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Summary. Meta-analysis is often undertaken in two stages, with each study analysed separately
in stage 1 and estimates combined across studies in stage 2. The study-specific estimates are
assumed to arise from normal distributions with known variances equal to their corresponding
estimates. In contrast, a one-stage analysis estimates all parameters simultaneously.A Bayesian
one-stage approach offers additional advantages, such as the acknowledgement of uncertainty
in all parameters and greater flexibility.However, there are situations when a two-stage strategy is
compelling, e.g.when study-specific analyses are complex and/or time consuming.We present a
novel method for fitting the full Bayesian model in two stages, hence benefiting from its advanta-
ges while retaining the convenience and flexibility of a two-stage approach. Using Markov chain
Monte Carlo methods, posteriors for the parameters of interest are derived separately for each
study.These are then used as proposal distributions in a computationally efficient second stage.
We illustrate these ideas on a small binomial data set; we also analyse motivating data on the
growth and rupture of abdominal aortic aneurysms. The two-stage Bayesian approach closely
reproduces a one-stage analysis when it can be undertaken, but can also be easily carried out
when a one-stage approach is difficult or impossible.

Keywords: Abdominal aortic aneurysm; Bayesian hierarchical modelling; BUGS; Markov
chain Monte Carlo methods; Random-effects meta-analysis

1. Introduction

1.1. Standard methods of meta-analysis and their limitations
Meta-analysis is often undertaken in two stages, even when individual participant data are
available. At the first stage, each study is analysed to provide an estimate of the parameter of
interest, together with its standard error. At the second stage, the estimates are combined across
studies; in a random-effects meta-analysis, potential heterogeneity between the study-specific
parameters is permitted (Higgins et al., 2009).

Writing xi as the estimate of parameter θi in study i, with the standard error denoted by si,
the usual two-stage random-effects meta-analysis model is

xi ∼N.θi, s2
i /

within each study i, and

θi ∼N.μ,σ2/

across studies i=1, . . . , N, where σ2 is the between-study heterogeneity variance. In practice, s2
i
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is estimated but then assumed to be without error in the above model, and normal distributions
are assumed at both the first and the second stages. Although estimation of the overall parame-
ters μ and σ2 can be by maximum likelihood or restricted maximum likelihood, a (non-iterative)
moment estimator of σ2 is most often used in practice. The inference about μ is usually made
by using an asymptotic normal approximation (i.e. asymptotic with respect to the number of
studies), assuming that σ2 is fixed and known.

A Bayesian version of this model, in which study-specific and overall parameters are estimated
simultaneously, can be implemented straightforwardly by using Markov chain Monte Carlo
(MCMC) methods (Gelfand and Smith, 1990; Metropolis et al., 1953; Hastings, 1970). This
has several advantages: for example, uncertainty on all parameters, including σ2, is acknowl-
edged simultaneously, prior information may be incorporated (e.g. Smith et al. (1995)), a credible
interval for μ can simply be taken from the quantiles of its estimated posterior distribution, with
no asymptotic normal approximation needed, and although the normality assumption for the
between-study model is usually retained, a more flexible distribution could be used in principle
(Lee and Thompson, 2008).

The focus of this paper, however, is on exploiting individual participant data, where available,
to avoid the need for two potentially limiting assumptions in the above model:

(a) that the study-specific estimates are normally distributed;
(b) that the associated uncertainties (variances) are known.

The former may be inappropriate for studies with relatively sparse data, or when the parame-
ters of interest are unconventional. The latter is circumvented with individual participant data
because the full uncertainty regarding study-specific parameters is naturally propagated into
the between-study model, and feedback is allowed from the between-study model to the esti-
mation of study-specific parameters. For simple data structures, a non-Bayesian analysis can be
achieved by using linear mixed models for continuous outcomes, or generalized linear mixed
models for binary outcomes. The inference about μ, however, is again usually made by using an
asymptotic normal approximation, assuming that σ2 is fixed and known (Higgins et al., 2001).
Alternatively, a Bayesian analysis can be implemented using MCMC sampling. In addition to
the advantages that were outlined above, MCMC methods can be used when the study-specific
data structures are complex.

Meta-analyses that make use of individual participant data are currently less common than
their aggregate data counterparts, but their application is on the rise, especially in medicine
(Riley et al., 2010; Thompson et al., 2010). Riley et al. (2010) presented a graphical summary
of the trend over time, which shows around 50 such analyses per year being published by 2008.
The Cochrane library now contains over 70 such analyses.

1.2. Two-stage Bayesian methods
This paper focuses on analysis of the full hierarchical model, in which the individual participant
data are used to estimate study-specific and overall parameters simultaneously. A two-stage
strategy, in which study-specific parameters are estimated separately in stage 1, is very attractive
in several situations, however. In this paper we propose a novel method for fitting the full hier-
archical model in two stages. The idea is to fit a model to each study’s data independently in
stage 1. The resulting study-specific posterior distributions are then used as proposal distribu-
tions for the study-specific parameters in stage 2, where those parameters are assumed to arise
from a common population distribution (with unknown mean and variance, say). We describe
the approach in detail in Section 3 but outline here several scenarios in which it may be useful.

(a) When study-specific analyses are complex and/or time consuming: study-specific data
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structures may be complex, requiring study level hierarchical models, with complex and/or
non-linear regressions, say. Different studies may require different models, with different
parameterizations possibly (although there must, by definition, be common parameters
of interest across studies). It may thus be cumbersome to assemble computer code for
analysing all studies simultaneously. If study-specific analyses are time consuming then a
simultaneous analysis may be prohibitively so. A two-stage approach allows the analyst
to consider the studies one by one, tailoring each analysis to the individual study and di-
rectly addressing any study-specific issues that may arise, such as convergence difficulties
in an MCMC simulation—if, for example, posterior correlations between parameters are
large for some studies, necessitating long simulations, there is no need to apply the same
‘run length’ to all studies. In fact, it is quite natural initially to explore the studies sep-
arately anyway, to identify appropriate models, to ensure that study-specific inferences
make sense and to establish a model for linking the studies together.

