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Abstract—With the advent of the Internet of Things, the 

security of the network layer in the Internet of Things is getting 

more and more attention. Traditional intrusion detection 

technologies cannot be well adapted in the complex Internet 

environment of the Internet of Things. Therefore, it is extremely 

urgent to study the intrusion detection system corresponding to 

today's Internet of Things security. This paper presents an 

intrusion detection model based on improved Genetic Algorithm 

and Deep Belief Network. Facing different types of attacks, 

through multiple iterations of the GA, the optimal number of 

hidden layers and number of neurons in each layer are generated 

adaptively, so that the intrusion detection model based on the 

DBN achieves a high detection rate. Finally, the NSL-KDD dataset 

was used to simulate and evaluate the model algorithm. 

Experimental results show that the improved intrusion detection 

model combined with DBN can effectively improve the 

recognition rate of intrusion attacks and reduce the complexity of 

the network. 

 
Key words—Internet of Things security; Intrusion detection; 

Deep Belief Network; Genetic Algorithm 

 

I.  INTRODUCTION 

ith the rapid development, Internet of Things (IoT) 

technology has been widely used, from traditional 

equipment to common household appliances, which has greatly 

improved our quality of life [1]. 

However, IoT systems have become an ideal target of cyber 

attackers because of its distributed nature, large number of 

objects and openness [2-5]. In addition, because many IoT 

nodes collect, store and process private information, they are 

apparent targets for malicious attackers [6]. Therefore, to 

maintain the security of the IoT system is becoming a priority 

of the successful deployment of IoT networks [7].  

To detect intruders is one important step in ensuring the 

security of the IoT networks. Intrusion detection is one of 
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several security mechanisms for managing security intrusions, 

which can be detected in any of four layers of IoT architecture 

shown in Fig. 1. The Network Layer not only serves as a 

backbone for connecting different IoT devices, but also 

provides opportunities for deploying network-based security 

defense mechanisms such as Network Intrusion Detection 

Systems (NIDS) [8]. 

There are many intrusion detection methods, such as 

methods based on statistical analysis [9], cluster analysis [10], 

artificial neural network [11] or deep learning [12]. Among 

these methods, intrusion detection based on deep learning 

performs better than other methods [13]. The reason is that deep 

learning has strong abilities, such as self-learning, 

self-adaptation, good generalization, and detection against 

unknown attack behavior.  

For the deep learning algorithm, a network structure may 

have a great detection accuracy for one attack type, but it may 

not have a good detection effect when facing other attacks. 

Therefore, we hope to design a self-adaptive model to change 

the network structure for different attack types, so that our 

intrusion detection model can maintain a high detection rate 

continuously. 

In the past few years, there has been very little research on 

the optimization of the IoT intrusion detection model based on 

deep learning. And, there has not been a unified solution for the 

selection of the number hidden layer and the number of neurons. 

Most of the research is based on trial and error and on pruning 

or constructive methods [14], the network structure and the 

performance cannot be guaranteed. The random selection of the 

number of hidden neurons might some problems. 

In this paper, a new IoT intrusion detection model is 

proposed by introducing genetic algorithm into deep belief 

network to optimize the number of hidden layers and neurons in 

a hidden layer.  

By applying the improved genetic algorithm, for different 

types of attacks, the optimal number of hidden layers and 

neurons in a hidden layer can be iteratively generated, and the 

network complexity can be reduced as much as possible while 

ensuring the detection rate. The solution of these two problems 

of deep network can make the intrusion detection system have a 

greater improvement in performance. 

In this paper, we will firstly introduce the related work of 

intrusion detection based on machine learning in Section II. 

Then we will introduce the proposed algorithm model in 

Section III. In Section IV, we show the experimental results and 

compared it with other methods. This paper is concluded in 

Section V. 
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II.  RELATED WORK 

The intrusion detection technology based on machine 

learning method can be divided into two major categories: 

intrusion detection based on artificial neural networks and 

intrusion detection based on deep learning [15]. 

Intrusion detection based on artificial neural network is 

generally divided into three sub-categories of neural networks: 

supervised, unsupervised and hybrid. The main type of 

supervised neural networks are multilayer feed-forward (MLFF) 

neural networks. Ryan et al. [16] used MLFF neural network to 

detect anomaly based on user behavior. However, supervised 

neural networks depend on training of a large number of data 

sets. Sometimes the distribution of training data sets is not 

balanced, which makes the MLFF neural network easily reach 

the local minimum value, and thus the stability is low. 

Detection rate of low-frequency attack is a key factor in judging 

the quality of the detection model. The detection accuracy of 

MLFF neural network is low for low-frequency attacks. 

