 90.05 - 92.1

present work 93.1 73.69 90.1

Table 4.7 illustrates the results of comparative experiments among BRIEF, LBP, and
QLZM on the FACES dataset using the same configurations. These results demonstrate
that:

• Performance of the three methods is best on the age-group for which the system was
trained, and degrades as the age difference increases.

• Performance of the three methods on the older group is worse than that on the young
and middle-aged groups.

• The performance of BRIEF is best on the all groups.

Table 4.7 Comparative experiments among BRIEF, LBP, and QLZM on FACES dataset of
age-specific and age-agnostic models.

Method Young Group Middle Group Old Group All Groups

LBP 96.6±0.3 90.0±0.6 77.8 ±1.3 82.1± 0.5

H-QLZM 91.4±0.5 87.5± 0.7 78.4 ± 1.1 86.3± 0.6

BRIEF(present work) 99.8 ±0.3 96.2±0.6 83.5±1.7 90.1±0.6

Tables 4.8, 4.9, and 4.10 show the confusion matrices of the emotions recognition
system on the FACES data using LBP, QLZM, and BRIEF features respectively.
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Table 4.8 Confusion matrix for expression classification results using LBP-based AFER
on FACES dataset.

Data Anger Disgust Fear Happy Neutral Sad

Anger 81 6.6 4.7 0 5.4 2.3

Disgust 0 73 0 0 0 27

Fear 2 0 81 0 17 0

Happy 0 0 0 91 4.5 4.5

Neutral 0 0 2 0 90 8

Sad 0 0 5.7 0 17.3 77

Table 4.9 Confusion matrix for expression classification results using QLZM-based AFER
on FACES dataset.

Data Anger Disgust Fear Happy Neutral Sad

Anger 94.1 5.9 0 0 0 0

Disgust 0 94.1 0 0 0 5.9

Fear 0 0 82.4 0 11.7 5.9

Happy 0 0 0 100 0 0

Neutral 11.8 0 5.8 0 82.4 0

Sad 11.8 0 0 0 23.5 64.7

Table 4.10 Confusion matrix for expression classification results using BRIEF-based AFER
on FACES dataset.

Data Anger Disgust Fear Happy Neutral Sad

Anger 100 0 0 0 0 0

Disgust 0 100 0 0 0 0

Fear 0 0 88.2 0 5.9 5.9

Happy 0 0 0 100 0 0

Neutral 0 0 0 0 100 0

Sad 5.8 0 0 0 11.8 82.4

These results show that the emotions are less confused using the BRIEF descriptor.
For instance, 27% (see Tables 4.8), 5.9% (see Tables 4.9), and 0% (see Tables 4.10) of the
disgust expression are recognized as the sad expression using LBP, QLZM, and BRIEF
features respectively. The reason for that confusion is due to the similarity between the
extracted features using those face descriptors as illustrated in the first column of Figure
4.9. In this figure, the BRIEF's code of the happy face of young people is similar to some
extent to the BRIEF's code of the neutral face of old people.
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4.4.2.2 Experiment 5 - Compound Emotions Effect on Texture-based AFER

Case Description: In this experiment, the variation of the 22-compound emotions is con-
sidered. This consideration is beneficial for more validation of the optimal parameters and
the texture method's ability to recognise a rich set of 6-basic and 15-non-basic expressions
plus the neutral expression instead of just the 6-basic expressions in previous experiments.
The second benefit is to analyse and understand the effect of the compound emotion on the
performance of the texture-based AFER system. The idea here is that the 22 compound
expressions have large texture pattern similarities among them which might lead to poorer
performance of the classifier in discriminating among them. These similarities are due to
the fact that each compound emotion is generated by combining two of the basic emotions,
resulting in emotions which have partial similarities in muscles’ deformations as shown in
Figure 4.10. In the figure, the appearance of the happily-surprise emotion is partly similar
to the appearance of both the happy and the surprise expressions. These similarities are
highlighted by red and blue rectangles respectively.

Fig. 4.10 Illustration of the similarity between the texture features among basic (happy and
surprise) and compound (happily surprised) expressions. Original image (three top) and
BRIEF response (three bottom).
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Using a set of 2,200 images from the compound emotion dataset described in Section
3.2.2 and the selected BRIEF (6,11,11) parameters, three SVM classifiers were trained on
the 6-basic emotions only (each one trained on different features including: LBP, QLZM,
and BRIEF) and another three SVM classifiers were trained on the whole dataset of 6-basic
and the 15-non-basic (22-compound) expressions.

Results: The results of all the classifiers are summarized in Table 4.11. These results
show that:

• Performance of the three methods is best on the 6-basic expressions and that per-
formance degrades as the compound expression are included and the number of
expressions increases.

• QLZM descriptor shows the best performance on 22 compound emotions dataset.

• The performance of texture-based AFER using the three descriptors is not enough
to capture the variation of 22 class of expressions and hence to discriminate among
them.

Table 4.11 Performance of the LBP, QLZM, and BRIEF method using compound emotion
datasets.

6-basic 6-basic + 15-non-basic(Compound Emotions)

LBP 80.5±1.1 39.8 ±1.7

H-QLZM 82.7 ±3.3 45.5±2.4

BRIEF (present work) 84.3±2.7 42.2 ±1.9

Tables 4.12, 4.14, and 4.13 show the confusion matrices using the classifiers trained
on LBP, QLZM, and BRIEF features on the 22 emotions respectively. Those confusion
matrices reveal that there are huge confusions among most of the expressions in all
the tables of all the features. The simple reason for the low performance and the huge
confusions is due to the large similarities between the 6-basic emotions and 15-non basic
emotions in the Action Units (AUs) used to generate them (see Table 2.3 in Chapter 2).
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Table 4.12 Confusion matrix and accuracy of LBP-based AFER system applied to 22
emotions (a:neutral, b:happy, c:sad, d:fearful, e:angry, f:surprised, g:disgusted, h:happily
surprised, i:happily disgusted, j:sadly fearful, k:sadly angry, l:sadly surprised, m:sadly
disgusted, n:fearfully angry, o:fearfully surprised, p:fearfully disgusted, q:angrily surprised,
r:angrily disgusted, s:disgustedly surprised, t:appalled, u:hate, v:awed).

classes a b c d e f g h i j k l m n o p q r s t u v

a 90 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 6.4

b 0 80 0 0 0 0 0 11.2 9.8 0 0 0 0 0 0 0 0 0 0 0 0 0

c 20 0 30 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40

d 10 0 0 50 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 30

e 0 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40

f 10 0 0 0 0 60 0 0 0 0 0 10 0 0 10 0 0 0 0 0 0 10

g 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 10 20 0 50

h 0 20 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0 30 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0

j 0 0 0 10 0 0 0 0 0 30 0 20 0 20 10 0 0 0 0 0 0 10

k 0 0 0 0 10 0 0 0 0 0 16 0 10 0 0 0 0 0 0 0 30 34

l 0 0 0 0 0 20 0 0 0 0 0 40 0 0 0 0 10 0 0 0 0 30

m 0 0 0 0 0 0 0 0 0 10 10 10 20 0 0 0 0 10 0 10 0 30

n 0 0 0 0 0 0 0 0 20 0 0 10 0 40 0 0 0 0 0 0 0 30

o 10 0 0 30 0 10 0 0 10 0 0 0 0 0 20 10 0 0 0 0 0 10

p 0 0 10 0 0 0 10 0 20 10 0 0 0 20 0 10 0 0 0 0 0 20

q 0 0 0 0 10 0 0 0 0 0 0 0 0 10 0 0 50 0 0 0 0 30

r 0 0 0 0 20 0 10 0 0 0 0 0 0 0 0 0 0 0 0 30 10 30

s 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 50 0 0 20

t 0 0 0 0 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 10 20 40

u 0 0 0 0 20 0 0 0 0 0 30 0 0 0 0 0 0 0 0 10 10 30

v 0 0 0 0 20 0 0 0 0 0 30 0 0 0 0 0 0 0 0 10 0 40
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Table 4.13 Confusion matrix and accuracy of QLZMA-based AFER system applied to 22
emotions (a:neutral, b:happy, c:sad, d:fearful, e:angry, f:surprised, g:disgusted, h:happily
surprised, i:happily disgusted, j:sadly fearful, k:sadly angry, l:sadly surprised, m:sadly
disgusted, n:fearfully angry, o:fearfully surprised, p:fearfully disgusted, q:angrily surprised,
r:angrily disgusted, s:disgustedly surprised, t:appalled, u:hate, v:awed) using BRIEF face
descriptor.

classes a b c d e f g h i j k l m n o p q r s t u v

a 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

b 0 70 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0

c 10 0 20 0 0 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0 0 50

d 0 0 0 30 0 10 0 10 10 0 0 0 0 10 10 0 0 0 0 0 0 20

e 0 0 0 0 40 0 10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 40

f 0 0 0 0 0 70 0 0 0 0 0 10 0 0 10 0 0 0 0 0 0 10

g 10 0 10 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0

h 0 20 0 0 0 0 0 70 0 0 0 0 0 0 10 0 0 0 0 0 0 0

i 0 10 0 0 0 0 10 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0

j 0 0 10 0 0 10 0 0 0 20 0 0 0 30 10 10 0 0 0 0 0 10

k 0 0 10 0 0 0 0 0 0 0 10 0 10 0 0 0 10 0 0 10 10 40

l 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 10 0 0 0 0 40

m 0 0 0 0 0 0 0 0 0 20 10 10 10 0 0 0 0 10 0 10 0 30

n 0 0 10 0 0 10 10 0 10 10 0 0 0 40 0 0 0 0 0 0 0 10

o 0 0 0 40 0 10 0 10 10 0 0 0 0 10 20 0 0 0 0 0 0 10

p 0 0 0 10 0 0 10 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0

q 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 50 0 0 0 0 30

r 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 50 0 30 0 10

s 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0 0 0 0 60 0 0 20

t 0 0 0 0 10 0 20 0 0 0 0 0 0 0 0 0 0 10 0 30 10 30

u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 30 50

v 0 0 0 0 30 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 55

101



Development and Comprehensive Evaluation of BRIEF-Based AFER

Table 4.14 Confusion matrix and accuracy of using BRIEF-based AFER system applied
to 22 emotions (a:neutral, b:happy, c:sad, d:fearful, e:angry, f:surprised, g:disgusted,
h:happily surprised, i:happily disgusted, j:sadly fearful, k:sadly angry, l:sadly surprised,
m:sadly disgusted, n:fearfully angry, o:fearfully surprised, p:fearfully disgusted, q:angrily
surprised, r:angrily disgusted, s:disgustedly surprised, t:appalled, u:hate, v:awed).

classes a b c d e f g h i j k l m n o p q r s t u v

a 88 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

b 0 87 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 5

c 17 0 67 0 8 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0

d 17 0 0 8 0 8 0 17 0 8 0 8 0 8 17 0 0 0 0 0 0 9

e 0 0 0 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

f 10 0 0 0 0 48 0 0 0 0 0 25 0 0 8 0 0 0 0 0 0 9

q 0 0 8 0 8 0 17 0 0 0 8 0 8 0 0 8 0 0 0 33 8 2

h 0 17 0 0 0 0 0 57 8 0 0 0 0 0 8 0 0 0 0 0 0 10

i 0 8 0 0 0 0 0 0 64 0 0 0 0 0 0 8 0 0 0 0 0 20

j 8 0 8 8 0 0 0 0 0 18 8 17 0 33 0 0 0 0 0 0 0 0

k 0 0 17 0 25 0 0 0 0 0 42 0 8 0 0 0 0 0 0 0 8 0

l 0 0 0 0 0 0 0 8 0 0 0 59 0 8 0 0 25 0 0 0 0 0

m 0 0 33 0 8 0 0 0 8 17 8 0 26 0 0 0 0 0 0 0 0 0

n 0 0 0 0 0 0 0 0 25 8 1 8 25 25 0 0 8 0 0 0 0 0

o 0 0 0 0 0 0 0 8 0 0 0 8 8 0 56 0 0 0 0 0 0 20

p 8 0 0 0 0 0 0 17 8 0 0 8 8 0 8 43 0 0 0 0 0 0

q 0 0 8 0 8 0 0 0 0 0 0 33 0 0 1 0 42 0 0 8 0 0

r 0 0 0 0 25 0 25 0 0 0 0 0 17 0 0 0 0 8 0 0 25 0

s 0 0 8 0 0 0 0 8 0 0 8 0 8 0 2 0 0 8 50 8 0 0

t 0 0 0 0 25 0 17 0 0 0 8 0 17 0 0 0 0 8 0 8 17 0

u 0 0 0 0 58 0 8 0 0 0 8 0 0 0 1 0 0 0 0 8 17 0

v 8 0 0 0 0 0 0 17 0 0 0 25 0 0 25 0 0 0 0 0 0 25
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4.5 Discussion

In this chapter, texture features were used to describe a face image, build a texture-based
AFER system, and measure the influence of the ageing and compound emotion appearances
on the performance of AFER. The objective was first to introduce BRIEF features as a
new face descriptor for the application of AFER. The second objective was an assessment
of the development of the texture-based AFER system in two challenges regarding the
expression: the ageing effect and compound emotions.

