
Sweeting, Michael J; Mander, Adrian P (2012) Escalation strate-
gies for combination therapy Phase I trials. PHARMACEUTICAL
STATISTICS, 11 (3). pp. 258-266. ISSN 1539-1604 DOI: https://doi.org/10.1002/pst.1497

Downloaded from: http://researchonline.lshtm.ac.uk/4652041/

DOI: 10.1002/pst.1497

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alterna-
tively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSHTM Research Online

https://core.ac.uk/display/188186573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.lshtm.ac.uk/4652041/
http://dx.doi.org/10.1002/pst.1497
http://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk


MAIN PAPER

(wileyonlinelibrary.com) DOI: 10.1002/pst.1497 Published online 12 March 2012 in Wiley Online Library

Escalation strategies for combination therapy
Phase I trials
Michael J. Sweeting* and Adrian P. Mander

Phase I clinical trials aim to identify a maximum tolerated dose (MTD), the highest possible dose that does not cause an unac-
ceptable amount of toxicity in the patients. In trials of combination therapies, however, many different dose combinations may
have a similar probability of causing a dose-limiting toxicity, and hence, a number of MTDs may exist. Furthermore, escalation
strategies in combination trials are more complex, with possible escalation/de-escalation of either or both drugs. This paper
investigates the properties of two existing proposed Bayesian adaptive models for combination therapy dose-escalation when
a number of different escalation strategies are applied. We assess operating characteristics through a series of simulation stud-
ies and show that strategies that only allow ‘non-diagonal’ moves in the escalation process (that is, both drugs cannot increase
simultaneously) are inefficient and identify fewer MTDs for Phase II comparisons. Such strategies tend to escalate a single
agent first while keeping the other agent fixed, which can be a severe restriction when exploring dose surfaces using a limited
sample size. Meanwhile, escalation designs based on Bayesian D-optimality allow more varied experimentation around the
dose space and, consequently, are better at identifying more MTDs. We argue that for Phase I combination trials it is sensi-
ble to take forward a number of identified MTDs for Phase II experimentation so that their efficacy can be directly compared.
Researchers, therefore, need to carefully consider the escalation strategy and model that best allows the identification of these
MTDs. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, combination therapy treatments have become
more widespread, giving rise to a number of proposed mod-
els for estimating the maximum tolerated dose (MTD) in Phase
I combination trials [1–5]. The aims and designs of two-agent
Phase I trials are more complex than that of a single-agent
trial, and a multitude of MTDs with a similar toxicity profile can
be identified. Indeed, a number of drug combinations could
be recommended for Phase II (RPII) experimentation so as to
directly compare their efficacy. In theory, in a two-dimensional
setting, an infinite number of possible dose combinations will
achieve the same target toxicity level (TTL), assuming a contin-
uous dose-toxicity surface. In practice, however, such choices are
often restricted by predefining a set of dose combinations used
for experimentation.

Combination drug Phase I trials often have rich prior informa-
tion available on the dose-toxicity response from single-agent
studies, which should be utilised to make the trial more effi-
cient. For this reason, a number of authors have suggested using
Bayesian parametric models to describe the dose-toxicity sur-
face, where model parameters can be separated into those that
relate to the marginal dose-toxicity response and those that relate
to the ‘interaction’ between the two agents [2–4]. In particular,
the three-parameter copula-type regression model proposed by
Yin and Yuan [2] is an extension of the popular continuous
reassessment method (CRM) [6] used in single-agent dose-finding
trials, whereas the six-parameter model, proposed by Thall
et al. [3], is simplified into a logistic model, marginally, over each
single agent.

Less attention, however, has been given to the performance
of such models under different escalation strategies, when only
a discrete set of dose combinations are available for experimen-
tation. Different escalation strategies may result in different MTDs
being identified and recommended for Phase II evaluation [7]. In
single-agent trials, the risk of overdosing can be avoided by dose-
escalation strategies that do not skip any predefined dose lev-
els. However, in combination therapy trials, the set of admissible
doses, with which the next cohort can be treated, is more com-
plex. A number of authors have suggested escalation to neigh-
bouring dose combinations within the two-dimensional space,
with both agents increased concurrently [3] and where only one
agent is increased at a time [2, 4].

In this paper, we consider different strategies for escalation and
for the search of the dose-toxicity space, and show how these
strategies affect the number and suitability of the RPII doses.
We compare diagonal escalation where both drugs are increased
simultaneously with escalation where only one drug is increased
at a time between patient cohorts. We show how efficiency,
gained through allowing ‘positive’ diagonal escalation, must be
traded-off against an increased risk of overdosing. In combina-
tion therapies, however, the severity of overdosing may be less
pronounced because dose ranges are likely to be more targeted,

MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge,
Cambridgeshire, UK

*Correspondence to: Michael J. Sweeting, MRC Biostatistics Unit, Institute of Public
Health, Robinson Way, Cambridge, Cambridgeshire, UK.
E-mail: michael.sweeting@mrc-bsu.cam.ac.uk

2
5

8

Pharmaceut. Statist. 2012, 11 258–266 Copyright © 2012 John Wiley & Sons, Ltd.