The main advantage of the unsupervised artificial neural 

networks is that new data can be analyzed without tagging data 

in advance. Yu et al. [17] introduced a theoretical foundation 

for combining individual detectors with Bayesian classifier 

combination. This ensemble is fully unsupervised and does not 

require labeled training data, which in most practical situations 

is hard to obtain. The Self-Organizing Feature Map (SOM) 

used in [18] is an unsupervised learning method that extracts 

features from normal system activity and identifies statistical 

changes from normal trends. However, for low-frequency 

attacks, the detection accuracy of unsupervised neural network 

is also low. 

The third category is the hybrid neural network, e.g., 

FC-ANN proposed in [19] is such a model. The FC-ANN 

method introduces fuzzy clustering techniques into general 

artificial neural networks. Using fuzzy clustering techniques, 

the entire training set can be divided into small, low-complex 

subsets. Therefore, based on these subsets, the stability of the 

individual neural network can be improved and the detection 

accuracy can be improved as well, especially for the detection 

of low-frequency attacks. Ma et al. [20] proposed a novel 

approach called SCDNN, which combines spectral clustering 

(SC) and deep neural network (DNN) algorithms. It provides an 

effective tool of study and analysis of intrusion detection in 

large networks. Chiba et al. [21] proposed a cooperative and 

hybrid network intrusion detection system (CH-NIDS) to detect 

the attacks by sensing the network traffic. 

In [22], based on Back Propagation neural networks (BPNN), 

a discussion was made on the selection of the number of hidden 

layers. It is believed that the training set must be analyzed 

before the design of the neural network to correctly estimate the 

similarity between the number of neurons and the number of 

hidden layers. 

At present, there are many intrusion detection technologies 

based on deep learning. Yin et al. [23] proposed a deep learning 

approach for intrusion detection using recurrent neural 

networks (RNN-IDS) which is Suitable for high-precision 

classification model modeling. Abolhasanzadeh [24] proposed 

a method for detecting attacks in big data using Deep 

Auto-Encoder. Gao et al. [25] trained the deep belief network 

(DBN) as a classifier to detect intrusions. Similarly, Alom et al. 

[26] also utilized the capabilities of DBN to detect intrusions 

through a series of experiments. 

However, the above articles mainly select the specific 

network structure through many attempts, and these methods 

are random and irregular. The selected network structure may 

not be optimal and suitable for complex network environment. 

Compared with traditional neural networks, DBN has the 

advantages of multi-layer structure and pre-training with 

fine-tuning learning methods. These advantages enable DBN to 

extract the deep attributes of training set, thus the problems 

existing in the traditional neural network intrusion detection 

methods are solved, such as low training efficiency, easy to fall 

into the local optimum and the need of large amount of tag data 

[27]. 

Many researchers put their effort in analyzing the solution to 

the problem that how many neurons are kept in the hidden layer 

in order to obtain the best result. Liu et al. [28] proposed a novel 

and effective criterion based on the estimation of the 

signal-to-noise-ratio figure (SNRF) to optimize the number of 

hidden neurons in the neural networks to avoid overfitting in 

the function approximation. Rivals and Personnaz [29] used 

techniques based on least squares estimation and statistical tests 

for estimating the number of neurons in the hidden layer. Mao 

and Huang [30] used a data structure preserving (DSP) 

algorithm to fix the hidden neuron. It is an unsupervised neuron 

selection algorithm. Doukim et al. [31] proposed a technique to 

find the number of hidden neurons in an MLP network by using 

coarse-to-fine search technique, which is applied in skin 

detection. This technique includes binary search and sequential 

search. In [32], to fix hidden neurons, 101 various criteria are 

tested based on the statistical errors. At last the selected 

criterion for the NN model is 2 2(4 3) / ( 8)n n+ − , where n is the 

number of input parameters. The results show that the proposed 

model improves the accuracy and minimal error. 

Genetic Algorithms is a method to search for an optimal 

solution by simulating natural evolution processes, but is often 

neglected when choosing the optimal network structure. In this 

paper, in order to solve the low detection rate and weak stability 

of the detection model caused by low-frequency attacks, we 

propose an intrusion detection model based on an improved 

Genetic Algorithm (GA) and Deep Belief Network, for 
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different training types including low-frequency attacks and 

other types of attacks. The corresponding different network 

structures are obtained by iterative evolution through GA, 

thereby detection rate is improved. 

III.  GA OPTIMIZED DBN MODEL 

This paper presents an intrusion detection model by a 

combined GA and DBN. Through multiple iterations of the GA, 

an optimal network structure is produced. The network 

structure contains the number of hidden layers and the number 

of neurons in each layer. This structure is then applied to deep 

belief network for intrusion detection. 

A. Improved genetic algorithm 

Genetic Algorithm is known to be an ideal technique for 

finding optimal solutions to various problems. 

