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SOFTWARE Open Access

Short read sequence typing (SRST): multi-locus
sequence types from short reads
Michael Inouye1,2, Thomas C Conway3, Justin Zobel3 and Kathryn E Holt1*

Abstract

Background: Multi-locus sequence typing (MLST) has become the gold standard for population analyses of
bacterial pathogens. This method focuses on the sequences of a small number of loci (usually seven) to divide the
population and is simple, robust and facilitates comparison of results between laboratories and over time. Over the
last decade, researchers and population health specialists have invested substantial effort in building up public
MLST databases for nearly 100 different bacterial species, and these databases contain a wealth of important
information linked to MLST sequence types such as time and place of isolation, host or niche, serotype and even
clinical or drug resistance profiles. Recent advances in sequencing technology mean it is increasingly feasible to
perform bacterial population analysis at the whole genome level. This offers massive gains in resolving power and
genetic profiling compared to MLST, and will eventually replace MLST for bacterial typing and population analysis.
However given the wealth of data currently available in MLST databases, it is crucial to maintain backwards
compatibility with MLST schemes so that new genome analyses can be understood in their proper historical
context.

Results: We present a software tool, SRST, for quick and accurate retrieval of sequence types from short read sets,
using inputs easily downloaded from public databases. SRST uses read mapping and an allele assignment score
incorporating sequence coverage and variability, to determine the most likely allele at each MLST locus. Analysis of
over 3,500 loci in more than 500 publicly accessible Illumina read sets showed SRST to be highly accurate at allele
assignment. SRST output is compatible with common analysis tools such as eBURST, Clonal Frame or PhyloViz,
allowing easy comparison between novel genome data and MLST data. Alignment, fastq and pileup files can also
be generated for novel alleles.

Conclusions: SRST is a novel software tool for accurate assignment of sequence types using short read data.
Several uses for the tool are demonstrated, including quality control for high-throughput sequencing projects,
plasmid MLST and analysis of genomic data during outbreak investigation. SRST is open-source, requires Python,
BWA and SamTools, and is available from http://srst.sourceforge.net.

Keywords: MLST, Short read, Illumina, Sequence analysis, Plasmid, Chromosome, Microbiology, Bacteria, Population
analysis, Outbreak

Background
Multi-locus sequence typing (MLST) has become the
gold standard for the analysis of bacterial populations
[1,2]. MLST involves PCR amplification and sequencing
of 5–10 loci of ~500 bp in length, with each sequence
variant assigned a unique locus variant or allele number.
Each unique combination of locus variants is assigned a

sequence type (ST), which is then used to denote a pre-
cise set of sequences. Public MLST databases are used
to store and share information linking DNA sequences
to locus variant numbers and sequence types and are
available for >85 bacterial species including important
human pathogens such as Staphylococcus aureus, Hae-
mophilus influenzae and Neisseria species (see http://
pubmlst.org). This format allows quick, simple and dir-
ect comparison of bacterial populations analysed in dif-
ferent laboratories and over time. The databases also
link individual bacterial isolates to STs, serotypes,
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sources and other meta-information with public health
utility.
Advances in sequencing technology continue to bring

down the costs of whole-genome sequencing of bac-
teria – indeed it is already close to the cost of MLST
[3]. Because bacterial genomes are relatively small in
size (typically 1–10 Mbp) they can be sequenced in
multiplex, allowing the high read depths of e.g. a single
lane of Illumina HiSeq to be distributed among up to
96 different samples via the use of individually-tagged
libraries [4-7]. Whole-genome sequencing provides a
lot more information than MLST and can be used to
study microevolution in much finer detail and over
small time scales [3-8]. As an assay, whole genome
shotgun sequencing can be simpler than MLST, which
requires multiple independent PCR and sequencing
reactions to be performed for each sample. This will
become increasingly true as automation becomes
widely used in whole-genome library preparation work-
flows. Also, while MLST requires the design and pur-
chase of species-specific specific primer sets, whole
genome sequencing can be applied to any bacterium,
without species primers or even prior knowledge of
species. However, while the advantages of whole-
genome sequencing over MLST are clear, it is crucial
that newly sequenced isolates (or populations of iso-
lates) can be analysed in the context of the vast
amount of population data currently stored in MLST
databases. MLST can be used to assess the frequency
and expansion of particular clones, and most MLST
databases store not only ST information for each iso-
late, but also detailed meta-information such as sero-
type, host or source, date of collection and in some
cases spatial information (see e.g. MLST-maps, http://
maps.mlst.net [9]). MLST provides a framework against
which new isolate collections can be compared and
interpreted, but can only be utilized if the STs of newly
sequenced isolates can be accurately derived from
whole-genome sequencing data.
The only method currently available to perform MLST

