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Abstract 

In this study a Krill Herd - Support Vector Regression (KH-vSVR) model is introduced.  The Krill 

Herd (KH) algorithm is a novel metaheuristic optimization technique inspired by the behaviour of krill 

herds. The KH optimizes the SVR parameters by balancing the search between local and global 

optima. The proposed model is applied to the task of forecasting and trading three commodity 

Exchange Traded Funds (ETFs) on a daily basis over the period 2012-2014. The inputs of the KH-

vSVR models are selected through the Model Confidence Set (MCS) from a large pool of linear 

predictors. The KH-vSVR’s statistical and trading performance is benchmarked against traditionally 

adjusted SVR structures and the best linear predictor. In addition to a simple strategy, a time-varying 

leverage trading strategy is applied based on Heterogeneous Autoregressive (HAR) volatility 

estimations. It is shown that the KH-vSVR outperforms its counterparts in terms of statistical accuracy 

and trading efficiency, while the leverage strategy is found to be successful. 
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1. Introduction  

Commodities are in the centre of the interest for policy makers, market participants and academic 

researchers. After the rollercoaster in the commodity markets of 2007-2008, obtaining future 

expectations of commodity prices became a trivial task (Arezki et al., 2014; Chevallier et al., 2014). 

Hence the literature on commodity predictability is extensive and contradicting (see amongst others 

Chen et al. (2010), Dunis et al. (2013), Chinn et al. (2014) and Gargano and Timmermann (2014)).  

Until the advent of commodities Exchange Trade Funds (ETFs) in 2003, commodity trading was 

thought to be exclusive to more “sophisticated” institutional investors through physical purchasing, 

future contracts and long-term agreements. The introduction of commodity ETFs after 2003 made the 

commodity markets more regulated, transparent and liquid (Mazzilli and Maister, 2006). These ETFs 

enabled ordinary investors to buy and sell commodities through regular brokerage accounts. Although, 

the advantages of ETF trading over “conventional trading” are well documented (Dolvin, 2010), the 

commodity ETF literature is limited. Most researchers focus on explaining why investors and portfolio 

managers would prefer to include commodities in their portfolios, rather than evaluating their trading 

performance per se (Narayan et al., 2013). Similarly, the forecasting applications mentioned above 

analyse commodities through their spot prices and not through commodity ETF prices. To the best of 

our knowledge, there are only a handful of studies that are forecasting ETF prices. Dunis et al. (2013) 

apply non-linear models to forecast and trade the SPDR Gold Shares Fund (GLD) in order to model 

the gold miner spread. In a similar study, Haugom et al. (2014) forecast the volatility in US oil market 

through the US Oil Fund (USO).  

Financial series are very noisy and non-linear, which makes the calibration of financial models a 

difficult task. One popular way to overcome this is the application of heuristic optimization techniques 

(Gilli et al., 2008; Aguilar-Rivera et al., 2015). Metaheuristics are a superior class of heuristics, since 

they are less computationally demanding and can avoid local optima and over-fitting (Van Breedam, 

2001). Their main advantage is that they achieve a trade-off between intensification (local search) and 

randomization (global search) by intelligent selection of random variables, without being problem 

dependent (Talbi, 2009). Most of metaheuristics are inspired by activities appearing in nature, like the 

evolution of species or swarm movement behavior (see amongst others Liang et al. (2006), Yang 

(2010), Yang and Gandomi (2012) and Li et al. (2014)). Krill Herd algorithm (KH) is a novel bio-

inspired metaheuristic method proposed by Gandomi and Alavi (2012). The intuition of the algorithm 

is the herding behavior of krill individuals. Its objective functions are the minimum distances of krill 

from the food location and the location of the highest density of the herd. In that way, every krill’s 

position is approximated through a time-dependent function based on three motions, the movement 

induced by other individuals, the foraging motion and a random physical diffusion. In KH the 
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derivative information is not necessary because it uses a stochastic random search rather than a 

gradient search. Additionally, KH requires the fine tuning of only one parameter in contrast to other 

metaheuristics algorithms, such as the particle swarm optimization and the harmony search.  Gandomi 

and Alavi (2012) and Wang et al. (2014) compare KH’s efficiency to the most popular metaheuristics 

optimization models. Their results suggest that KH presents a superior performance.  

Support Vector Regressions (SVRs) are non-linear data-adaptive regression techniques, expanding the 

original classification models widely known as Support Vector Machines (SVMs). Their success in 

financial forecasting tasks is authenticated through numerous studies. For example, Tay and Cao 

(2001) apply SVMs and SVRs in forecasting time series and they conclude that these techniques 

outperform tradition neural network models. The SVRs’ performance is also examined in the study of 

Lu et al. (2009), who compare the forecasting results of SVR with random walks over daily stock 

prices. Their results confirm the SVRs’ superiority. Hsu et al. (2009) and Lin and Pai (2010) 

successfully use SVRs to forecast financial indices and business cycles respectively. Yeh et al. (2011) 

suggest that SVR performance is increasing when a multiple-kernel approach is adopted. Their 

proposed SVR structure is able to robustly forecast daily stock prices from the Taiwan Capitalization 

Weighted Stock Index. Rosillo et al. (2014a) and Rossillo et al. (2014b) apply SVMs in S&P 500 and 

VIX indices respectively. Their results indicate that the SVMs provide higher Sharpe ratios than naive 

or simple buy-and-hold strategies. Recently, Yao et al. (2015) compare SVR with several other 

statistical techniques, when applied to the task of predicting losses from corporate bond defaults. The 

authors conclude that SVR models substantially outperform all other statistical models in terms of both 

model fit and out-of-sample predictive accuracy. 

The main drawback of the SVR is its parametrization process. On the one hand, forecasts are highly 

sensitive to the SVR’s parameters while on the other hand there is no formal theory behind their 

selection. In the relevant literature, researchers apply simple cross validation or grid search techniques. 

In this study, a KH algorithm is applied to the task. The hybrid Krill Herd - Support Vector Regression 

(KH-vSVR) algorithm should be able to exploit the merits of the KH optimization and provide 

superior forecasts. The performance of the proposed algorithm is benchmarked against two traditional 

SVR models optimized by 5 cross validation and grid search. To the best of our knowledge, the 

proposed hybrid SVR structure does not exist in the literature.  

Except the SVR parameters, the practitioner needs to specify the inputs of the algorithm. This choice is 

usually based on objective criteria and the practitioner’s beliefs on the series under study. In this study, 

a large pool of potential inputs (individual forecasts) is generated in the in-sample period. The pool 

consists of linear predictors that are commonly used by technical analysts and traders (Park and Irwin, 

2007) (see appendix A).  In order to reduce the dimensions of the potential input vectors, the Model 
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Confidence Set (MCS) procedure proposed by Hansen et al. (2011) is applied. Once the optimal input 

vectors are selected, they are then fed to the SVR models. The best predictor in the in-sample will also 

act as benchmark to the SVR models.  

All models are applied to the task of forecasting and trading three commodity ETFs on a daily basis 

over the period 2012-2014. The selected ETFs are the USO, GLD and iShares Silver Trust Fund (SLV) 

which track West Texas Intermediate oil, the gold bullion and the silver bullion price, respectively. 