1） Population initialization 

The purpose of initialization is to generate an initial 

population randomly for subsequent genetic manipulation. For 

a simple training set, up to three hidden layers are enough to get 

a good detection rate. Binary coding is the most common 

coding method in genetic algorithm, so we encode the number 

of nodes in the three hidden layers directly in the binary 

chromosome. The length of chromosome is 18 bits: the first 6 

bits are reserved for the first hidden layer, the subsequent 7-12 

bits and 13-18 bits are for the second and the third hidden layers 

respectively, as shown in Fig. 2: 

 

Fig. 2 Chromosome schematic 
 

A chromosome represents a network structure, which has at 

most three hidden layers and at least one hidden layer. Each 

layer has 6 bits. The value of each bit is a binary number 0 or 1. 

The converted decimal number is the number of neurons in a 

layer. According to the rules of thumb, it is shown that an 

acceptable number of neurons in the hidden layer could be the 

size between the input layer and output layer. Therefore, when 

the population is initialized, we must ensure that the number of 

nodes in each layer is smaller than the number of input features 

and greater than the number of output features.  

                                          I N O≤ ≤                                 (1) 

where I  is the size of the input layer, O  is the size of the 

output layer and N is the number of neurons in the hidden 

layer. 

If a chromosome has two layers, then 1-6 bits and 7-12 bits 

are between 000010 and 101000. The 13-18 bits are 000000. 

2） Improved selection 

The selection operation is to select excellent chromosomes 

from the current population and prepare for crossover and 

mutation. As the fitness of candidate individuals increases, the 

probability of being selected increases. In general, a method of 

roulette wheel selection based on proportional fitness 

assignment (also known as Monte Carlo method) is used. 

However, one drawback of this method is that the selection 

based on the generated random number that may lead to some 

individuals with high fitness is eliminated. Therefore, we made 

an improvement: Firstly, we will select the individuals with the 

greatest fitness value to ensure that they can enter the next stage, 

and then select the remaining individuals according to the 

method of roulette. This improvement ensures that the best 

individuals will not be eliminated. 

The specific operations are as follows:  

⑴ Calculate the fitness of each individual in the population 

(i 1,2, ,M)f = ⋯  ，M is the size of population； 

⑵ The individual with the largest adaptation value enters the 

next stage directly; 

⑶ Calculate the probability that each remaining individual is 

passed on to the next generation: 

                                   

1

( )
( )

( )

i
i N

j

j

f x
p x

f x
=

=

∑
                              (2) 

⑷ Calculate the cumulative probability of each individual: 

                                       
1

( )
i

i j

j

q p x
=

= ∑                                 (3) 

 
Fig. 3 cumulative probability 

 

⑸ Generate a uniformly distributed pseudo-random number r 

in the interval [0, 1]; 

⑹ If r < q(1)，select the individual 1，if not，select the 

individual k when q[k-1]<r≤q[k]; 

⑺ Repeat ⑷-⑹ M-1 times. 

3） Improved crossover 

Crossover using partially matched crossover (PMC), the 

traditional method is to exchange randomly selected segments 

from two adjacent chromosomes. However, the two adjacent 

chromosomes, selected by a roulette, are sometimes the same, 

so two chromosomes remain unchanged after the crossover 

operation, and thus this crossover operation has no effect. So 

we take the interval crossover, which is as shown in Eq. 4, for 

example, if we have n  chromosomes, we cross the first one 

with (n/ 2 1)th+  , the second one with (n/ 2 2)th+ , and so on. 

                   c (n/ 2 ) , 1,2, , / 2
th th

i cross with i i n= + = …               （4） 

where c  representing the individuals generated after the 

intersection. 

To use this exchange method can avoid falling into a local 

optimum, thus the diversity of the next generation can be 

increased and the convergence rate can be accelerated. At the 

same time, another possibility is the number of hidden layers of 

the intersecting individuals is different. For this case, we adopt 

the method of randomly selecting a layer common to both 

chromosomes to crossover. This is done to avoid the situation 

that the number of neurons in an intermediate hidden layer is 0. 

Method is demonstrated in Fig. 4: 
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Fig. 4 Crossing chromosomes with different hidden layers 

 

4） Mutation 

The mutation operation is to change a certain bit in the 

chromosome. It can use the random search ability of mutation 

operator. When the operation result is close to the optimal 

solution neighborhood, it can quickly converge to the optimal 

solution. 

5）  Elite retention strategy 

Crossover and mutation may lead to the loss of the optimal 

individuals in the next generation, and this phenomenon will 

occur in the evolutionary process frequently. In order to prevent 

the loss of the best individuals of the current population, which 

results in that the Genetic Algorithm cannot converge to the 

global optimal solution, an “elite retention” strategy is 

introduced in this paper. After each mutation operation, the best 

individual Α  in this generation is compared with the best 

individual Β  that has appeared in the evolution process so far. 