allele assignment on short read data is web-based, re-
quiring sequence data to be uploaded to a server and
compared to public MLST databases [10]. This poses
problems for data security and confidentiality, is unfeas-
ible for the large datasets typically generated in high-
throughput multiplex sequencing projects and excludes
the use of privately maintained MLST databases. All of
these issues are likely to be significant barriers for use in
the majority of research or public health laboratories.
Furthermore the method depends on de novo assembly
[10], which limits its sensitivity, particularly for genomes
sequenced at low read depth.
Here we present an open-source software tool, SRST,

to derive STs from Illumina short read sequence data

using a mapping-based approach to maximise sensitivity.
SRST can be used together with any public or private
MLST scheme and generates output files suitable for
comparative analysis with existing MLST datasets, com-
patible with standard MLST tools such as eBURST [11],
ClonalFrame [12] and Phyloviz (http://www.phyloviz.
net). In this paper, we introduce the SRST approach and
demonstrate its accuracy with real datasets including
534 genomes from four species-specific and four plas-
mid MLST schemes, and discuss the usefulness of the
method for quality control in high-throughput sequen-
cing projects and outbreak investigations.

Implementation
SRST takes as input (a) locus variant sequences and ST
profile definitions, retrieved from a public or private MLST
database (such as http://pubmlst.org); (b) sequences flank-
ing each locus, retrieved from an appropriate reference
genome sequence using the supplied script; (c) Illumina
read data (in fastq format; any number of paired or
single-end read files can be processed in a single com-
mand). SRST runs on any Linux based computer or clus-
ter (including Mac OS X) and requires the installation of
the free packages BWA and SamTools for alignment
functions [13,14]. Full instructions are available at http://
srst.sourceforge.net.
Each readset is mapped to each of the possible locus

variants v (with flanking sequence) and a score s is cal-
culated to assess the quality of the match, as follows.
Consider a single base position i in the mapping of read
set R to locus variant v, in which ni reads map to pos-
ition i, which has base vi in v and majority-rules consen-
sus (i.e. most prevalent) base ri in R. If ri 6¼ vi we record
a mismatch and rule out v as a possible locus variant.
Otherwise, we compute the probability that the base call
ri (which matches vi) is erroneous, by calculating Bino-
mial probabilities for the three alternative bases x:

Pr X ≥ xð Þ ¼
Xni
j¼k

nt
k

� �
pj 1� pð Þni�j

where k = the observed read count for base x at position
i. The probability that a non-consensus nucleotide
(which does not match vi) is the best explanation for the
coverage at position i is the sum of the three probabil-
ities. The probability that a sequence other than v is the
best explanation for the observed coverage across the
whole locus is the sum of these probabilities across all
positions i. The final score s reported is the negative log
of this probability, so that higher scores reflect more
hits. Note this treats the probabilities at each position as
independent, which they are not. However the assump-
tion is conservative, and only results in non-trivial over-
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estimation of the probability in cases where the score
will be below a threshold of acceptance in any case.
For each readset and locus, the highest scoring variant,

with zero mismatches and passing a user-settable cut-off
value, is assigned. If all loci are assigned for a particular
readset and the combination of variants is a known ST,
this ST will be returned; if a novel combination of locus
variants is detected this will be assigned a novel ST. If
any loci are not confidently assigned, no ST can be
called.
The main output is a file specifying the locus variants

and STs of all input datasets, suitable for analysis with
common MLST tools such as eBURST or Phyloviz.
A log file is also generated, detailing scores and cover-

age statistics for each locus and readset. Where an exact
match to a known allele cannot be found, the closest al-
lele (and number of mismatching bases) is reported and
the closest ST is determined; these results are flagged so
as to be distinguished from precise ST assignments.
Optionally, verbose output can be switched on in

order to retain full sequence information for novel
alleles, including the alignment (bam format), pileup
(pileup format) and consensus sequence (fastq format)
obtained from mapping to the closest-matching locus
variant. See Additional file 1 for an example fastq gener-
ated by SRST. This is intended to facilitate investigation
of novel alleles, in which case visual inspection of align-
ments or pileups is recommended. Some MLST data-
bases may also accept fastq or bam files for submission
of novel alleles.