(b) When there are several models or parameters of interest to consider: in cases where we
wish to examine any relationships that may exist between the study-specific parameters
and study level covariates, a two-stage approach allows these to be explored efficiently,
without having to analyse the study-specific data repeatedly. Similarly, if there are several
models to be entertained for fitting the study-specific data, these can be explored without
having to fit the full hierarchical model. The effect of study-specific assumptions on over-
all inferences can then be readily explored in stage 2. Sometimes there may be multiple
parameters of interest, such as predictive quantities for a range of prespecified condi-
tions. Using MCMC methods for our study-specific analyses means that we can obtain
study-specific inferences for any parameterization of interest simply by transforming the
MCMC output. Overall inferences are then simply a matter of running a computationally
efficient second stage for each parameter set of interest.

(c) When the parameters of interest are complex functions of the ‘natural’ parameters: in such
cases it may be cumbersome to express the likelihood in terms of the parameters of inter-
est, which is a fundamental requirement for a one-stage analysis. Sometimes this may even
be impossible, because we cannot invert, algebraically, the relationship between parame-
ters of interest and natural parameters (those that the likelihood is naturally expressed in
terms of), although this inversion could, in principle, be performed numerically. Either
way, a one-stage analysis is then problematic. Our proposed two-stage method offers a
convenient way around this problem, exploiting again the fact that study-specific infer-
ences for any parameterization of interest can be obtained by transforming appropriate
MCMC output.

The motivating data that we consider below exemplify all the above three scenarios. They
require complex, study level hierarchical models, and we are interested in many complex func-
tions of the natural parameters. We would not realistically have been able to perform such an
analysis without the developed two-stage methodology.

Although the above motivation for our work is in terms of meta-analysis, it is likely that
two-stage or multistage Bayesian methods would have a range of other applications that could
be explored. For example, in population pharmacokinetics, a potentially complex non-linear
regression is fitted to repeated measurements from each of a number of individuals (e.g. Lunn
et al. (2002)). Interindividual variability among the resulting parameters can sometimes be par-
tially explained by various individual level covariates, providing scope for individualized dosage
regimens in the target population. A two-stage approach could expedite the search for important
covariates.
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This paper is aimed at both methodological and applied statisticians. The methods are
described in sufficient detail that they may be straightforwardly implemented in a low level
(or high level, e.g. R (Ihaka and Gentlemen, 1996)) language of choice, or extended to other
application areas. For readers who are less interested in the methodological detail, an implemen-
tation of the approach within the BUGS software (Lunn et al., 2000, 2009) has been developed.
The structure of the paper is as follows. In Section 2 we describe illustrative data on the effect of
diuretics on risk of pre-eclampsia during pregnancy, as well as motivating data relating to the
growth and rupture of abdominal aortic aneurysms (AAAs) (Sweeting and Thompson, 2011).
In Section 3 we describe, in detail, the two-stage fully Bayesian approach, highlighting both its
extensions and its limitations. Section 4 presents analyses of the data described in Section 2,
whereas Section 5 contains a concluding discussion. Details regarding the implementation of
our method in BUGS are provided in an on-line appendix.

2. Examples

2.1. Pre-eclampsia data
We illustrate our method by using a simple data set examining the effect of taking diuretics on
the risk of pre-eclampsia during pregnancy. This data set was originally presented in Collins
et al. (1985) and has been reanalysed in several more recent publications, including Thompson
and Pocock (1991). It comprises the number of cases of pre-eclampsia recorded in both treat-
ment and control groups in nine randomized trials published during the years 1962–1980. The
data are given in the on-line appendix A.4.

2.2. Abdominal aortic aneurysms data
Our motivating problem concerns 14 studies providing longitudinal measurements of AAA
diameter, made by ultrasound or computed tomography scan, together with the occurrence
of clinical events, in particular rupture, surgery and death (RESCAN Collaborators, 2012). A
joint model has been previously proposed to associate the size and growth of the aneurysm with
the risk of AAA rupture (Sweeting and Thompson, 2011). A two-stage approach is particularly
attractive in this setting for three reasons:

(a) analysis of the individual studies is complex and time consuming;
(b) there are many parameters of interest, representing predictions across a wide range of

conditions;
(c) many of the parameters of interest are complex functions of the natural parameters.

The focus of the analysis is on growth and rupture rates for the ‘small’ AAA diameter range,
30–54 mm, where individuals are usually monitored without surgical intervention. Our aim is to
quantify both the probability of rupture and the probability of crossing the surgical intervention
threshold (55 mm) before the next scan, to inform appropriate intervals between monitoring
scans.

The size of the studies ranges from 224 to 2227 patients, with a mean of 899 patients per
study. An average of 5.9 AAA diameter measurements are available per patient. The average
study follow-up is 4.2 years, although this ranges from 0.9 to 8.5 years between studies. The
number of small AAA ruptures that are observed during follow-up ranges from 1 to 60, giving
rise to a large range of (crude) rupture rates varying from 0.7 to 11 per 1000 person-years. The
full data are not publicly available. However, an example data set, comprising observations on
100 randomly chosen individuals from a single study, is available in the on-line supplement to
Sweeting and Thompson (2011).
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3. Methods

3.1. Generic model
We describe the generic problem of interest as follows. Suppose that we have N studies indexed
by i=1, . . . , N. Let yi denote the data from study i. At the first level of our hierarchical model
we define the study-specific likelihoods by specifying the sampling distribution of yi conditional
on ‘natural’ study-specific parameters φi and any ‘nuisance’ parameters λi:

Li.φi,λi; yi/=p.yi|φi,λi/, i=1, . . . , N:

For example, suppose that our studies measure the number of patients responding positively to
a particular treatment. In this case we would have

Li.φi,λi; yi/=
(

ni

yi

)
φ

yi

i .1−φi/
ni−yi , i=1, . . . , N,

where ni is the total number of patients in study i, φi represents the underlying success rate for
study population i, and in this case λi is empty.

We include ‘nuisance’ parameters in our formulation of the model merely to illustrate how
certain parameters may be ignored in the second stage of our method, as long as the requi-
site assumptions of independence (see below) are appropriate. If these assumptions are not
appropriate then λi can always be included within φi. For example, if the response is normally
distributed, we may choose whether to model the response standard deviation as a nuisance
parameter or to include it within φi along with the mean.