M. J. Sweeting and A. P. Mander

which is due to previous Phase I experimentation of single agents.
In addition, we also propose strategies in moving between dose
combinations based on either selecting the next dose whose esti-
mated probability of dose-limiting toxicity (DLT) is closest to the
TTL or using a Bayesian D-optimality criteria. The latter allows the
design to search the dose-toxicity space more fully and to identify
a larger number of MTDs. We propose that RPII doses be chosen
on the basis of the estimated probability of DLT being within a
tolerance interval of the TTL to allow more than one combina-
tion to be recommended for future evaluation, and we restrict our
choice of RPII doses to only combinations that have been experi-
mented on within the course of the trial. From this definition, we
contrast two proposed models in their ability to identify the RPII
dose combinations by using a set of simulation studies.

2. PARAMETRIC MODELS FOR COMBINATION
THERAPY PHASE I TRIALS

We shall start by reviewing two proposed parametric models used
in combination therapy Phase I trials: a six-parameter model [3]
and a three-parameter copula-type model [2].

The model proposed by Thall et al. [3] uses four parameters
to describe the probability of toxicity at the margins (i.e. when
each drug is used in isolation) and two parameters to describe the
magnitude and shape of the dose-toxicity curve when the drugs
are used in combination. Specifically, let x D .xAi , xBj/ denote the
dose combination when drug A is used at level i .iD 1, : : : , I/ and
drug B is used at level j .j D 1, : : : , J/. The probability of a DLT is
then given by

�.x;�1/D
˛1xˇ1

Ai C ˛2xˇ2
Bj C ˛3.x

ˇ1
Ai xˇ2

Bj /
ˇ3

1C ˛1xˇ1
Ai C ˛2xBj

ˇ2 C ˛3.x
ˇ1
Ai xˇ2

Bj /
ˇ3

, (1)

where the six parameters �1 D .˛1,ˇ1,˛2,ˇ2,˛3,ˇ3/ are all posi-
tive. Suitable priors can be obtained for the parameters ˛1,˛2,ˇ1

and ˇ2 by using data from single-agent trials or eliciting opinions
from physicians. For the interaction parameters, ˛3 and ˇ3, Thall
et al. recommend using reasonably vague Gamma priors.

Yin and Yuan [2] propose a copula-type model with three
parameters, �2 D .ı, , �/. The model is of the following form:

�.x;�2/D 1�
n�

1� pıi

���
C
�

1� q j

���
� 1

o�1=�
, (2)

where pi is a prespecified ‘best guess’ probability of DLT when
drug A is used in isolation at level i, and qj a ‘best guess’ prob-
ability of DLT when drug B is used in isolation at level j. These
quantities are fixed in advance using prior knowledge (and are
sometimes referred to as the ‘skeleton’ in a CRM). A monotoni-
cally increasing sequence is specified for both the ps and the qs.
Nevertheless, in order to reflect the fact that the marginal proba-

bilities are uncertain, the true probabilities are taken as pıi and q j ,
where ı and  are unknown parameters with a prior mean equal
to one. The final model parameter is � > 0, which characterises
any interaction between the drugs. This copula model has been
regarded as a multivariate extension of the CRM power model
because if drug A is used in isolation, then q D 0, and hence,
�..xAi , 0/;�2/ D pıi . Similarly, when drug B is used in isolation,

�..0, xBj/;�2/D q j .

3. DECISION RULES FOR ESCALATION

Suppose that n patients have currently been treated in the trial.
The data can be summarised by the doses each patient received
and the toxicity outcome indicators (Y D 1 for a DLT, and Y D 0
otherwise); hence, Zn D f.xk , Yk/, k D 1, : : : , ng. Let f .�/
denote the prior distribution for the parameter vector � , where
� D �1 for the six-parameter model and � D �2 for the three-
parameter model. The posterior distribution after n patients by
Bayes theorem is

f .�jZn// f .Zn;�/f .�/,

where the likelihood is binomial and given by

f .Zn;�//
nY

kD1

�.xk ;�/Yk .1� �.xk ;�//1�Yk .