Results and Discussion
Accuracy in calling sequence types
To determine a suitable cut-off score and test the accur-
acy of SRST, we utilized three publicly available datasets
each representing a different group of bacteria – Strepto-
coccus pneumoniae [6,15], Staphylococcus aureus [4,16]
and Salmonella bongori [17,18]. All short read, MLST
and reference data were downloaded from public data-
bases (Table 1). We ran SRST on each read set (N= 341
genomes, 2,387 loci) and examined the sensitivity (call
rate; i.e. the proportion of loci for which a variant could
be confidently assigned) and specificity (false positive
rate; i.e the proportion of loci with incorrect variant
calls) obtained using different cut-off scores. As Figure 1

shows, best results were obtained with a cut-off score
between 7 and 11. We therefore set the default cut-off
score for SRST to 10, and use this cut-off for all subse-
quent analyses reported below. In the few cases where
an allele could not be confidently assigned using a cut-
off score of 10, the expected allele and ST were still cor-
rectly identified by SRST as the most likely result.

Quality control in high-throughput sequencing projects
The most obvious application of SRST is to assign STs
to novel isolates whose STs are unknown. However we
were also interested to use SRST for quality control in
large-scale sequencing studies of bacterial clones, to
allow early detection and identification of read sets that
should be excluded from comparative analysis of the
clonal group of interest. To demonstrate the utility of
SRST for this purpose, we used it to analyse a set of
Shigella sonnei genomes sequenced using paired-end
multiplex Illumina GAII (Table 1) [19]. Note Shigella
species are actually sublineages of E. coli [20], hence the
E. coli MLST scheme [21] is used to investigate Shigella.
A total of 188 Shigella data sets had sufficient mean

read depth (>10x) to analyse and 170 (90 %) of these
matched a known ST with SRST scores ≥10 for all loci.
The other 18 samples comprised (i) 15 with ≥1 locus
scoring <10 but identified as a known S. sonnei allele
and (ii) 3 with novel locus variants (each having one

Table 1 High throughput read sets analyzed in this study

Species N Read type Accession (reads) MLST database Reference genome

Staphylococcus aureus [4] 67 37 bp SE ERP000070 http://saureus.mlst.net/ NC_002952.2

Salmonella bongori [17] 18 54 bp PE ERP000328 http://mlst.ucc.ie/mlst/ NC_011900.1

Streptococcus pneumoniae [6] 256 54 bp PE ERP000139 http://spneumoniae.mlst.net/ NC_011149.1

Shigella sonnei [19] 188 54 bp PE ERP000182 http://mlst.ucc.ie/mlst/ NC_000913.2

PE = paired end sequencing, SE = single end sequencing.
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Figure 1 Score threshold determination for SRST. Each data
point indicates the call rate (y-axis) and false positive rate (x-axis) for
a given cut-off score, labeled in blue. False positive rate = proportion
of loci with incorrect variant calls, call rate = proportion of loci for
which a variant could be confidently assigned, total loci = 2,387 (341
samples, 3 species).
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locus for which the highest scoring match (scores 20–
160) differed from a known S. sonnei allele by one mis-
matching base). Hence all 18 were recognizable as
single-locus variants of known S. sonnei STs, confirming
their suitability for inclusion in a S. sonnei study. Con-
sensus sequences and quality scores for the novel alleles,
generated using SRST’s verbose option, are given in
Additional file 1. Of the 170 STs assigned with score
≥10, 166 matched known S. sonnei STs (ST152, ST1502,
ST1504, ST1505). Four matched those of other, non-
sonnei, Shigella (S. flexneri, ST245; S. boydii, ST243,
ST1025), indicating they were erroneously included in
the S. sonnei isolate collection and should be excluded
from the intended analysis of S. sonnei. The species sta-
tus of these four isolates, identified by SRST, was con-
firmed by serotyping of the original isolates, and
comparison of the read sets to reference genomes of S.
flexneri and S. boydii. Hence SRST could successfully de-
tect and identify outliers for removal. In contrast, allele
assignment by blastn search of de novo assembled con-
tigs (assembled using Velvet 1.0.13 and Velvet Optimiser
2.1.7) succeeded for only 60 % of the Shigella read sets.