Often the ‘parameters of interest’, about which we wish to make overall inferences, will be
functions of the ‘natural’ parameters φi. Denoting the parameters of interest in study i by θi,
we express this relationship as

θi =f.φi/,

or

φi =f −1.θi/:

The 1:1 mapping f is typically chosen so that the θis are defined on the whole real line. For
example, we may choose θi = logit.φi/ in the binomial example that was outlined above (hence
θi would be the log-odds of success in study i). This is because we shall usually wish to assume, for
interpretability and to facilitate covariate modelling, that the θis arise from a common normal
distribution with unknown mean μ and covariance Σ,

θi ∼MVN.μ, Σ/, i=1, . . . , N,

although any appropriate population distribution could be used in principle (e.g. Lee and
Thompson (2008)). Hence the θis are typically assumed, at the second level of our hierarchical
model, to be conditionally independent, given μ and Σ. (However, conditional independence is
not a necessary assumption here.) In contrast, any nuisance parameters are assumed indepen-
dent of the θis and marginally independent between studies: p.λ/=ΠN

i=1p.λi/, where λ denotes
the set of all λis. As noted above, if this is not an appropriate assumption for any of the param-
eters that are included in λi then those parameters can simply be included within φi (and θi)
instead.

In some situations the parameters of interest θi may be complex functions of the natural
parameters φi and it may be cumbersome, or not possible, to invert this relationship (to obtain
f −1). Our motivating problem includes an example of such a situation, where one parameter
of interest is the probability that an aneurysm will rupture in a given time. In such cases it may
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be difficult, or even impossible (e.g. θi =φi + log.φi)), to express the study-specific likelihoods,
Li{φi =f −1.θi/,λi; yi}, in terms of the parameters of interest algebraically, thus hindering anal-
ysis by any standard means. The two-stage approach that is proposed herein offers a convenient
way around this problem.

At the third level of our model we assign prior distributions to μ and Σ, e.g. multivariate
normal and inverse Wishart respectively. The joint posterior distribution is then given by

p.μ, Σ, θ,λ|y/∝p.μ/p.Σ/
N∏

i=1
{p.yi|θi,λi/p.θi|μ, Σ/p.λi/}, .1/

where y and θ denote the collections of all yis and all θis respectively, and

p.yi|θi,λi/=Li{f −1.θi/,λi; yi}:

3.2. Inference
Our proposed method enables inferences on the full hierarchical model (1) but is performed in
two stages, as described below.

3.2.1. Stage 1
We first analyse all studies independently, to obtain a sample of size Bi, i= 1, . . . , N, from the
joint posterior distribution of each θi and λi, conditional on yi alone, i.e.

p.θi,λi|yi/∝p.yi|θi,λi/p.θi/p.λi/: .2/

We denote the resulting samples by {θ.t/
i ,λ.t/

i }, t = 1, . . . , Bi, i = 1, . . . , N. These may be
obtained either by MCMC simulation (using BUGS, say) from expression (2) directly, or by
transforming the samples from MCMC simulation under an alternative parameterization, e.g.
{θ.t/

i ,λ.t/
i }={f.φ

.t/
i /,λ.t/

i } in the case where MCMC sampling under the model parameterized
by φi has been performed. In the former case independent prior distributions are specified for
each θi directly; in the latter case these are implied by independent priors specified for each φi,
say.

3.2.2. Stage 2
Stage 2 comprises a Gibbs sampling scheme (Gelfand and Smith, 1990) in which we iteratively
sample from the joint posterior distribution of μ, Σ, θ and λ under the full hierarchical model
(1). At each iteration we cycle through the full conditional distributions for μ, Σ and then each
θi and λi jointly. From distribution (1) these are given by

p.μ|Σ, θ,λ, y/∝p.μ/
N∏

i=1
p.θi|μ, Σ/, .3/

p.Σ|μ, θ,λ, y/∝p.Σ/
N∏

i=1
p.θi|μ, Σ/, .4/

p.θi,λi|μ, Σ, y/∝p.yi|θi,λi/p.θi|μ, Σ/p.λi/, i=1, . . . , N: .5/

Distributions (3) and (4) will typically be available in closed form, e.g. if multivariate normal
and inverse Wishart priors are specified for μ and Σ respectively, and we can sample from
them directly by using standard algorithms (e.g. Ripley (1987)). Otherwise, there are numerous
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alternative methods (e.g. Metropolis et al. (1953), Hastings (1970), Neal (1997) and Gilks and
Wild (1992)) that can be employed.

For updating each θi and λi, it makes intuitive sense to use the stage 1 posterior as a proposal
distribution within a Metropolis–Hastings step (Metropolis et al., 1953; Hastings, 1970). For
a random variable w with density p.w/, we can generate a dependent sample from p.w/, under
the Metropolis–Hastings algorithm, by constructing the Markov chain

w.t/ =
{

wÅ.t/ with probabilityα=min.1,α′/,
w.t−1/ otherwise,

t = 1, 2, . . . , where wÅ.t/ is a ‘candidate value’ drawn from a proposal distribution q.w/ that
provides a reasonable approximation to the ‘target’ density p.w/ but is easy to sample from.
The ‘acceptance probability’ for the candidate value is a function of both the candidate wÅ.t/

and the preceding value w.t−1/:

α′ = p.wÅ.t//

p.w.t−1//

q.w.t−1//

q.wÅ.t//
= R.wÅ.t//

R.w.t−1//
,

where R.x/ denotes the target-to-proposal density ratio p.x/=q.x/. In the case of θi and λi,
proposing candidate values simply entails choosing stage 1 samples at random, by picking an
index cit uniformly from {1, . . . , Bi} at each iteration t. Then

{θÅ.t/
i ,λÅ.t/

i }={θ.cit /
i ,λ.cit /

i }∼p.yi|θi,λi/p.θi/p.λi/ .6/

from distribution (2). From expressions (5) and (6) the target-to-proposal ratio is therefore

R.θi,λi/= p.yi|θi,λi/p.θi|μ, Σ/p.λi/

p.yi|θi,λi/p.θi/p.λi/
= p.θi|μ, Σ/

p.θi/
: .7/

If we suppose that the stage 1 prior for θi is effectively uniform, and hence that stage 1 inferences
or samples are based solely on the likelihood, then {θ.cit /

i ,λ.cit /
i } is accepted with probability

min.1,α′/, where

α′ = p.θ
.cit /
i |μ.t/, Σ.t//

p.θ
.t−1/
i |μ.t/, Σ.t//

p.θ
.t−1/
i /

p.θ
.cit /
i /

= p.θ
.cit /
i |μ.t/, Σ.t//

p.θ
.t−1/
i |μ.t/, Σ.t//

, .8/

where μ.t/ and Σ.t/ denote the values of μ and Σ respectively at iteration t of the Gibbs–
Metropolis scheme. Note that the acceptance probability does not depend on λi, and so the
λis can actually be ignored in stage 2.