The choice of dose combination for patient .nC 1/ is based upon
the posterior distribution. For safety purposes and for the preven-
tion of ‘dose skipping’, the set of doses for patient .n C 1/ may
be restricted to dose combinations close to the current combina-
tion, xn. These sets of doses will be labelled the admissible doses
for patient .n C 1/. A number of possible approaches in choos-
ing the admissible dose set are described in Section 4. For now,
suppose that � represents our chosen set of admissible doses.
One approach in choosing the next dose combination from this
admissible set is to find the dose combination whose posterior
mean toxicity is closest to the TTL �, that is

xnC1 D arg min
�2�

jE Œ� .� ;�/ j Zn�� �j , (3)

where E Œ� .� ;�/ jZn� D
R
� .� ;�/ f .�jZn/ d� . In a decision

theoretic framework, this is equivalent to minimising the poste-
rior expected loss with respect to the loss function

L.� ;�/D .�.� ;�/� �/2,

for � 2 � [8]. This approach is commonly used in many single-
agent dose-finding designs [4, 6, 9] and can be readily adapted to
the combination therapy setting. We shall subsequently refer to
an escalation strategy based on Equation (3) as decision rule D1.

An alternative approach is to select the next dose on the basis
of a constrained Bayesian D-optimality design [3, 10]. For exam-
ple, within a two-dimensional dose-finding trial, it may be the
case that among the admissible dose sets for patient .n C 1/,
a number of dose combinations have an estimated probability
of toxicity within a small tolerance of the TTL. The dose whose
posterior mean probability of DLT is closest to the TTL could be
chosen, as described previously, or the investigator may wish
to select the next dose on the basis of maximising the infor-
mation of the model parameters while still assigning a dose

that is close to the TTL. Let I.�;�/ D E
h
@`..�,Y/;�/

@�
@`..�,Y/;�/

@�T

i
denote the Fisher information matrix associated with treating
a patient at dose combination �, given the parameters � , and
where ` ..�, Y/ ;�/ D log f ..�, Y/ ;�/ is the log likelihood func-
tion. Bayesian D-optimality assigns patient n C 1 to dose xnC1

on the basis of maximising the posterior expectation of the
log determinant of the information matrix given the current
data, that is,

xnC1 D arg max
�2�

E

"
log det

 
nX

iD1

I.xi ;�/C I.� ;�/

! ˇ̌̌
ˇ̌ Zn

#
. (4)
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In order to ensure that patients are not assigned to highly toxic
doses with this design, the admissible dose set � should be fur-
ther restricted to doses that have toxicity within a certain toler-
ance of the TTL. We achieve this by restricting the admissible set,
after n patients have been recruited, to those doses whose pos-
terior mean probability of DLT is within a tolerance � of the TTL,
that is

�� D�\ f�; jE Œ�.�;�/ j Zn�� �j � �g . (5)

An alternative restricted dose set includes dose combinations
that, with some large degree of probability, have a probability of
DLT less than a maximal acceptable toxicity [10]. If the restricted
dose set is empty, that is there are no admissible doses whose
posterior mean probability of DLT is within � of the TTL, then
the next dose combination is chosen as the one whose posterior
mean probability of DLT is closest to the TTL, as in Equation (3),
subject to the original admissibility constraints �. An escalation

a) Non-diagonal escalation strategy

b) Diagonal escalation strategy

Figure 1. Admissible dose-escalation strategies using neighbouring dose
combinations.

strategy, based on D-optimality equation (4) and restriction (5),
will be labelled strategy D2.

4. ADMISSIBLE DOSES

Overdosing is a major concern in Phase I trials, and in order to
address this problem, designs often incorporate additional con-
straints to prevent skipping of predefined dose levels. In a combi-
nation therapy trial, this is equivalent to only allowing the next
cohort to be treated at one dose level above the current pre-
scribed dose for drug A, whereas drug B remains fixed, or one
dose level above the current level for drug B, whereas drug A is
kept fixed. The set of admissible dose combinations for the next
cohort are therefore restricted to the neighbouring dose combi-
nations in the two-dimensional space, without allowing diagonal
moves (Figure 1(a)), as recommended by Yin and Yuan [2]. Such
an admissible dose set will be labelled�1.

A slightly less conservative approach to dose finding is to
additionally allow diagonal escalation, whereby both drugs are
increased simultaneously (Figure 1(b)). This is equivalent to skip-
ping one dose combination in the non-diagonal design because
it would take two steps to reach this dose combination using
such a design. However, in the context of combination therapy,
such escalations may be tolerable (at least for the clinical trialist)
because both drugs are likely to already have a known toxicity
profile from earlier Phase I experimentation. Hence, the dose
ranges used in the combination trial are likely to be more tar-
geted. An admissible dose set based on diagonal escalation is
labelled�2.