A parameter sensitivity analysis of BRIEF's free parameters was performed. It showed
insensitivity to the choice of BRIEF's representation to the patch size and the descriptor
length. This means that few calculations are needed for the BRIEF descriptor. We
implemented the proposed approach and compared it to different face representation
methods that were tested on the CK+ dataset. The experimental results clearly show
that the BRIEF-based AFER system outperformed the LBP-based one in terms of the
recognition rate and the size of the representation. For example, our method achieved
a classification rate of 96.0% with a histogram of integers ranged in [0,63], while the
performance using the LBP method was 82.4% with a histogram of integers ranged in
[0,255]. We also obtained comparable performance to the BOW and QLZM but with
smaller standard deviation from the mean recognition rate suggesting that the proposed
model is more stable.

Having ensured that the developed AFER system based on BRIEF features worked
satisfactorily with automatic expression recognition in general, the second objective of
this chapter was to apply BRIEF and further test for more complex cases which were
recognising the expression across the extensive range of ages and recognising 22-compound
expressions. The results indicated that BRIEF achieved satisfactory performance on a
range of facial expression recognition datasets with different characteristics. That might be
becasue BRIEF selects a subsample of pixel pairs at Gaussian weighted random locations
from the described area which gives a good sample of the area. These results also indicate
that the texture measurements of three different face descriptors methods proved that the
age and compound emotions have a significant effect on the system performance. In the
case of the ageing, the best result was obtained using age-dependent classifiers. In the case
of classifying 22-compound emotions, despite the good results using QLZM compared to
other methods with the same configuration, the texture features presented in this chapter
are not sufficient to discriminate among 22-compound emotions and more investigations
are required. Figures 4.11, 4.12, 4.13, 4.14, and 4.15 show examples of the BRIEF code
images (BRIEF response) from the three datasets.

Moving on from texture measurements regarding the effect of the problems under study
on the performance of facial expression understanding, the next chapter deals with another
type of measurements, that of shape analysis and shape measurements.
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Fig. 4.11 Example results of the BRIEF descriptor on the CK+ dataset: original images
(first two rows) display first 8 frames of one subject displaying the surprise emotion in
continuously increasing intensity from neutral to peak, BRIEF code value (last two rows).
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Fig. 4.12 Example results of the BRIEF descriptor on CK+ dataset: original images (first
two rows) display second 8 frames of one subject displaying the surprise emotion in
continuously increasing intensity from neutral to peak, BRIEF code value (last two rows).
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Fig. 4.13 Example results of the BRIEF descriptor on FACES dataset: original image (first
row), BRIEF code value (second row).

106



4.5 Discussion

Fig. 4.14 Example results of the BRIEF descriptor on the compound emotion dataset:
original images (first 3 rows) display 11 compound emotions form left to right neutral,
happy, sad, fearful, angry, surprised, disgusted, happily surprised, happily disgusted, sadly
fearful, sadly angry respectively, BRIEF code value (last 3 rows).
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Fig. 4.15 Example results of the BRIEF descriptor on the compound emotion dataset:
original images (first 3 rows) display 22 compound emotions form left to right sadly
surprised, sadly disgusted, fearfully angry, fearfully surprised, fearfully disgusted, angrily
surprised, angrily disgusted, disgustedly surprised, appalled, hatred, and awed respectively,
BRIEF code value (last 3 rows).
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Chapter 5

Development and Comprehensive
Evaluation of RFRV-CLM Based FEL
and AFER

5.1 Introduction

As stated in Section 2.2.3.2, a robust and automatic facial feature point detector is essential
and would be widely used for facial image analysis in general and AFER in particular in
which the detector is used as a tool to localize the geometrical structure of the target object
and is used then for further analysis such as feature extraction and pattern recognition.
This chapter describes a system for fully automatic FEL using the application described by
Cootes et al. (2012) and Lindner et al. (2015) of using RFRV in CLM. The first objective
of this chapter is to examine the proposed FEL, along with an investigation of which are
the best parameters of the RFRV-CLM framework to fit the problem of facial expression
localisation of faces exhibiting wide variability in facial appearances. The second objective
is to test the strength of the proposed detector to accurately localize the target facial feature
points with the presence of a large range of shape deformations including human ageing,
compound emotions, and expressions's intensity. The third objective is to measure the
influence of the problems’ patterns on the shape features and hence their impact on the
performance of shape-based AFER.

For ease of understanding, this chapter starts by giving our motivations for selecting
the RFRV-CLM framework for facial expression localization in 5.2 and it then gives
an explanation of the RFRV-CLM algorithm in 5.3. In Section 5.4, we introduce our
automated system for Automatic FEL. Section 5.5 presents results of the proposed system
in FEL and AFER tasks respectively under the effect of the problems under study with the
comparison made against the results of alternative methods evaluated on the same datasets.
Finally, Section 5.6 concludes the chapter by providing a summary of the key findings. To
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the author’s knowledge, no previous work studied the sensitivity of landmark localisation
to age.

5.2 Motivations

This section presents the motivations for proposing the RFRV-CLM framework for the
problem of automatic facial expressions localisation.

RFRV-CLM is one of the shape regression-based methods. The key idea of regression-
based methods is the use of a regressor instead of a classifier to vote for the point position
based on the information in nearby regions. In spite of learning a regressor being more
difficult than learning a classifier, a regressor can provide more useful information about
the target location, such as the distance of negative locations (patches) from the positive
locations (patches). This satisfies our requirements of localizing patches that are related
to age and expressions variations from the face image. Conversely a classifier can only
determine whether the image patch is negative or positive. Cootes et al. (2012) and Lindner
et al. (2015) introduce RFRV to the constrained local models (CLM) and found that the
RFRV-CLM framework outperforms alternative discriminative methods (classification and
boosted regression) trained on the same datasets, and it has been applied successfully to
the automatic landmark points localization in several applications and shown remarkable
performance (Bromiley et al., 2015a,b, 2016; Lindner et al., 2015; Lindner and Cootes,
2015; Lindner et al., 2013).

These findings motivated us to look into the generalisation capability of the RFRV-
CLM method for the problem of expression localization. The underlying hypothesis is
that automatically finding the optimal position of facial feature points in the input image
with small mislocalization error will help to obtain robust and accurate results for further
analysis such as feature extraction and facial expression recognition as the target of our
thesis is the building of AFER.

5.3 Method

This section describes the RFRV-CLM framework. The RFRV-CLM algorithm consists
of two main parts. The first part is random forest regression voting (RFRV), in which a
RF regressor is used to search patches and detect the location of a face region in an image.
The second part is the use of constrained local models (CLMs) to fit the most likely points
to the observed shape model from the training data.
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5.3.1 Random Forest Regression Voting (RFRV)

The principle idea of the RFRV algorithm is that the correct answer can be obtained via
the majority votes of a number of independent regressors. In other words, the problem
is solved by combining predictions of a set of decision trees. Each tree is trained by
finding features that best split a given sample of data. The resulting leaf node from a
decision tree contributes to the final decision, reached by majority voting. In relation to
the problem of point localization used in this thesis, a set of random forest regressors are
trained independently to localize points in an image. For each point i in each image I, a
random displacement di is generated by sampling within the range ±dmax. Image patches
of size w2

patch are then sampled at these displacements, and features fi (Haar−features
Viola and Jones (2001)) are extracted from those patches (see Figure 5.1 left). To make
the localizer pose-invariant and to avoid the error due to the inaccurate initialization of
pose during model fitting, the process are repeated with random scales and angles. Each
tree is then trained on the pairs ( fi,di) of a bootstrap to estimate the most likely positions
of the target point. At each node, a decision tree is trained by finding features fi and
threshold t that best divide a given sample of data into two compact groups by minimizing
the following equation.

GT (t) = G({di : fi < t f })+G({di : fi ≥ t f }) (5.1)

Where fi is the feature from sample i and G(..) is a function to find the threshold that
best splits the features based on the variance in displacement di resulting from the split.
The aim is to minimize the entropy in the branches when spitting the nodes using

G(di) = N log |Σ| (5.2)

where N is the number of the displacement in di and Σ the covariance matrix. This process
is terminated at a maximum depth Dmax of the trees or minimum number of samples Nmin

at the node and repeated to generate a forest of ntrees. The tree outputs a displacement from
the given patch of the image, based on learned displacements from the training set, along
with a weight of the prediction (see Figure 5.1 right). For each leaf, the mean and standard
deviation of the displacements of all training samples arriving at that leaf are stored during
training, and this will give the response during testing. Predictions are made using a single
vote per tree and all the votes are accumulated to create the response image. The response
images is then passed to an optimiser (CLM), to shift the shape model points to the best
fitting points given by the random forest.
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Fig. 5.1 Patches sampled at random displacement di (left) and predicted displacements of
a random forest (right).

5.3.2 Constrained Local Model (CLM)

CLM is a model for matching a set of points to an image, where the global shape constraints
are combined with local models of the pattern of intensity. Given a set of training images
with manual annotations xl of a set of n landmark points, where l = 1 . . .n, a statistical
shape model is built by applying principal component analysis (PCA) to the aligned facial
shape vectors (Cootes et al., 2001), creating a model with the form:

xl = Tθ (x̂l +Plb+ r) (5.3)

where xl represents the point’s l position in the reference frame, x̂l represents the mean
shape in the reference frame; Pl is a matrix of the set of eigenvectors corresponding to the
highest eigenvalues, which describe different modes of variation; b is a set of parameter
values of the shape model; r allows small deviations from the model; and Tθ applies a
global similarity transformation with parameters θ .

To fit the model to new image, the best quality of fit Q is found by optimizing the
parameters P = {b,θ ,rl}

Q(P) =
n

∑
l=1

Cl(Tθ (x̂l +Plb+ rl)) s.t bT S−1
b b ≤ Mtand|rl|< rt (5.4)

where Cl is a cost image for the fitting of landmark points l, Sb is the covariance matrix
of shape model parameters b, Mt is a threshold on the Mahalanobis distance, and rl is a
threshold on the residuals. Mt is chosen using the cumulative distribution function (CDF)
of the χ2 distribution so that 98% of the samples from a multivariate Gaussian of the
appropriate dimension would fit. This ensures a plausible shape for a model parameter.

5.3.3 RFRV in the CLM Framework

The idea of using RFRV in the CLM framework is to use RFRV described in Section 5.3.1
to vote for the best position for every landmark point in order to provide the cost image
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Cl in Equation 5.4. During training of the RFRV-CLM the shape model from Equation
5.3 is used to estimate the global pose, θ , of the object in each image by minimising
|Ţ (x̂)− x|2. Each image is resampled into a standardised reference frame by applying
Ir(i, j) = I(T−1

θ
(i, j)). The model is scaled so that the width of the reference frame of the

mean shape is a given value, w f rame. A RFRV is then trained for every point in each image
as described in Section 5.3.1 to be used during the fitting of the model to the new image

That fitting of the RFRV-CLM model to new image starts by estimation of the pose
parameters b and θ on the new image. The reference frame is used for the search operation
in order to allow for the variations in both scale and pose across the dataset. The initial
estimate of shape and pose parameters are used to sample the region of interest of the
image into the reference frame and an area around each landmark is searched within
±dsearch displacements to predict the position using the pre-trained model as described
in Section 5.3.1. The response image R is computed at every area of the search for each
point independently. After that an optimization for shape model parameters is performed,
in which all the response images of all the landmark points are combined with the global
shape model of trained SSM find the best quality of fit Q over the shape parameters
P = b,θ ,rl

5.4 Fully Automatic Expressions Localization System

The architecture of the proposed FEL is composed of two main stages. The first stage is a
global model or global search, which finds the approximate positions of the eye centres
using the RFRV technique described in 5.3.1, while the second stage is a local model or
local search which uses the estimated landmark values that are obtained from the global
model to locate all the facial key points using the RFRV-CLM described in 5.3.2, by
searching in a Coarse-to-Fine RFRV-CLM fashion. Figure 5.2 illustrates the training and
testing phases of the proposed FEL system.

Fig. 5.2 Flow-chart giving an overview of the proposed automatic facial expression local-
ization (FEL) system. See main text for details.
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5.4.1 Global Models

Two reference points with a bounding box are set to capture the object of interest. The
training phase of the global model runs as follows: for each image in the training set,
a bounding box with two reference points corresponding to the eyes'centres is set to
determine the face area required to be captured and its position, orientation and scale.
These two points are chosen because they have approximately a constant separation across
individuals and hence this allows us to capture the same area for all the images in the
dataset (Dodgson, 2004). For each image many samples i are sampled with arbitrary
displacement in angle, scale, and position, giving the detector the ability to be invariant
to the local search range. For each sample i, Haar features fi are extracted at the random
displacement di within the bounding box. A RF is then constructed in which each tree
is trained independently on a bootstrap sample of pairs of ( fi,di) as described in 5.3.1
to learn the functional dependency between the centre of the patch and the true position,
producing a full object (face) detector to be used on the test images.

The testing phase of the global model on a new image runs as follows: a sliding window
approach is used to scan the new image and patches of several combinations of scales,
angles, and pose are sampled. Features fi are then extracted at each combination and
sent to the detector to make predictions of the true centre of the reference frame, and the
response images R is then obtained. Once all the response images R are calculated for
every combination of scale, angle and pose, all the maxima will ranked and the predictions
with the most votes are used to get the position of two points from the reference frame
corresponding to those in the training set. The final output from the global model is a
bounding box with two points used to initialize the local model. Figure 5.3 illustrates the
10 best fits of the output of the global model detector.

Fig. 5.3 Visualization of 10 best fits of the global model detecting the approximate position
of two reference points of the eyes centres.