The cancellation of likelihood terms in equation (7) means that stage 2 can be performed very
quickly, providing scope for rapid exploration of different level 2 models, such as in covariate
selection. A further consequence of this cancellation is that we do not need to re-express the
likelihood when reparameterizing the model, say for a different set of parameters of interest,
since we can obtain stage 1 samples for any parameterization of interest by transforming those
obtained for the original parameterization. Hence it is straightforward to make inferences about
complex functions of the natural parameters, whose study-specific likelihoods may be cumber-
some, or even impossible, to express algebraically. It is also straightforward to handle situations
in which there are many parameters of interest, perhaps predictions over a range of conditions,
since we can simply keep transforming the original stage 1 sample and rerunning stage 2, rather
than repeatedly redefining the likelihood and performing a full analysis. We illustrate both of
these situations in Section 4.2. A flat prior for one set of parameters does not necessarily imply
a flat prior for some transformation of those parameters. Hence, when exploiting the option



558 D. Lunn, J. Barrett, M. Sweeting and S. Thompson

to transform our stage 1 output, we must be careful to check that the implied priors for θi,
i = 1, . . . , N, are effectively flat, within the range of values that are supported by the stage 1
posterior. This is easy to verify following stage 1, however—see the on-line appendix A.3. If
the implied priors for any derived parameters are not relatively flat, and we cannot param-
eterize stage 1 in terms of those parameters, or if flat priors are not considered appropriate
(on subject matter grounds, say), then our method is still applicable as long as we retain the
p.θ

.t−1/
i /=p.θ

.cit /
i / term in equation (8), although we have yet to explore whether this could lead

to unacceptably low acceptance rates for some situations. Stage 2 analyses may be performed
for one parameter at a time, for a complete set or for subsets of interest. Parameters that are
excluded from a given analysis are essentially assumed to be nuisance parameters. Convergence
of the MCMC simulation in stage 2 can be assessed by standard means (Cowles and Carlin,
1996; Mengersen et al., 1999).

3.3. Hierarchical models with more than three levels
The method extends straightforwardly to hierarchical models with more than three levels.
Suppose that we have a hierarchical model with M levels and we wish to split the analysis
at level mÅ, so that independent posteriors for the parameters of interest at level mÅ are
obtained in stage 1, and these are then used as proposal distributions for those parameters
in stage 2. The method proposed will work if distributional assumptions for nuisance parame-
ters at level mÅ and all parameters or data in levels m= 1, . . . , mÅ − 1 are identical in both the
stage 1 and the full hierarchical models. This ensures that the cancellation in equation (7) will oc-
cur. All parameters in levels m=mÅ +1, . . . , M can be updated by standard Gibbs steps in stage
2. This extension allows for situations in which repeated measurements have been made on each
individual within each study, say, and the θis above represent study level summaries of individ-
ual-specific parameters. Indeed, our motivating data set regarding AAAs has such a structure.

3.4. Specific models
3.4.1. Pre-eclampsia model
Let the number of cases of pre-eclampsia in the control and treatment groups of study i be
denoted by xCi

and xTi respectively. Further, denote the corresponding underlying pre-eclamp-
sia probabilities in these groups by πCi

and πTi , and the total number of individuals in each
group by nCi

and nTi . The first stage of the hierarchical model is given by

xCi
∼binomial.nCi

,πCi
/, xTi ∼binomial.nTi ,πTi /, i=1, . . . , N =9:

In this case the natural parameters are πCi
and πTi whereas the main parameter of interest, τi,

is the treatment effect for study i, defined as the log-odds-ratio for treatment compared with
control as follows:

logit.πCi
/= ξi − τi=2, logit.πTi /= ξi + τi=2, i=1, . . . , N =9:

Here we wish to treat the ξis as nuisance parameters, and so we assign independent N.0, 1002/

priors to each. The same prior is specified for the τis in our stage 1 analysis, whereas in the
full hierarchical model the τis are assumed to arise from a normal population distribution with
unknown mean μ and standard deviation σ: τi ∼N.μ,σ2/, i= 1, . . . , N. The population mean
and standard deviation are assigned vague N.0, 1002/ and Unif.0, 10/ priors respectively.

3.4.2. Abdominal aortic aneursym model
Let xijk denote the kth AAA diameter measured (at time tijk) for individual j in study i.
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Further, let Tij denote the time to rupture or to censoring for individual j in study i, and
let δij denote whether individual j in study i was censored (δij =0) or not (δij =1). The growth
data are modelled as follows:

xijk ∼N.mijk, ς2
i /, mijk =ψ.bij, tijk/+γizijk,

where zijk is an indicator variable equal to 1 if xijk was measured via a computed tomography
scan and 0 if it was measured via ultrasound, γi is the effect of measuring AAA diameter via
computed tomography scan in study i (where appropriate), and ψ.·/ is a growth curve defined
in terms of parameters bij and time t, e.g.