Plasmid MLST
There are currently MLST schemes available for four
types of plasmid – IncI1 [22], IncN [23], IncHI1 [24]
and IncHI2 [25] (http://pubmlst.org/plasmid/). To test
the accuracy of SRST for plasmid MLST, we used it to
detect and assign 5-locus STs to IncI1 plasmids in the S.
sonnei dataset. Since we do not have traditional plasmid
MLST sequences available as a control, we mapped the
reads to the reference sequence for IncI1 ST16 plasmid
pEK204 (NC_013120) [26] and used the proportion of
the plasmid covered by each read set as a measure of the
real presence of IncI1 plasmids in the data (e.g. 90 %
coverage of the reference plasmid would indicate an
IncI1 plasmid is present; 10 % coverage of the reference
plasmid would indicate no IncI1 plasmid is present). As

Figure 2 shows, there was a strong correlation between
the number of IncI1 plasmid MLST loci that could be
assigned with confidence by SRST, and the coverage of
the IncI1 reference plasmid, indicating that SRST is use-
ful for screening for the presence of specific plasmid
types. A total of eight read sets were assigned the same
IncI1 ST (16) as pEK204; their coverage of pEK204 ran-
ged from 94.2 %-99.0 % (mean 96.9 %), while the highest
coverage of pEK204 in other read sets was 92.3 %
(assigned to ST37). This suggests that SRST’s assign-
ment of plasmid STs is as accurate as that for chromo-
somal STs.
High-confidence IncI1 plasmid STs were assigned to a

total of 26 S. sonnei. As Figure 3 shows, these represent
a variety of very distinct IncI1 plasmid types, indicative
of multiple transfers of divergent IncI1 plasmids into S.
sonnei. The plasmid STs clustered geographically and,
within geographic regions, temporally (Figure 3), sug-
gesting there have been several, highly localized, trans-
fers of distinct IncI1 plasmids into the global S. sonnei
population.

Outbreak analysis
Chromosomal and plasmid MLST can provide useful
insights into bacterial pathogen outbreaks. SRST allows
these insights to be rapidly extracted from whole-
genome shotgun sequencing, which can be performed
without prior knowledge of the species and with no need
for PCR with species-specific MLST primers. To illus-
trate this, we utilised five Illumina short read data sets
from the outbreak of E. coli O104:H4 causing hemolytic
uremic syndrome in Germany in 2011 [27,28] (accessions
SRP000285, SRP008003, SRP008032-36, SRP007327).
The data was generated in two different sites (BGI, China
and Broad Institute, US). We used SRST to screen the
outbreak data using the E. coli MLST database to identify
the chromosomal ST and all publicly available plasmid
MLST databases to identify IncI1, IncN, IncHI1 or
IncHI2 plasmids (see above). Details of the datasets and
results are provided in Table 2.
SRST correctly identified the chromosomal ST of all

five outbreak isolates as E. coli ST678, which matches
that reported using traditional MLST approaches [29].
The closest available finished reference genome se-
quence to the E. coli outbreak strain, Ec55989, shares
this ST, and has formed the reference for phylogenetic
and gene content analyses of the German outbreak in all
published studies [27-30]. This illustrates the utility of
SRST to rapidly identify the most suitable reference se-
quence for whole-genome analysis during an outbreak.
At the time of the German outbreak, Ec55989 had not
been entered into the E. coli MLST database and exten-
sive read mapping to all available E. coli sequences (ap-
proximately N= 60 at the time) was required to identify
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Figure 2 Use of SRST to detect plasmids. X-axis indicates the
number of IncI1 plasmid MLST loci with a high-confidence allele
assignment (score> 10) using SRST; y-axis indicates the proportion of
the IncI1 ST16 reference plasmid, pEK204, covered by each read set.
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the most suitable reference [28], however assuming all
available reference sequences are entered into the rele-
vant MLST databases, this could be achieved much
more quickly and easily in future using SRST.
SRST also correctly identified the presence of an IncI1

plasmid of ST31 in each of the E. coli O104:H4 outbreak
isolates (arrow in Figure 3). The outbreak strain’s anti-
biotic resistance plasmid was previously confirmed as