ETFs offer to investors the opportunity to trade commodities with transaction costs below 0.50% per 

annum. The KH-vSVR forecasts and its benchmarks are evaluated through simple statistical measures, 

the Diebold-Mariano (DB) (1995) and the Pesaran-Timmermann (PT) (1992) test. The Giacomini-

White (GW) (2006) specification tests if the generated forecasts are free from the data snooping bias. 

The financial evaluation of the algorithms under study is examined through a simple trading 

application and two basic trading measures (the annualized return and the information ratio). In order 

to further improve the profitability of our models, a time-adaptive leverage based on the 

Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009) is introduced. The leverage is 

based on the notion that high volatility is associated with low returns.  

In the empirical results, all models under study are capable of producing profitable forecasts. The KH-

vSVR presents the best performance and outperforms its benchmarks in all statistical and trading 

measures retained. The trading performance of SVR models seems robust in the first months of the 

out-of-sample but it deteriorates in the second half of the 2014. Finally, we note the introduced 

leverage is successful as it increases the profitability of the models.  

The rest of the paper is organized as follows. Section 2 provides a detailed description of the dataset 

while a theoretical background on the SVR is given in Section 3. The KH-vSVR algorithm explanation 

follows in Section 4. Its benchmarks and the SVR input selection process is outlined in Section 5. The 

statistical and trading performance of all models is presented in sections 6 and 7 respectively, while the 

concluding remarks are provided in Section 8. The appendix includes the summary of the SVR 

potential inputs, the technical characteristics of KH and the mathematical formulas for the statistical 

and trading measures retained. 

 

2. Dataset 

ETFs enable investors to trade assets with very low transaction costs. Their advantages for traders are 

well documented (see amongst others Avellaneda and Lee (2010), Dolvin (2010) and Marshall et al. 

(2013)). This study is focusing on three commodity ETFs, namely the United States Oil fund (USO), 

the SPDR Gold Shares (GLD) and the iShares Silver Trust (SLV). USO, GLD and SLV track the price 
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movements of oil, gold and silver respectively. All three ETFs are characterised by high liquidity and 

high volume of assets. Their details are presented in Table 1 below. 

 

Table 1: The ETFs under study 

ETF(TICKER) TRACKING EXPENSE RATIOS 
United States Oil Fund (USO) Price of West Texas Intermediate light, sweet crude oil 0.45% per annum 

SPDR Gold Shares Fund(GLD) Price of gold bullion 0.40% per annum 
iShares Silver Trust Fund (SLV) Price of silver bullion 0.50% per annum 

 

In this study, all models are applied in the task of forecasting the one day ahead logarithmic returns of 

the three ETFs. The descriptive statistics of the return series are shown in the following table: 

Table 2: Descriptive statistics 
 

 

 

 

We note that the three returns series exhibit slight negative skewness and positive kurtosis. The 

Jarque-Bera statistic confirms that the commodities return series under study are non-normal at the 

99% confidence level. The Augmented  Dickey-Fuller  (ADF) reports that the  null  hypothesis  of  a  

unit  root  is  rejected  at  the  99%  confidence level for all ETFs. 

The period under study and the relevant datasets are presented in Table 3. 

Table 3: The total dataset 
Note: The in-sample period is the sum of the training and test datasets. 

 

 

 

All models are optimized in the in-sample and their forecasts are evaluated in the out-of-sample. 

Figure 1 presents the performance of the three ETFs during the period of 3rd January 2012 to 31st 

December 2014. 

 

 

 

TICKER USO GLD SLV 
Mean -0.000831 -0.000386 -0.000771 

Standard deviation 0.013981 0.011078 0.017559 
Skewness -0.290346 -0.987861 -0.601902 
Kurtosis 6.700746 11.45286 9.498665 

Jarque-Bera (p value) 0.0000 0.0000 0.0000 
ADF (p value) 0.0000 0.0000 0.0000 

DATASETS TRADING DAYS START DATE END DATE 
Total Dataset 754 03/01/2012 31/12/2014 

Training Dataset  374 03/01/2012  28/06/2013 
Test Dataset 128 01/07/2013 31/12/2013 

Out-of-sample Dataset 252 02/01/2014  31/12/2014 
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Figure 1: The commodity ETFs under study 

 

 

All models are optimized in the in-sample and their forecasts are evaluated in the out-of-sample.  

 

3. Theoretical Background 

Support Vector Machines (SVMs) are common classification techniques applied in machine learning 

and data mining. They apply the structural risk minimization principle in order to obtain good 

generalization on a limited number of learning patterns. Support Vector Regression (SVR), introduced 

by Vapnik (1995), is one class of SVMs. SVRs are established as a robust technique for constructing 

data-driven and non-linear empirical regression models (Witten and Frank, 2005). 

 

3.1 SVR 

Considering the training data {(x1,y1), (x2,y2)…, (xn, yn)}, where , , 1...i ix X R y Y R i n∈ ⊆ ∈ ⊆ =  and n 

the total number of training samples, then the SVR function can be specified as: 

                                                                        ( ) ( )Tf x w x bϕ= +                                                             (1) 

φ(x) is the non-linear function that maps the input data vector x into a feature space where the training 

data exhibit linearity (see Figure 2c) while w and b are estimated by minimizing the regularized risk 

function: 
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2

1

1 1( ) ( , ( ))
2

n

i i
i

R C C L y f x w
n ε

=

= +∑                                                  (2) 

The parameters C and ε are predefined by the practitioner, yi is the actual value at time i and f(xi) is the 

predicted value at the same period. The ε-sensitive loss Lε function (see Figure 2b) is defined as: 

                                  
0 | ( ) |

( , ( )) ,
| ( ) |

i i
i i

i i

if y f x
L y f x

y f x if otherε ε
ε

− ≤ ε
= ≥ 0 − −

                                                    (3) 

Equation (3) identifies the predicted values that have at most ε deviations from the actual values yi, 

while the ε parameter defines a ‘tube’ (see Figure 2a). The two variables, iξ  and *
iξ represent the 

distance of the actual values from the upper and lower bound of the ‘tube’ respectively. 

Figure 2: a) The ε-tube b) The plot of the ε-sensitive loss function c) The mapping procedure by φ(x) 

 

The goal is to solve the following argument: 

  Minimize 2*

1

1( )
2

n

i i
i

C wξ ξ
=

+ +∑ subject to *

0
0
0

i

i

C

ξ

ξ

≥ 
 

≥ 
 > 

and 
*

( )
( )

T
i i i
T

i i i

y w x b
w x b y

ϕ ε ξ

ϕ ε ξ

 − − ≤ + + 
 

+ − ≤ + +  
                           (4) 

The quadratic optimization problem of equation (4) is transformed in a dual problem and its solution is 

based on the introduction of two Lagrange multipliers *,i ia a and mapping with a kernel function 

( , )iK x x  : 

               
*

1
( ) ( ) ( , )

n

i i if x a a K x x b
i=

= − +∑  where *0 ,i ia a C≤ ≤                           (5) 
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The application of the kernel function transforms the original input space into one with more 

dimensions, where a linear decision border can be identified. In this study, the Gaussian Radial Basis 

Function (RBF) for all SVRs is applied. A RBF kernel is in general specified as: 

              
2( , ) exp( ), 0i iK x x x xγ γ= − − >                                                (6) 

where, γ is the variance of the kernel function. RBF’s requires only one parameter to be optimized (the 

γ) while it provides good forecasting results in similar SVR applications (Lu et al., 2009; Yeh et al., 

2011).   

