
2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 1

Abstract—With the advent of the Internet of Things, the

security of the network layer in the Internet of Things is getting

more and more attention. Traditional intrusion detection

technologies cannot be well adapted in the complex Internet

environment of the Internet of Things. Therefore, it is extremely

urgent to study the intrusion detection system corresponding to

today's Internet of Things security. This paper presents an

intrusion detection model based on improved Genetic Algorithm

and Deep Belief Network. Facing different types of attacks,

through multiple iterations of the GA, the optimal number of

hidden layers and number of neurons in each layer are generated

adaptively, so that the intrusion detection model based on the

DBN achieves a high detection rate. Finally, the NSL-KDD dataset

was used to simulate and evaluate the model algorithm.

Experimental results show that the improved intrusion detection

model combined with DBN can effectively improve the

recognition rate of intrusion attacks and reduce the complexity of

the network.

Key words—Internet of Things security; Intrusion detection;

Deep Belief Network; Genetic Algorithm

I. INTRODUCTION

ith the rapid development, Internet of Things (IoT)

technology has been widely used, from traditional

equipment to common household appliances, which has greatly

improved our quality of life [1].

However, IoT systems have become an ideal target of cyber

attackers because of its distributed nature, large number of

objects and openness [2-5]. In addition, because many IoT

nodes collect, store and process private information, they are

apparent targets for malicious attackers [6]. Therefore, to

maintain the security of the IoT system is becoming a priority

of the successful deployment of IoT networks [7].

To detect intruders is one important step in ensuring the

security of the IoT networks. Intrusion detection is one of

Submission Date: 2019-02-04

This work was supported by the National Natural Science Foundation of

China (no. 61673259).
Ying Zhang*, Ph.D, Professor, he is a faculty of College of Information

Engineering, Shanghai Maritime University, Shanghai 201306, China, E-mail:

yingzhang@shmtu.edu.cn
Peisong Li, master student, he studies in the College of Information

Engineering, Shanghai Maritime University, Shanghai 201306, China. E-mail:

790981443@qq.com.
Xinheng Wang, Ph.D, Professor, IEEE Senior Member, he is a faculty of

School of Computing & Engineering, University of West London, London

W5 5RF, UK, E-mail: xinheng.wang@uwl.ac.uk.
*: The correspondent author.

several security mechanisms for managing security intrusions,

which can be detected in any of four layers of IoT architecture

shown in Fig. 1. The Network Layer not only serves as a

backbone for connecting different IoT devices, but also

provides opportunities for deploying network-based security

defense mechanisms such as Network Intrusion Detection

Systems (NIDS) [8].

There are many intrusion detection methods, such as

methods based on statistical analysis [9], cluster analysis [10],

artificial neural network [11] or deep learning [12]. Among

these methods, intrusion detection based on deep learning

performs better than other methods [13]. The reason is that deep

learning has strong abilities, such as self-learning,

self-adaptation, good generalization, and detection against

unknown attack behavior.

For the deep learning algorithm, a network structure may

have a great detection accuracy for one attack type, but it may

not have a good detection effect when facing other attacks.

Therefore, we hope to design a self-adaptive model to change

the network structure for different attack types, so that our

intrusion detection model can maintain a high detection rate

continuously.

In the past few years, there has been very little research on

the optimization of the IoT intrusion detection model based on

deep learning. And, there has not been a unified solution for the

selection of the number hidden layer and the number of neurons.

Most of the research is based on trial and error and on pruning

or constructive methods [14], the network structure and the

performance cannot be guaranteed. The random selection of the

number of hidden neurons might some problems.

In this paper, a new IoT intrusion detection model is

proposed by introducing genetic algorithm into deep belief

network to optimize the number of hidden layers and neurons in

a hidden layer.

By applying the improved genetic algorithm, for different

types of attacks, the optimal number of hidden layers and

neurons in a hidden layer can be iteratively generated, and the

network complexity can be reduced as much as possible while

ensuring the detection rate. The solution of these two problems

of deep network can make the intrusion detection system have a

greater improvement in performance.

In this paper, we will firstly introduce the related work of

intrusion detection based on machine learning in Section II.

Then we will introduce the proposed algorithm model in

Section III. In Section IV, we show the experimental results and

compared it with other methods. This paper is concluded in

Section V.