As shown in Eq. (3), If Β  is greater than Α  , Β  replaces the 

worst individual in this generation and goes to the next 

generation, Α  goes to the next generation directly. If Α  is 

equal or greater than Β  , Α  goes to the next generation 

directly. This process is shown in Eq. 5. 

                               { ,
,

A if A B
C

Band A if A B
≥

=
<

                      （5） 

where C  represents the one which goes to the next generation. 

B. Setting of Fitness function 

The goal of our model is to obtain a structure with a high 

detection rate. Therefore, the selection of the fitness function 

needs to consider the detection rate of the deep belief network: 

                                   100%corrent

all

N
P

N
= ×                             (6) 

where P  represents the detection rate, 
correctN  represents the 

number of correctly classified data and
allN  represents the total 

number of data. In this case a network structure with a high 

detection rate can be retained more easily. At the same time, we 

also need to consider reducing the number of hidden layers as 

much as possible on the premise of ensuring the detection rate, 

because the more layers, the longer the training time will take. 

In addition to this, under the premise of meeting the accuracy 

requirements, the structure should be as compact as possible, 

and the network structure should not be too complicated. Also, 

experimental results in [23] show that the number of neurons in 

first and second hidden layers should be kept nearly equal so 

that the network can be trained easily.  

We show the complexity between multiple hidden layers by 

calculating the standard deviation, σ ： 

                             
1

1 2( )
N

i

x
iN

µσ
=

−= ∑                              （7） 

where ix  represents the number of neurons in the thi  hidden 

layer， µ  represents the average of the number of neurons in 

each layer，and N is the total number of samples. 

In order to visually display the complexity, we normalize the 

standard deviation as: 

                                  min

max min

σ σ
σ

σ σ
∗ −

=
−

                                (8) 

So we use the following equation to calculate the fitness 

function: 

                           1 2 3 (1 )f w p w l w σ ∗= × + × + × −                  (9) 

where p represents the detection rate of the current deep belief 

network, within the range of [0, 1], l  is the reciprocal of the 

number of hidden layers in the network, the smaller the number 

of hidden layers, the larger the reciprocal value is, and the range 

is [0, 1]. σ ∗  is the standard deviation after normalization, 

within the range of [0, 1]. And f  is the fitness value, and 

should be within the range [0, 1]. 
1w , 

2w and 
3w  are weights. 

After continuous testing, we finally take 
1 0.995w = , 

2 0.005w = and 3 0.005w = . 

                    0.99 0.005 0.005 (1 )f p l σ ∗= × + × + × −                 (10) 

By using Eq. 10, individuals with higher detection rates, 

fewer hidden layers and smaller complexity can be more easily 

retained, so we can obtain structures with high detection rates, 

few hidden layers and low complexity easily. 

The improved GA flow chart is shown in Fig. 5: 

 
Fig. 5 improved GA flow chart 

C. Restricted Boltzmann Machines 

Deep Belief Networks (DBN) is a kind of deep learning 

structure. It is composed of multiple Restricted Boltzmann 

Machines (RBMs), mainly executing unsupervised learning of 
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pre-processed data, processing and abstracting 

high-dimensional data [33].  

 
 

1) Parameter learning 

In RBM, v represents all visible units and h represents all 

hidden units. To determine the model, we only need to obtain 

three parameters of the model: = { }θ W, A, B .There are 

weight matrix W, visible layer element bias A and hidden layer 

element bias B, respectively. 

Suppose an RBM has n visible cells and m hidden cells, i
v   

represents the th
i  visible unit, i

h  represents the thj  hidden unit, 

and its parameter form is: 

                                           ,{ }n m

i jW w R ×= ∈                         (11) 

where ,i jw  represents the weight between the thi  visible cell 

and the thj  hidden cell; 

                                             { }m

iA a R= ∈                              (12) 

where ia  represents the bias threshold of the th
i  visible cell; 

                                             { }n

jB b R= ∈                                (13) 

where jb  represents the bias threshold of the
thj  visible cell. 

For a set of ( , )v h under a given state, assuming that both 

visible and hidden layer obey Bernoulli distribution, the energy 

formula of RBM is: 

            
1 1 1 1

( , | )
n m n m

i i j j i ij j

i j i j

E v h a v b h vW hθ
= = = =

= − − −∑ ∑ ∑ ∑         (14) 

where, { , , }ij i jW a bθ =  is a parameter of the RBM model, 

and the energy function indicates that there is an energy value 

between the value of each visible node and that of each hidden 

layer node. 