Factor b in equation (5) is computed following the Karush-Kuhn-Tucker conditions. A detailed 

mathematical explanation of the solution can be found in Vapnik (1995). Support Vectors (SVs) are 

called all the xi that contribute to equation (5), thus they lie outside the ε-tube, whereas non-SVs lie 

within the ε-tube.  Increasing ε leads to less SVs’ selection, whereas decreasing it results to more ‘flat’ 

estimates. The norm term 2w characterizes the complexity (flatness) of the model and the term

*

1
( )

n

i i
i

ξ ξ
=

 
+ 


∑ is the training error, as specified by the slack variables. Consequently, the introduction 

of the parameter C satisfies the need to trade model complexity for training error and vice versa 

(Cherkassky and Ma, 2004).  

The v-SVR algorithm can be used to make the optimization task easier, by encompassing the ε 

parameter in the optimization process and controls it with a new parameter (0,1)v∈ . In v-SVR the 

optimization problem transforms to: 

 Minimize 2*

1

1 1( )
2

n

i i
i

C v w
n

ε ξ ξ
=

 
+ + + 

 
∑  subject to *

0
0
0
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i

C
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≥ 
 > 

and 
*

( )
( )

T
i i i
T

i i i
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ϕ ε ξ

ϕ ε ξ

 − − ≤ + + 
 

+ − ≤ + +  
     (7)  

The methodology remains the same as in ε-SVR and the solution takes a similar form: 

                    *

1
( ) ( ) ( , )

n

i i if x a a K x x b
i=

= − +∑   where  *0 ,i i
Ca a
n

≤ ≤                                                 (8) 

Based on the ‘v-trick’, as presented by Schölkopf et al. (1999), increasing ε leads to the proportional 

increase of the first term of *

1

1 ( )
n

i i
i

v
n

ε ξ ξ
=

 
+ + 

 
∑ , while its second term decreases proportionally to the 

fraction of points outside the ε-tube. So v can be considered as the upper bound on the fraction of 

errors. On the other hand, decreasing ε leads again to a proportional change of the first term, but also 

the second term’s change is proportional to the fraction of SVs. That means that ε will shrink as long 
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as the fraction of SVs is smaller than v, therefore v is also the lower band in the fraction of SVs. For a 

more detailed mathematical analysis of the above solutions see Vapnik (1995).   

The SVR performance is highly sensitive to the selected SVR parameters. Although v-SVR makes this 

process less computationally demanding compared to ε-SVR, the practitioner still needs to fine tune 

the C, v and kernel function parameter (in this case γ). Researchers commonly apply statistical 

approaches such as grid search (v-SVR1) and 5-fold cross validation (v-SVR2) to tackle this problem 

(see amongst others Duan et al. (2003), Min and Lee (2005) and Ding et al. (2008)) 

 

4. Krill Herd Support Vector Regression (KH-vSVR) 

In this Section, we propose a hybrid Krill Herd – Support Vector Regression that embodies a KH 

algorithm for optimal parameter selection to the v-SVR process, as shown in Section 3. The KH 

algorithm, as presented by Gandomi and Alavi (2012), is an innovative metaheuristic optimization 

technique that simulates the herding behavior of the Antarctic krill. More specifically, the algorithm is 

inspired by the individual responses of krill, when sea predators are attacking the herd. When this 

happens, the krill herd density decreases because of the krill dispersion from the attack. After the 

attack the krill gather again through a mean-reversion process. The main element of this process is that 

herd density will start increasing again by krill individuals sensing nearby krill, without deviating 

much from the optimal path to reach food, as set before the attack. 

Within this framework, Gandomi and Alavi (2012) propose that the position (P) of each krill in the 

search space is influenced by the movement induced by other krill (M), the foraging action (F) and the 

random diffusion (RD). All these motions can be summarized in one Lagrangian formulation for every 

krill j: 

j
j j j

dP
M F RD

dt
= + +            (9) 

The new movement motion M t+1 of each krill j is calculated as: 

                                                      
1 max

arg

t t
j j M

loc t
j j j

M M eff k

eff eff eff

+ = + M 
 

= +  
      (10) 

Where: 

• Mmax: the maximum induced speed 
• [0,1]Mk ∈ : the inertia weight of the motion 
• t

jM : the  previous movement motion  
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• jeff : the direction of the motion 
• loc

jeff , argt
jeff : the local effect by neighbor krill and the target direction effect by the best 

individual krill. 

Gandomi and Alavi (2012) suggest that the local search of the algorithm is based on an 

attractive/repulsive tendency between individual krills. The neighbor krills are identified through a 

sensing distance from the jth one:  

                                                           , k '
' 1

(1/ N )
kN

s j j j
j

d P P
=

= −∑                                                         (11) 

where Nk is the number of the krill individuals. 

The new foraging motion F t+1 of every krill j is also calculated on the basis of two factors, namely the 

food location and its previous experience in locating a correct food position: 

1t t
j F j F j

food best
j j j

F V floc k F

floc floc floc

+ = + 
 

= +  
                                                     (12) 

where: 

• FV : the foraging speed1 
• [0,1]Fk ∈ : the inertia weight of the motion 
• t

jF : the previous foraging motion 
• jfloc : the location of the food 
• food

jfloc , best
jfloc : the food attractive and the effect from the best food-locating jth krill so far 

The food attraction is defined to provide global optima for the krill swarm. The third motion RD of 

krills is calculated as a maximum diffusion speed RDmax and a random directional vector δ with values 

between 1 and -1. In other words:  

                                                             maxRD RD δ=         (13) 

Equations (10) and (12) suggest the future krill motion towards the optimal position by performing two 

parallel local and global strategies, something that makes the KH algorithm very robust. Krill continue 

their local search until the herd density increases. This is approximated with equation (10). Once the 

density is increased, more and more krill orientate to food rather than the nearby krill as per equation 

(12). These two strategies provide the fitness values for several effective factors that induce an 

attractive/repulsive motion response to each krill. The equation (18) performs a random search in the 

                                                            
1 The maximum induced speed of equation (15) and the foraging speed of equation (17) are set to 0.01 and 0.02 ms-1 
respectively, as Gandomi and Alavi (2012) suggest. 
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proposed search space, diffusing any potential biased motion responses to the herd (either towards 

food locations or neighboring sensed krill). For more details on the approximation of these values, 

please refer to the extensive mathematical steps of Gandomi and Alavi (2012). Based on the above, the 

position Pj of each krill is a time t+Δt is given as:  

( )
1

( ) ( ) j
j j

NP

cr r r
r

dP
P t t P t t

dt

t Z UpB LowB
=

 
+ ∆ = + ∆  

 
 ∆ = −
  

∑
                  (14) 

where: 

• [0, 2]crZ ∈ : constant number 
• NP: the number of parameters optimized (in our case NP=3) 
• ,r rUpB LowB : the upper and lower bounds of the parameters 

The Δt practically is the only parameter that needs fine tuning. This is the striking advantage of the 

method compared to other more complicated metaheuristics approaches. In the KH-vSVR 

optimization, the practitioner needs to predefine three parameters (C, v and γ). Τhe potential three-

dimensional search space is defined by the range of the bounds of each parameter. Setting Zcr at values 

lower than 1, allows a careful search of the space by the krill individuals. In addition, kM and kF are 

initially set high (0.9). The reason for that is that the krill behavior suggests that herd individuals at an 

initial point (predator attack) tend to focus on exploration of the search space and then its exploitation. 