Intrusion Detection for IoT Based on Improved

Genetic Algorithm and Deep Belief Network

Ying Zhang*, Peisong Li and Xinheng Wang

W

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UWL Repository

https://core.ac.uk/display/188186001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 2

Personalize Information Service

Cloud computing,

Intelligence computing

Internet Mobile Communication

Network

RFID, Sensor, GPS

Application Layer

Support Layer

Network Layer

Perceptual Layer

Network

Security

Management

IDS

 Fig. 1 IoT architecture

II. RELATED WORK

The intrusion detection technology based on machine

learning method can be divided into two major categories:

intrusion detection based on artificial neural networks and

intrusion detection based on deep learning [15].

Intrusion detection based on artificial neural network is

generally divided into three sub-categories of neural networks:

supervised, unsupervised and hybrid. The main type of

supervised neural networks are multilayer feed-forward (MLFF)

neural networks. Ryan et al. [16] used MLFF neural network to

detect anomaly based on user behavior. However, supervised

neural networks depend on training of a large number of data

sets. Sometimes the distribution of training data sets is not

balanced, which makes the MLFF neural network easily reach

the local minimum value, and thus the stability is low.

Detection rate of low-frequency attack is a key factor in judging

the quality of the detection model. The detection accuracy of

MLFF neural network is low for low-frequency attacks.

The main advantage of the unsupervised artificial neural

networks is that new data can be analyzed without tagging data

in advance. Yu et al. [17] introduced a theoretical foundation

for combining individual detectors with Bayesian classifier

combination. This ensemble is fully unsupervised and does not

require labeled training data, which in most practical situations

is hard to obtain. The Self-Organizing Feature Map (SOM)

used in [18] is an unsupervised learning method that extracts

features from normal system activity and identifies statistical

changes from normal trends. However, for low-frequency

attacks, the detection accuracy of unsupervised neural network

is also low.

The third category is the hybrid neural network, e.g.,

FC-ANN proposed in [19] is such a model. The FC-ANN

method introduces fuzzy clustering techniques into general

artificial neural networks. Using fuzzy clustering techniques,

the entire training set can be divided into small, low-complex

subsets. Therefore, based on these subsets, the stability of the

individual neural network can be improved and the detection

accuracy can be improved as well, especially for the detection

of low-frequency attacks. Ma et al. [20] proposed a novel

approach called SCDNN, which combines spectral clustering

(SC) and deep neural network (DNN) algorithms. It provides an

effective tool of study and analysis of intrusion detection in

large networks. Chiba et al. [21] proposed a cooperative and

hybrid network intrusion detection system (CH-NIDS) to detect

the attacks by sensing the network traffic.

In [22], based on Back Propagation neural networks (BPNN),

a discussion was made on the selection of the number of hidden

layers. It is believed that the training set must be analyzed

before the design of the neural network to correctly estimate the

similarity between the number of neurons and the number of

hidden layers.

At present, there are many intrusion detection technologies

based on deep learning. Yin et al. [23] proposed a deep learning

approach for intrusion detection using recurrent neural

networks (RNN-IDS) which is Suitable for high-precision

classification model modeling. Abolhasanzadeh [24] proposed

a method for detecting attacks in big data using Deep

Auto-Encoder. Gao et al. [25] trained the deep belief network

(DBN) as a classifier to detect intrusions. Similarly, Alom et al.

[26] also utilized the capabilities of DBN to detect intrusions

through a series of experiments.

However, the above articles mainly select the specific

network structure through many attempts, and these methods

are random and irregular. The selected network structure may

not be optimal and suitable for complex network environment.

Compared with traditional neural networks, DBN has the

advantages of multi-layer structure and pre-training with

fine-tuning learning methods. These advantages enable DBN to

extract the deep attributes of training set, thus the problems

existing in the traditional neural network intrusion detection

methods are solved, such as low training efficiency, easy to fall

into the local optimum and the need of large amount of tag data

[27].

Many researchers put their effort in analyzing the solution to

the problem that how many neurons are kept in the hidden layer

in order to obtain the best result. Liu et al. [28] proposed a novel

and effective criterion based on the estimation of the

signal-to-noise-ratio figure (SNRF) to optimize the number of

hidden neurons in the neural networks to avoid overfitting in

the function approximation. Rivals and Personnaz [29] used

techniques based on least squares estimation and statistical tests

for estimating the number of neurons in the hidden layer. Mao

and Huang [30] used a data structure preserving (DSP)

algorithm to fix the hidden neuron. It is an unsupervised neuron

selection algorithm. Doukim et al. [31] proposed a technique to

find the number of hidden neurons in an MLP network by using

coarse-to-fine search technique, which is applied in skin

detection. This technique includes binary search and sequential

search. In [32], to fix hidden neurons, 101 various criteria are

tested based on the statistical errors. At last the selected

criterion for the NN model is 2 2(4 3) / (8)n n+ − , where n is the

number of input parameters. The results show that the proposed

model improves the accuracy and minimal error.