114



5.4 Fully Automatic Expressions Localization System

5.4.2 Local Model

Each image in the training set is labelled with n landmark points, xl , where l = 1 . . .n. The
shape of the face can be encoded as:

x = (x1, ...,xn,y1, ...,yn)
T (5.5)

Then, from the points and the images, an SSM is trained as described above in Equation
5.2. Within the local model, a set of single local detectors are trained independently for
each point using the method described in 5.3.1 to localize points in a new image. During
training, for every point l in each image I, a random displacement d j is generated within
the range ±dmax. Image patches of size w2

patch are then sampled at these displacements,
and features f j are extracted from those patches. To make the localizer pose-invariant
and to avoid the error due to the inaccurate initialization of pose during model fitting, this
process is repeated with random scales and angles. Each tree in the forest is then trained on
the pairs ( f j,d j) to estimate the most likely positions of the target point. At each node, a
decision tree is trained by finding features f j and threshold t that best splits a given sample
of data into two compact groups as described in Section 5.3.1.

During testing, the process of matching the model to a new image runs as follows:
for every point around the initial estimate from the previous model or from manual
initialization, a set of patches are sampled randomly. Features are extracted at each location
in the grid and fed to the regressor to predict the most likely matching position. This
process is performed independently for each point. The shape model from Equation 5.2 is
then used to regularise the results via a series of searches, finding the parameters which
maximize the total votes as in Equation 5.4. The number of the search iterations Nsearch

depends on the searching range ±dsearch as well as the error between the initialization of
the model and the target points. Figure 5.4 shows the superposition of vote accumulation
images of the 76-point face model (left) and the corresponding captured points (right).

5.4.3 Coarse-to-Fine RFRV-CLM

To improve the accuracy and efficiency of the local models, the local search is implemented
using RFRV-CLM in a coarse-to-fine multi stage framework with increasing resolution of
frame width by changing the number of pixels in the reference frame. In the first stage,
the lower resolution of the reference frame is used to roughly estimate the position of
every landmark point. The second stage uses a higher resolution of the reference frame to
refine the results of the first stage and so on. This process contributes to learning a good
initial model and searches for the optimal model smoothly to avoid missing fairly good
intermediate models in subsequent procedures (see Figure 5.5).
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Fig. 5.4 Fully automatic FEL model: superposition of 76 local models votes (left), and
final automatic points’ positions outlining the face components (right).

Fig. 5.5 Illustration of three local stages of RFRV-CLM searches with the model iterating
over the various frame width (w f rame)

5.4.4 Combined Global and Local Models

Once the Global and Local models are trained and combined, the fully automated facial
landmark annotation system is started by putting a dense annotation of n points onto the
test image. The single global detector is then started to predict the most likely position of
the object of interest in the input image, producing a bounding face box and two reference
points r1 and r2. The predicted poses regarding r1 and r2 from the global model will then
be used to initialize the local models which start from the first stage with low resolution
to estimate the position of every landmark point from the model and then use the second
stage of higher resolution to refine the solution to give the optimal location coordinate for
every model point, ending in a series of automatic points.
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5.5 Experimental Evaluation

A series of experiments was performed in order to evaluate the performance of the RFRV-
CLM framework in FEL and AFER tasks against the effects of the problems under study.

5.5.1 Evaluation in Facial Expression Localization

A series of experiments was performed in order to evaluate the performance of the RFRV-
CLM framework in FEL task. The first experiment is focused on parameter optimization
in order to find which are the best RFRV-CLM free parameters for the problem of facial
expression localization. Then several experiments are performed for more validation of
the method and the optimal parameters under a large range of facial activities and their
overlap with the expressions variation that might hinder the process of placing the points
around the target contour correctly and hence might lead to poor ability by the automatic
detector to accurately detect the key points.

Database: The proposed FEL is evaluated using five different facial expression
datasets, including the Cohn−Kanade dataset for expression and its intensity, the FACES,
LifeSpan, and NEMO datasets for ageing and expression, and the compound emotions
data set for compound expressions (see Section 3.2 for more details about the datasets).

Evaluation Metric: The accuracy of the landmark localization is tested by comparing
the locations of automatically detected points against the manual annotation (ground-
truth) across each test image. Following the common practice in Cristinacce and Cootes
(2008), the errors are given as the Euclidean distance between the detected point and the
corresponding manual annotation and displayed as a Cumulative Density Function (CDF)
of the mean point-to-point error as a percentage of the Inter-Ocular Distance (IOD), defined
as:

en =
1

ndeyes

n

∑
i=1

|pi
a − pi

m| (5.6)

Where n is the number of model points, pi
m is the manually annotated location of point

i, pi
a is the automatically detected facial point location, and deyes is the distance between the

pupil centres, defined as the distance between the centres of the eyes i.e. |x̂le f teye− x̂righteye|.
All the experiments are entirely dataset-dependent and subject-independent for the training
and testing. Some experiments are dataset-independent for the training and testing. We
further estimated the error in millimetres, using a mean IOD in humans around 63 mm
(Dodgson, 2004) .

Global model training and testing during the training of the global model, we sample
336 patches in 20 random positions (within 50% of the reference frame position) for 15
random scales (in the range of ±15%) and angles (in the range of ±15°). Including the
true pose. We then trained a RF consisting of five trees, and used random subsets of size
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500 when there were more than 500 samples to be processed at a node. The stopping
criteria for node splitting were either a tree depth of 10 or fewer than 5 samples per node.
During testing, we used the output detector to scan every test image at seven orientations
ranging from −30 to 0 and at a range of scales such that the height of the bounding box is
30% to 60% of the image height. Figure 5.3 illustrates the 10 best fits of the output of the
global model detector.

5.5.1.1 Experiment 1 - RFRV-CLM's Free Parameters Optimization

Case Description: Usually in the case of facial expression analysis regarding the localiza-
tion of points, a large error in the distance between the automatically labelled point and the
manually labelled point is unacceptable, since subtle changes in facial expression will be
not extracted due to the errors in facial points localization. Therefore, in this experiment,
we test, validate and optimize the parameters of the proposed method in order to find
the optimal parameters that give the best and acceptable error for the problem of facial
expression point’s detection.

There are two important sets of parameters for the RFRV-CLM to optimize. The first
type is the parameters of the RFs: the number of trees, ntrees; the number of the random
features to be considered at each node, n f eat ; the minimum number of training examples at
each node, Nmin and the maximum depth of each tree, Dmax. The second type of parameters
are those relating to the extraction of data from the image: the width of the reference
frame, w f rame; the size of the sampled patch wpatch, the range used to generate random
displacement for extracting Haar-like features, dmax and the search range for each search;
dsearch.

Since the RFRV-CLM is applied using a multi-stage framework, first, experiments are
performed to optimize the first stage parameters. These are used then to initialize and
optimize the second stage parameters and so on. Every experiment is initialized with the
global model to detect a face region and the two reference points. In every experiment
the model was trained on 50% of the data, producing an n-points model then is tested on
the other 50%. The training and testing data was then interchanged and the experiment
repeated.

The optimal parameters were found by performing grid-search experiments of a series
of two-fold-cross-validation of three repeats on the FACES dataset in which w f rame is set
to a frame width of (10, 20, 30, ..., 160), wpatch is set to a patch size of (12, 15, 18, 21, 24),
ntrees is set to (1, 2, ..., 9, 10). The Nmin, n f eat , Dmax, dmax, and dsearch parameters are fixed
to 1, 500, 25, 12, and 7 respectively with random displacements in scale (in the range of
22 %) and rotation (in range of 13◦) as they showed a constant performance (Lindner et al.,
2013).

Although the datasets described in this thesis covered a wide range of expressions,
the FACES dataset is chosen for the optimization experiment since it covers a wide range
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of variations including subjects, age, gender, and expressions. In addition, all of these
variations are equally distributed in this dataset. To be sure of that selection, the SSM are
built from the images of each dataset with the corresponding manual landmarks. Then the
modes of variations are extracted from each shape model. The number of modes represent
99% of the data is summarized in Table 5.1.

Table 5.1 Modes of variations of the statistical shape models of three datasets

Database Subjects Images Landmarks Modes

Ageing (FACES) 171 2052 76 59

compound (CE) 100 2200 78 51

intensity (CK+) 123 180 sequences 70 31

Results: Figures 5.6, 5.7, and 5.8 show complete results of wpatch, w f rame, and ntrees

of the three stages respectively. These results indicate that:

• Varying the patch size has a little effect on localization performance and the best
quality of fit with the minimum point-to-point-error is obtained with 21 pixels for
the three stages as illustrate in Figure 5.6.

• Varying the frame width has a significant effect on the performance as shown in
Figure 5.7. For instance, with the optimal patch size of 21 pixels, the optimal frame
width of stage 1 is 30 pixels, the optimal frame width of stage 2 is 60 pixels using
a series of 30-60, and the optimal frame width of stage three is 120 pixels using a
series of 30-60-120 and any additional frames do not show significant improvement.

• In the earlier stages of the models one or two trees are sufficient and any further trees
do not contribute to any improvement as illustrated in Figure 5.8. For the third stage
of the model best performance of quality of fit is obtained with seven trees and any
increase in the number of trees does not show any improvement in the performance.

• the parameters have similar performance in all the stages in which varying the frame
width significantly effect on the performance compared to the patch size and number
of trees. Table 5.2 describes the optimal parameters of the three stages.

Figure 5.9 shows the effectiveness and summary results of using the RFRV-CLM
method and the optimal parameters in several combinations of single and multi-stages on
the FACES dataset. These results reveal that the three stage model with a 30-60-120 series
of increasing frame width gives the best results with a wide range of convergence across
6-basic expressions and a wide variety of different ages. The mean point-to-point error
between the manual and automated points for this data set (FACES dataset) was within
3.4% (2.14 mm) on 99% of all the data.
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Fig. 5.6 Patch size and frame width optimization results with 1-stage (top), 2-stages (mid-
dle), and 3-stages (bottom). Patch size 21 pixels shows the best performance for the 3
stages with frame width 30, 60, 120 pixels of stage 1, stage 2, and stage 3 respectively.
Stage-2 is initialized by stage-1’s results. Stage-3 is initialized by stage-2’s results. Perfor-
mance is given as a point-to-point error as a percentage of the IOD. Error bars are given as
a standard deviation of the repeat of three runs.
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Fig. 5.7 Frame width optimization results with 1-stage (top), 2-stages (middle), and 3-stages
(bottom). Frame width of 30 pixels, 60 pixels, and 120 pixels show the best performance
for stage-1, stage-2, and stage-3 respectively. Stage-2 is initialized by stage-1’s results.
Stage-3 is initialized by stage-2’s results. Performance is given as a point-to-point error as
a percentage of the IOD.
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Fig. 5.8 Number of trees optimization results of three stages: (1-2) trees of stages one
and two and 7 trees for stage three show sufficient performance. Stage-2 is initialized
by stage-1’s results. Stage-3 is initialized by stage-2’s results. Performance is given as a
point-to-point error as a percentage of the IOD.
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Table 5.2 Optimal values for three stages RFRV-CLM parameters used in this thesis for
facial expression localization (FEL)

Parameters Stage-1 Stage-2 Stage-3

ntrees 1-2 1-2 7

n f eat 500 500 500

Nmin 1 1 1

Dmax 20 20 20

w f rame 30 60 120

wpatch 21 21 21

dmax 12 12 12

dsearch 7 7 7

Fig. 5.9 Performance evaluation of the combination of using optimal stages parameters on
FACES dataset.

5.5.1.2 Experiment 2 - Age Effect on Automatic Landmark Localization

Case Description: In the experiment described in Section 5.5.1.1, the proposed detector
was optimized and evaluated with the presence of a large range of expression and age
variabilities. The experiment in this section aims to investigate the effect that age patterns
may have on the point localization performance. The aim here is not only to investigate
the effect of the age pattern on the model performance but also to perform more validation
for the optimal parameters of the proposed FEL.
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The idea here is the presence of age features, which appear in an uncontrolled process
under the effect of several internal and external factors such as health, lifestyle and weather,
might hinder the process of placing the points around the target contour correctly and
hence might lead to poor ability by the automatic detector to accurately detect the key
points. Figure 5.10 highlights and compares the areas of the facial features where the
consistent landmark placing across the object was impeded due to the deformation in the
muscles of the face owing to the ageing effect which leads to a lack of locally distinctive
structures. In the figure, the eyelid’s appearance is different in young, middle, and old aged
people in which a small part of the eye border with the middle age and a large part with
the old age is hidden due to the sagging eyelids (see red circle in Figure 5.10). Further, the
blue and black curves in the same figure illustrate the distortions in the mouth and chin
areas due to the ageing.

Fig. 5.10 Illustration of the effect of ageing patterns on the appearance of the contour of
face components: young age (left), middle age (middle), and old age (right).

In this experiment, 2052 images of three age groups from the FACES dataset described
in 3.2.1 are used. Subjects in each age group are split into training (50%) and testing
(50%) sets. Three age-group specific RFRV-CLM-based FEL models were trained using
the parameters from Table 5.2, one for each age group. The resulting models (young-
group model, middle-group model, and old-group model) were then tested on each of
the age group test sets. One age-agnostic RFRV-CLM-based FEL model was also built
by combining the training sets from the three groups. The models were then tested by
combining the test sets from the three groups.

Point-to-Point Results: Figure 5.11 (a), (b), and (c) summarises the results for each
age-specific model. The results from the age-group-specific detectors show that for all
models the errors increase as target age increases; each age-specific model works better
on the younger test group than the older test group, suggesting that it is harder to locate
features accurately on older faces than younger.