ψ.bij, t/=bij1 +bij2t: .9/

More generally, we denote the dimension of the bij-vectors by r.
We assume that the hazard of rupture h.·/ depends log-linearly on the underlying AAA

diameter ψ.bij, t/, and that censoring (by surgery, non-rupture death or end of follow-up)
is non-informative (Sweeting and Thompson, 2011). Then the likelihood due to the time-to-
rupture data is given by ∏

i

∏
j

S.ζij, Tij/h.ζij, Tij/δij ,

where

S.ζij, Tij/= exp
{

−
∫ Tij

0
h.ζij, s/ds

}
, h.ζij, Tij/= exp{ηi +αiψ.bij, Tij/},

and ζij = .bij1, . . . , bijr, ηi,αi/. The log-linear form for h.·/, in combination with equation (9),
ensures that the hazard function is analytically integrable, allowing the likelihood to be expressed
in closed form. The individual-specific parameters bij are assumed to arise from study-specific
multivariate–normal population distributions:

bij ∼MVNr.βi, Ωi/,

where βi denotes the study-specific mean growth parameters, which together with ηi and αi

form the study-specific parameters of interest θi, and Ωi is the interindividual covariance of
growth parameters for study i. The goodness of fit of the study-specific models was assessed on
maximum likelihood fits via the method described in Rizopoulos et al. (2010)—see, for example,
appendix B in the on-line supplement. However, this is not the focus of our paper.

We perform three analyses, as outlined below.

(a) In our stage 1 analysis the initial parameters of interest θi = .βi1, . . . ,βir, ηi,αi/
′ are

assigned independent MVNp.0p, 1002Ip/ priors, where p = r + 2, 0p is a vector of p
0s and Ip denotes the p × p identity matrix. Meanwhile, in the full hierarchical model
we shall assume that θi ∼ MVNp.μ, Σ/, i= 1, . . . , N, with μ∼ MVNp.0p, 1002Ip/. Both
univariate and multivariate meta-analyses can be considered. The former requires Σ=
diag.σ2

1, . . . ,σ2
p/, where the between-study standard deviations σl, l = 1, . . . , p, are

assigned Unif.0, 100/ priors, for example. In the multivariate case Σ is non-diagonal
with an inverse Wishart prior, say. A third alternative is to perform meta-analysis only
on a subset of the parameters. Since interest primarily lies in ηi and αi we consider
a bivariate meta-analysis where the two between-study standard deviations are assigned
Unif.0, 100/ priors and the between-study correlation parameter is assigned a Unif.−1, 1/

prior.
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For illustration of the above model, we restrict the growth curve to be linear as in
equation (9) and define

Ωi =
(

ω2
i1 ρiωi1ωi2

ρiωi1ωi2 ω2
i2

)
:

The remaining (nuisance) parameters for study i are assigned the following priors, both
in stage 1 and in the full hierarchical model:

γi ∼N.0, 1002/,

ςi,ωi1,ωi2 ∼Unif.0, 100/,

ρi ∼Unif.−1, 1/:

(b) Aside from the parameters that are defined above, particular interest also lies in calculat-
ing the probability of rupture over a short time period .t, t +u/ given diameter d at time
t. This can be approximated by

PR.ηi,αi, u, d/=1− exp{−uexp.ηi +αid/}: .10/

It is straightforward to conduct a two-stage, fully Bayesian meta-analysis for this quan-
tity. We first transform to the logistic scale for compatibility with the assumption that
study-specific parameters of interest arise from a normal population distribution. After
choosing values for u and d we can obtain a stage 1 posterior for the logit probability of
rupture in study i by calculating the logit of expression (10) for each simulated value of
ηi and αi. We then perform an additional stage 2 analysis, as described in Section 3.2,
in which the logit probability of rupture is the only parameter of interest. Importantly,
however, we are interested in a range of values for u and d , specifically in this paper the
probabilities of rupture within time periods of between 3 and 24 months, in 3-month inter-
vals, for a baseline diameter of 50 mm. Handling this situation in a one-stage framework
would require repeated reparameterization of the model followed, each time, by a full
analysis of all data. In contrast, our two-stage approach simply requires transformation
of stage 1 output followed by a rapid second-stage analysis for each u and d.

(c) Another prediction of interest is the probability of crossing the surgical threshold (55 mm)
over the time period .0, u/ given diameter d at time 0 (baseline). This can be expressed by

PT.βi, Ωi, ςi, u, d/=1−Φ
{

55−mc.βi, Ωi, ςi, u, d/√
vc.βi, Ωi, ςi, u/

}
, .11/

where Φ denotes the standard normal cumulative distribution function, and in the linear
growth case

mc.βi, Ωi, ςi, u, d/=βi1 +βi2u+ ω2
i1 +uρiωi1ωi2

ω2
i1 + ς2

i

.d −βi1/,

vc.βi, Ωi, ςi, u/=ω2
i1 +u2ω2

i2 +2uρiωi1ωi2 + ς2
i − .ω2

i1 +uρiωi1ωi2/2

ω2
i1 + ς2

i

are the model-predicted conditional mean and variance respectively of a measurement
taken at time u given a baseline diameter d. This is considerably more complex than the
quantity that is defined in equation (10), and we would certainly not wish to parame-
terize our model in terms of it, but it is meta-analysed just as straightforwardly, by first
calculating the logit of expression (11) for each simulated value of βi, Ωi and ςi in stage
1. Again, we are interested in a range of values for u and d , as outlined above.
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An assumption that the parameters of interest are drawn from some population distribution
(typically normal) is a fundamental requirement of meta-analysis. This means that the underly-
ing hierarchical model may change as different parameterizations are considered, as in (a)–(c)
above, since a non-linear function of normally distributed parameters cannot, in general, also
be normal. The choice of which parameters to assume normally distributed, in any given setting,
is subjective. In practice, rather than assuming one parameterization to be truly normal, it may
be preferable to think of several (or many) being approximately normal. Transformations such
as the logit applied to expressions (10) and (11) can help to ensure that normality is a reasonable
assumption.