Genetic Algorithms is a method to search for an optimal

solution by simulating natural evolution processes, but is often

neglected when choosing the optimal network structure. In this

paper, in order to solve the low detection rate and weak stability

of the detection model caused by low-frequency attacks, we

propose an intrusion detection model based on an improved

Genetic Algorithm (GA) and Deep Belief Network, for

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 3

different training types including low-frequency attacks and

other types of attacks. The corresponding different network

structures are obtained by iterative evolution through GA,

thereby detection rate is improved.

III. GA OPTIMIZED DBN MODEL

This paper presents an intrusion detection model by a

combined GA and DBN. Through multiple iterations of the GA,

an optimal network structure is produced. The network

structure contains the number of hidden layers and the number

of neurons in each layer. This structure is then applied to deep

belief network for intrusion detection.

A. Improved genetic algorithm

Genetic Algorithm is known to be an ideal technique for

finding optimal solutions to various problems.

1） Population initialization

The purpose of initialization is to generate an initial

population randomly for subsequent genetic manipulation. For

a simple training set, up to three hidden layers are enough to get

a good detection rate. Binary coding is the most common

coding method in genetic algorithm, so we encode the number

of nodes in the three hidden layers directly in the binary

chromosome. The length of chromosome is 18 bits: the first 6

bits are reserved for the first hidden layer, the subsequent 7-12

bits and 13-18 bits are for the second and the third hidden layers

respectively, as shown in Fig. 2:

Fig. 2 Chromosome schematic

A chromosome represents a network structure, which has at

most three hidden layers and at least one hidden layer. Each

layer has 6 bits. The value of each bit is a binary number 0 or 1.

The converted decimal number is the number of neurons in a

layer. According to the rules of thumb, it is shown that an

acceptable number of neurons in the hidden layer could be the

size between the input layer and output layer. Therefore, when

the population is initialized, we must ensure that the number of

nodes in each layer is smaller than the number of input features

and greater than the number of output features.

 I N O≤ ≤ (1)

where I is the size of the input layer, O is the size of the

output layer and N is the number of neurons in the hidden

layer.

If a chromosome has two layers, then 1-6 bits and 7-12 bits

are between 000010 and 101000. The 13-18 bits are 000000.

2） Improved selection

The selection operation is to select excellent chromosomes

from the current population and prepare for crossover and

mutation. As the fitness of candidate individuals increases, the

probability of being selected increases. In general, a method of

roulette wheel selection based on proportional fitness

assignment (also known as Monte Carlo method) is used.

However, one drawback of this method is that the selection

based on the generated random number that may lead to some

individuals with high fitness is eliminated. Therefore, we made

an improvement: Firstly, we will select the individuals with the

greatest fitness value to ensure that they can enter the next stage,

and then select the remaining individuals according to the

method of roulette. This improvement ensures that the best

individuals will not be eliminated.

The specific operations are as follows:

⑴ Calculate the fitness of each individual in the population

(i 1,2, ,M)f = ⋯ ，M is the size of population；

⑵ The individual with the largest adaptation value enters the

next stage directly;

⑶ Calculate the probability that each remaining individual is

passed on to the next generation:

1

()
()

()

i
i N

j

j

f x
p x

f x
=

=

∑
 (2)

⑷ Calculate the cumulative probability of each individual:

1

()
i

i j

j

q p x
=

= ∑ (3)

Fig. 3 cumulative probability

⑸ Generate a uniformly distributed pseudo-random number r

in the interval [0, 1];

⑹ If r < q(1)，select the individual 1，if not，select the

individual k when q[k-1]<r≤q[k];

⑺ Repeat ⑷-⑹ M-1 times.

3） Improved crossover

Crossover using partially matched crossover (PMC), the

traditional method is to exchange randomly selected segments

from two adjacent chromosomes. However, the two adjacent

chromosomes, selected by a roulette, are sometimes the same,

so two chromosomes remain unchanged after the crossover

operation, and thus this crossover operation has no effect. So

we take the interval crossover, which is as shown in Eq. 4, for

example, if we have n chromosomes, we cross the first one

with (n/ 2 1)th+ , the second one with (n/ 2 2)th+ , and so on.

 c (n/ 2) , 1,2, , / 2
th th

i cross with i i n= + = … （4）

where c representing the individuals generated after the

intersection.