Based on the suggestion of Gandomi and Alavi (2012) these parameters should linearly be decreased 

to 0.1 at the end in order to encourage the krill to start exploiting the search space. Finally, two genetic 

reproduction mechanisms (mutation and crossover) are implemented in order to further improve the 

performance of the krill positions.  

The KH algorithm is optimized based on a fitness function. In this application, the fitness function 

aims to minimize the RMSE: 

                      1/ (1 )Fitness RMSE= +      (15) 

The aim of the algorithm is to maximize equation (15). The KH-vSVR algorithm is trained in the 

training sub-period and its performance is evaluated in the test sub-period. Figure 4 below provides the 

flowchart of the proposed methodology, while the training specification and the pseudo-code of the 

KH algorithm is given in appendix Section B. 
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Figure 4: KH-vSVR flowchart 

 

5. Input selection and benchmark models 

The SVR inputs are selected from a pool of potential linear predictors generated in the in-sample. This 

set of inputs includes Simple Moving Averages (SMAs), Exponential Moving Averages (EMAs), 

Autoregressive terms (ARs), Autoregressive Moving Average models (ARMAs), Rate of Change 

Indicators (ROCs) and a Pivot Point Indicator (PPI). These predictors create a pool of four hundred 

and seventy individual (470) models in total for each of the three ETF series. All these models have 

been successfully applied in financial forecasting applications and are commonly used by technical 

analysts (Park and Irwin, 2007). The proposed models will combine the best predictors in order to 

generate superior out-of-sample performance. A short summary of these individual forecasting models 

is provided in Appendix A.  

In order to cope with the dimension of the input vector, we perform a statistical procedure to select an 

optimal set of informationally efficient set of inputs. This process is the MCS test proposed by Hansen 
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et al. (2011). The test selects a random data-dependent set of best forecasting models, considering that 

there can be information limitations in the provided dataset. The MCS test is able to deduce superior 

predictors from a full set of models, given specific criteria and confidence levels. In this research, the 

criterion is the MSE while the confidence level is set at 90%. The relaxed will allow us to deduct the 

best forecasters from the predictors’ pool in the in-sample and apply them as SVR inputs. Higher 

confidence level would have limit the input set to only 1 or 2 models while a lower level would have 

included inputs not informationally efficient.  The inputs sets are presented in Table 4. 

Table 4: SVR sets of inputs  

Note: The inputs highlighted with bold present the best individual in-sample statistical performance in terms of RMSE. 

ETF SELECTED INPUTS TOTAL 
USO SMA (7), AR(3), AR(5), ARMA (1, 4), ARMA (2, 6), ARMA (2, 8), ROC(5)  7 
GLD SMA(12), EMA(5), AR(6), AR(8), ARMA( 1, 7), ARMA(4, 11) 6 
SLV SMA(3), SMA(5), SMA(8), EMA(5), EMA(9), AR(4), AR(7), AR(10), ARMA (1, 9), ARMA(3,14) 10 

 

The above sets will act as inputs to the KH-vSVR, v-SVR1 and the v-SVR2 models. The best predictor 

will also be included in the statistical and trading evaluation. It will allow us to establish if the SVR 

models actually improve the forecasting performance and to which extent. The best predictors for the 

the USO, GLD and SLV series are an ARMA(1,4), a SMA(12) and an ARMA(1,9) respectively.  

In terms of the benchmark models applied in this study, the best individual predictors are used as a 

starting point. Those models, as expected, are included in the final SVR inputs selected through the 

MCS test. Using the best individual predictors as a benchmark allows us to establish if the forecast 

combinations actually further improve statistical accuracy, as proposed by Timmermann (2006). Then, 

two SVR forecast combination models, v-SVR1 and the v-SVR2, are compared with the proposed KH-

vSVR algorithm.  

  

6. Statistical evaluation 

This Section provides the statistical performance of all models under study. Initially, the statistical 

accuracy of the obtained forecasts is evaluated based on the RMSE (see appendix C) and the Pesaran-

Timmermann (PT) (1992) test. The PT test is used to examine whether the directional movements of 

the real and forecast values are in step with one another. The null hypothesis is that the model under 

study has no power on forecasting the relevant ETF return series. The in-sample and out-of-sample 

results are summarized in Table 5. 
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Table 5: In-sample and out-of-sample statistical performance 

Note: The table reports the RMSE values of each SVR forecast, while the PT statistics 
are in the parenthesis. ARMA(1,4), SMA(12) and ARMA(1,9) are the best predictors 
for USO, GLD and SLV series respectively. *** denotes that the null hypothesis is 
rejected at 1% significance level. 

 

 

 

 

 

 

The above results show that the models’ statistical ranking is consistent across all ETFs series and 

periods under study. The proposed KH-vSVR is found to have the best statistical results compared to 

all models. The v-SVR2 is the second best model in terms of the statistical measures retained. All SVR 

models outperform the best predictor in each commodity ETF under study. The PT statistics indicate 

that all models are capable of capturing the directional movements of the three ETF return series in-

sample and out-of-sample. Based on the above, the KH-vSVR is the superior model in terms of 

statistical efficiency.  

In order to further verify this outcome, the Diebold Mariano (DM) (1995) test is computed. The DM 

statistic tests the null hypothesis of equal predictive accuracy between two forecasts. In this exercise, 

the DM test is applied to couples of out-of-sample forecasts (KH-vSVR vs. other benchmark model) 

using the MSE and MAE loss functions. A negative realization of the DM value indicates that the KH-

vSVR forecast is more accurate than the competing forecast. Table 6 summarizes the results for the 

DM statistic. 

Table 6: Summary results of DM statistic for MSE and MAE loss functions. 

Note: The values in the parentheses are the calculated DM statistics. *** 
denotes that the null hypothesis is rejected at 1% significance level. The results 
refer to the out-of-sample period (02/01/2014 – 31/12/2014). 