A third approach is to allow diagonal escalation to neighbour-
ing combinations while also allowing the administration of any
previously experimented dose combination. This has the advan-
tage of allowing the design to explore more efficiently around
the dose space. For example, suppose that n cohorts have been
treated thus far in the trial and escalation has proceeded as
depicted in Figure 2, using any neighbouring dose combinations
as admissible doses. The current cohort are treated at combi-
nation .xA6, xB1/. The majority of cohorts have been treated at

Figure 2. Admissible dose-escalation strategy using neighbouring and previously
experimented dose combinations.2
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high levels of drug A and low levels of drug B. However, this cur-
rent imbalance in the allocation of doses means that little has
been learned about the toxicity when low doses of drug A and
high doses of drug B are given. Designs based on D-optimality
are likely to propose escalation to such dose combinations, but
a jump from the current dose combination to, say, dose com-
bination .xA1, xB6/ would involve recruiting five more cohorts if
only neighbouring dose combinations are admissible. Allowing
jumps to previously experimented dose combinations would, in
this example, allow a jump directly to combination .xA3, xB4/, with
the hope of making the overall design more efficient. An admissi-
ble dose set based on neighbouring and previously experimented
doses is labelled�3.

5. SIMULATIONS

We investigate the operating characteristics of both decision rules
D1 and D2, described in Section 3, by using the admissible dose
sets �1, �2 and �3, described in Section 4. Note that, for the

Table I. Prior mean and variances for model parameters
used in the simulation study.

Model Parameter Mean Variance

Six-parameter [3] ˛1 0.43 0.11
ˇ1 7.65 5.71
˛2 0.43 0.08
ˇ2 7.80 3.99
˛3 1.00 0.90
ˇ3 1.00 0.90

Three-parameter [2] ı 1.00 0.50
 1.00 0.50
� 1.00 0.50
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Figure 3. Contour plot of prior mean toxicity for Gemcitabine (Drug A) + Cyclophos-
phamide (Drug B). The bold line shows dose combinations at the target toxicity level
(TTL) of 30%.

D-optimal design (D2), each admissible dose set is further
restricted by Equation (5).

Simulations are conducted for both the six-parameter and
three-parameter models, described in Section 2. The operating
characteristics of the approaches are illustrated using a com-
bination therapy cancer trial of Gemcitabine and Cyclophos-
phamide, which is described fully in Thall et al. [3]. Priors for
the six-parameter model, shown in Table I, were elicited from
expert physicians, and these give rise to a toxicity surface, as
shown in Figure 3, where the prior mean probability of DLT
contours are plotted. We consider six dose levels which can
be used for each drug. These are standardised to their known
MTD doses when each drug is used in isolation. Hence, dose
combination .1, 0/ refers to the single-agent MTD for drug A,
and .0, 1/ refers to the single-agent MTD for drug B. The six
dose levels are as follows: .0.2, 0.5, 0.7, 0.8, 0.9, 0.95/. These were
chosen for the experimentation to be focused around the pre-
sumed MTD contour (corresponding to a TTL of 0.3), as shown in
Figure 3.

Table II. True toxicity probabilities for the simulations, with
maximum tolerated doses shown in bold (doses within
0.025 of the target toxicity level).

Drug A

Drug B 0.2 0.5 0.7 0.8 0.9 0.95

a) Scenario 1: in agreement with prior
0.95 0.23 0.27 0.30 0.36 0.44 0.49
0.90 0.18 0.21 0.26 0.30 0.39 0.44
0.80 0.11 0.14 0.18 0.23 0.30 0.36
0.70 0.06 0.09 0.14 0.18 0.26 0.30
0.50 0.03 0.05 0.09 0.13 0.21 0.27
0.20 0.02 0.03 0.06 0.10 0.18 0.23

b) Scenario 2: toxic
0.95 0.23 0.30 0.45 0.50 0.55 0.60
0.90 0.18 0.21 0.30 0.45 0.50 0.55
0.80 0.11 0.14 0.18 0.30 0.45 0.50
0.70 0.06 0.09 0.14 0.18 0.30 0.45
0.50 0.03 0.05 0.09 0.13 0.21 0.30
0.20 0.02 0.03 0.06 0.10 0.18 0.23

b) Scenario 3: asymmetric toxic
0.95 0.30 0.38 0.48 0.58 0.68 0.78
0.90 0.22 0.30 0.40 0.50 0.60 0.70
0.80 0.17 0.25 0.35 0.45 0.50 0.60
0.70 0.12 0.20 0.30 0.40 0.45 0.55
0.50 0.06 0.14 0.24 0.34 0.39 0.49
0.20 0.02 0.10 0.20 0.30 0.35 0.45