To use this exchange method can avoid falling into a local

optimum, thus the diversity of the next generation can be

increased and the convergence rate can be accelerated. At the

same time, another possibility is the number of hidden layers of

the intersecting individuals is different. For this case, we adopt

the method of randomly selecting a layer common to both

chromosomes to crossover. This is done to avoid the situation

that the number of neurons in an intermediate hidden layer is 0.

Method is demonstrated in Fig. 4:

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 4

Fig. 4 Crossing chromosomes with different hidden layers

4） Mutation

The mutation operation is to change a certain bit in the

chromosome. It can use the random search ability of mutation

operator. When the operation result is close to the optimal

solution neighborhood, it can quickly converge to the optimal

solution.

5） Elite retention strategy

Crossover and mutation may lead to the loss of the optimal

individuals in the next generation, and this phenomenon will

occur in the evolutionary process frequently. In order to prevent

the loss of the best individuals of the current population, which

results in that the Genetic Algorithm cannot converge to the

global optimal solution, an “elite retention” strategy is

introduced in this paper. After each mutation operation, the best

individual Α in this generation is compared with the best

individual Β that has appeared in the evolution process so far.

As shown in Eq. (3), If Β is greater than Α , Β replaces the

worst individual in this generation and goes to the next

generation, Α goes to the next generation directly. If Α is

equal or greater than Β , Α goes to the next generation

directly. This process is shown in Eq. 5.

 { ,
,

A if A B
C

Band A if A B
≥

=
<

 （5）

where C represents the one which goes to the next generation.

B. Setting of Fitness function

The goal of our model is to obtain a structure with a high

detection rate. Therefore, the selection of the fitness function

needs to consider the detection rate of the deep belief network:

 100%corrent

all

N
P

N
= × (6)

where P represents the detection rate,
correctN represents the

number of correctly classified data and
allN represents the total

number of data. In this case a network structure with a high

detection rate can be retained more easily. At the same time, we

also need to consider reducing the number of hidden layers as

much as possible on the premise of ensuring the detection rate,

because the more layers, the longer the training time will take.

In addition to this, under the premise of meeting the accuracy

requirements, the structure should be as compact as possible,

and the network structure should not be too complicated. Also,

experimental results in [23] show that the number of neurons in

first and second hidden layers should be kept nearly equal so

that the network can be trained easily.

We show the complexity between multiple hidden layers by

calculating the standard deviation, σ ：

1

1 2()
N

i

x
iN

µσ
=

−= ∑ （7）

where ix represents the number of neurons in the thi hidden

layer， µ represents the average of the number of neurons in

each layer，and N is the total number of samples.

In order to visually display the complexity, we normalize the

standard deviation as:

 min

max min

σ σ
σ

σ σ
∗ −

=
−

 (8)

So we use the following equation to calculate the fitness

function:

 1 2 3 (1)f w p w l w σ ∗= × + × + × − (9)

where p represents the detection rate of the current deep belief

network, within the range of [0, 1], l is the reciprocal of the

number of hidden layers in the network, the smaller the number

of hidden layers, the larger the reciprocal value is, and the range

is [0, 1]. σ ∗ is the standard deviation after normalization,

within the range of [0, 1]. And f is the fitness value, and

should be within the range [0, 1].
1w ,

2w and
3w are weights.

After continuous testing, we finally take
1 0.995w = ,

2 0.005w = and 3 0.005w = .

 0.99 0.005 0.005 (1)f p l σ ∗= × + × + × − (10)

By using Eq. 10, individuals with higher detection rates,

fewer hidden layers and smaller complexity can be more easily

retained, so we can obtain structures with high detection rates,

few hidden layers and low complexity easily.

The improved GA flow chart is shown in Fig. 5:

Fig. 5 improved GA flow chart

C. Restricted Boltzmann Machines

Deep Belief Networks (DBN) is a kind of deep learning

structure. It is composed of multiple Restricted Boltzmann

Machines (RBMs), mainly executing unsupervised learning of

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 5

pre-processed data, processing and abstracting

high-dimensional data [33].

1) Parameter learning

In RBM, v represents all visible units and h represents all

hidden units. To determine the model, we only need to obtain

three parameters of the model: = { }θ W, A, B .There are

weight matrix W, visible layer element bias A and hidden layer

element bias B, respectively.

Suppose an RBM has n visible cells and m hidden cells, i
v

represents the th
i visible unit, i

h represents the thj hidden unit,

and its parameter form is:

 ,{ }n m

i jW w R ×= ∈ (11)

where ,i jw represents the weight between the thi visible cell

and the thj hidden cell;

 { }m

iA a R= ∈ (12)

where ia represents the bias threshold of the th
i visible cell;

 { }n

jB b R= ∈ (13)

where jb represents the bias threshold of the
thj visible cell.