After the exponential and regularization of the energy 

function, the joint probability distribution formula can be 

obtained that the node set of visible layer and the node set of 

hidden layer are in a certain state respectively ( , )v h  : 

                                    
( , | )

( , | )
( )

E v he
P v h

Z

θ

θ
θ

−

=                              (15) 

                                     ( , | )

,

( ) E v h

v h

Z e θθ −= ∑                             (16) 

Where, ( )Z θ  is a normalized factor or partition function, 

representing the sum of the energy exponents of all possible 

states of the node set of the visible layer and the hidden layer. 

The derivation of likelihood function is often used to get the 

parameters. Given the joint probability distribution ( , | )P v h θ  , 

the marginal distribution ( | )P v θ  of the node set of the visible 

layer can be obtained by summation over all states of the hidden 

layer node set: 

                              ( , | )1
( | )

( )

E v h

h

P v e
Z

θθ
θ

−= ∑                         (17) 

Marginal distribution represents the probability that the set 

of nodes in the visible layer is in a certain state distribution. 

Due to the special layer-layer connection and inter-layer 

connectionless structure of RBM model, it has the following 

important properties: 

① Given the state of the visible cell, the activation states of 

each hidden layer cell are conditionally independent. At this 

time, the activation probability of the
th

j  hidden element is: 

                           ( 1| ) ( )
j j i ij

i

P h v b vWσ= = + ∑                    (18) 

② Correspondingly, when the state of the hidden element is 

given, the activation probability of the visible element is also 

conditional independent: 

                          ( 1| ) ( )i i ij j

j

P v h a W hσ= = + ∑                       (19) 

where, ( )xσ  is the sigmoid function. 

 

2) solving parameters 

To determine RBM model, it is necessary to solve the three 

parameters of the model: { , , }ij i jW a bθ = . 

The parameter solution uses the logarithmic likelihood 

function to take the derivative of the parameter. 

As we know from 
( , | )1

( | )
( )

E v h

h

P v e
Z

θθ
θ

−= ∑ , energy E is 

inversely proportional to probability P, and E is minimized by 

maximizing P. 

The common method to maximize the likelihood function is 

the gradient rise method, which refers to the modification of 

parameters according to the following formula: 

                                      
ln ( )P v

θ θ µ
θ

∂
= +

∂
                           (20) 

This iteration maximizes the likelihood function P and 

minimizes the energy E. 

The format of logarithmic likelihood function: ln ( )sP v  , s
v  

represents the input data of the model, and a single sample is 

first analyzed here, that is, s
v  is the th

s   sample in the data set. 

Then take the derivatives of the parameters in { , , }ij i jW a b   

respectively： 

      
,

ln ( )
( 1 | ) ( ) ( 1 | )

s
s s

i j i j

vi j

P v
P h v v P v P h v v

w

∂
= = − =

∂
∑        (21) 

                              
ln ( )

( )
s

s

i i

vi

P v
v P v v

a

∂
= −

∂
∑                       (22) 

              
ln ( )

( 1 | ) ( ) ( 1 | )
s

s

i i

vi

P v
P h v P v P h v

b

∂
= = − =

∂
∑       (23) 
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Since the second term of the above three equations contains 

P(v), P(v) still contains parameters, so we solve it by Gibbs 

sampling. 

D. DBN for intrusion detection 

DBN module is mainly divided into two steps in the training 

phase: 

(1) Each RBM is trained separately, characterized by 

unsupervised and independent, to ensure that feature 

information is retained as much as possible when mapping 

feature vectors into different feature spaces. 

In training a single RBM, weight updates are performed with 

gradient descent via the following equation:  

                          
log( ( ))

(t 1) (t)ij ij

ij

p v
w w

w
η

∂
+ = +

∂
                     (24) 

where ( )p v  is the probability of a visible vector, which is given 

by: 

( , )1
( ) E v h

h

p v e
Z

−= ∑                              (25) 

Z is the partition function (used for normalizing) and ( , )E v h  

is the energy function assigned to the state of the network. 

The observed joint distribution of the input value x and 

hidden layer
kH is modeled as follows:      

           
2

1 1 1

0

( , , , ) ( ( | )) ( , )
N

N k k N N

k

P x H H P H H P H H
−

+ −

=

= ∏… i         (26) 

where 
0x H= , 

1( | )k kP H H−  is a conditional distribution of 

visible units in the k layer with the condition of hidden units of 

RBM. 
1( , )N NP H H−  is the visible-hidden joint distribution at 

the top level of the RBM. This process is illustrated in Fig. 6. 

 
Fig. 6 RBM training process 

As shown in Fig. 6, the first layer is trained as an RBM, 

assigning the x  input to
1V as the visible layer. 