IncI1 ST31 using traditional plasmid MLST (present in
the IncI1 database as CTX-I1-O104:H4, see http://
pubmlst.org/plasmid/). As Figure 3 shows, this plasmid
is quite divergent from any we detected in the S. sonnei
data. The IncI1 plasmid MLST database shows IncI1
ST31 plasmids have previously been identified in a var-
iety of other E. coli hosts circulating in both humans
and animals, often containing extended spectrum beta-
lactamase CTX-M genes similar to that encoded in the
outbreak isolates’ IncI1 plasmids (see IncI1 database at
http://pubmlst.org/plasmid/). No IncN, IncHI1 or IncHI2
plasmids were identified by SRST, consistent with pub-
lished reports of the outbreak genomes [27-30].

Other potential applications
As SRST is database driven it could be used for other se-
quence typing tasks beyond MLST, provided appropriate
databases are used as input. For example, it could be
used to annotate drug resistance genes and alleles. Used
in conjunction with the recent ribosomal MLST

Figure 3 IncI1 plasmid STs detected among S. sonnei. Minimum spanning tree of all IncI1 STs present in the IncI1 plasmid MLST database as
at March 13, 2012, generated using Phyloviz (http://www.phyloviz.net). STs detected among S. sonnei read sets are highlighted; node colour
indicates the country of origin according to the legend provided (bottom-right); node size indicates the number of isolates according to the inset
circle legend (top-left). Nodes representing known STs are labeled in black with the ST number (7, 13, 16, 26, 27, 55), unlabeled nodes are novel
STs (novel combinations of known alleles). Dates of isolation are indicated for larger groups (coloured text). Arrow indicates the position of ST31,
identified in isolates of E. coli O104:H4 associated with an outbreak in Germany in 2011.

Table 2 Chromosomal and plasmid analysis of E. coli
outbreak strains

Strain E. coliST (score) IncI1 ST (score) Accession Reference

C227-11 ST678 (24660) ST31 (2320) SRP000285 [27]

C236-11 ST678 (27131) ST31 (2723) SRP008003 [27]

11-3677 ST678 (20353) ST31 (11286) SRP008034 [27]

11-3798 ST678 (10400) ST31 (6848) SRP008035 [27]

TY-2482 ST678 (1042) ST31 (326.5) SRP007327 [28]

The SRST ST calls and scores are indicated for the chromosome (E. coli
scheme) and plasmid (IncI1 scheme). No other plasmids with MLST schemes
available (IncN, IncHI1, IncHI2) were detected using SRST
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database [31], SRST could potentially be used for species
designation of novel isolates. These applications could
be useful in outbreak analysis, strain identification, sur-
veillance, studies of mechanisms and transfer of drug re-
sistance, and a variety of other public health and
research applications.

Conclusions
SRST uses read mapping to assign sequence types to
novel bacterial genomic sequence data, which offers sev-
eral advantages over traditional MLST using PCR and
Sanger sequencing. SRST is accurate and sensitive at al-
lele assignment and can identify and retrieve novel allele
sequences for further investigation. Being mapping-
based it is more sensitive than assembly-based allele as-
signment for short read data sets, and can be run locally
without reliance on web-based services or data uploads.
SRST can be used in a variety of contexts, including sim-
ple allele assignment to novel data sets, quality control
in batch sequencing projects, outbreak investigation,
plasmid MLST and potentially in any scenario where
database-driven sequence typing is required.

Availability and requirements
Project name: SRST (Short Read Sequence Typing)
Project home page: http://srst.sourceforge.net/
Operating system(s): Linux/Mac
Requirements: samtools 0.1.8, BWA 0.5.7 (open-source)
Programming language: Python 2.6.4
License: BSD
Any restrictions to use by non-academics: No

Additional file

Additional file 1 Example of novel allele output using the verbose
option. Consensus sequences and quality scores for three novel Shigella
sonnei alleles identified using SRST.
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