3.5. Implementation issues
OpenBUGS code for implementing the models that were described in Section 3.4 is given in
the on-line appendix. The main issue in performing a two-stage analysis is the transfer of infor-
mation from stage 1 to stage 2. This is achieved by saving a full posterior sample (not just a
summary) for each study-specific parameter of interest at the end of stage 1, and by then loading
these samples as data in stage 2. Our posterior sample for the study-specific parameters from
the full hierarchical model in stage 2 will consist entirely of values obtained during stage 1, but
weighted accordingly. Hence we must ensure that a substantial sample is obtained in stage 1,
not just for summarizing the stage 1 posteriors but also to compensate for the fact that there
may be some conflict between the stage 1 and full hierarchical posteriors, which may render
many of the values sampled in stage 1 obsolete. The increased resolution that a large sample
offers, however, is offset somewhat by the need to store and subsequently to load large data files.
Hence we tend to ensure that our stage 1 sample is as efficient as possible by saving only every
nth value for each parameter of interest from the simulated Markov chains, where n is chosen so
that successive values in the stored sample are essentially independent (facilities are available in
BUGS that make selecting and storing such ‘thinned’ output very straightforward). Note that
an increased stage 1 sample size also helps to prevent the second-stage sampler from becom-
ing temporarily stuck near local posterior modes. In our experience, saving 10000 independent
realizations for each parameter in stage 1 strikes a good balance between resolution and storage
and data loading, although this may be insufficient for high dimensional problems. We are not
aware of any actual restrictions on sample size and/or the number of parameters in BUGS, but
larger samples will require more ‘loading’ and ‘compilation’ time—this took only a few seconds,
however, for our most complex analysis (10000 samples×14 studies×9 parameters).

4. Results

4.1. Pre-eclampsia data
Two-stage analysis of the pre-eclampsia data was performed by using the OpenBUGS code
given in the on-line appendix (appendices A.1 and A.4). The stage 1 models were run for
200000 iterations following convergence of the MCMC simulation, and the resulting samples
were thinned by 20, on inspection of auto-correlation plots, to achieve approximate indepen-
dence between successive values. Thus 10000 posterior realizations were generated for each
study level parameter of interest τi. Two analyses were conducted at stage 2: the first using just
1000 of the posterior samples from stage 1, and the second using all 10000. Both stage 2 analyses
were run for 100000 iterations after convergence. A one-stage analysis was also carried out for
comparison of results, again using 100000 iterations after convergence. For all analyses, the
Markov chains generated were well behaved and convergence was assessed by visual inspection
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of ‘chain history’ plots (where a continuous line joining successive samples together is plotted
against iteration number), as outlined in Lunn et al. (2012), section 4.4. Confirmatory analyses
ran two MCMC simulations in parallel and assessed convergence formally by the method of
Gelman and Rubin (Gelman and Rubin, 1992; Brooks and Gelman, 1998), an implementation
of which is available in BUGS. In all cases an initial burn-in of 1000 iterations was deemed
sufficient.

Our results are summarized in the forest plot shown in Fig. 1. For each study we plot the
posterior median value of τi and the corresponding 95% credible interval from each of the four
analyses alluded to above:

(a) stage 1 analysis;
(b) stage 2 analysis with 1000 stage 1 samples;
(c) stage 2 analysis with 10000 stage 1 samples;
(d) one-stage (simultaneous) analysis.

There is excellent agreement between posterior summaries corresponding to the full hierarchical
model. Hence both stage 2 analyses perform well in terms of summarizing the study level poste-
riors. This is true even for studies with relatively few data (studies 4 and 8, say) where shrinkage
effects in the hierarchical model are relatively strong. Also shown in Fig. 1 is a comparison of
point and interval estimates for the overall mean log-odds-ratio from the three analyses corres-
ponding to the hierarchical model. A more complete comparison of overall inferences from
these analyses is given in Table 1, where the between-study heterogeneity σ and the predicted
effect in a new study τnew are also considered (Higgins et al., 2009). Again the agreement is
excellent, confirming that our method also works well in terms of overall inferences.

Fig. 2 compares posterior density estimates from the two two-stage analyses, purposely using

Table 1. Comparison of two-stage analyses with 1000 and 10000 stage 1 samples to
a one-stage analysis (pre-eclampsia data)†

Parameter Two-stage analysis Two-stage analysis One-stage
(1000 samples) (10000 samples) analysis

μ −0.51 (−1.11, 0.09) −0.51 (−1.12, 0.10) −0.51 (−1.11, 0.10)
σ 0.68 (0.28, 1.56) 0.68 (0.27, 1.57) 0.67 (0.27, 1.57)
τnew −0.51 (−2.26, 1.24) −0.51 (−2.28, 1.26) −0.51 (−2.25, 1.23)

†Posterior medians for overall parameters with 95% credible intervals in parentheses.

Table 2. Overall estimates (population medians) for main parameters of interest from Bayesian two-stage
analysis of AAA data†

Parameter Estimates for Bayesian two-stage analysis Classical Der
Simonian and Laird

Univariate Bivariate (1986) estimates

ηi −6.3 (−6.8, −5.9) −6.3 (−6.8, −5.9) −6.3 (−6.7, −5.9)
αi 0.12 (0.082, 0.16) 0.12 (0.081, 0.15) 0.13 (0.092, 0.16)
PR.ηi,αi, u=0:25, d =50/ 0.0015 (0.00076, 0.0026) — 0.0018 (0.0012, 0.0027)
PT.βi, Ωi, ςi, u=0:25, d =50/ 0.018 (0.0082, 0.037) — 0.018 (0.012, 0.028)

†Classical DerSimonian and Laird (1986) estimates are also given for comparison.
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Fig. 1. Results of the two-stage and one-stage analyses of the pre-eclampsia data: estimates are posterior
medians with 95% credible intervals; the medians are shown as squares with area inversely proportional to
the posterior variance; the edges of the diamonds used to denote overall estimates correspond to the limits
of the 95% credible interval, whereas the central vertices show the posterior median
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the same bandwidth in both cases to emphasize the effect of the stage 1 posterior sample size.
Inferences on the overall parameters μ and σ are virtually identical, suggesting that these are
not strongly dependent on the number of stage 1 samples collected. Fig. 2 also shows density
estimates for τ1 and τ2 as examples of study-specific parameters. In the cases where only 1000
stage 1 samples have been used the density estimates are somewhat ‘granular’ because there are
fewer values to choose from, which reduces the resolution with which the target density can be
represented.