b) Scenario 4: flat
0.95 0.265 0.295 0.325 0.355 0.385 0.415
0.90 0.250 0.280 0.310 0.340 0.370 0.400
0.80 0.235 0.265 0.295 0.325 0.355 0.385
0.70 0.220 0.250 0.280 0.310 0.340 0.370
0.50 0.205 0.235 0.265 0.295 0.325 0.355
0.20 0.190 0.220 0.250 0.280 0.310 0.340
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The prior mean probability of DLT, when each drug is used in
isolation, is calculated from the model and used as the skeleton in
the three-parameter model (the fixed ps and qs in Equation (2)).
All parameters in the three-parameter model are given indepen-
dent gamma.2, 2/ priors (mean 1 and variance 0.5). Note that Yin
and Yuan [2] also used these priors for ı and , whereas they used
a more vague gamma(0.1,0.1) prior for the interaction parame-
ter � . However, we found such a prior to be numerically unsta-
ble, particularly when calculating the information matrix, because
sampling values of � were very close to zero.

The first cohort is treated at the lowest dose combination
(i.e. (0.2,0.2)), and two individuals are treated in each cohort.
Escalation then proceeds using either decision rule D1 or D2,
under a certain admissible design set (�1, �2, or �3). The TTL is
set to 30% and � D 0.025; that is, for design D2, we further restrict
our admissible set to dose combinations whose posterior mean
probability is within the range .0.275, 0.325/. A total of 20 cohorts
(40 patients) are treated in the trial. The final RPII dose combi-
nations are selected as those that have been experimented on
during the course of the Phase I trial and whose posterior mean
probability of DLT is within � of the TTL, that is the set

�RPII D�E \ f�; jE Œ�.�;�/ j Zn�� �j � �g , (6)

where �E is the set of dose combinations experimented on dur-
ing the trial. One thousand simulations were performed, in which
the toxicity outcome for each patient is drawn from a Bernoulli
distribution with the true probability of toxicity depending on
the current dose combination. All analyses were carried out in R
linked to the MCMC package JAGS [11], and the code is available
from the authors upon request.

5.1. Scenarios

Four scenarios are investigated. The first takes the true probabil-
ity of toxicity at each dose combination from the prior mean, as
specified from the six-parameter model (Table II(a)). Both models

are therefore expected to perform well under this scenario. Four
of the prespecified dose combinations are MTDs, and it is desir-
able for the designs to recommend as many of these doses for
Phase II experimentation as possible. In the second scenario, the
probability of a DLT is higher than the specified prior mean prob-
abilities for high-dose combinations (Table II(b)). In this scenario,
there are five possible MTDs, each with a probability of DLT equal
to 30%. However, a one level increase above any MTD for either
drug results in a large jump in the probability of a DLT to 45%.
Hence, in this scenario, the risk of overdosing is high. The sce-
nario was not derived from a specific choice of model parameters
using either the three-parameter or six-parameter model; rather,
the aim is to assess the robustness of the escalation procedure
to model any prior misspecification. The third scenario assumes
an asymmetric dose-toxicity surface (Table II(c)), where drug A is
more toxic than B over the dose range. This could arise if the prior
is misspecified for the single-agent MTD dose for drug A. There
are four possible MTDs in this scenario. The fourth scenario inves-
tigated assumes the dose-toxicity surface is relatively flat, with
the probability of DLT ranging from 0.19 to 0.415 over the dose
combinations. Here, there are nine possible MTDs (doses whose
toxicity is within � of the TTL).

5.2. Escalation: six-parameter model

The mean probability of the DLT for each patient recruited in
the trial is shown in Figure 4 for each scenario under the various
admissible sets, using the six-parameter model and decision rule
D1. A very similar escalation pattern is seen under the decision
rule D2, and hence, these results are not plotted. In every
scenario, designs using either the admissible set �2 or �3

escalate faster compared to those using �1. Under scenario 1,
dosing stabilises around the TTL, on average, after 10 patients
have been recruited. In contrast, the admissible set �1, which
does not allow diagonal escalation, takes an average of 20
patients until the TTL is reached. This results in more patients
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Figure 4. Mean probability of dose-limiting toxicity (DLT) for each individual recruited in the trial under Scenarios 1–4, for admissible sets �1 (neighbouring, excluding
diagonal), �2 (neighbouring, including diagonal), and �3 (neighbouring, including diagonal and previously experimented dose combinations). The six-parameter model
and decision rule D1 is used for all designs.2
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Table III. Experimentation percentages for the six-parameter model under
the various designs. The target toxicity range here is defined as 25%–34%.