For a set of (,)v h under a given state, assuming that both

visible and hidden layer obey Bernoulli distribution, the energy

formula of RBM is:

1 1 1 1

(, |)
n m n m

i i j j i ij j

i j i j

E v h a v b h vW hθ
= = = =

= − − −∑ ∑ ∑ ∑ (14)

where, { , , }ij i jW a bθ = is a parameter of the RBM model,

and the energy function indicates that there is an energy value

between the value of each visible node and that of each hidden

layer node.

After the exponential and regularization of the energy

function, the joint probability distribution formula can be

obtained that the node set of visible layer and the node set of

hidden layer are in a certain state respectively (,)v h :

(, |)

(, |)
()

E v he
P v h

Z

θ

θ
θ

−

= (15)

 (, |)

,

() E v h

v h

Z e θθ −= ∑ (16)

Where, ()Z θ is a normalized factor or partition function,

representing the sum of the energy exponents of all possible

states of the node set of the visible layer and the hidden layer.

The derivation of likelihood function is often used to get the

parameters. Given the joint probability distribution (, |)P v h θ ,

the marginal distribution (|)P v θ of the node set of the visible

layer can be obtained by summation over all states of the hidden

layer node set:

 (, |)1
(|)

()

E v h

h

P v e
Z

θθ
θ

−= ∑ (17)

Marginal distribution represents the probability that the set

of nodes in the visible layer is in a certain state distribution.

Due to the special layer-layer connection and inter-layer

connectionless structure of RBM model, it has the following

important properties:

① Given the state of the visible cell, the activation states of

each hidden layer cell are conditionally independent. At this

time, the activation probability of the
th

j hidden element is:

 (1|) ()
j j i ij

i

P h v b vWσ= = + ∑ (18)

② Correspondingly, when the state of the hidden element is

given, the activation probability of the visible element is also

conditional independent:

 (1|) ()i i ij j

j

P v h a W hσ= = + ∑ (19)

where, ()xσ is the sigmoid function.

2) solving parameters

To determine RBM model, it is necessary to solve the three

parameters of the model: { , , }ij i jW a bθ = .

The parameter solution uses the logarithmic likelihood

function to take the derivative of the parameter.

As we know from
(, |)1

(|)
()

E v h

h

P v e
Z

θθ
θ

−= ∑ , energy E is

inversely proportional to probability P, and E is minimized by

maximizing P.

The common method to maximize the likelihood function is

the gradient rise method, which refers to the modification of

parameters according to the following formula:

ln ()P v

θ θ µ
θ

∂
= +

∂
 (20)

This iteration maximizes the likelihood function P and

minimizes the energy E.

The format of logarithmic likelihood function: ln ()sP v , s
v

represents the input data of the model, and a single sample is

first analyzed here, that is, s
v is the th

s sample in the data set.

Then take the derivatives of the parameters in { , , }ij i jW a b

respectively：

,

ln ()
(1 |) () (1 |)

s
s s

i j i j

vi j

P v
P h v v P v P h v v

w

∂
= = − =

∂
∑ (21)

ln ()

()
s

s

i i

vi

P v
v P v v

a

∂
= −

∂
∑ (22)

ln ()

(1 |) () (1 |)
s

s

i i

vi

P v
P h v P v P h v

b

∂
= = − =

∂
∑ (23)

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 6

Since the second term of the above three equations contains

P(v), P(v) still contains parameters, so we solve it by Gibbs

sampling.

D. DBN for intrusion detection

DBN module is mainly divided into two steps in the training

phase:

(1) Each RBM is trained separately, characterized by

unsupervised and independent, to ensure that feature

information is retained as much as possible when mapping

feature vectors into different feature spaces.

In training a single RBM, weight updates are performed with

gradient descent via the following equation:

log(())

(t 1) (t)ij ij

ij

p v
w w

w
η

∂
+ = +

∂
 (24)

where ()p v is the probability of a visible vector, which is given

by:

(,)1
() E v h

h

p v e
Z

−= ∑ (25)

Z is the partition function (used for normalizing) and (,)E v h

is the energy function assigned to the state of the network.

The observed joint distribution of the input value x and

hidden layer
kH is modeled as follows:

2

1 1 1

0

(, , ,) ((|)) (,)
N

N k k N N

k

P x H H P H H P H H
−

+ −

=

= ∏… i (26)

where
0x H= ,

1(|)k kP H H− is a conditional distribution of

visible units in the k layer with the condition of hidden units of

RBM.
1(,)N NP H H− is the visible-hidden joint distribution at

the top level of the RBM. This process is illustrated in Fig. 6.