The input data obtained from the first layer is characterized 

as the second layer’s data. Two ways exist, average activation 

1 0( 1 | )P H H=  or sample 1 0( | )P H H . 

Once an RBM is trained, another RBM is "stacked" atop it, 

taking its input from the final trained layer. The new visible 

layer is initialized to a training vector, and values for the units 

in the already-trained layers are assigned using the current 

weights and biases. The new RBM is then trained with the 

procedure above. This whole process is repeated until the 

desired stopping criterion is met [34]. 

Finally, this process is repeated until to the last layer. This is 

a Deep Learning method. 

(2) The last layer of the DBN is the BP neural network. The 

feature vector of upper RBM is used as an input vector to train 

an entity classifier under supervision. Since the RBM of each 

layer can only ensure its own weight corresponding to the 

feature vector is optimal after the first step training, our 

ultimate goal is to make the overall weight corresponding to the 

feature vector as optimal. So according to the characteristics of 

the BP neural network, the BP neural network can propagate 

error information from the top layer to the bottom layer of RBM. 

If fine-tune the DBN network is finely tuned, a global 

optimization could be achieved. 

The number of hidden layers and the number of neurons in 

each layer in the deep belief network are determined by the 

algorithm model we constructed earlier. 

E. Algorithm flow 

The algorithm flow is summarized as: 

Step1: Initialize the population and generate different 

number of hidden layers and the number of neurons in each 

layer randomly; 

Step2: Calculate the fitness value according to Eq. 8, 

chosen by the roulette method, and keep the optimal individual 

in the present; interval crossover; variation; 

Step3: "Elite" retains, retaining individuals with the 

greatest fitness value during evolution; 

Step4: Determine if the maximum number of iterations has 

been reached. If reached, the generated network structure is 

retained, otherwise iterate Step2- Step3 again; 

Step5: Use the optimal network structure for the deep belief 

network and train the intrusion detection model. 

Step6: Classify the testing set by the trained DBN module, 

and finally match the classification result with the category 

information of the testing set to check the accuracy of the 

classification. 

The algorithm flow chart is shown in Fig. 7: 
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Fig. 7 Algorithm model flow chart 

 

The pseudocode of the algorithm is expressed as follows: 

Algorithm: Intrusion Detection Model 

-- 1f  : the individual with greatest fitness value in this generation 

-- fbest  : the best individuals that emerged during evolution 

-- L  : the number of hidden layers 

-- N  : the number of nodes in every hidden layer 

1: Initialization 

2: Calculate the fitness value of initial population 

3: 0.99 0.005 0.005 (1 )f p l σ ∗= × + × + × −  
4: for I from 1 to 50 

5:      selection 

6:      crossover 

7:      mutation 

8:      calculate the fitness value 

9:      find out the individual 1f   

10:    compare with the 1f  and the fbest   

11:      if  1f fbest>   

12:          1fbest f←  

13:           keep 1f in the next iteration 

14:      else 

15:           keep 1f in the next iteration 

16:           set fbest in the next iteration 

17:           dalete the one with smallest fitness value  

18:      end if  

19:      if  I = 50 

20:           broadcast fbest  

21:           get the L and N from fbest        

22:      end if 
23: end for 

24: for I from 1 to L 

25:       training the thI RBM 

26: end for 

27: Training the BP, fine-tune the RBM 

28: Test DBN with test set  

IV.  EXPERIMENTAL SIMULATION 

A. Experimental data 

KDDCUP99 [35] and NSL-KDD are the most commonly 

used datasets in the intrusion detection research. We used 

NSL-KDD intrusion dataset which is available in csv format for 

model validation and evaluations. The dataset composes of the 

attacks shown in Table 1, and identified as a key attack in IoT 

computing. Sherasiya and Upadhyay (2016) point out that IoT 

objects are also exposed to such types of attacks. Furthermore, 

Sherasiya and Upadhyay (2016) point out that the data that IoT 

objects exchange are of the same value and importance, or 

occasionally more important than a non-IoT counterpart [36]. 

According to the analysis of KDDCUP99 and its latter 

version NSL-KDD, malicious behaviors (attacks) in 

network-based intrusions can be classified into the following 

four main categories: 

� Probe: when an attacker seeks to only gain information about 

the target network through network and host scanning 

activities. 

� DoS (denial of service): when an attacker interrupts 

legitimate users’ access to the given service or machine. 

� U2R (User to Root): when an attacker attempts to escalate a 

limited user’ privilege to a super user or root access (e.g. 

via malware infection or stolen credentials). 

� R2L (Remote to Local): when an attacker gains remote 

access to a victim machine imitating existing local users. 