Design

Toxicity (%) D1�1 D1�2 D1�3 D2�1 D2�2 D2�3

Scenario 1: in agreement with prior
Severe underdosing 0–14 22.3 17.4 17.9 21.7 17.1 17.0
Underdosing 15–24 22.4 16.6 16.5 21.3 19.1 19.0
Target dosing 25–34 39.3 42.1 40.7 40.4 39.9 40.5
Overdosing 35–44 15.9 23.7 24.7 16.4 23.6 23.3
Severe overdosing� 45 0.1 0.3 0.2 0.2 0.3 0.2

Scenario 2: toxic
Severe underdosing 0–14 22.1 18.4 18.6 22.2 17.3 17.7
Underdosing 15–24 24.5 16.6 14.8 23.2 19.1 17.8
Target dosing 25–34 29.7 36.5 37.8 29.6 35.9 36.8
Overdosing 35–44 18.3 20.8 20.6 19.4 19.9 20.1
Severe overdosing� 45 5.3 7.6 8.1 5.4 7.8 7.7

Scenario 3: asymmetric toxic
Severe underdosing 0–14 12.8 12.0 12.2 13.3 11.7 11.8
Underdosing 15–24 13.0 8.8 8.8 15.5 9.1 8.7
Target dosing 25–34 21.5 27.6 28.8 25.9 27.9 28.5
Overdosing 35–44 44.5 41.6 40.8 36.9 41.3 39.8
Severe overdosing� 45 8.2 10.0 9.4 8.4 10.0 11.2

Scenario 4: flat
Severe underdosing 0–14 0.0 0.0 0.0 0.0 0.0 0.0
Underdosing 15–24 31.6 28.5 29.5 32.5 26.5 28.7
Target dosing 25–34 59.3 59.1 56.2 60.5 61.8 58.9
Overdosing 35–44 9.2 12.5 14.4 7.0 11.6 12.4
Severe overdosing� 45 0.0 0.0 0.0 0.0 0.0 0.0
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receiving suboptimal doses. Scenarios 2 and 3 result in some
overdosing, due to the unexpected toxic nature of the drug
combination, before the designs start to converge down to the
TTL. Designs �2 and �3 peak faster and at a higher toxicity
level than the more conservative �1 design. Under the flat
dose-toxicity surface of Scenario 4, all designs escalate at roughly
the same rate and converge on the TTL from below.

5.3. Experimentation: six-parameter model

Figure 5 illustrates the percentage of times each dose combi-
nation is experimented on under Scenario 1 for the competing
designs. Using the admissible set �1, escalation generally pro-
ceeds along the margin of the two-dimensional space (i.e. drug
B remains at its first level) before escalation to the TTL. This occurs
because the prior for ˇ2 is higher than ˇ1. Hence, although no
DLTs have been observed, at each decision point, an increase in
drug A is estimated to get closer to the TTL than an increase
in drug B. If the prior mean for ˇ2 was less than that of ˇ1 then, on

average, drug B dose levels will be escalated first. In fact, only
if the presumed dose-toxicity curve is convex (this happens if
ˇ1 < 1 and ˇ2 < 1) does the design behave in a step-like fash-
ion by escalating drug A and B in turns. Under the non-diagonal
design (D1 �1), a large proportion of patients are treated at
just one of the four MTDs, .xA6, xB3/, whereas other MTDs are
very rarely experimented on. Using the admissible set�2, escala-
tion proceeds up the diagonal of the two-dimensional space, and
experimentation among the four MTDs is more equally spread.
The D-optimal designs all produce slightly more varied experi-
mentations compared with designs D1, and this is especially true
when the admissible dose set includes previously experimented
doses (�3).

Table III shows how each design performs in terms of under-
dosing and overdosing patients recruited to the trial, under the
varying scenarios. It is clear that operating characteristics are
strongly dependent on the scenario investigated. Under Scenario
1, approximately 40% of all trial participants are treated at a target
level (25%–34% toxicity). Designs that use a diagonal escalation

Table IV. Recommendation percentages for Phase II experimentation
under the six-parameter model and the average percentage of true
MTDs selected by the design.

Design

Toxicity (%) D1�1 D1�2 D1�3 D2�1 D2�2 D2�3

Scenario 1: in agreement with prior
Far below TTL 0–14 1.4 0.7 0.5 0.7 1.0 0.5
Below TTL 15–24 19.6 17.4 16.0 21.0 19.9 20.1
TTL 25–34 58.4 58.5 61.4 60.0 58.3 60.2
Above TTL 35–44 20.7 23.2 22.1 18.2 20.8 19.2
Far above TTL� 45 0.0 0.2 0.1 0.1 0.1 0.0
% of MTDs selected 16 18 17 22 21 23