Fig. 6 RBM training process

As shown in Fig. 6, the first layer is trained as an RBM,

assigning the x input to
1V as the visible layer.

The input data obtained from the first layer is characterized

as the second layer’s data. Two ways exist, average activation

1 0(1 |)P H H= or sample 1 0(|)P H H .

Once an RBM is trained, another RBM is "stacked" atop it,

taking its input from the final trained layer. The new visible

layer is initialized to a training vector, and values for the units

in the already-trained layers are assigned using the current

weights and biases. The new RBM is then trained with the

procedure above. This whole process is repeated until the

desired stopping criterion is met [34].

Finally, this process is repeated until to the last layer. This is

a Deep Learning method.

(2) The last layer of the DBN is the BP neural network. The

feature vector of upper RBM is used as an input vector to train

an entity classifier under supervision. Since the RBM of each

layer can only ensure its own weight corresponding to the

feature vector is optimal after the first step training, our

ultimate goal is to make the overall weight corresponding to the

feature vector as optimal. So according to the characteristics of

the BP neural network, the BP neural network can propagate

error information from the top layer to the bottom layer of RBM.

If fine-tune the DBN network is finely tuned, a global

optimization could be achieved.

The number of hidden layers and the number of neurons in

each layer in the deep belief network are determined by the

algorithm model we constructed earlier.

E. Algorithm flow

The algorithm flow is summarized as:

Step1: Initialize the population and generate different

number of hidden layers and the number of neurons in each

layer randomly;

Step2: Calculate the fitness value according to Eq. 8,

chosen by the roulette method, and keep the optimal individual

in the present; interval crossover; variation;

Step3: "Elite" retains, retaining individuals with the

greatest fitness value during evolution;

Step4: Determine if the maximum number of iterations has

been reached. If reached, the generated network structure is

retained, otherwise iterate Step2- Step3 again;

Step5: Use the optimal network structure for the deep belief

network and train the intrusion detection model.

Step6: Classify the testing set by the trained DBN module,

and finally match the classification result with the category

information of the testing set to check the accuracy of the

classification.

The algorithm flow chart is shown in Fig. 7:

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 7

Backward

propagation

Restricted

Boltzmann

Machines, RBM

Backward

propagation

network,BP

Standard tag

information

Output data

(Intrusion

detection results)

N

selection

crossover

mutation

“Elite”
retention

Maximal

genetic

algebra?

Start

End

Optimal

network

structure

Y

Input data

According to the

results,

the network

structure is

constantly

optimized.

Fig. 7 Algorithm model flow chart

The pseudocode of the algorithm is expressed as follows:

Algorithm: Intrusion Detection Model

-- 1f : the individual with greatest fitness value in this generation

-- fbest : the best individuals that emerged during evolution

-- L : the number of hidden layers

-- N : the number of nodes in every hidden layer

1: Initialization

2: Calculate the fitness value of initial population

3: 0.99 0.005 0.005 (1)f p l σ ∗= × + × + × −
4: for I from 1 to 50

5: selection

6: crossover

7: mutation

8: calculate the fitness value

9: find out the individual 1f

10: compare with the 1f and the fbest

11: if 1f fbest>

12: 1fbest f←

13: keep 1f in the next iteration

14: else

15: keep 1f in the next iteration

16: set fbest in the next iteration

17: dalete the one with smallest fitness value

18: end if

19: if I = 50

20: broadcast fbest

21: get the L and N from fbest

22: end if
23: end for

24: for I from 1 to L

25: training the thI RBM

26: end for

27: Training the BP, fine-tune the RBM

28: Test DBN with test set

IV. EXPERIMENTAL SIMULATION

A. Experimental data

KDDCUP99 [35] and NSL-KDD are the most commonly

used datasets in the intrusion detection research. We used

NSL-KDD intrusion dataset which is available in csv format for

model validation and evaluations. The dataset composes of the

attacks shown in Table 1, and identified as a key attack in IoT

computing. Sherasiya and Upadhyay (2016) point out that IoT

objects are also exposed to such types of attacks. Furthermore,

Sherasiya and Upadhyay (2016) point out that the data that IoT

objects exchange are of the same value and importance, or

occasionally more important than a non-IoT counterpart [36].

According to the analysis of KDDCUP99 and its latter

version NSL-KDD, malicious behaviors (attacks) in

network-based intrusions can be classified into the following

four main categories:

� Probe: when an attacker seeks to only gain information about

the target network through network and host scanning

activities.