 

 

 

Period ETF Best Predictor v-SVR1 v-SVR2 KH-vSVR 

In-sample Period 
03/01/2012 - 31/12/2013 

USO 0.0068 
(6.24)*** 

0.0058 
(8.44)*** 

0.0050 
(7.28)*** 

0.0045 
(9.23)*** 

GLD 0.0062 
(5.36)*** 

0.0059 
(9.02)*** 

0.0058 
(6.37)*** 

0.0051 
(8.84)*** 

SLV 0.0071 
(5.33)*** 

0.0063 
(8.24)*** 

0.0057 
(9.75)*** 

0.0049 
(10.27)*** 

Out-of-sample Period 
02/01/2014 - 31/12/2014 

USO 0.0072 
(7.84)*** 

0.0062 
(4.89)*** 

0.0055 
(9.52)*** 

0.0049 
(7.86)*** 

GLD 0.0068 
(4.99)*** 

0.0063 
(6.37)*** 

0.0062 
(8.45)*** 

0.0054 
(7.54)*** 

SLV 0.0079 
(7.54)*** 

0.0066 
(8.87)*** 

0.0060 
(7.81)*** 

0.0052 
(10.57)*** 

ETF Loss Function Best Predictor v-SVR1 v-SVR2 

USO MSE (−9.22)*** (−7.33)*** (−5.86)*** 
MAE (−7.32)*** (−6.14)*** (−5.75)*** 

GLD MSE (−8.41)*** (−7.21)*** (−3.28)*** 
MAE (−9.05)*** (−7.53)*** (−4.87)*** 

SLV MSE (−6.57)*** (−6.28)*** (−5.86)*** 
MAE (−8.19)*** (−7.27)*** (−6.37)*** 
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Based on the above table’s results, the null hypothesis of equal predictive accuracy is rejected for all 

comparisons and for both loss functions at 1% significance level. Moreover, the statistical superiority 

of the KH-vSVR forecasts is validated, as all the DM statistic realizations are negative. Finally, v-

SVR2 is found to have the closest forecasts to the proposed algorithm. 

The validity of the forecasting models is evaluated through the unconditional Giacomini-White (GW) 

(2006) test for the out-of-sample predictive ability testing. The null hypothesis of the GW test 

represents the equivalence in forecasting accuracy between two forecasting techniques, according to a 

general loss function. The sign of the test statistic specifies which model performs better. A positive 

realization of the GW test statistic indicates that the second model is more accurate (produces smaller 

average loss) than the first one (larger average loss), whereas a negative resolution specifies the 

opposite. The test is calculated based on the MSE and MAE loss functions. Table 7 below presents the 

outcomes of the GW test. 

Table 7: Giacomini-White test statistics for the MSE and MAE loss functions. 

Note: The table displays the p-values of the statistic under the null hypothesis that the column 
model shows equivalent performance compared with each row model for every ETF and loss 
function separately. ***, ** denote a rejection of the null hypothesis at the 1% and 5% 
significance level respectively. The results refer to the out-of-sample period (02/01/2014 – 
31/12/2014) 

 

 

 

 

 

 

 

The above results further authenticate our initial statistical findings. The null hypothesis of the GW test 

is rejected in all cases at the 5% and 1% significance levels for both MSE and MAE loss functions.  

That suggests that the individual best forecasts are statistically inferior to the SVR forecast 

combinations. Based on Tables 5, 6 and 7, we note that the v-SVR2 provides significantly better 

forecasts than v-SVR1. This suggests that using 5-fold cross-validation can lead to higher accuracy in 

the SVR process compared to the grid search method. The KH-vSVR is found to be statistically 

superior in all cases and comparisons with the other models. Implementing the GW test amplifies the 

success of the DM test, since it suggests that the DM test validity holds regardless of the models being 

Loss Function MSE MAE 
USO ARMA(1,4) v-SVR1 v-SVR2 ARMA(1,4) v-SVR1 v-SVR2 

v-SVR1 0.001*** - - 0.002*** - - 

v-SVR2 0.000*** 0.041** - 0.000*** 0.038** - 

KH-vSVR 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
GLD SMA(12) v-SVR1 v-SVR2 SMA(12) v-SVR1 v-SVR2 

v-SVR1 0.002*** - - 0.004*** - - 
v-SVR2 0.000*** 0.007*** - 0.001*** 0.044** - 

KH-vSVR 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
SLV ARMA(1,9) v-SVR1 v-SVR2 ARMA(1,9) v-SVR1 v-SVR2 

v-SVR1 0.001*** - - 0.000*** - - 
v-SVR2 0.001*** 0.056** - 0.000*** 0.008*** - 

KH-vSVR 0.000*** 0.000*** 0.000* 0.000*** 0.000*** 0.000* 
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nested or non-nested. In that sense, GW test offers a solid protection from data snooping bias in the 

statistical results of this study.  

 

7. Trading evaluation 

Further to the above statistical evaluation, the utilized models are compared also in terms of trading 

efficiency. It is interesting to establish whether the statistical accuracy of the proposed methodology is 

consistent with trading profitability. Section 7.1 presents the trading performance of all models without 

leverage. In Section 7.2 a time-varying leverage trading strategy is introduced based on HAR volatility 

estimations aiming to increase the profitability of all models. 

 

7.1. Trading performance without leverage 

In this application, the trading performance of our models is evaluated with a simple trading strategy. 

The position is ‘long’ and ‘short, when the forecast return is positive and negative respectively. A 

‘long’ or ‘short’ position means that we buy or sell respectively the ETF under study at the current 

price. Transaction costs can impede the success of daily trading strategies (Wyart et al., 2008). As 

mentioned before, ETFs offer investors the opportunity to trade with low transaction costs, especially 

when the selected ETFs are highly liquid as USO, GLD and SLV. Table 1 provides the expense ratios 

for the three commodity ETFs examined. The in-sample and out-of-sample performance of the models 

is presented in the Table 8. The trading performance measures are given in appendix C.  

Table 8: Out-of-sample Trading Performance of every model for each ETF 

Note: The table reports the annualized return after transaction costs of every model and its 
respective information ratio in the parenthesis. ARMA(1,4), SMA(12) and ARMA(1,9) are 
the best predictors for USO, GLD and SLV series respectively. 

 

 

 

 

 

 

As expected, the above table results show that all models perform better in-sample than out-of-sample. 

The trading efficiency ranking coincides with the statistical one presented in Section 6. The KH-vSVR 

Periods ETF Best Predictor v-SVR1 v-SVR2 KH-vSVR 

In-sample Period 
03/01/2012 - 31/12/2013 

USO 3.27% 
(0.78) 

7.59% 
(1.75) 

8.61% 
(1.84) 

11.94% 
(2.19) 

GLD 3.32% 
(0.74) 

8.35% 
(1.79) 

9.08% 
(1.80) 

12.39% 
(2.37) 

SLV 2.97% 
(0.76) 

7.21% 
(1.67) 

7.86% 
(1.75) 

10.35% 
(2.06) 

Out-of-sample Period 
02/01/2014 - 31/12/2014 

USO 1.27% 
(0.35) 

6.23% 
(1.61) 

7.71% 
(1.78) 

9.98% 
(1.98) 

GLD 3.47% 
(0.82) 

7.56% 
(1.75) 

8.95% 
(1.87) 

10.79% 
(2.23) 

SLV 2.46% 
(0.73) 

5.59% 
(1.57) 

7.14% 
(1.72) 

8.89% 
(1.91) 
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delivers the best trading performance for all series and periods under study. On average, the proposed 

algorithm achieves 9.89% annualized returns and 2.04 information ratio after transaction costs in the 

out-of-sample period. That indicates that the suggested trading strategy benefits from the application 

of the KH optimization to the simple SVR process. The second best model in terms of the same 

trading performance measures is the v-SVR2, which presents on average out-of-sample profits and 

information ratio after transaction costs at the level of 7.93% and 1.79 respectively. The grid search 

based SVR achieves 1.47% lower profits and 0.15 lower information ratios on average, after 

accounting for transaction expenses. Although the best individual predictors achieve some 

profitability, they are always outperformed by the SVR forecast combination techniques. In terms of 

the commodities under study, trading GLD proves to be more profitable under the strategy without 

leverage. GLD trading yields on average 1.40% and 1.67% higher net profits from USO and SLV 

respectively.  