4.2. Abdominal aortic aneurysm data
BUGS code for the stage 1 analysis is given in the on-line appendix A.5. In practice, to en-
sure that the parameters are less correlated, all time variables (tijk and Tij) are centred at the
mean follow-up time for the study, whereas, in the hazard function, ψ.bij, Tij/ is centred at the
study mean AAA diameter. Transformations are then required to obtain common parameters
across the studies. Such centring is not necessary but can improve convergence substantially.
For monitoring convergence, each stage 1 analysis was conducted with two MCMC chains
running in parallel; the method of Gelman and Rubin (Gelman and Rubin, 1992; Brooks and
Gelman, 1998) was then used. A typical analysis involved a burn-in of 6000 iterations, with
100000 further iterations thinned by 20. In all cases, sufficient iterations for obtaining 10000
approximately independent posterior realizations for each study level parameter of interest were
performed. Even with the aforementioned centring to improve convergence, each stage 1 anal-
ysis took several hours to perform. Hence a single one-stage analysis of the full hierarchi-
cal model would have taken of the order of days to perform. Bearing in mind that there are
numerous parameters of interest in this setting, a two-stage approach was considered essen-
tial. Prior distributions for all parameters, including derived parameters, were effectively flat
within the range of values supported by the corresponding posterior, as illustrated in Fig. 3
for the log-odds of rupture within 3 months (0.25 years) given a baseline diameter of 50 mm,
logit{PR.ηi,αi, u=0:25, d =50/}.

At stage 2, to ensure comparability between studies, intercept parameters βi1 were stan-
dardized to represent a mean AAA diameter at t = 0, whereas log-baseline-hazards ηi were
standardized to represent the log-hazard at a diameter of 40 mm. Both univariate and bivar-
iate two-stage analyses for the parameters ηi and αi were performed. In addition, a range of
univariate two-stage analyses for the derived parameters PR.ηi,αi, u, d/ and PT.βi, Ωi, ςi, u, d/

was conducted, specifically to make predictions for time periods of between 3 months and 2
years, in 3-month intervals (u=0:25, 0:5, 0:75, . . . , 2), for individuals with a diameter of 50 mm
(d =50). In each stage 2 analysis, 200000 realizations were generated after an initial burn-in of
10000 iterations (convergence was assessed by visual inspection of chain history plots and by
Gelman and Rubin’s method in confirmatory analyses).

Table 2 shows the overall estimates for the basic parameters ηi and αi. For comparison, a
classical random-effects summary estimate (DerSimonian and Laird, 1986) is also calculated
by using the posterior medians and standard deviations from stage 1. Point and interval estim-
ates for the overall parameters are similar between the Bayesian two-stage and the classical
random-effects approaches. In addition, univariate and bivariate stage 2 analyses give almost
identical results. The population mean log-baseline hazard (for an AAA diameter of 40 mm),
η, is low and signifies a median rupture rate, exp.η/, of 1.8 (95% credible interval 1.1–2.7) per
1000 person-years. However, the hazard increases significantly with diameter, with a population
median hazard ratio, exp.α/, of 1.13 (95% credible interval 1.09–1.17) per millimetre increase
in AAA diameter.

Currently, patients with an AAA diameter between 45 and 54 mm, identified in the National
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Fig. 2. Posterior density estimates for μ, σ, τ1 and τ2 based on 100000 stage 2 samples from analysis
of the pre-eclampsia data: (a) p.μjxC, xT/ by using 1000 stage 1 samples; (b) p.μjxC, xT/ by using 10000
stage 1 samples; (c) p.τ1jxC, xT/ by using 1000 stage 1 samples; (d) p.τ1jxC, xT/ by using 10000 stage 1
samples; (e) p.σjxC, xT/ by using 1000 stage 1 samples; (f) p.σjxC, xT/ by using 10000 stage 1 samples; (g)
p.τ2jxC, xT/ by using 1000 stage 1 samples; (h) p.τ2jxC, xT/ by using 10000 stage 1 samples

Health Service AAA screening programme, are invited back for re-screening after 3 months. To
assess the appropriateness of this monitoring interval, we begin by calculating, for an individual
with diameter 50 mm, the study-specific predicted probabilities of rupture and of crossing the
surgical intervention threshold (55 mm) within a 3-month period, PR.ηi,αi, u = 0:25, d = 50/

and PT.βi, Ωi, ςi, u = 0:25, d = 50/ respectively. In the second stage, a hierarchical structure is
placed on the logit of each predicted probability, by assuming that the study-specific values
originate from a common (normal) population distribution. Table 2 shows the overall estim-
ates transformed back to the probability scale. These now have considerably wider credible
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Log−odds of rupture within 3 months given 50mm diameter
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Fig. 3. Kernel density estimates for all 14 stage 1 posteriors for the log-odds of rupture within 3 months (0.25
years) given a baseline diameter of 50 mm, logit{PR.ηi ,αi , uD0:25, d D50/}, from independent analyses of
study-specific AAA data: , prior distribution, scaled (arbitarily) so that it is visible on the same plot

intervals than those obtained via classical random-effects meta-analysis. Results indicate that
the current 3-month screening policy is relatively safe, with point estimates (and 95% credible
intervals in parentheses) for the overall/population-median values of the probabilities of rup-
ture before next screen and of crossing the intervention threshold within 3 months being 0.15%
(0.076–0.26%) and 1.8% (0.82–3.7%) respectively. There is considerable between-study heter-
ogeneity in these quantities, however, which raises the question of whether there are patient
or study level characteristics that may explain this; however, this topic is not pursued here. To
illustrate the level of heterogeneity, Fig. 4 shows a forest plot of the stage 1 and stage 2 pos-
terior distributions (medians and 95% credible intervals) for the probability of rupture within
3 months, given a diameter of 50 mm. Note that study-specific estimates are variable, and that
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those from stage 2, corresponding to the full hierarchical model, are generally more precise than
those from stage 1. Considerable shrinkage is also apparent for several studies.

Fig. 5 shows the probabilities of rupture and of crossing the intervention threshold, given
d = 50, for various values of the monitoring interval u. These are obtained straightforwardly
by adapting the procedure that was outlined above for u = 0:25. We can see that monitoring
intervals of 9 months or less and 6 months or less respectively are required to be confident
that the population median probabilities of rupture and of crossing the intervention threshold
are below 1% and 10%. However, given the degree of between-study variation, it would seem
inappropriate to use this as a basis for justifying a longer monitoring interval.