� DoS (denial of service): when an attacker interrupts

legitimate users’ access to the given service or machine.

� U2R (User to Root): when an attacker attempts to escalate a

limited user’ privilege to a super user or root access (e.g.

via malware infection or stolen credentials).

� R2L (Remote to Local): when an attacker gains remote

access to a victim machine imitating existing local users.

TABLE I

The attacks in NSL-KDD dataset

Main class Sub class (attacks)

in train set

New sub class

(attacks) in test set

DoS Back, land,

Neptune,

Smurf, pod,

teardrop

Apache2,

Mailbomb,

Processtable

Probe Imap, multhop,

phf, spy,

warezclient,

warezmaster, ftp

write, guess

passwd

Mscan, Saint

U2R Buffer overflow,

perl, loadmodule,

rootkit

Httptunnel, Ps,

Sqlattack, Xterm

R2L Ipsweep, nmap,

portsweep, satan

Sendmail, Named,

Snmpgetattack,

Snmp guess,

Xlock, Xsnoop,

Worm

Since the test set contains 17 new attack types not included in

the training set, we can evaluate the effectiveness of our

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 8

algorithm in detecting unknown or uncommon attacks.

The original dataset consists of 125,973 records of train and

22,544 records of test, each with 41 features such as duration,

protocol, service, flag, source bytes, destination bytes, etc. The

traffic distribution of NSL-KDD dataset is shown as in the

Table 2.

TABLE II

The traffic distribution of NSL-KDD dataset

Traffic Training test

Normal 67343 9711

DoS 45927 7458

Probe 11656 2754

R2L 995 2421

U2R 52 200

Total 125973 22544

In order to make the classification result more accurate and

meet the standard conditions of the DBN’s input data set, the

data set needs to be normalized. Normalization techniques are

necessary for data reduction since it is quiet complex to process

huge amount of network traffic data with all features to detect

intruders in real time and to provide prevention methods. The

method used in this paper is the Min-Max normalization

method, also known as deviation standardization, which is a

linear change to the original data, mapping the resulting value

to [0, 1], the conversion function is as follows:

 * X Min
X

Max Min

−
=

−
 (27)

where Max is the maximum value of the sample data, and Min

is the minimum value of the sample data.

Below is a summary of the metrics we adopted to evaluate

the detection method:

 Predicted: normal Predicted: attack

Actual：normal TN FP

Actual：attack FN TP

TP TN
ACC

TP TN FP FN

+
=

+ + +

TP
DR

TP FN
=

+

FP
FAR

TN FP
=

+

TP
Precision

TP FP
=

+

()

TP
Recall

TP FN
=

+

where, accuracy (ACC) is the percentage of true detection over

total data instances; detection rate (DR) represents ratio of

intrusion instances; false alarm rate (FAR) represents the ratio

of misclassified normal instances; Precision represents how

many of the returned attacks are correct; Recall represents how

many of the attacks does the model return.

FP: false positive, TP: true positive, TN: true negative, FN:

false negative.

B. SIMULATION ENVIRONMENT

The experiment was conducted using MATLAB R2016a

running on a personal computer (PC). GA optimized DBN

model is trained with the training sets and then evaluated using

the test set.

C. SIMULATION RESULTS

First, we need to set the number of generations of the genetic

algorithm.

fi
tn

e
s
s
 v

a
lu

e

Fig. 8 Genetic algorithm iterative results

It can be seen from Fig. 8 that as the number of iterations

increases, the fitness value increases, and when the number of

iterations exceeds 50, the curve tends to be stable, and the

fitness value no longer increases with the number of iterations.

Therefore, we set the genetic algebra of the genetic algorithm to

50 generations.

Secondly, set the training times for the BP network.

a
c
c
u

ra
c
y

Fig. 9 BP network training results

From Fig. 9, we can see that when the number of training

exceed 80 times, the curve is basically stable, and with the

increase in the number of training, the classification accuracy

rate no longer increases significantly and wasted training time

in vain, so we set the BP network training epochs to 80.

Then, set the training times for the RBM.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 9
a

c
c
u

ra
c
y

Fig. 10 RBM training results

From Fig. 10 we can see that the training times of RBM have

little effect on the classification accuracy rate, there is no

obvious increase or decrease trend, so we set the RBM training

epochs to 10.