The models’ profitability micro-structure can also be seen by the monthly decomposition of the 

annualized returns during the out-of-sample period. These results are provided in Table 9 below. 

 

Table 9: Monthly Out-of-sample Trading Performance  

Note: The table reports the monthly annualized returns after transaction and leverage costs of each model and ETF under study. In 
bold are the results that do not coincide with the previous statistical and trading ranking of the models. The last column to the right 
shows the total average annualized returns after transaction costs as per Table 8. 

 

The results of Table 9 support the previous findings, since the monthly profitability of the models is in 

its vast majority consistent with the yearly one. The proposed methodology continues to outperform 

 Year 2014 
ETF Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average 

USO 

ARMA(1, 4) -0.13% 1.99% 0.87% 4.90% -1.57% 4.39% 3.02% 0.63% -0.27% 0.69% -0.17% 0.87% 1.27% 

v-SVR1 6.47% 9.84% 10.51% 9.58% 9.18% 9.08% 7.85% -1.26% 5.63% 4.85% 4.11% -1.12% 6.23% 

v-SVR2 4.74% 10.85% 12.22% 9.02% 11.92% 6.57% 8.95% 8.87% 8.84% 7.42% 7.25% 6.72% 7.71% 

KH-vSVR 13.84% 14.75% 14.55% 13.86% 13.84% 14.47% 8.79% 9.97% 9.86% 10.57% 9.68% 9.12% 11.94% 

GLD 

SMA(12) 3.85% -1.12% 6.68% 7.52% 4.89% 3.86% 3.84% 3.28% 3.28% 2.74% 1.88% 0.97% 3.47% 

v-SVR1 3.75% 10.47% 10.96% 11.21% 10.25% 8.86% 8.21% 7.63% 7.25% 6.53% 5.77% -0.14% 7.56% 

v-SVR2 6.32% 9.86% 13.27% 10.85% 12.39% 11.56% 7.53% 9.57% 6.41% 7.21% 7.05% 5.36% 8.95% 

KH-vSVR 11.23% 12.67% 13.55% 12.25% 13.75% 12.64% 9.84% 8.44% 9.23% 9.41% 8.84% 7.58% 10.79% 

SLV 

ARMA(1, 9) 3.58% 2.25% -2.12% 6.53% 3.84% 6.86% 3.58% 2.68% 0.94% 1.96% -0.07% -0.54% 2.46% 

v-SVR1 4.34% 9.84% 7.88% 7.28% 8.17% 7.23% 6.14% 5.34% 4.21% 1.44% 3.42% 1.74% 5.59% 

v-SVR2 6.13% 8.53% 9.67% 8.86% 10.25% 7.51% 7.32% 7.23% 6.51% 5.95% 4.22% 3.53% 7.14% 

KH-vSVR 8.74% 9.30% 10.74% 9.04% 12.67% 9.37% 8.74% 8.83% 7.52% 7.59% 7.84% 6.32% 8.89% 
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the two SVR counterparts with some rare exceptions (in July for USO and in August for GLD). The 

results of the individual models remain inferior (in most cases) and seem more erratic compared to 

those of the SVR forecast combinations. All models’ profits exhibit a time-varying eroding behaviour. 

The returns of KH-vSVR are higher and their decay smoother, which could be attributed to the success 

of the KH optimization. In summary, the empirical evidence of this Section suggests that the KH-

vSVR is the best model in terms of trading efficiency. It would be interesting to see if this is the also 

the case once the leverage trading strategy of the next Section is applied. 

 

7.2 Trading performance with HAR volatility leverage 

In order to further improve the trading performance of all models, a time-varying leverage strategy is 

introduced. Its purpose is to avoid trading when volatility is very high, while at the same time exploit 

days when the volatility is relatively low. The positions, as in the previous section, are ‘long’ and 

‘short, when the forecast returns are positive and negative respectively. 

The volatility estimations of this study are based on the HAR model proposed by Corsi (2009). The 

intuition of the model is that the behaviour of traders is heterogeneous, when it comes to their trading 

frequency. Thus, interactions between short, medium and long-term market agents lead to a daily, 

weekly and monthly volatility component (partial volatilities)2. At each level of this volatility cascade, 

the underlying volatility component consists not only of its past observation but also of the expectation 

of longer horizon partial volatilities. The proposed model is defined as an additive linear structure of 

first-order autoregressive partial volatilities able to capture long-range dependence:  

( )
( )

( )
( )

( )
( ) ( )ˆ ˆ ˆ 2

0 1 1 1ˆ ˆ ˆ , ~ 0, d w m
t t t t tw m ed

lriv lriv lriv lriv e e Nβ β β β σ− − −′ ′ ′ ′= + + + +                 (16) 

where 𝑙𝑙𝑙𝑙(ℎ�) = 1
ℎ�
∑ 𝑙𝑙𝑙𝑙𝑡−�̂�+1ℎ�
�̂�=1  and ℎ� =  (1,5,22) ′ is an index vector that depicts the daily, weekly 

and monthly components of the volatility cascade.  

As a first step, the previous HAR model specification is used to forecast the one day ahead realized 

volatility in the test and out-of-sample datasets for all ETFs (see appendix D for HAR pseudo-code). 

Then, following Dunis and Miao (2006), these two periods are split into six sub-periods, ranging from 

periods with extremely low volatility to periods experiencing extremely high volatility. Periods with 

different volatility levels are classified as following: firstly the average (μ) difference between the 

actual volatility in day t and the forecasted for day t+1 and its ‘volatility’ (measured in terms of 

                                                            
2 Intraday traders, speculators and hedge funds are examples of short-term agents. Commercial banks can be though as 
medium-term agents, while pension funds and insurance companies are long-term agents. 
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standard deviation σ) are calculated. Those periods where the difference is below μ+1σ are classified 

as ‘Lower high vol. periods’. Similarly, ‘Medium high vol.’ (between μ+σ and μ+2σ) and ‘Extremely 

high vol.’ (above μ+2σ) periods can be defined. Periods with low volatility are also defined following 

the same 1σ and 2σ approach, but with a minus sign. For each sub-period a leverage value is assigned 

starting with 0 for periods of extremely high volatility to a leverage of 2.5 for periods of extremely low 

volatility (leverage increases by 0.5 for each period with different levels of volatility). The leverage 

factors are time-varying since the parameters μ and σ are updated every one month by rolling forward 

the estimation period. For instance, μ and σ of the first month in the out-of-sample period are 

computed based on the six months of the test sub-period. The parameters of the following month are 

calculated based on the last five months of the test sub-period and the first month of the out-of-sample 

period.  

In this case the cost of leverage should be accounted along with the transaction costs. This corresponds 

to interest payments for using additional capital. The cost of leverage is calculated at 0.56 % per 

annum3. The out-of-sample results derived from the above strategy are presented in Table 10 below.  

Table 10: Out-of-sample Trading Performance of every model for each ETF with leverage 

Note: The table reports the annualized return after transaction and leverage costs of every 
model and its respective information ratio in the parenthesis. ARMA(1,4), SMA(12) and 
ARMA(1,9) are the best predictors for USO, GLD and SLV series respectively. 
 