Figure 5.11 (d) compares the performance of a model trained on all ages (age-agnostic
model) to the age-specific point detectors. It shows that the age-agnostic model works
almost as well as the specific models for each age range, it is especially true for the middle
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age data. This might be because the middle-age data contain some faces whose apparent
age is younger than their chronological age, while some look older, so this age group
has some of the characteristics of the younger and older age groups, making it somewhat
similar to the agnostic group.

Furthermore, running the age-agnostic model on the old-age data set performs slightly
better than the old-age model. This finding might be because not only does the age-agnostic
model contain more shape information, enhancing its performance, but it might also be
because some older faces’ apparent ages are younger than their chronological age. Running
the age-agnostic model on the young-age data set also performs slightly better than the
young-age model. Again this might be because of a mismatch in the apparent ages.

We thus use the age-agnostic models for locating the points in subsequent experiments,
as it avoids the requirement to know the target age. The age-agnostic model achieves an
error below 3.4% (2.1 mm) on 99% of examples. Table 5.3 shows the statistics derived
from Figure 5.11 of the fully automated system using a 3-stage RFRV-CLM .
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Fig. 5.11 CDFs of the mean point-to-point errors of the 76-point 3-stage RFRV-CLM
age-group-specific detectors: (a) trained on the young age group data and tested on the
young, middle, and old age groups data, (b) trained on the middle age group data and
tested on the young, middle, and old age groups data, (c) trained on the old age group data
and tested on all three age groups data, and (d) comparing age-group-specific detectors to
the age-agnostic detector: black lines represent the young group error when tested with
age-group-specific and age-agnostic models, red lines represent the middle group error
when tested with age-group-specific and age-agnostic models, and blue lines represent the
old group error when tested with age-group-specific and age-agnostic models.

126



5.5 Experimental Evaluation

Table 5.3 Statistics of the mean point-to-point errors between manual and automatic points
detected using the FACES dataset derived from Figure 5.11.

Train Test Mean Median 90% 95% 99%

Young Young 1.45 0.836 1.58 1.82 2.58

Young Middle 1.39 1.28 2.16 2.51 3.63

Young Old 1.76 1.62 2.66 3.09 4.63

Middle Young 1.3 1 1.69 2.29 2.79

Middle Middle 1.44 1.35 1.97 2.47 3.52

Middle Old 1.78 1.66 2.64 3 4.62

82 Old Young 1.71 1.64 2.48 2.78 3.64

Old Middle 1.76 1.68 2.56 2.88 3.64

Old Old 1.82 1.77 2.62 2.9 3.54

Mixed Young 1.18 0.763 1.43 2.1 2.62

Mixed Middle 1.40 1.30 2.13 2.53 3.27

Mixed Old 1.74 1.63 2.61 3.03 3.78

Mixed Mixed 1.66 0.64 1.15 1.45 3.4

Overall Shape: Figure 5.12 shows the effect of varying the first four shape parameters
of the age-group specific models and age-agnostic model with ±3 standard deviations from
the mean value, describing the global variations in the points and the difference across
the age. The shape models have 53, 55, 56, and 59 modes for young, middle, old, and
age-agnostic models respectively, which explain 98% of the variations in the landmarks’
positions in the training set.

Quantitative Results: Figure 5.13 shows the quantitative results of the points’ po-
sitions corresponding to the internal facial components (i.e. the eyes, eyebrows, nose,
and mouth) and the face outline (i.e. the chin). These results show that: (i) The old data
shows the maximum mean error of all points, considering the age-specific models. This
might be because age-related structural changes in the face across the different age groups
cause a difficulty in predicting the best position for each facial point. (ii) The chin points
exhibit the maximum mean error on all of the groups. This result is likely due to both the
poor local image texture of these points and the fact that the face outline is easily affected
by variations in pose and age-related changes in structure. (iii) Very small mean errors
less than 2% of the IOD are found around the eyes, nose, mouth and eyebrows. (iv) The
age-agnostic model in some parts such as mouth, brows and chin of the face components
performs as well as or better than some of the age-group-specific models.
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Fig. 5.12 Shape modes showing the shape changes across the age process.

Fig. 5.13 Mean point-to-point errors between manual and automatic points of face compo-
nents of FACES dataset.
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5.5.1.3 Experiment 3 - Cross Data Evaluation (Transfer Learning)

Case Description: A key aspect of evaluating the performance of any learning model is
to train and test the model using different datasets. The benefit here is to avoid over-fitting
and to test the ability of the algorithm to generalize to new (unseen) data. In the previous
experiments, the proposed FEL was trained using samples with a wide range of ages and
expressions from the FACES dataset, and produced a 76-point model to use on the test data.
The experiment in this section investigates the ability and generality of this model to adapt
to new datasets: the LifeSpan and NEMO datasets of fake and spontaneous expressions.
The LifeSpan and NEMO datasets are not labelled manually.

Results: The automatic localization results were very satisfactory on these datasets
of posed and spontaneous expressions. Figure 5.23 shows examples of successfully and
unsuccessfully automatic found points from samples of different ages from the LifeSpan
and NEMO datasets.

5.5.1.4 Experiment 4 - Compound Emotions Effect on Landmark Location

Case Description: For further testing of the proposed facial landmark detector, in this
experiment, the variation of 22-compound emotions is considered. This experiment is
beneficial for more validation of the proposed detector along with the optimal parameters
against a rich set of 6-basic and 15-non-basic expressions plus the neutral expression
instead of only the 6-basic expressions in the previous experiments. The problem with the
compound emotions is that most of the 22 emotion's shapes are partly similar since each
emotion is generated from a combination of two basic emotions. For instance, Figure 5.14
shows the combination of happy and surprise expressions that generates a happily-surprise
expression, in which the muscle’s deformations are partly similar to both the happy and
surprised expressions (see highlighted parts). These similarities lead to huge variations
and it might hinder the process of the detector to accurately localize the fiducial points
automatically and by consequence, the process of facial expression recognition will be
hindered as well.

Fig. 5.14 Illustration of the similarities between the basic emotion and compound emotions.
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In this experiment, 2,200 images from the compound emotion dataset annotated with
78-points were used and split into training (50%) and test (50%) sets. RFRV-CLMs using
the parameter values from Table 5.2 were trained on the training set. The resulting model
was tested on the test set and then the process was repeated with the test and training sets
interchanged.

Point-to-Point Results: Figure 5.15 shows the CDF of the mean point-to-point error
of different stages of the 78-point model computed after running different stages of the
model from a range of perturbed positions on the set. The results show that the two stage
model with 60-120 frame widths or the three stage model with 30-60-120 frame widths
again gives the best accuracy of the RFRV-CLM fitting with a wide range of convergence
across basic and non-basic expressions. The mean point-to-point error between the manual
and automated points detected by the model is within 5.71% (3.6 mm) on 90% of the
data, which gives a good indication of the robustness of the method when tested on a
wide variation in the shape and appearance of 22 emotions. Figures 5.24, 5.25, and
5.26 show examples of successful and unsuccessful results of one person displaying 22
compound expressions. The failure was mostly around the mouth where the mouth features
have disappeared owing in the extremely angry expression. Overall, the mouth corners
are detected with less accuracy than other landmarks, as they are affected more under
expression changes.

Fig. 5.15 Performance evaluation of the combination using optimal parameters using the
compound emotions dataset.
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Having proved the capability and the generality of the proposed model against 22-
compound expressions, a further experiment was performed to investigate the effect of
the compound expressions on the performance of facial features key points localization.
We used 2,200 images: 700 images of the basic expressions set and 1,500 images of the
compound expressions set. Each set is divided into (50%) training and (50%) testing
(person independent), We trained three FEL models as follows: (i) trained on the basic
expressions only and tested on the basic and compound data, (ii) trained on the compound
expressions only and tested on the basic and compound expressions, and (iii) trained on
the all the data and tested on basic and compound expressions.

The results from the three models are summarized in Figure 5.16 which shows the
CDFs of the mean point-to-point error and Table 5.4 which shows the statistics derived
from Figure 5.16. These results show that compound features have a significant effect
on the point-localisation process and the errors are increased by including the compound
emotions in the training set. For example, in the case of basic expression localization, the
smallest error is obtained if the model is trained on basic data only with 3.32% (2.1 mm)
mean error on 99% of the data and the error increase when including the compound data in
the training set as shown in Table 5.4. In the case of compound expressions, despite smaller
errors being obtained using the model trained on the compound data only with 7.12% (4.7
mm) mean error, we showed that using the model trained on the basic emotions only with
7.29% (4.6 mm) mean error is sufficient to generalize across 22 emotions. This might be
because each compound expression is generated by combining two basic emotions. In
summary, the results in experiment 4 indicated that training the FEL model using the basic
expressions data only is sufficient to detect the facial features points of both basic and
compound emotions.

Table 5.4 Statistics of the mean point-to-point errors between points detected manually
and automatically in the compound emotions dataset.

Train Test Mean Median 90% 95% 99%

Basic Basic 2.45 0.72 1.47 1.91 3.32

Compound Basic 2.48 0.72 1.41 1.85 4.57

Basic + Compound Basic 2.71 0.91 2.08 2.54 4.29

Basic Compound 3.94 3.67 5.44 5.97 7.29

Compound Compound 3.76 3.48 5.23 5.83 7.12

Basic + Compound Compound 4.17 3.94 5.47 6.37 7.79
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Fig. 5.16 CDFs of the mean point-to-point errors comparing the basic expressions model
to the compound expressions model.

Overall Shape: The basic and compound shape models have 44 and 52 modes respec-
tively, which explain 98% of the variation in the landmarks’ positions in 700 images for
the basic and 2200 images for the compound training set. Figure 5.17 shows the effect of
varying the first four shape parameters with ±3 standard deviations from the mean value
of the compound and basic models, describing the global variations in the points and the
difference between the basic and compound data.

Fig. 5.17 Shape modes showing the difference in shape changes between basic and com-
pound shape models.
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Comparing to Other Methods: Table 5.5 compares our results on the compound
emotions dataset to the results of alternative methods reported by Du et al. (2014) of using
AAM (Cootes et al., 2001) AAM with RIK (Hamsici and Martinez, 2009), the Manifold
approach (Rivera and Martinez, 2012), and the Pairwise optimization approach Du et al.
(2014). These results show that RFRV-CLM outperforms the other techniques.

Table 5.5 Comparison among the results of the proposed FEL system and the results of the
alternative methods tested on the compound emotions dataset.

Methods Mean points-to-points error %

AAM (Cootes et al., 2001) 7.19

Manifold approach Du et al. (2014) 7.65

Active Appearance Model with RIK (Du et al., 2014) 6.34

Pairwise optimization approach (Du et al., 2014) 5.39

RFRV-CLM (Present work ) 4.60

5.5.1.5 Experiment 5 - Expression's Intensity Effect on Landmark Location

Case Description: In the previous experiments, the proposed FFPD is optimized, tested,
and validated against the variations of three age groups with six basic expressions (Experi-
ments 1 and 2), across datasets (experiment 3), and 22 compound emotions (experiment 4).
In this experiment, the variations of the intensities with which expressions are shown is
considered. This consideration is beneficial for more validation for the presented FEL with
the optimal parameters. The idea here is that the shape features for the expressions with
different intensity are partly different. For instance, the contours of the open eye and mouth
when showing surprise have different diameters as the intensity of the expression increases,
as shown in Figure 5.18 Therefore, having an accurate and robust FEL to generalize across
different intensities is necessary.

The experiment was performed using a set of 180 sequences from 62 subjects displaying
1-6 emotions of the CK+ dataset. Each sequence from the CK+ dataset began from a neutral
expression and ended with the peak intensity of each expression, resulting in 3,164 images.
Each frame of each sequence was annotated with 70 landmark points. RFRV-CLM using
the optimal parameters described in table 5.2 was trained on half of the data, producing a
70-point model. The resulting model was tested on the test set (the other half of the data)
and then the process was repeated with the test and training sets interchanged.
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Fig. 5.18 Illustration of the changes in face components’ shape of one person from CK+
dataset displaying the surprise expression with increasing intensities: ≈ 0% happy (left),
≈ 50% happy (middle), and ≈ 100% happy (right).

Point-to-Point Results: Figure 5.19 shows the CDF of the 70-point model computed
after running different numbers of stages of the model from a range of perturbed positions
on the set. Experiments and results, broadly speaking, show that applying three stages of
30-60-120 pixels frame widths of RFRV-CLM performs best. The results also show that
the accuracy of the three stages of RFRV-CLM fitting has a wide range of convergence
across different intensities of expressions. The mean point-to-point error between the
manual and automated points for this data set was within 3.97% (2.5 mm) on 95% of the
data, which means that the model range can successfully capture the facial-expression
points at different intensities. Figures 5.27 and 5.28 show the performance on one video of
a person showing the surprise emotion in increasing intensity.

Fig. 5.19 Performance evaluation of combination using optimal stages parameters on CK+
dataset.
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Overall Shape: The shape model has 31 modes, which explain 98% of the variation
in the landmarks’ positions. Figure 5.20 show the effect of varying the first four shape
parameters within ±3 standard deviations from the mean value of the models.

Fig. 5.20 Effect of varying each of the first four modes of CK+ data shape model parameters
in turn between ±3 slandered deviation.