 

TABLE I 

The attacks in NSL-KDD dataset 

Main class Sub class (attacks) 

in train set 

New sub class 

(attacks) in test set 

DoS Back, land, 

Neptune, 

Smurf, pod, 

teardrop  

Apache2, 

Mailbomb, 

Processtable 

Probe Imap, multhop, 

phf, spy, 

warezclient, 

warezmaster, ftp 

write, guess 

passwd 

Mscan, Saint 

U2R Buffer overflow, 

perl, loadmodule, 

rootkit 

Httptunnel, Ps, 

Sqlattack, Xterm 

R2L Ipsweep, nmap, 

portsweep, satan 

Sendmail, Named, 

Snmpgetattack, 

Snmp guess, 

Xlock, Xsnoop, 

Worm 

 

Since the test set contains 17 new attack types not included in 

the training set, we can evaluate the effectiveness of our 
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algorithm in detecting unknown or uncommon attacks. 

The original dataset consists of 125,973 records of train and 

22,544 records of test, each with 41 features such as duration, 

protocol, service, flag, source bytes, destination bytes, etc. The 

traffic distribution of NSL-KDD dataset is shown as in the 

Table 2. 

TABLE II 

The traffic distribution of NSL-KDD dataset  

Traffic Training test 

Normal 67343 9711 

DoS 45927 7458 

Probe 11656 2754 

R2L 995 2421 

U2R 52 200 

Total 125973 22544 

 

In order to make the classification result more accurate and 

meet the standard conditions of the DBN’s input data set, the 

data set needs to be normalized. Normalization techniques are 

necessary for data reduction since it is quiet complex to process 

huge amount of network traffic data with all features to detect 

intruders in real time and to provide prevention methods. The 

method used in this paper is the Min-Max normalization 

method, also known as deviation standardization, which is a 

linear change to the original data, mapping the resulting value 

to [0, 1], the conversion function is as follows:   

                          * X Min
X

Max Min

−
=

−
                                (27) 

where Max  is the maximum value of the sample data, and Min  

is the minimum value of the sample data. 

Below is a summary of the metrics we adopted to evaluate 

the detection method: 

 Predicted: normal Predicted: attack 

Actual：normal TN FP 

Actual：attack FN TP 

TP TN
ACC

TP TN FP FN

+
=

+ + +
 

TP
DR

TP FN
=

+
 

FP
FAR

TN FP
=

+
 

TP
Precision

TP FP
=

+
 

( )

TP
Recall

TP FN
=

+
 

where, accuracy (ACC) is the percentage of true detection over 

total data instances; detection rate (DR) represents ratio of  

intrusion instances; false alarm rate (FAR) represents the ratio 

of misclassified normal instances; Precision represents how 

many of the returned attacks are correct; Recall represents how 

many of the attacks does the model return. 

FP: false positive, TP: true positive, TN: true negative, FN: 

false negative. 

B. SIMULATION ENVIRONMENT 

The experiment was conducted using MATLAB R2016a 

running on a personal computer (PC). GA optimized DBN 

model is trained with the training sets and then evaluated using 

the test set. 

C. SIMULATION RESULTS 

First, we need to set the number of generations of the genetic 

algorithm. 

fi
tn

e
s
s
 v

a
lu

e

 
Fig. 8 Genetic algorithm iterative results 

It can be seen from Fig. 8 that as the number of iterations 

increases, the fitness value increases, and when the number of 

iterations exceeds 50, the curve tends to be stable, and the 

fitness value no longer increases with the number of iterations. 

Therefore, we set the genetic algebra of the genetic algorithm to 

50 generations. 

Secondly, set the training times for the BP network. 

a
c
c
u

ra
c
y

 
Fig. 9 BP network training results 

From Fig. 9, we can see that when the number of training 

exceed 80 times, the curve is basically stable, and with the 

increase in the number of training, the classification accuracy 

rate no longer increases significantly and wasted training time 

in vain, so we set the BP network training epochs to 80. 

Then, set the training times for the RBM. 
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Fig. 10 RBM training results 

From Fig. 10 we can see that the training times of RBM have 

little effect on the classification accuracy rate, there is no 

obvious increase or decrease trend, so we set the RBM training 

epochs to 10. 

Finally, we use DoS, R2L, Probe, U2R four classes of attacks 

as intrusion attack training sets respectively. Through an 

improved genetic algorithm, the optimal network structure for 

each type of attack is obtained, the iterative process for each 

type of attacks is shown in Fig. 11: 
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0.99

0.995
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R2L
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U2R

 
Fig. 11 Iterative results with different attacks  

We decode the optimal chromosome generated by the 

iteration, and then get the optimal network structure as shown 

in Table 3: 

TABLE III 

Optimal network structure for different types of attacks 

Number Attack Network Structure 

A DoS 41-18-12-2 

B R2L 41-31-2 

C Probe 41-26-2 

D U2R 41-38-2 

The network structure of the deep neural network includes 

the input layer, hidden layer, and output layer. Because each 

record in the data set has 41 features, the size of input layer is 

41; the output has two characteristics: normal and abnormal, so 

the size of output layer is 2. The middle is hidden layer. For 

data sets with different attack types, the different optimal 

network structure is generated by multiple iterations of the 

genetic algorithm. For example, shown in table 1, if DoS is 

used as a training set, the optimal network structure obtained is 

A, the structure is 41-18-12-2. 