 

 

 

The implementation of the time-varying HAR leverage appears to be successful for all models. Across 

all ETFs and models, the profitability and the information ratios increase on average by 1.76% and 

0.15 respectively. The KH-vSVR outperforms all benchmark models for all series. Within the leverage 

strategy, it achieves on average annualized returns of 12.25% and information ratio of 2.24 after 

accounting for transaction and leverage costs. These are significantly higher than the results attained 

without leverage (9.89% and 2.04). The trading ranking of the models remains the same after the 

application of the strategy. The v-SVR2 continues to outperform the v-SVR1, presenting on average 

1.27% higher profits and 0.21 higher information ratio. The individual models’ trading performance is 

also positively affected by the time-varying leverage, but their profitability remains by far the lowest. 

                                                            
3 Interest costs are calculated by considering a 0.56% interest rate p.a. (the Euribor rate at the time of calculation) divided 
by 252 trading days. In reality, leverage costs are also applied during non-trading days so that we should calculate the 
interest costs using 360 days per year. But for the sake of simplicity, we use the approximation of 252 trading days to 
spread the leverage costs of non-trading days equally over the trading days. This approximation prevents us from keeping 
track of how many non-trading days we hold a position. 

Out-of-sample Period ETF Best Predictor v-SVR1 v-SVR2 KH-vSVR 

02/01/2014 - 31/12/2014 

USO 2.56% 
(0.58) 

8.67% 
(1.82) 

9.22% 
(1.89) 

12.14% 
(2.31) 

GLD 3.96% 
(0.86) 

9.37% 
(1.87) 

10.13% 
(2.11) 

12.65% 
(2.36) 

SLV 3.88% 
(0.77) 

7.06% 
(1.63) 

9.57% 
(1.95) 

11.97% 
(2.04) 
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It is interesting to note that trading gold with leverage now yields 0.88% and 0.91% higher returns 

from trading oil and silver respectively. These differences are lower from the equivalent values from 

the previous Section (1.40% and 1.67%). As before, Table 12 presents the monthly annualized returns 

after transaction and leverage costs during the out-of-sample period.  

 

 

Table 11: Monthly Out-of-sample Trading Performance after leverage 

Note: The table reports the monthly annualized returns after transaction and leverage costs of each model and ETF under study. In 
bold are the results that do not coincide with the previous statistical and trading ranking of the models. The last column to the right 
shows the total average annualized returns after transaction costs as per Table 11. 

 

The above final results indicate that the leverage strategy pays dividends also when the microstructure 

of the returns is examined. The profits after transaction and leverage expenses appear boosted in most 

months of the out-of-sample period. The KH-vSVR trading superiority is once more confirmed over 

all benchmarks during all months. The SVR method provides higher profitability when 5-fold cross-

validation is applied, except in only four cases across all months and ETFs. The application of 

leverage enhances the performance of the best predictors. However, using the forecast combinations of 

the three SVR methods yields consistently higher net profits The overall monthly decomposition of the 

obtained returns not only authenticates the findings of the previous Section but it also confirms the 

success of the HAR-based leverage strategy. It is interesting to note that under the leverage strategy, 

monthly losses are barely observable in contrast to the results of Table 9.  

The empirical evidence presented in all sections allows us to conclude that the proposed KH-vSVR is 

a robust model for forecasting and trading the three exchange traded commodities under study. The 

 Year 2014 
ETF Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average 

USO 

ARMA(1, 4) 3.34% 3.66% 2.12% 5.12% 1.44% 5.39% 3.32% 1.88% 1.78% 2.02% -0.45% 1.13% 2.56% 

v-SVR1 8.15% 9.55% 12.32% 9.86% 11.54% 10.86% 12.37% 6.96% 6.67% 6.31% 5.49% 3.97% 8.67% 

v-SVR2 9.36% 10.98% 11.53% 10.37% 10.42% 11.05% 13.26% 7.41% 6.98% 7.38% 6.38% 5.53% 9.22% 

KH-vSVR 12.67% 13.64% 13.68% 12.97% 14.54% 13.99% 14.55% 12.27% 10.08% 9.22% 8.84% 9.26% 12.14% 

GLD 

SMA(12) 2.85% 1.26% 5.64% 8.24% 5.65% 4.38% 4.66% 3.94% 3.03% 4.55% 2.06% 1.23% 3.96% 

v-SVR1 4.55% 9.64% 13.01% 12.34% 10.45% 12.42% 10.18% 9.68% 9.20% 7.61% 8.14% 5.25% 9.37% 

v-SVR2 5.58% 10.24% 13.16% 13.29% 12.85% 12.60% 11.45% 10.34% 10.02% 8.87% 8.62% 4.55% 10.13% 

KH-vSVR 11.27% 13.65% 14.27% 15.99% 13.72% 14.25% 11.98% 11.85% 13.38% 11.54% 10.58% 9.34% 12.65% 

SLV 

ARMA(1, 9) 5.64% 5.41% 4.34% 4.53% 5.41% 5.86% 3.58% 3.84% 2.52% 2.01% 1.86% 1.52% 3.88% 

v-SVR1 9.86% 8.60% 9.52% 8.62% 7.41% 6.50% 6.79% 6.45% 6.00% 5.67% 4.21% 5.06% 7.06% 

v-SVR2 8.85% 10.34% 11.24% 10.00% 12.13% 10.84% 10.63% 9.73% 8.35% 6.39% 8.81% 7.52% 9.57% 

KH-vSVR 10.24% 13.34% 14.65% 14.64% 14.65% 12.85% 11.98% 11.42% 10.85% 10.12% 9.85% 9.05% 11.97% 



21 
 

decreasing time-varying pattern of the returns is observed through all applied methods with or without 

leverage. This is in line to some extent with the Adaptive Market Hypothesis (AMH) as proposed by 

Lo (2004). The AMH implies that trading strategies may become unsuccessful for a time and then 

return to profitability, when environmental conditions become more conducive to such strategies. The 

more these strategies are exploited by market participants, the less successful they become (Urquhart 

and Hudson, 2013; Kim and Shamsuddin, 2015).  The time-adaptive HAR volatility leverage of this 

study accounts for the heterogeneity in the market agents and in a sense captures traders’ behavioural 

biases that are implied by AMH. However, in the future it would be interesting to evaluate the models’ 

performance with rolling window forecast estimations and over different horizons in order to further 

robe for more findings supporting the AMH. Here it should be noted that this study could be further 

extended with the inclusion of non-linear predictors in the SVR input pool or the experimentation with 

more sophisticated kernel and fitness functions. 

 

7. Conclusions 

The motivation for this work is to introduce the hybrid KH-vSVR model.  The KH algorithm is a novel 

metaheuristic optimization technique inspired by the behaviour of krill herds. Compared to previous 

studies, this research contributes to the literature in various ways. Firstly, to the best of our knowledge 

KH-vSVR is the only hybrid structure that combines KH optimization in the SVR process. The KH is 

used to optimize the v-SVR parameters by balancing the search between local and global optima. 

Secondly, the inputs of the SVR models are selected through the statistically stable MCS technique 

that involves a large pool of linear predictors. With this process, the practitioner manages to exploit the 

predictors with the higher information capacity and reduce the dimensions of the input vector, without 

turning to atheoretical and time-consuming techniques like cross-validation or grid search. Finally, this 

work is contributing to the limited literature on commodity ETFs’ performance.  