Comparison to other Methods: Table 5.6 compares our results to the results of
alternative methods: using AAM (Cootes et al., 2001), AAM revisited (Matthews and
Baker, 2004), Restricted Boltzmann Machines (RBM) using the Gaussian assumption
(Wu et al., 2013), Restricted Boltzmann Machines (RBM) combined using Kernel Density
Estimation (KDE) (Wu et al., 2013), and Gabor feature facial feature point detection: a
comprehensive survey based boosted classifiers (Vukadinovic and Pantic, 2005) applied to
the CK+ dataset. These results show that RFRV-CLM outperforms the other techniques.
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Table 5.6 Experimental results of the proposed method compared to the alternative methods
tested on the CK+ dataset.

Methods Mean error %

AAM Cootes et al. (2001) 9.43

Active appearance models revisited(AAMs) (Matthews and Baker, 2004) 5.82

Gabor feature based boosted classifiers (Vukadinovic and Pantic, 2005) 7.00

RBM using Gaussian assumption (Wu et al., 2013) 4.83

RBM using KDE (Wu et al., 2013) 5.11

RFRV-CLM (Present work) 3.19

Summary: In summary, the empirical evaluation using the five different facial ex-
pression datasets demonstrated that a two stage model with 60-120 pixels frame width
or a three stage model with 30-60-120 pixels frame width with the optimal parameters
from Table 5.2 can give excellent performance for solving the problem of automatic facial
expression feature detection across a wide variation in the age of the subject, 22 different
emotions and the intensities of each expression.

Figure 5.21 summarizes the quantitative results of the internal facial components (i.e.
eyes, brows, nose, mouth) and the face outline (external) (i.e. chin) on the three datasets
used above. These results demonstrate that with the FACES dataset (red bars), the chin
points exhibit the maximum mean error. This result is probably due to both the poor
local image texture of these points and the fact that the face outline is easily affected
by variations in pose and ageing. With the compound dataset (green bars), the mouth
points exhibit the maximum mean error since they are subject to numerous variations of
22 different expressions. With the CK+ dataset, the mean error is approximately the same
in all the face components since the capturing points started from the neutral state of the
emotion and the intensity increased gradually in all the face points when the person showed
expression.
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Fig. 5.21 Mean point-to-point errors between manual points and automatic points of the
face components (eyes, nose, mouth, brows and chin) of FACES, compound and CK+
datasets.

The experiments (optimization and training) were performed using a 9,288 core cluster
in The Manchester of University. For testing only a single processor core was used. The
average time taken to annotate the 76 points across 1026 images was 157.5 millisecond
for each image. Figures 5.22, 5.24 and 5.25, and 5.27 and 5.27 show examples of the
manual annotation, response images and the automatic output points of five different facial
expression data set of different ages, 22 expressions, and continuous intensity.
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Fig. 5.23 Example results of the proposed FEL system trained using FACES dataset and
tested on two ageing datasets: NEMO dataset of spontaneous expressions (top two rows)
and LifeSpan dataset (bottom two rows).
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5.5.2 Evaluation of Automatic Facial Expression Classification

In this section, we use RF classifiers to measure both the impact of the automatically found
points’ accuracy on the performance score of AFER and the influence of ageing, compound
emotions and intensity on the accuracy of expression recognition. The accuracy of each
classifier was tested by comparing the recognition rate of recognizing the expression
using features of the automatic-based points against the recognition rate of recognizing
expression using the features of the manual-based points. For expression classification,
both the average of all classes with the standard error and per-class (confusion matrix)
classification accuracy between the ground truth label and the predicted label are reported.
To avoid over-fitting and identity bias issues, 10 fold cross validation (person independent
experiments) are applied. For validation purpose of the shape-based AFER, simple and
complex cases of facial expression recognition are considered. Every image is represented
using the shape features, texture features, and appearance features. The shape feature is
obtained by building a statistical shape model (SSM) which provides a linear model of the
distribution of a set of points in an image. It represents the shape of the relevant object as a
linear sum of modes representing the main variations of the shapes. The training data set
consists of a set of images I labelled with N landmark points, xl , where l = 1, ...,N.

The shape of the face can be encoded as

x = (x1, ...,xn,y1, ...,yn)
T (5.7)

A statistical shape model Cootes et al. (1995)) is trained by applying Principal Com-
ponent Analysis (PCA) to the aligned facial shape vectors, creating a model with the
form:

x = x̂+Pb (5.8)

where x represents the shape vector in the reference frame, x̂ represents the mean shape;
P is a matrix of the set of eigenvectors corresponding to the highest eigenvalues, which
describe different modes of variation; b is a set of parameter values of the shape model.

To obtain the texture features, we build a texture model Cootes et al. (2001). For each
example in the training set we warp the face into a reference frame defined by the mean
shape, then sample at regular positions to obtain a vector of intensities g. We normalise
each vector then apply PCA to obtain a texture model of the form

g = ĝ+Pgbg (5.9)

Where bg is a vector of weights of the modes P. The texture of a new example can be
encoded as the vector bg which best fits such a model to the intensities from the sample.
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To extract the appearance features in which the correlation between shape and texture
features are learned, an appearance model Cootes et al. (2001) is built by applying another
PCA to the concatenation of the shape b and the texture bg parameters. The concatenation
is performed in a weighted form to compensate for the difference in units:

ba =

(
Wb

bg

)
(5.10)

where W is a diagonal matrix of weights for each shape parameters. W is chosen to
balance the total variation in shape and texture,

W =

(
TotalVar(texture)
TotalVar(shape)

) 1
2

I (5.11)

Applying PCA on the concatenated vectors gives the model:

ba = pcc (5.12)

where pc are the eigenvectors and c is the resulting parameter vector.
The shape, b, texture bg, and appearance c are used as feature vectors from which a ran-

dom forest classifier is trained to distinguish among expressions. Figure 5.29 summarizes
the experiments performed in this section.

Fig. 5.29 Flow-chart giving an overview of the proposed experiments in this section. See
main text for details.
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5.5.2.1 Experiment 6 - Age Effect on Shape-Based AFER

Case Description: In this experiment, we use an RF classifier to study the influence of
age on the performance of AFER and on the performance of the automatic points on the
performance score of AFER. We trained shape, texture, and appearance models on half of
the FACES data set using the manual points and then those models are used to extract the
shape parameters b, the texture parameters bg, or the appearance parameters c from the
other half using both the manually located points and those from the automatic system and
then swap for the other half. We then trained age-specific RFs to estimate the probability
of each expression given a feature vector and age group (one for each age group data), and
age-agnostic RF (one from all the data) to estimate the probability of each expression from
all age groups.

Results The performance of the age-specific and age-agnostic classifiers, for each type
of feature, on each age group is summarised in Table 5.7. This includes results where the
landmark points were manually or automatically placed. This shows:

• Performance is best on the age-group for which the system was trained as described
in the yellow, green, and blue cells for young, middle, and old groups respectively,
and that performance degrades as the age difference increases (see the not highlighted
cells of each age group.

• Performance on the older group (see blue cells) is worse than that on the young and
middle groups (see yellow and green cells).

• Using the appearance features gives the best overall results (see bold fonts).

• When using the correct age-group classifier, there is only a small loss of performance
when using features from automatically placed points, compared to those from
the manually placed points (see the Man−Auto rows). Thus if we use the most
appropriate age-specific classifier for each subject, we get improved performance,
compared to using an age agnostic system.
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We further evaluate the effect of ageing on the system performance using a confusion
matrix for automatic points and appearance features as described in Tables 5.8, 5.9, 5.10,
and 5.11 for the young, middle and old groups, and age-agnostic classifiers in which the
training and testing data have the same age limits. This shows that:

• performance for most expression categories is best on the young age group in which
the system was trained with the expression variations only without the presence of
the age pattern variations and that performance degrades as the age increases (see
the diagonal elements).

• performance on the sad expression is worse than that on angry, disgusted, fear, happy,
and neutral.

• performance on the sad expression is largely confused with the performance of other
expressions and this confusion is increased as the age of the individual increases
(see yellow, green, blue, and pink cells).

Table 5.8 Confusion matrix for expression classification of the young-group expressions
classifier using appearance features.

Data Anger Disgust Fear Happy Neutral Sad

Anger 94.6 2.4 0.0 0.0 2.1 0.9

Disgust 1.5 97.0 0.0 0.0 0.0 1.5

Fear 0.0 0.0 97.0 0.3 0.3 2.4

Happy 0.0 0.0 0.0 100 0.0 0.0

Neutral 0.3 0.0 0.6 0.0 99.1 0.0

Sad 0.9 1.2 2.4 0.0 4.2 91.4

Table 5.9 Confusion matrix for expression classification of the middle-group expressions
classifier using appearance features.

Data Anger Disgust Fear Happy Neutral Sad

Anger 94.0 4.8 0.0 0.0 0.3 0.9

Disgust 3.0 94.3 0.0 0.3 0.0 2.4

Fear 0.0 0.9 98.2 0.3 0.6 0.0

Happy 0.0 0.0 0.0 99.7 0.0 0.3

Neutral 0.0 0.0 0.9 0.0 97.9 1.2

Sad 3.6 2.4 2.1 0.3 7.4 84.2
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Table 5.10 Confusion matrix for expression classification of the old-group expressions
classifier using appearance features.

Data Anger Disgust Fear Happy Neutral Sad

Anger 88.1 8.0 0.0 0.3 1.5 2.1

Disgust 5.7 86.9 1.5 0.6 1.2 4.2

Fear 1.2 0.0 94.3 0.0 1.2 3.3

Happy 0.0 1.2 1.5 96.7 0.0 0.6

Neutral 0.0 0.3 0.3 0.6 96.7 2.1

Sad 8.3 8.0 5.4 0.9 9.2 68.2

Table 5.11 Confusion matrix for expression classification of the age-agnostic expressions
classifier using appearance features.

Data Anger Disgust Fear Happy Neutral Sad

Anger 89.0 6.8 0.3 0.0 1.2 2.7

Disgust 5.4 90.5 1.2 0.3 0.9 1.8

Fear 0.9 0.0 95.2 0.3 0.9 2.7

Happy 0.0 0.6 2.1 96.7 0.0 0.6

Neutral 0.0 0.6 0.3 0.3 96.7 2.1

Sad 7.4 6.5 3.9 1.5 8.6 72.0

Table 5.12 shows a summary of the results of automatic expression classification rates
presented in experiment 6. Going from the worst to the best performance of the classifiers,
it can be seen that the overall worst performance is provided by the across age classifier.
This is probably because training using one age group of the data cannot accommodate all
the expected variation from the other groups. The second best performance is provided
by the age-agnostic classifier. Finally, the best overall performance is provided by age-
specific classifiers where the training and the testing data are from the same and limited
age ranges. The results are then compared to the results of alternative approaches using the
same datasets and with the results of using textures features presented in chapter 4. The
comparison demonstrates that the best performance of within age group is obtained by Guo
et al. (2013) with 97.85% followed by the age-agnostic model presented in this chapter
with 93.4% and finally the across age group of the features presented in this chapter by
87.3%
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Table 5.12 Comparison to previous work on FACES dataset.

Within age group Across Age Group Age-agnostic

Guo et al. (2013) 97.85 64.04 88.80

Lou et al. (2018) 90.05 - 92.1

This thesis (Chapter 4) 93.1 73.69 90.1

Manual (Chapter 5) 96.4 87.3 93.4

Automatic (Chapter 5) 93.2 80.6 90.1

5.5.2.2 Experiment 7 - Compound Emotions Effect on Shape-Based AFER

Case Description: In this experiment, we use an RF classifier to measure the influence of
22 compound emotions on the performance of AFER and the performance of the automatic
points on the performance score of AFER. We trained shape, texture, and appearance
models on half of the compound data set using the manual points and then those models
are used to extract the shape parameters b, the texture parameters bg, or the appearance
parameters c from the other half using both the manually located points and those from
the automatic system and then swap for the other half. We then trained three expression
classifiers: 6-basic, 15-non-basic, and 22-compound emotions classifiers to estimate the
probability of each expression given a feature vector.

Expression Classification Results: The performances of the three classifiers are
summarised in Table 5.13. This includes results where the landmark points were manually
or automatically placed. This shows:

• Performance is best on the basic emotions, and degrades with non-basic and com-
pound emotions due to the confusion in the expression classification because of the
partial similarity between the basic and non-basic emotions as shown Tables 5.14,
5.15, and 5.16.

• The difference between the performance of manual-based points and automatic-
based points is less when using texture features only, compared to that of using shape
features only.