Scenario 2: toxic
Far below TTL 0 - 14 1.0 1.0 0.6 1.3 1.6 1.4
Below TTL 15–24 25.1 19.6 21.8 24.5 23.2 24.6
TTL 25–34 47.2 55.5 51.8 49.6 51.9 53.1
Above TTL 35–44 23.5 21.9 23.3 21.7 21.1 19.0
Far above TTL� 45 3.3 2.0 2.5 2.8 2.2 1.9
% of MTDs selected 18 21 18 27 24 25

Scenario 3: asymmetric toxic
Far below TTL 0–14 1.4 0.8 0.8 1.2 1.2 0.7
Below TTL 15–24 10.1 10.8 10.3 10.8 11.1 10.9
TTL 25–34 29.6 34.9 36.9 30.9 33.6 34.9
Above TTL 35–44 53.9 49.8 47.6 50.2 49.2 48.1
Far above TTL� 45 4.9 3.7 4.5 6.9 4.8 5.5
% of MTDs selected 8 10 9 12 11 13

Scenario 4: flat
Far below TTL 0–14 0.0 0.0 0.0 0.0 0.0 0.0
Below TTL 15–24 13.7 12.3 11.9 14.0 11.7 11.6
TTL 25–34 73.1 75.4 70.8 76.2 75.7 74.8
Above TTL 35–44 13.1 12.3 17.3 9.8 12.6 13.6
Far above TTL� 45 0.0 0.0 0.0 0.0 0.0 0.0
% of MTDs selected 7 7 6 9 8 8

TTL, target toxicity level. MTD, maximum tolerated dose.2
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strategy (�2 and �3) tend to dose more patients at the target
level under Scenarios 1-3, whereas very similar dosing profiles are
seen in Scenario 4. However, these designs also tend to overdose
more often compared with the more conservative �1 escalation.
The D-optimal design (D2) slightly improves operating character-
istics under the �1 strategy but does not consistently improve
experimentation percentages under designs�2 and�3.

5.4. Recommendation: six-parameter model

Table IV shows the toxicity of the RPII doses at the end of the
trial. As to be expected, at the target level, the recommendation
percentages are higher than the experimentation percentages
shown in Table III. It is interesting to note, however, that these
percentages are still relatively low, suggesting that a much larger
trial is required to have adequate power to recommend Phase II
doses close to the target level. The advantage of the D-optimal
designs (D2) is more pronounced when studying the recommen-
dation percentages. RPII doses are generally less likely to be above

the TTL, whereas higher percentages of the true MTDs are finally
selected for Phase II compared with the D1 designs.

5.5. Recommendation: three-parameter model

It should be noted that a formal comparison between the oper-
ating characteristics of the three-parameter and six-parameter
models is difficult because of the choice of prior distributions.
The priors chosen for the two models in this analysis were not
intended to give matching dose-toxicity surfaces, in terms of
either prior means or variances. Therefore, in this paper, we have
adopted a pragmatic approach, using priors that have been pre-
viously recommended.

Table V shows the toxicity of the RPII doses using the three-
parameter model. A similar pattern is observed, as seen with
the investigations using the six-parameter model, with reason-
able operating characteristics under Scenarios 1 and 4, whereas
a fair proportion of RPII doses under Scenarios 2 and 3 are
above the true TTL. In contrast to the six-parameter model, the

Table V. Recommendation percentages for Phase II experimentation
under the three-parameter model and the average percentage of true
MTDs selected by the design.

Design

Toxicity (%) D1�1 D1�2 D1�3 D2�1 D2�2 D2�3

Scenario 1: in agreement with prior
Far below TTL 0–14 1.6 2.3 2.0 3.2 3.5 3.5
Below TTL 15–24 26.0 24.1 21.8 27.2 25.4 25.8
TTL 25–34 49.7 47.3 50.1 47.3 43.9 43.7
Above TTL 35–44 21.7 25.3 24.9 21.5 26.5 26.1
Far above TTL� 45 1.0 1.1 1.1 0.8 0.7 0.8
% of MTDs selected 14 14 15 19 15 14

Scenario 2: toxic
Far below TTL 0–14 3.5 2.7 2.6 4.8 5.1 4.9
Below TTL 15–24 31.5 24.9 25.2 32.8 29.2 29.4
TTL 25–34 39.4 46.7 47.9 34.7 40.3 40.9
Above TTL 35 - 44 20.3 21.0 20.8 21.6 20.9 19.2
Far above TTL� 45 5.3 4.7 3.5 6.2 4.5 5.6
% of MTDs selected 17 20 19 21 20 19