5. Discussion

We have developed a novel method for analysing fully Bayesian hierarchical models in two
stages; to the best of our knowledge this approach has not been used before. The method can be
thought of as a type of particle filter (sequential Monte Carlo sampling; Doucet et al. (2001);
Andrieu et al. (2010)), where the resampling is done via Metropolis–Hastings sampling; the
considerable literature on particle filtering may thus point to ways of improving or extending
our method. Our approach is computationally efficient and can be easily applied in settings
where a one-stage analysis is difficult or impossible (e.g. for complex parameters of interest) or
inefficient (e.g. when there are multiple parameter sets of interest). Although we have demon-
strated, here, that the method works for a simple binomial example, we have also tested it within
various settings, such as Poisson regression, and have discovered no further issues. In addition,
we can see no theoretical or intuitive reason why it should fail, as long as stage 1 posteriors are
obtainable. Where applicable, our approach allows potentially complex problems to be broken
down into a series of more manageable problems, facilitating, for example, individually tailored
analyses for each study in stage 1, and allowing a wide range of inferences to be readily obtained
following a single stage 1 analysis.

In cases where the parameters of interest are complex functions, such as the probability that
is associated with some clinically relevant event, a two-stage approach offers a surprisingly sim-
ple solution, avoiding the need for reparameterization of the model and subsequent reanalysis
of all data. If an overall estimate of the parameter of interest is sufficient, and we require no
heterogeneity measure, then another option might have been to estimate a posterior distribu-
tion for the parameter of interest by transforming simulated values for the population mean
parameters μ from some basic analysis. However, the resulting quantity would not, in general,
be meaningful, since it would not normally represent the population mean or median value, say,
or any other established measure of centrality, on the scale of interest (because, for example,
f.E[x]/ /=E[f.x/] for non-linear f.·/). Also, predictions on the scale of interest, for new studies,
say, would not be possible by using such an approach.

One limitation of our method is the requirement for the stage 1 posteriors, obtained under an
assumption of marginal independence between studies, to provide reasonable approximations
to the full conditional distributions for the study-specific parameters in the hierarchical model,
where studies are typically assumed conditionally independent instead, given the overall param-
eters. If there is too much conflict between these distributions then the Metropolis sampler may
become degenerate, accepting only a few of the stage 1 samples. However, we would expect that
this is unlikely to happen, since the most likely cause of such conflict is when shrinkage effects
would be strong in the hierarchical model, owing to limited data from particular studies, in
which case the corresponding stage 1 posteriors will be wider. In extreme cases, we may lose
some resolution unless very large MCMC samples are taken of the posteriors from stage 1.



568 D. Lunn, J. Barrett, M. Sweeting and S. Thompson

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Probability of rupture (x 100)

Western Australia

Chichester

Gloucestershire

Huntingdon

Manchester

MASS

Tromso

PIVOTAL

Propranolol

Galdakao

Stirling

Gävle

UKSAT

Viborg

Classical D&L meta−analysis: 0.18 (0.12, 0.27)

Bayesian two−stage: 0.15 (0.076, 0.26)

I2 = 80%

Fig. 4. Results of stage 1 ( , ) and stage 2 ( , ) analyses of AAA data for the probability of rupture
within 3 months, given 50 mm diameter: the estimates are posterior medians with 95% credible intervals;
the medians are shown as squares with an area inversely proportional to the posterior variance on the logit
scale; I2 is the proportion of total variation due to heterogeneity between studies; the diamond notation is for
overall estimates as in Fig. 1
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Another limitation occurs when data are sparse and some of the stage 1 posteriors are thus
improper. Hence they cannot be obtained for use as proposal distributions. The method pro-
posed may, at least, be used partially for such data sets, with the units for which a stage 1
posterior is available handled as described in Section 3.2, and the remaining units modelled as
they would be in a standard, one-stage analysis. (In such cases it is convenient to rearrange the
data so that the units for which only sparse data are available form a contiguous block.)

Our method has been presented in a meta-analysis context but is an entirely general advance,
which is applicable, in principle, to a wide range of hierarchical modelling scenarios. We have
implemented it in freely available software, OpenBUGS (www.openbugs.info), which is
sufficiently flexible that the user may apply the methodology to almost arbitrary problem types.
As mentioned above, we require that the stage 1 posteriors are obtainable. One situation in which
this is not so is when the ‘borrowing of strength’ that a hierarchical model permits is essential
for the identification of unit-specific (study-specific in the case of meta-analysis) parameters.
This can occur in population pharmacokinetics, for example, where longitudinal drug concen-
tration data are available for a number of individuals and we wish to make overall inferences
about the concentration–time relationship. Often, in the latter stages of drug development, many
patients are followed but each may give rise to only one or two concentration measurements,
thus precluding independent analyses of patient-specific data.

Model criticism within the framework proposed is an area for further exploration. Stan-
dard approaches, such as traditional residual-based methods, and more advanced techniques
(e.g. Rizopoulos et al. (2010)) are applicable to stage 1 results, since stage 1 comprises stan-
dard analyses only. Within stage 2, study level residuals and predictive distributions are readily
obtained, facilitating the use of established methods for criticism, such as Bayesian p-values
(Gelman, 2003; Gelman et al., 2004). Outlying studies could be accommodated or identified
by assuming a (multivariate) Student t population distribution for the parameters of interest
(e.g. Wakefield et al. (1994)). The degrees of freedom could be either prespecified or estimated
as part of the analysis, the latter offering a means of assessing the appropriateness of a simpler
normality assumption for the population distribution instead. Efficient ways of performing
cross-validation (e.g. Marshall and Spiegelhalter (2003)) and computing the deviance informa-
tion criterion (Spiegelhalter et al., 2002) within stage 2 are currently under investigation.

Finally, it may be possible to extend the methodology to allow two-stage Bayesian modelling
in more complex evidence syntheses, such as multiparameter evidence synthesis (Ades and Sut-
ton, 2006; Presanis et al., 2011; Sweeting et al., 2008), or mixed treatment comparisons (Salanti
et al., 2008; Lu and Ades, 2006).
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