• We noticed that using shape feature alone led to better accuracy than using texture
features only and best results are obtained by using the combination of shape and
texture features. .
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Table 5.13 Expression classification accuracy for manual and automated annotations of
compound dataset. Shape, Tex, and App are the shape, texture, and appearance features
respectively

Classifier points
6-basic 15-non-basic 22-compound

Emotions Emotions Emotions

Shape Manual 93.2 ±0.2 60.9 ±0.1 56.7 ±4

Shape Automatic 90.3 ±0.4 54.3 ±1.2 46.0 ±3.1

Tex Manual 89.3 ±0.4 53.3 ±0.2 46.5 ±3.7

Tex Automatic 88.9 ±0.6 51.9 ±1.6 44.1 ±5.8

App Manual 91.6 ±0.3 56.5 ±1.5 51.8 ±4.6

App Automatic 92.3 ±0.5 59 ± 2.1 55.6 ±4.9

Tables 5.14, 5.15, and 5.16 illustrate confusion matrices of basic, non-basic, and com-
pound emotions classifiers respectively based on automatic initialisation using appearance
features. These results show that, most of the expressions were confused owing to the
similarities between AUs of basic and compound emotions. The results in Tables 5.15
and 5.16 indicate that most errors made by the compound emotion classifier are consistent
with the similarity in AUs activation between the confused expressions. For instance,
in Table 5.16, 34.0% (red cell) of sadly disgusted (row l) were confused with angrily
surprised (column q) because three AUs are shared between them; 31.0% (yellow cell) of
fearfully surprised (row o) were confused with awed (column v) and 33.7% (green cell) of
angrily surprised (row q) were confused with sadly surprised (column l). Although some
compound emotions share the same AU, their categories are distinct, which led to a very
good recognition rate. For instance, many AUs of happily disgusted (row i) are the same as
those of disgust (row g), but the confusion between them is approximately zero (i.e. 0.0%)
(blue cell) of disgusted (row g). In summary, the results in Table 5.16 are consistent to
some extent with the similarities between the AUs described in Table 2.3.
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Table 5.14 Confusion matrix and accuracy of the seven basic emotions (a:neutral, b:happy,
c:sad, d:fearful, e:angry, f:surprised, g:disgusted) using shape features.

a b c d e f g

a 99.0 0.0 0.0 0.0 0.0 1.0 0.0

b 0.0 99.0 0.0 1.0 0.0 0.0 0.0

c 5.0 2.0 87.0 0.0 4.0 1.0 1.0

d 2.0 0.0 3.0 85.0 2.0 6.0 2.0

e 0.0 0.0 1.0 0.0 90.0 1.0 8.0

f 0.0 0.0 0.0 0.0 0.0 100.0 0.0

g 0.0 1.0 3.0 4.0 6.0 0.0 86.0

Mean 92.3
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5.5.2.3 Experiment 8 - Expression's Intensity Effect on Shape-Based AFER

In this experiment, we trained shape, texture, and appearance models using the entire
CK+ dataset and the corresponding automatic points. These models are then used to
extract the shape, texture, and appearance features from every frame in each video. We
then assessed the performance of those features in distinguishing among emotions. The
process of labelling training data of different expressions with different intensities is a
time-consuming, expensive task prone to mistakes, possibly leading to unreliable labels.
Here, we have only visualised the first three components for every frame in order to
investigate the initial performance and the ability of those features in separating between
the emotions in order to consider approaches that do not require manual emotion labelling,
such as building an unsupervised system.

Figure 5.30 shows 2D and 3D description models of shape, texture, and appearance
features based on automatic initialisation extracted from six videos of one person. Each
video shows one of the following expressions: angry, disgusted, fear, happy, sad or surprise.
Each expression starts from a neutral expression and ends with an expression at high
intensity. In the figure, each path of points represents a video of multiple frames and each
point represents a frame. These results show that shape features (top row) give the best
performance of a smooth path of each video with a very clear separation among the six
expressions with a good separation among the frames in the same video (same path). This
outcome demonstrates that extracting the features in this way gives encouraging results for
automatic expression classification based on intensity. Consequently, based on the results
in Figure 5.30 and given that only a simple visualisation gave a clear separation among the
expressions, we believe that building an unsupervised system to recognize the expression
based on its intensity and based on the extracted features is a promising option. Therefore,
it is possible for an unsupervised system to perform recognition functions of a similar
standard to a supervised facial-expression-recognition system.

Figure 5.30 shows 2D and 3D description models of shape texture, and appearance
features based on automatic initialisation extracted from many persons (all the data). These
results show again the best results are achieved using the shape features and including the
texture features might not improve the performance. Although the frames in the middle
are overlapped due the neutral frames, the results are encouraging and warrant more
investigation.
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Fig. 5.30 Illustration of a 2D (left) and 3D(right) description models using shape (top row),
texture (middle row), and appearance (bottom row) features of one person showing six
expressions of different intensities. Peak intensities are circled.
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Fig. 5.31 Illustration of a 2D (left) and 3D (right) description models using shape (top row),
texture (middle row), and appearance (bottom row) features of all CK+ dataset showing
six expressions of different intensities.
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5.6 Discussion

5.6 Discussion

In this chapter, shape features were used to localize face and expressions, build a shape-
based AFER system, and measure the influence of ageing and compound emotions, and
intensity of expression on both the facial expression localization and recognition.

For the facial expressions localization, an automatic FEL system using the RFRV-
CLM framework was developed to localize the facial expressions features. A parameter
sensitivity analysis of the RFRV-CLM parameters was performed to find the optimal
parameters that best solve the problem of facial expressions detection. We noticed that
varying the parameters had little effect on the performance except for the frame width
which had a significant effect. We found that three stages gave optimal results. The
sensitivity and generality of the proposed FEL and the optimal parameters under several
factors of facial expressions: age (young to old), expression (6-basic and 22-compound),
intensity (neutral to peak), fake expression, and spontaneous expressions were measured.
The results showed that the proposed localizer achieved good performance on five different
facial expression datasets and the mean error of points’ localization using RFRV-CLM
was 3.4% of the IOD (2.1 mm) on 99% of samples, in 22 expressions it was 5.71% of the
IOD (3.6 mm) on 90% of the data, and in continuous intensities it was 3.97% (2.5 mm)
on 95% of the data, outperforming the mean error of alternative methods tested on the
same datasets. This empirical evaluation showed that the proposed method generalizes
well across a wide variety of face appearances, suggesting that it works sufficiently well
to initialize further processing such feature extraction followed by age, expression, and
intensity modelling for automatic facial expressions recognition.

For facial expression classification, a shape-based, texture-based, and appearance-
based AFER was developed using the points from the proposed detector. In case of
recognizing the expressions in a large range of age, the results again (as in the previous
chapter) indicated that recognizing the expression in a small range of ages outperforms
the performance of using the large range of ages and the combination of shape and texture
features presented in this chapter outperformed the texture features in the previous chapter.
In the case of classifying 22-compound emotions, the results demonstrated that the shape-
based AFER slightly outperformed the texture-based AFER. Despite these good results
of using shape features presented in this chapter, more investigations are required to
investigate the possibilities that can be used for compound emotions modelling. In the
case of expression recognition of different intensities, the results suggested that using the
shape features extracted in this chapter is very promising for expression recognition of
continuous intensities.
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Chapter 6

Development and Comprehensive
Evaluation of an Age-Based AFER
System

6.1 Introduction

The results of the texture-based AFER system and the shape-based AFER described
in Chapters 4 and 5 respectively indicated that modelling (training and testing) facial
expressions using a limited range of ages has achieved better results than using a wide
range of ages in AFER.

Motivated by this observation, this chapter examines the development of an age-specific
AFER system that explicitly estimates age group and expression from the face image within
a single framework. The underlying idea is that separating the age factors in the process of
AFER modelling can reduce the confusion in the expression classification by the automatic
classifiers when applied to different age groups. The second objective of this chapter
is to study the influence of apparent age on the performance of AFER. The underlying
hypothesis is that we do not know the real age of the person so we use the visual appearance
to estimate age. And since some people might look younger or older than their real age
it might be better to classify the expressions based on the apparent age. In summary, the
argument of this chapter is that using the age group and in particular the apparent age
instead of real age as prior knowledge for the expression classification task can help to
improve the performance of expression classification.

The rest of the chapter is organized as follows. Section 6.2 introduces our motivation
for combining classifiers. Section 6.3 describes the proposed method, and its framework,
formula and stages. Section 6.4 represents a series of experiments to evaluate the proposed
method. Finally, a summary of the findings is given in Section 6.5.
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6.2 Motivations

The main goal of any AFER system is to achieve the best possible accuracy for facial
expression classification. This aim traditionally led to the development of different facial
expressions classification systems, in which a single classifier is used to recognize among
several expressions. The final solution is to choose the classifier with the best performance.
However, it has been observed in multi single-classifier systems that one classifier’s mis-
classification might be correctly classified by one of the others Glodek et al. (2011); Kittler
et al. (1998); Lanitis et al. (2004); Woźniak et al. (2014). This observation suggests
that multiple-classifier systems potentially offer complementary information about the
problem at hand which could be harnessed to improve the overall performance. Moreover,
experiments in previous chapters have also shown that the performance of single-classifier
facial expressions systems was best on the age range for which the system was trained
and that performance decreases as the age difference between the training set and the
testing set is increased. This observation suggests that using different age-specific facial
expression recognition systems (one trained for each age group range) potentially offered
complementary information. These observations motivated the idea of combining classi-
fiers. The underlying assumption of combining classifiers is that the decision regarding
the expression is made by combining the opinions of multiple individual facial expression
classifiers in order to obtain a consensus decision. There are various classifier combination
schemes depending on the problem at hand and it has been experimentally demonstrated
that some of them outperform the single classifier scheme (Woźniak et al., 2014).

Therefore, in this thesis an age-specific-based AFER system is proposed that explicitly
estimates age group and expression from the face image in a single framework. The
proposed system consists of an age group estimator to estimate the age group of a subject.
We then recognize the expression using the weighted average rule of the output of a set of
age-group-specific expressions classifiers (one trained for each age group). The underlying
assumption is that an age-specific classifier with expression variation only will outperform
one expression classifier trained using a wide variation of both age and expression patterns
because the overlap between age and expression features might lead to poor performance
in the AFER system (see the sensitivity of automatic expression modelling to age features
in Chapter 4.4.2.1 and Chapter 5.5.2.1). The other underlying reason is that when a single
model cannot properly fit the data, the ensemble can make multiple estimates that each
make errors in different ways then vote or average their predictions, cancelling out the
errors of individuals by the committee decision.
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6.3 Methods

The goal is to decrease the negative effect of ageing features, which can resemble emotions,
for better expression recognition. Many systems in the literature e.g. (Martinez and Valstar,
2016; Sariyanidi et al., 2015) have taken the training and testing data (input space) from
a limited range of ages. Experiments reported in this thesis showed that the accuracy of
those systems is reduced if the age difference between the test image and the training set
is big where the system is trained on a limited range of ages and tested using a different
range of ages (see the not highlighted cells in Table 5.7). The experiments also found
that extending the input space to span a wider range of ages for both the training and the
testing will not improve performance since this will begin to include older subjects whose
aged features appear in a similar manner to some expressions and the overlap between
them will lead to poor performance of the expression classifier (see pink cells in Table 5.7).
Therefore, recognizing the expression in a narrow age range should decrease the variation
in age features and hence the performance of expression classifiers should be improved
(see yellow, green, and blue cells in Table 5.7).

The proposed method in this chapter aims to learn the relationship between age and
expression and how using it may lead to better recognition of the expression. Our model
consists of three main stages: (i) an automatic facial key point detector and feature
extractor, (ii) an age group estimator, and (iii) an ensemble of age-group-specific expression
recognizers. In the first stage, an automatic facial key points detector is learned from the
training data to be used to extract the features regarding age and expression. Since both
age group estimation and facial expression classification tasks started from the same face
image and they are entirely related, the same features are used by both tasks. In the second
stage, an age group estimator is learned using the extracted features to estimate the age
group of the testing image. We compute the probability that the test image came from each
of the age group classes (a description of the classes is given below) to provide a priori
information regarding age to the third stage. In the third stage, a set of age-group-specific
expression classifiers are trained and used to classify the expression type. The expression
classifiers give the probability of the face being in each of the expression classes, in each
of the age groups. The probabilities are then weighted by the age-group probability to give
the final output.

The essential idea is to take advantage of the hypothesis that the expressions can
be more accurately recognized by using an age-appropriate classifier. The benefit of
this method is increasing the ability and the accuracy of the system of facial expression
recognition by using all the representations of the age patterns jointly to make the final
decision. Fig. 6.1 describes the proposed system in this chapter.
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6.3.1 Model Formula

Suppose we have N labelled training images and for each image we have Ii = (vi,ai,ei)

where vi is the feature vector for image Ii, ai is the age group label for image Ii (in our
experiments a ∈ {1,2,3}) for young, middle, and old age groups respectively, and ei is the
expression class labels for image Ii (i.e. e ∈ {1,2,3,4,5,6}) for angry, disgust, fear, happy,
neutral and sad respectively.

Once the feature vector v is extracted, one age group estimator fa(v) and three age-
group-specific expression classifiers fe(v) are trained for predicting the subject’s age group
a and expression e using equations 6.1 and 6.2 respectively as follows.

fa(v) = argmax
a

p(a|v) (6.1)

Where p(a|v) represents the probability that v is in age class a and the winning class is
the one with the largest a.

fe(v) = argmax
e

p(e|v, fa(v)) (6.2)

where p(e|v, fa(v)) is the confidence that v has expression e when estimated using the
classifier for age group fa(v) (see Equation 6.1). The winning class is the one with the
largest e.

The number of age-group-specific expression classifiers depends on the number of age
groups in the training data. For the experiments reported in this thesis, we have trained
three age-specific expression classifiers: young, middle, and old age groups. The age
ranges of each class are defined below.

Once the age group and age-group-specific expression classifiers are learned, they can
be used in one of two schemas to recognize the expression. The schema differ in how the
age and expression classifiers are used, in either a hard or a soft schema.

In the hard-schema, the estimated age group a is used to select one age-specific
expression recognizer as in Eq. 6.3.

e =


argmaxe p(e|v,1), if fa(v) = 1

argmaxe p(e|v,2), if fa(v) = 2

argmaxe p(e|v,3), if fa(v) = 3

 (6.3)

Where p(e|v,1), p(e|v,2) and p(e|v,3) represent the probability that v has expression e

when estimated using classifier for young, middle and old age groups respectively. The
winning class is the one with the largest e.