The proposed model is applied to the task of forecasting and trading three highly liquid oil, gold and 

silver ETFs on daily basis over the period 2012-2014. A simple trading application is used to initially 

evaluate the models over the out-of-sample period. Then, a more sophisticated time-varying leverage 

trading strategy based on HAR volatility estimations is used to further authenticate the obtained 

results. The empirical evidence suggests that the KH-vSVR is superior compared to its counterparts in 

terms of statistical accuracy and trading efficiency. This validates that KH algorithm is robustly 

optimizing the SVR parameters. The v-SVR2 is the second best model in this study, which indicates 

that using 5-fold cross-validation in the parametrization process is more robust than the grid search 

method. The HAR strategy captures the time-varying nature of the return’s volatility and increases 

profitability for all models. This study could be further expanded in the future by applying a rolling-
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window approach in the KH-vSVR specification. This would enable the practitioner to evaluate the 

models performance when market trends shift. Another potential addition to our analysis could be the 

evaluation of the inverse ETF market for the short positions of the trading exercises. In conclusion, this 

work provides insights to commodity investors and motivates researchers, practitioners and academics 

to explore more sophisticated SVR optimization techniques and input selection processes. 
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Appendix  

A. Predictors’ pool 

This appendix Section gives a short description of the linear models used to populate the individual 

forecast pool. The linear models used are SMA, EMA, AR, ARMA, ROC and PPI. Their 

specifications are provided in the following Table A.1. In total, the linear models’ forecasts sum up to 

470. 

Table A.1: Individual predictors’ specifications 

LINEAR MODELS DESCRIPTION TOTAL INDIVIDUAL 
 FORECASTS 

SMA (q) 
1( ) ( ... ) /t t t qE R R R q− −= + +  

Where: 
• q=3...25 

 
23 

EMA (q') 

q' 1
1 2 '

q' 1

(1 ') ... (1 ')
( )

' (1 ') ... (1 ')
t t t q

t

R a R a R
E R

a a a

−
− − −

−

+ − + + −
=

+ − + + −
 

 Where: 
• q'=3...25  
• a'=2/(1+Ndays), Ndays is the number trading days 
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AR (q'') 

0
1

''

( )t i t i
i

q

E R Rβ β ′ ′−
′=

= +∑  

Where: 
• q''=1,…,20  
• 0 , iβ β ′  the regression coefficients  
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ARMA (m', n') 

0 0
1 1

( )
m n

t j t j k t k
j k

E R R a w aϕ ϕ
′ ′

′ ′ ′ ′− −
′ ′= =

= + + +∑ ∑  

Where:  
• m', n'=1,..,20 
• 0 , jϕ ϕ ′  the regression coefficients  

• 0 , t ka a ′−  the residual terms  

• kw ′  the weights of the residual terms 
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ROC (p') 

1 '( ) 100[1 ( / )]t t t pE R R R− −= −   

Where:  
• p'=3,..,25 

 

 
23 
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PPI  

1 1 1 1

1 1 1

( ) / 3
( ) ( ) /

t t t t

t t t t

PivotP H L CP
E R PivotP CP CP

− − − −

− − −

= + + 
 = − 

  

Where:  
• 

1tPivotP−
the pivot point for t-1 

• 
1 1 1, ,t t tH L CP− − −

the high, low and closing price for t-1 
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B. KH parameters and training characteristics 

The Table B.1 summarizes the training characteristics of the KH algorithm for the three ETFs under 

study.  

Table B.1: KH training characteristics 
 

 

 

 

 

Figure B.1 presents the pseudo-code for the KH algorithm. 

Figure B.1: KH algorithm pseudo-code 

 

 

 

 

 

 

 

 

 

 

C. Statistical and trading performance measures. 

The statistical and trading performance measures are calculated as shown in Table C.1. 

 
Table C.1: Statistical and Trading Performance Measures 

STATISTICAL PERFOMANCE  DESCRIPTION 

ETF USO GLD SLV 
Population Size 75 80 65 

Δt , Zcr 19.12, 0.47 20.45, 0.35 19.53, 0.74 
Foraging Speed 0.02 ms-1 0.02 ms-1 0.02 ms-1 

Maximum Motion Speed 0.01 ms-1 0.01 ms-1 0.01 ms-1 
Maximum Diffusion Speed [0.002, 0.010] ms-1 [0.002, 0.010] ms-1 [0.002, 0.010] ms-1 

Inertia Weights [0,1] [0,1] [0,1] 
Optimized Variables 3 (C, ν, γ) 3 (C, ν, γ) 3 (C, ν, γ) 

Fitness Functions 1/ (1 )RMSE+  1/ (1 )RMSE+  1/ (1 )RMSE+  

BEGING 
 Step 1: Initialization 

Initialize the generation counter GEN, the population of Nk krill randomly, VF, Dmax and RDmax. 
Step 2: Fitness calculation 
 Calculate fitness for each krill according to its initial position Pj. 
Step 3: While GEN < maximum generation criterion 
  Sort the population according to their fitness. 
  For j=1: Nk (all krill) do 
   Perform the following motion calculations: 
    Motion induced by other individuals (Mj) 
    Foraging motion (Fj) 
    Random Diffusion motion (RDj) 
   Implement the genetic operators. 
   Update the krill position in the search space. 

Calculate fitness for each krill according to its new position. 
   End for j 
   GEN=GEN+1 

Step 4: End While 
END 
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Root Mean Squared Error 
2

1

1 ( ( ) )
t N

t
RMSE E R Y

N t t
t

′+

= +

= −
′ ∑ ,with Yt being the actual value and ( )E Rt  the forecasted value 

and N ′  the number of forecasts 
TRADING PERFOMANCE  DESCRIPTION 

Annualized Return  A

1

1252* *( )
N

AR R TC
N t

t

′

=

= −
′ ∑  where Rt the daily return and TCA the annualized transaction cost 

Information Ratio  
A

A

RIR
σ

=  

 

 

 

 

D. HAR pseudo-code 

Figure D.2 below presents the pseudo-code for the HAR model specification. 
 

Figure D.2: HAR pseudo-code 

𝑙𝑙𝑙𝑙 = 𝛽0 + 𝛽(𝑑)𝑙𝑙𝑙𝑙𝑡−1
(𝑑) + 𝛽(𝑤)𝑙𝑙𝑙𝑙𝑡−1

(𝑤) + 𝛽(𝑚)𝑙𝑙𝑙𝑙𝑡−1
(𝑚) + 𝜀𝑡 

BEGIN 
Step 1: Define the volatility time series.  
Step 2: Construct the index vector ℎ�  based on the lagged values of the time series for the 
daily, weekly and monthly components. 
Step 3: Calculate the three volatility components, 𝑙𝑙𝑙𝑙(ℎ�), as averages of lagged values for 
each step t.  
Step 4: Consider the three components as new time series. 
Step 5: Regress the values of volatility 𝑙𝑙𝑙𝑙 on the three components using OLS: 

Step 6: Obtain the coefficients 𝛽(𝑑),𝛽(𝑤),𝛽(𝑚) and calculate the one-day ahead volatility 
forecasts 

END 
 