Intrusion detection is performed on four classes of attacks 

using the A-D network structures respectively, and their 

detection rates are calculated. Shown in table 4: 

TABLE IV 
Detection rate for different class of attack 

Structure DoS R2L Probe U2R 

A 99.45% 95.18% 90.33% 98.27% 

B 97.60% 97.78% 99.23% 98.38% 

C 50.00% 95.02% 99.37% 98.27% 

D 61.23% 86.32% 99.35% 98.68% 

a
c
c
u

ra
c
y（

%
）

 
Fig. 12 Detection rate for different class of attack 

It can be seen from Fig. 12, for a certain type of network 

structure generated by the certain type of attack, the detection 

rate of this type of network is higher than other network 

structures. For example, shown in Fig. 12, the DoS detection 

rate of network structure A generated by DoS as a training set is 

significantly higher than that of other structures; the R2L 

detection rate of network structure B generated by R2L as a 

training set also significantly higher than that of other structures. 

The classification accuracy of Probe and U2R is relatively high 

under all the four network structures, so the comparison results 

are not very significant. It can be seen that the network structure 

adaptively generated by the genetic algorithm has a higher 

detection rate than other network structures. 

At the same time, we compared our method with the methods 

TANN, FC-ANN, SA-DT-SVMS, and BPNN proposed by 

others. Because all four methods use the KDDCUP99 data set, 

the test results are comparative. The results obtained are 

compared with the above methods and summarized in the 

following table: 

TABLE V 

Classification accuracy of each method 

Method DoS R2L Probe U2R 

FC-ANN 96.70% 93.18% 48.12% 83.33% 
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TANN 90.94% 80.53% 94.89% 60.00% 

SA-DT-SVMS 100.00% 93.22% 98.36% 80% 

BPNN 80.35% 89.12% 89.12% 25.58% 

GA-DBN 99.45% 97.78% 99.37% 98.68% 

a
c
c
u

ra
c
y（

%
）

 
Fig. 13 classification accuracy of each method 

It can be seen from Fig. 13 that the proposed GA-DBN 

method has reached a very high level for the detection of four 

types of attacks. The classification accuracy of DoS is higher 

than 99%, and the classification accuracy of R2L, Probe and 

U2R is also significantly higher than other methods. 

The performances of detecting different attack in the 

following table:  

TABLE VI 
The traffic distribution of NSL-KDD dataset 

 ACC

（%） 

DR 

（%） 

FAR

（%） 

Precision

（%） 

Recall

（%） 

DoS 99.45 99.7 0.8 99.20 99.7 

Probe 99.37 99.4 0.7 99.30 99.4 

R2L 97.78 93.4 7.3 92.75 93.4 

U2R 98.68 98.2 1.8 98.20 98.2 

 

V.  CONCLUSION 

Through GA, the optimal individuals can be generated. DBN 

can effectively process high complex and high dimensional 

data, and the classification results are very good. So in this 

paper, the improved genetic algorithm combined with a deep 

belief networks, GA performs multiple iterations to produce an 

optimal network structure, DBN then uses the obtained network 

structure as an intrusion detection model to classify the attacks. 

In this way, facing different attacks, the problem of how to 

select an appropriate network structure when using deep 

learning methods for intrusion detection is solved, and thus it 

improves the classification accuracy and generalization of the 

model, and reduces the complexity of network structure. 

This method has many advantages: on the one hand, the 

specific network structure generated for specific attack types is 

higher in classification accuracy than other network structures, 

which can reach more than 99%. On the other hand, for small 

training sets, such as U2R, the classification accuracy of our 

algorithm is also significantly higher than other methods. In 

addition, as the model complexity is reduced, the training time 

of DBN can be reduced without affecting the accuracy of model 

classification. 

In addition, the algorithm combining GA and DBN model 

not only can be used in intrusion detection in the IoT, also can 

be applied to other situations, such as classification and 

recognition. For different training sets, an optimal network 

structure is adaptively generated for classification. Moreover, 

for small training sets, high classification accuracy can also be 

achieved, which helps to find low-frequency attacks in 

intrusion detection systems. In the future, we will consider to 

optimize the other parameters of the deep network, reduce the 

training time and improving the accuracy. 
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