On the other hand, using a soft-schema, the output of expression type e will make full
use of the confidence values of age estimator and all the age-group-specific expressions
classifiers as in Eq. 6.4.
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fe(v) = argmax
e

p(e|v) (6.4)

where:

p(e|v) = ∑a p(a|v)p(e|v,a)
∑ p(a|v)

(6.5)

where p(a|v) is the probability that v belongs to age group a from Equation 6.1 and
p(e|v,a) is the probability that v has expression e using the classifier of age group a. The
winning class is the one with the largest e.

The advantage of using the weighted combination of all the classifiers is that more
information about the classification can be obtained and subjects whose apparent age puts
them in the wrong chronological age group will be dealt with more effectively (see results
in Table 6.6). Details of each stage are described below.

6.3.2 Stage One - Facial Expression Localization and Feature Extrac-
tion

In the previous chapter, we described a methodology for facial expression point localization
using a RFRV-CLM framework in a multi stage fashion, and facial expression feature
extraction including the shape b,the texture bg, and the appearance c features. This
methodology is the basis of age-group-based AFER system described in this chapter.

6.3.3 Stage Two - Age Group Estimation

From stage one each image is represented as a feature vector vi including shape b, texture
bg, or appearance c with its corresponding age group a and expression category e.

In this stage, the data from the three age and expression datasets described in Section
3.2.1 are combined with the corresponding manual and automatic points to create a data
set which contains subjects with ages ranging from 8 to 94 years. Fig. 6.2 shows the age
distribution from the three datasets. Then the data is divided into three groups of age;
Young (18-39), Middle (40-69), Old (70-94). Table 6.1 shows the lower and upper age
limits of the three age groups - 1:young, 2:middle, and 3:old. Subjects with ages from 8 to
17 were not included because there were too few samples. The objective of this stage is to
estimate the age group a. Therefore, we train a random forest classifier Breiman (2001)
described in Section 3.5 to estimate the probability that an example with feature vector v

belongs to age group a, p(a|v). The most probable age group is given using Equation 6.1.
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Table 6.1 Lower and upper age limits in years of three age groups

Group 1 2 3

Lower 18 40 70

Upper 39 69 94

Age

N
u

m
b

er
 o

f 
sa

m
p

le
s

Young Group

[18-39 years]

Middle Group

[40-69 years]

Old Group

[70-94 years]

Fig. 6.2 Age distribution of three age and expressions datasets combined: FACES, Lifespan
and NEMO

6.3.4 Stage Three - Expression Classification

The aim of this stage is expression recognition. For each age group, a, a separate random
forest classifier is trained to estimate the probability of each expression, p(e|v,a) using
Equation 6.2.

One approach to classifying a new image (of unknown age) is to estimate the age
group using Equation 6.1 then use the appropriate expression classifier for that age using
Equation 6.3.

An alternative is to weight by the probability using Equations 6.4 and 6.5. The essential
idea here is to first classify the input test image into a specific age group, and then the
expression recognition is performed in the classified group. For the experiments reported
in this thesis, three age-specific expression classifiers are trained for young, middle, and
old groups respectively.

The advantage of using the weighted combination of all the classifiers is that more
information about the classification can be obtained and subjects whose apparent age puts
them in the wrong chronological age group will be dealt with more effectively (see results
in Table 6.7).
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Once the three stage models are built and combined, the fully automated age-specific
expression classification system will start on the test image using the proposed facial
expression keypoint detector (stage 1) to extract the age and expression features. The ex-
tracted features are then sent to the age group estimator (stage 2) to estimate the probability
of each age group, followed by the use of the corresponding expression classifiers (stage 3)
for each specific age group indicated by the results of age estimator (stage 2) to recognize
the expression based on the combinations of the results of all classifiers.

6.4 Experimental Evaluation

In this section a series of experiment is presented to evaluate the proposed age-group-based
AFER system.

Database: The experiments are performed using FACES, LifeSpan, and NEMO
datasets described in 3.2.1.

Evaluation Metric: For age group estimation and expression classification, both the
average of all classes with the standard error and per-class (confusion matrix) classification
accuracy between the ground truth label and the predicted label are reported. To avoid over-
fitting and identity bias issues, 10-fold cross validation (person independent) experiments
are applied. In all the experiments below the random forest classifier described in Section
3.5 was used for age group estimation and expression classification.

6.4.1 Experiment 1 - Age Effect on AFER

Case Description: In the previous chapter, we studied the influence of age on the per-
formance of automatic facial expression classification. We performed experiments with
both the manually located points and those from the automatic system. In each case we
used feature vectors which were either the shape parameters b, the texture parameters bg

or the appearance dc. We trained age-specific random forests to estimate the probability
of each expression given a feature vector and age group, p(e|v,a), and age-agnostic RFs
to estimate the probability of each expression for all age groups, p(e|v). the results are
summarized in Table 6.2, in which we indicated that when using the most appropriate
age-specific classifier for each subject, we get improved performance, compared to using
an age agnostic system.
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Table 6.2 Expression classification results using manual and automated annotation for
age-specific models and age-agnostic model.

Feature
Young Middle Old all

Manual Automatic Manual Automatic Manual Automatic Manual Automatic

Shape 96.8±0.2 91.9±0.6 95.0±0.7 87.1±1.3 89.2±0.6 78.2±2.2 89.0 ±0.5 76.8 1 ±1.6

Tex 96.3±0.7 95.9±0.9 95.6±0.1 93.3±1.2 91.1±0.3 86.0±1.8 91.0 ±0.3 87.2 ±1.3

App 97.7±0.7 96.5±0.2 97.6±0.2 94.7±0.6 93.8±0.4 88.5±0.9 93.4 ±0.6 90.1 ±0.8

Average Manual 96.3 Automatic 93.2

6.4.2 Experiment 2 - Real Age Effect on AFER

Case Description: The results in experiment 1 suggested that the best performance was
achieved using age-specific classifiers if the age of the subject is known. If this isn’t known,
then it must be estimated from the image. We thus trained a Random Forest to estimate the
age-group given different feature types. The benefit from the age-group estimator is to use
its output as prior knowledge to the age-specific expressions classifiers by combining them
in a single framework. The idea is that the age group estimator aids by predicting the age
group of the test image in the first place and we use this as prior knowledge in the second
stage to select the most age-appropriate expressions classifier (see Eq. 6.3). The aim here
is to achieve an identical performance to the performance of using age-specific classifiers
only.

Results: The performance of the age group classifier is summarised in Table 6.3 that
gives the percentages of the data assigned to the correct age groups. It shows that using
appearance features gives the best overall performance, and that manual annotations lead
to slightly more accurate results with 86.6% compared to the automatic annotations with
84% correct assignments.

Table 6.3 Accuracy of age group estimation using real age. Shape, Tex, and App are the
shape, texture, and appearance features respectively

Feature Manual Points Automatic Points

Shape 81.3±0.6 76.0±0.2

Tex 86.1±0.6 82.6±0.2

App 86.6±0.1 84.0±1.1

Table 6.4 shows the performance results of the expression classification when com-
bining the age-group estimator with age-specific expression classifiers in a single model
that we called hard-level-based or real-age-based schema (see Equation 6.3). These results
show that although the accuracy of age group estimation is relatively low (84%), its combi-
nation with age-specific expression classifiers helped to achieve comparable performance,
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with 95.2% manually and 93.8% automatically shown in Table 6.4, to the performance of
using age-group specific models with 96.3% manually and 93.2% automatically (see Table
6.4) .

Table 6.4 Expression classification results using hard-level (real-age-based) schema. Shape,
Tex, and App is the shape, texture, and appearance features respectively

Feature
Young Middle Old

Manual Automatic Manual Automatic Manual Automatic

Shape 95.0±0.2 91.2±0.6 94.1±0.7 85.1±1.3 89.8±0.6 76.4±2.2

Tex 94.9±0.7 95.6±0.9 92.6±0.1 92.9±1.2 88.1±0.3 85.5±1.8

App 96.9±0.7 96.7±0.2 96.1±0.2 94.7±0.6 92.7±0.4 90.0±0.9

Average Manual 95.2 Automatic 93.8

Table 6.5 shows the confusion matrix for the age-group classifier using automatic
points of appearance features. These results reveal that 6.8% (see yellow cell) of the young
group and 9.6% (see blue cell) of the old group were classified in the middle age group
and 12.3% and 16.2% (see green cells) of the middle group were classified in the young
and old age-groups respectively. This big confusion among age groups might be because
there are people who look younger or older than their real age, indicating that taking the
apparent age into account might enhance the performance of the AFER system.

Table 6.5 Confusion matrix for real age group classifier using appearance features using
automatic points.

Group Young Middle Old

Young 91.2 6.8 2.0

Middle 12.3 71.5 16.2

Old 1.1 9.6 89.3

Mean 84.0±1.1

6.4.3 Experiment 3 - Apparent Age Effect on AFER

Case Description: The results of experiment 2 suggested that it might be better to analyse
the effect of apparent age on the performance of AFER. As a result, in Equations 6.4 and
6.5 we propose to weight and combine the probability of all age group estimators with
the all age-group-specific expression classifiers in order to have full use of all the age and
expressions representations. The idea is to fully utilize the representations not only from
one expression classifier such as the last calculated results in Table 6.4, but from all the
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age and expressions classifiers in what can call a soft-level-based or apparent-age-based
schema.

Results: Table 6.6 shows the recognition accuracies of the apparent-age-based schema.
In this table, the performance of the age group estimator and age-group-specific expression
classifiers are combined in which the expression is estimated using all expression classifiers
in proportion to their age weights from the age estimator. These results demonstrate that
the weighted combinations scheme helped to improve the performance by 2.5% for the
manually annotated data and 1.9% for the automatically annotated data compared to the
real-age-based schema in the previous experiment.

Table 6.6 Expression classification accuracies using soft-level (apparent-age-based) schema.
Shape, Tex, and App are the shape, texture, and appearance features respectively

Feature
Young Middle Old

Manual Automatic Manual Automatic Manual Automatic

Shape 97.9±0.3 92.9±0.4 97.3±0.5 89.5±0.3 93.0±0.5 79.4±1.5

Tex 97.4±0.5 96.9±0.1 96.8±1.1 95.2±0.5 92.8±0.6 88.5±0.1

App 98.6±0.1 98.0±0.2 98.8±0.3 95.3±0.4 95.9±0.5 93.80±0.2

Average Manual 97.8 Automatic 95.7

These results motivated us to label the dataset with apparent age label. After that
each image in the data base is labelled manually by the apparent age group label by five
assessors. We also used the age group estimator to label each image by the apparent age.
Those labels are used to redivide the dataset into three age groups by moving some people
among the groups. We then re-trained the age group estimator and the age-specific facial
expression classifiers using the new groups and the apparent age group label in order to use
them again as in Equations 6.4 and 6.5. We train the age group and expression classifiers
several times (one-based on ’seach assessor labels, and one-based the age group classifier
labels).

Table 6.7 shows the summary results of expression recognition using the schemas of
combining age estimator and age-specific expressions classifiers as follows.

• Yellow cells show the overall mean performance of expression classification when
three age facial expression classier are trained and tested using the same age range
(each classifier is trained and tested on the same age range). In this case the age is
known and selected manually by the user.

• Green cells show the overall mean performance when using the age classifier to
automatically select the age-specific expression classifier (what we called hard
decision). In this case one of the expression classifiers will be used based on the
output from the age group estimator.
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• Blue cells show the overall mean performance using a probabilistic approach (using
equation 6.4), avoiding a hard decision. In this case all the expression classifiers will
be used, each based on its weight from the age group estimator and the final outputs
will be combined and normalized.

• Gray cells show the overall mean performance of the soft approach when we train
the age group estimator and the expression classifiers on age groups defined by the
apparent age of the individuals (as estimated by five assessors), rather than their real
age.

• Pink cells show the overall mean performance of the soft approach when we train
the age group estimator and the expression classifiers on age groups defined by the
apparent age of the individuals (as estimated using the age group classifier), rather
than their real age. This shows that such a "soft" approach leads to better results,
which are actually better than those achieved when the true age is known (yellow
cells).

In summary, the results in Table 6.7 demonstrate that the models are sensitive to the age
of the individual, and that expression can be better estimated if we know the subject’s ap-
proximate age and can use an appropriate age-specific classifier. These results demonstrate
also that is better to use apparent age in selecting the most appropriate expression classifier
than chronological age.

6.4.4 Comparing to other Methods

Table 6.8 compares our results to the very recent results presented in Lou et al. (2018) and
Yang et al. (2018) who used Local Binary pattern (LBP) feature and convolution neural
network (CNN) respectively. These results show that the mean results of three datasets
of our automated system outperform the results of the methods presented in those two
papers. The reason that our results are better than the results of the method presented in
Lou et al. (2018) might be because in our method the texture features are combined with
shape features (compact representation), while in Lou et al. (2018) they used the texture
features only. Moreover, the reason that our results are better than the results of Yang et al.
(2018) using DL might be because we train the model using representative datasets of
both age and expressions deformations, while in Yang et al. (2018), the authors used the
pre-trained model on the MORPH dataset with 55,134 images of age only.
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6.4.5 Computation Complexity

Results in Table 6.9 show the computation complexity of the current work of combining
the age and expressions’ classifiers when using both the estimated age expression classifier
(hard level) and when using the weighted expression classifiers (soft-level) based on both
the real and apparent age.