Scenario 3: asymmetric toxic
Far below TTL 0–14 1.2 1.4 1.5 1.3 2.0 1.5
Below TTL 15–24 17.4 18.7 19.0 18.7 18.3 17.6
TTL 25–34 39.0 39.2 39.1 35.8 39.1 40.5
Above TTL 35–44 38.1 37.6 36.9 39.0 36.1 35.9
Far above TTL� 45 4.3 3.0 3.6 5.2 4.4 4.5
% of MTDs selected 11 11 10 15 13 13

Scenario 4: flat
Far below TTL 0–14 0.0 0.0 0.0 0.0 0.0 0.0
Below TTL 15–24 17.1 11.7 11.1 16.3 12.4 11.0
TTL 25–34 71.5 74.5 73.7 69.0 73.1 72.9
Above TTL 35–44 11.4 13.8 15.1 14.7 14.5 16.1
Far above TTL� 45 0.0 0.0 0.0 0.0 0.0 0.0
% of MTDs selected 6 5 5 6 7 7

TTL, target toxicity level. MTD, maximum tolerated dose.
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D2 designs appear to reduce the proportion of RPII doses that
have toxicity at the TTL. However, the percentage of true MTDs
recommended under these designs does increase. This apparent
contradiction arises because the D-optimal designs are recom-
mending more Phase II doses, both correctly at the TTL and
incorrectly outside of the TTL. The diagonal designs (�2 and �3)
generally recommend a higher proportion of RPII doses at the
TTL, but at the expense of increased overdosing of patients dur-
ing the trial (experimentation results for three-parameter model
not shown).

Under these prior specifications, the six-parameter model
tends to outperform the three-parameter model in Scenarios 1, 2
and 4 in terms of RPII doses at the TTL and the overall percentage
of the true selected MTDs (Tables IV and V). Interestingly, how-
ever, the three-parameter model appears to perform much better
under Scenario 3 when the dose-toxicity curve is asymmetric.

6. DISCUSSION

In this paper, we have shown a diagonal escalation strategy to
be more efficient in that it reaches the TTL quicker, with approxi-
mately 20%–50% fewer patients dosed at suboptimal levels
and correctly recommends more MTDs at the end of the trial.
We found that the non-diagonal strategies start by escalating a
single agent while keeping the other agent fixed, and we did not
see the step-like escalation that was anticipated. This behaviour
may be undesirable because the aim may be to show safety when
both drugs are being used in reasonable quantity. For example, in
our simulation studies, drug A was first escalated near to its MTD,
whereas drug B remained fixed at the lowest level. This results in
some MTDs at the end of the trial being rarely recommended. The
planned sample size of the trial must, therefore, take into account
the proposed escalation strategy.

The tradeoff for using a diagonal escalation strategy is that
it will lead to an increased risk of overdosing within some trial
patients; the extent of which depends on the underlying dose-
toxicity surface and the proposed increments in dose for each
drug. The severity of this consequence will depend very much on
the disease and the drugs under consideration. However, if esca-
lation to potentially overly toxic doses is of major concern, then
the dose range should be subdivided into a finer grid, if possi-
ble. In other words, the prespecification of the doses should take
into account whether a diagonal or non-diagonal strategy is to be
used in the escalation procedure. The flexibility of model-based
adaptive designs present an advantage here because dose
levels may also be refined during the course of the trial. The
models would treat the added dose combinations as additional
design points for consideration when deciding the next cohort’s
dose, with the admissible dose set also being updated appro-
priately. Researchers must, therefore, consider these design issues
carefully in order to ensure that overdosing is not too severe and
is kept to a minimum.

Designs based on Bayesian D-optimality criteria are shown to
allow better traversing of the dose space. This, in turn, slightly
improves the percentage of correctly recommended MTDs.
When combined with a strategy that allows diagonal escalation

and experimentation at previous administered doses, the perfor-
mance of the D-optimal design is further enhanced. Such escala-
tion strategies are therefore important, especially for Phase I trials
with a large number of prespecified dose combinations.

In three out of the four scenarios investigated, the six-
parameter model has been found to outperform the three-
parameter model when the objective is to identify more than one
MTD. However, care must be taken when comparing between
models because of the different prior specifications. One advan-
tage of the CRM approach in the single-agent trials has been
that underparameterised models can be used to provide good
local fit at the TTL. However, in combination therapy trials, models
need to be more flexible, and hence complex, in order to pro-
vide a good approximation of the whole dose-toxicity contour at
the TTL. In our experience, we have found that the six-parameter
model allows a more explicit specification of prior information
from single-agent data, with four of the six parameters specifi-
cally related to this. Prior information can be elicited from experts,
as was the case of the Gemcitabine and Cyclophosphamide trial
[3], or priors can be obtained directly from previous Phase I trial
data. For the latter, some discounting (i.e. increasing the prior
variance) may be necessary if previous trials are conducted in
different populations and with different protocols.
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