The time was recorded in milliseconds (ms) and was compared to the time of the
method in Lou et al. (2018) which recorded the time in seconds (for a simpler comparison
it was converted to ms). The results demonstrated that in addition to lower test time of our
method with 0.16 ms per image without feature extraction computation performed on a
Dell Intel(R) Core(TM) i5-2400 CPU 3.10 GHz and 16GB memory than the method in
Lou et al. (2018) with 10 ms performed on a machine with 2 Intel(R) Xeon(R) CPU X5570
2.93 GHz and 64 GB memory, the computation time of the soft-level schema of using all
the age and expressions classifiers is comparable to the computation time of hard-level
schema of using one expression classifier select by the age estimator.

Table 6.9 Computational complexity (in millisecond) of the proposed method.

Method Test time(ms)

Age-agnostic 0.06

Age-specific (known real age) 0.14

Age-specific (estimated real age) 0.08

Weighted (estimated real age) 0.15

Weighted (estimated Apparent age) 0.16

Independent Learn Lou et al. (2018) 7.00

Joint Learn Lou et al. (2018) 10.00

6.4.6 Example Results

Figure 6.3 shows some examples of results from our system including automated facial
expression points localization, automated age group estimation, and automated facial
expression recognition on three different age and expressions datasets. These results show
that, although the system makes some mistakes in the age group estimation, the expression
is recognized correctly due to the weighted combination schema of different expressions
classifiers. For instance, the second image in the first row, in spite of the age group being
predicated wrongly as middle age, the expression is recognized correctly as angry.
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Fig. 6.3 Example results of our system including point’s localization, age group estimation,
and expression category recognition on three different age and expression datasets: FACES
data (first row), LifeSpan data (second row), and NEMO data (third row). The predicted
age group and expression are in blue and pink background respectively. The ground truth
is in the yellow and purple background for age and expression respectively if the system
makes a mistake in them.

6.5 Discussion

This chapter has presented an age-specific-based AFER system which used the age group
information as prior knowledge to obtain better results of expression classification. The
proposed system can be used for automatic facial feature point localization, automatic age
group estimation, and automatic facial expressions recognition and deals with individuals
from a wide range of ages. It showed that using age-specific expression classifiers gives
better results than an age-agnostic classifier, and that integrating information over all age
estimates leads to the best overall performance.

The performance of the proposed system was evaluated on three age and expression
datasets to investigate the sensitivity of automatic expression classification to age features
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(real age and apparent age). The results on all the datasets are promising, and they demon-
strate the potential of our approach in real life applications. The face processing procedures
described are fully automatic; errors for the classification experiments may be caused
either by failure in locating landmarks accurately, or by the failure of the classification
algorithm. We showed that the system can recognize the expression automatically based
on the apparent age in which the weighted combinations of age and expression classifiers
can be used to achieve better expression recognition. Finally, our results showed that the
fully automatic system based on automatic points identifies 97.0% of expressions correctly,
almost as effectively as the system based on manual points (97.9%).
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Chapter 7

Conclusion

7.1 Thesis Summary and Conclusion

This thesis has covered the topic of AFER across a large range of ages (including older
people), expressions (compound emotions), and intensities (ranging from a neutral expres-
sion to the apex of the target expression). A comprehensive study has been undertaken to
investigate and measure the effect of those problems on the performance score of AFER,
along with an examination and validation of the sensitivity and ability of the face modelling
methods in order to explore whether they are sufficient in extracting meaningful face fea-
tures to use in distinguishing among expressions under a wide range of face deformations
related to the problems under study.

The study started by using texture measurement methods to examine the ability of
the existing face descriptor methods in describing the face image with a wide range
of face deformations regarding the problems under study and to analyse the impact of
those problems on the face texture patterns and hence on the accuracy of texture-based
AFER. In this study, as a first contribution, we showed that by using BRIEF (Calonder
et al., 2012), we can develop a new face descriptor model that able to describe the face
image and can generalize to new data sets. The BRIEF descriptor is able to generate the
discriminative features globally from the image with explicit shape features. However,
when BRIEF is used to generate features from an image with no explicit shape such as a
face, BRIEF is unable to generate discriminative features. We thus proposed to use BRIEF
locally to ensure that each pixel in the image is evaluated locally to capture the local
shape surrounding it. Empirical and comprehensive evaluation on three different facial
expression datasets demonstrated that this model gave satisfactory performance compared
to other local face descriptor techniques including LBP (Ojala et al., 2002) and QLZM
(Sariyanidi et al., 2013). The experimental results also showed that there is insensitivity to
the choice of BRIEF's representation to the patch size and the descriptor length. The results
show as well that the BRIEF-based method outperformed LBP in recognition rate and the
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size of the representation. For example, in facial expression recognition, the BRIEF-based
face descriptor achieved a classification rate of 96.0% with a histogram of integers ranged
in [0,63], while the performance using the LBP method was 82.4% with a histogram of
integers ranged in [0,255] on the same dataset. We also obtained comparable performance
to the BOW and QLZM but with smaller standard deviation from the mean recognition
rate suggesting that the proposed model is more stable.

Moreover, a comparative evaluation among three AFER systems including BRIEF-
based, LBP-based, and QLZM-based AFER showed that using a large range of ages
and compound emotions has a significant effect on the face texture pattern and on the
performance of AFER. The results indicated that BRIEF achieved satisfactory accuracy on
a range of facial expression recognition datasets with different characteristics. In the case
of the large range of ages with 6-basic expressions, BRIEF outperformed the LBP and
QLZM with the same configuration. These results also showed that the classifier trained
on a limited range of ages has less confusion among the expressions than the classifier
trained on a large range of ages. In the case of classifying 22-compound emotions, we
showed that the texture features presented in this thesis are not sufficient to discriminate
among them and more investigations are required to reduce the confusion between the
basic and the non-basic expressions.

We then extended our study by using shape measurement methods to examine the
sensitivity of the existing shape localization methods in detecting facial features points
with a wide range of face deformations regarding the problems under study and then to
analyse the impact of those problems on the face shape pattern and hence on the accuracy
of shape-based AFER. In this study as a second contribution, we showed that by using
RFRV-CLM framework (Cootes et al., 2012; Lindner et al., 2015), we can develop a
fully automated FEL system that is able to detect the facial key points in a multiple-
stage (coarse-to-fine) framework and can generalize accurately to new data sets with
a wide range of facial appearance variations. The study showed also that despite the
effect of the previously mentioned problems on the face shape pattern, the proposed facial
expression localization based on RFRV-CLM achieved good performance against that
effect. Empirical and comprehensive evaluation on five different facial expression datasets
of simple (6-basic with a limited range of ages) and complex (6-basic with a wider range
of ages, 22-compound emotions, and different intensities for the same expression) cases of
facial expression demonstrated that this model gave excellent agreement with ground truth
data and outperformed the results of other FFPD evaluated on the same datasets.

The results of the developed FEL system were then used in this thesis to initialise
an automatic point-based AFER. We presented a comparative study among shape-based,
texture based, and appearance-based AFER to assess the performance score of the au-
tomatic points-based AFER compared to the manual points-based AFER, along with a
measurement of the effects of the problems under study on the overall outcomes of AFER.
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7.1 Thesis Summary and Conclusion

This comparative study showed that the ageing, compound emotions, and the intensity
patterns have a significant effect on the face shape pattern and on the performance of
shape-based AFER. Although, the age and compound emotions patterns effect the shape
and the texture features, the appearance-based AFER is less sensitive to that, and again
the results showed that training and testing using a limited range of ages outperformed the
results of training and testing using a large range of ages. The empirical evaluation showed
that the developed FEL using RFRV-CLM generalizes well across a wide variety of face
appearances with very few errors between the automatic and manual points, suggesting
that it works sufficiently well to initialize further processing such as feature extraction. In
case of facial expression with continuous intensity, the shape features only or its combina-
tion with texture feature (appearance) gave the best separation among videos of different
emotions and among the frames of the same expression with a smooth path and they are
encouraging to develop an affective learning algorithm as shown in Figures 5.30 and 5.31.

In summary, our study demonstrated that age-dependent facial expression recognition
outperformed age-independent facial expression recognition and using appearance ini-
tialized by coarse-to-fine RFRV-CLM outperformed the other features described in this
thesis. Figure 7.1 summarizes the work has been done in the proposed study regarding the
performance of the texture-based and shape-based AFER on three datasets regarding the
problems under consideration.

Fig. 7.1 Summary of the work that has been done in the reported study.

Our final contribution built on the first and the second contributions, and it is the
development of a system for automated facial expression recognition (in terms of basic
emotion categories) that is informed by the age of the people in the images. To this end,
we segment the subjects into several age groups and use that information to augment
learning of the facial expression classifiers. As the first step, the locations of fiducial
facial points are extracted using the RFRV-CLM detector. These points are then used
to build shape, texture, and appearance models in order to extract the shape, texture,
and appearance features for input into the age classifiers, followed by age-specific facial

181



Conclusion

expression classifiers. The results on three data sets of age and facial expression coded
in terms of emotion categories are presented. Experiments are done thoroughly, showing
the benefits of the age segmentation. Furthermore, the proposed approach outperforms the
age-agnostic classifiers, or is otherwise comparable, to the results found for alternative
models recently applied to the problem. In this system, we showed that using the age
information as prior knowledge to the facial expression recognition helped to reduce the
confusions between the expression due to the age and expressions similarities. We then
realized that using the apparent age as prior knowledge to the expressions classification
helped to improve the performance more than that of using real age.

7.2 Thesis Limitations and Future Works

Although this work has been made a significant number of investigations to cover the
objectives outlined in Section 1.5, it represents and to some extent is the start of a devel-
opment and validation process that requires further investigations in the future, some of
which are suggested below.

• One of the primary limitations of the proposed BRIEF-based face descriptor is
that it is used to describe the face image of facial expression from static images.
Since recognizing the expression from a video sequence is more reliable and easier
due to the availability of more information about the expression, the BRIEF face
descriptor can be extended in the future to a dynamic texture descriptor from three
orthogonal planes. The benefit from this extension is that we can describe and extract
the dynamic texture feature of the expression as in the cases of facial expression
with continuous intensity. That extension can be similar to the extension of LBP to
LBP-TOP (Zhao and Pietikainen, 2007) and LPQ to LPQ-TOP (Jiang et al., 2014,
2011).

• Moreover, due to the good results of the BRIEF face descriptor, including shorter
descriptor and higher recognition rates, we believe that the proposed face descriptor
could be applicable to several other face analysis tasks as well, especially real-time
or mobile applications where memory and computational power is limited.

• Another future direction that can be drawn from this thesis is that owing to the
excellent performance of FEL using the RFRV-CLM described in Chapter 5, the
proposed FEL system can be a useful tool for building real-world systems and could
be applied to other face applications that require high registration accuracies such
as face detection, face recognition, and face synthesis, which could be an exciting
area to research because the process of manually annotating images is a labour
intensive process which can often contain erroneous annotations especially with
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7.2 Thesis Limitations and Future Works

large datasets. A clear example is that the proposed FEL system and the extracted
features based on it successfully captured the facial-expression points at different
intensities as highlighted in Sections 5.5.1.5 and 5.5.2.3, it would be interesting to
explore the use of that model in modelling the expression's intensity such as building
an unsupervised model since the frames in the videos are not labelled. Another
example is that in the case of the compound emotions, the proposed FEL system
has successfully captured the facial-expression points of 22-compound emotions
as highlighted in Section 5.5.1.4, it would be interesting to explore the use of that
model in modelling the compound expressions such as modelling the similarities
between the basic and non-basic expression or using the proposed model to capture
the AUs of 22 expressions.

• One of the limitations of the age-specific AFER system described in Chapter 6 is
that the number of age groups is restricted to a range of 1 or 3 groups. To obtain a
general benefit from the idea of segment the data into age groups in the performance
of expression classification and age estimation tasks, a joint optimization of the age
segmentation and expression classification might be more useful, rather than using
heuristics for grouping the age of the subjects.

• Furthermore, in this thesis, the impact of human ageing on the performance of
expression recognition was evaluated using three age and expressions datasets
described in 3.2. In these datasets, for each subject, there are images or videos for
several expressions but at one age only of the subject. Further work can be done to
improve age and expression datasets. For example, since the age-related structure
progresses slowly and gradually across the age of the person, the creation of a facial
expression dataset that covers a wide range of ages and expressions for each subject
might be more believable when studying the effect of the human ageing on the
performance of age estimation and facial expression recognition. In other words,
collecting a new age and expressions dataset that contains at least one image or
video for each subject at several ages and several expressions would be promising
data for both age estimation and expression classification tasks. More datasets or
expanding previous sets would be a simple improvement that can help move the
research forward quicker.

• Moreover, the other limitation of the age-specific AFER system described in Chapter
6 is that the number of the assessors who labelled the ageing data with apparent age
groups is restricted to five persons. To obtain a general benefit from the idea of using
the apparent age in the performance of expression classification and age estimation
tasks, more work is required to label the data by more assessors.

183



Conclusion

• Finally, despite the good performance that was obtained for landmark localization,
face representation, age estimation, and expression classification using small training
sample size, it would be interesting to investigate the use of other face representation
methods such as DL which have showed remarkable performance in several computer
vision and image processing researches on the small size of the data.
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