Finally, we use DoS, R2L, Probe, U2R four classes of attacks

as intrusion attack training sets respectively. Through an

improved genetic algorithm, the optimal network structure for

each type of attack is obtained, the iterative process for each

type of attacks is shown in Fig. 11:

0 10 20 30 40 50

generations

0.97

0.975

0.98

0.985

0.99

0.995

DoS

R2L

Probe

U2R

Fig. 11 Iterative results with different attacks

We decode the optimal chromosome generated by the

iteration, and then get the optimal network structure as shown

in Table 3:

TABLE III

Optimal network structure for different types of attacks

Number Attack Network Structure

A DoS 41-18-12-2

B R2L 41-31-2

C Probe 41-26-2

D U2R 41-38-2

The network structure of the deep neural network includes

the input layer, hidden layer, and output layer. Because each

record in the data set has 41 features, the size of input layer is

41; the output has two characteristics: normal and abnormal, so

the size of output layer is 2. The middle is hidden layer. For

data sets with different attack types, the different optimal

network structure is generated by multiple iterations of the

genetic algorithm. For example, shown in table 1, if DoS is

used as a training set, the optimal network structure obtained is

A, the structure is 41-18-12-2.

Intrusion detection is performed on four classes of attacks

using the A-D network structures respectively, and their

detection rates are calculated. Shown in table 4:

TABLE IV
Detection rate for different class of attack

Structure DoS R2L Probe U2R

A 99.45% 95.18% 90.33% 98.27%

B 97.60% 97.78% 99.23% 98.38%

C 50.00% 95.02% 99.37% 98.27%

D 61.23% 86.32% 99.35% 98.68%

a
c
c
u

ra
c
y（

%
）

Fig. 12 Detection rate for different class of attack

It can be seen from Fig. 12, for a certain type of network

structure generated by the certain type of attack, the detection

rate of this type of network is higher than other network

structures. For example, shown in Fig. 12, the DoS detection

rate of network structure A generated by DoS as a training set is

significantly higher than that of other structures; the R2L

detection rate of network structure B generated by R2L as a

training set also significantly higher than that of other structures.

The classification accuracy of Probe and U2R is relatively high

under all the four network structures, so the comparison results

are not very significant. It can be seen that the network structure

adaptively generated by the genetic algorithm has a higher

detection rate than other network structures.

At the same time, we compared our method with the methods

TANN, FC-ANN, SA-DT-SVMS, and BPNN proposed by

others. Because all four methods use the KDDCUP99 data set,

the test results are comparative. The results obtained are

compared with the above methods and summarized in the

following table:

TABLE V

Classification accuracy of each method

Method DoS R2L Probe U2R

FC-ANN 96.70% 93.18% 48.12% 83.33%

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 10

TANN 90.94% 80.53% 94.89% 60.00%

SA-DT-SVMS 100.00% 93.22% 98.36% 80%

BPNN 80.35% 89.12% 89.12% 25.58%

GA-DBN 99.45% 97.78% 99.37% 98.68%

a
c
c
u

ra
c
y（

%
）

Fig. 13 classification accuracy of each method

It can be seen from Fig. 13 that the proposed GA-DBN

method has reached a very high level for the detection of four

types of attacks. The classification accuracy of DoS is higher

than 99%, and the classification accuracy of R2L, Probe and

U2R is also significantly higher than other methods.

The performances of detecting different attack in the

following table:

TABLE VI
The traffic distribution of NSL-KDD dataset

 ACC

（%）

DR

（%）

FAR

（%）

Precision

（%）

Recall

（%）

DoS 99.45 99.7 0.8 99.20 99.7

Probe 99.37 99.4 0.7 99.30 99.4

R2L 97.78 93.4 7.3 92.75 93.4

U2R 98.68 98.2 1.8 98.20 98.2

V. CONCLUSION

Through GA, the optimal individuals can be generated. DBN

can effectively process high complex and high dimensional

data, and the classification results are very good. So in this

paper, the improved genetic algorithm combined with a deep

belief networks, GA performs multiple iterations to produce an

optimal network structure, DBN then uses the obtained network

structure as an intrusion detection model to classify the attacks.

In this way, facing different attacks, the problem of how to

select an appropriate network structure when using deep

learning methods for intrusion detection is solved, and thus it

improves the classification accuracy and generalization of the

model, and reduces the complexity of network structure.

This method has many advantages: on the one hand, the

specific network structure generated for specific attack types is

higher in classification accuracy than other network structures,

which can reach more than 99%. On the other hand, for small

training sets, such as U2R, the classification accuracy of our

algorithm is also significantly higher than other methods. In

addition, as the model complexity is reduced, the training time

of DBN can be reduced without affecting the accuracy of model

classification.

In addition, the algorithm combining GA and DBN model

not only can be used in intrusion detection in the IoT, also can

be applied to other situations, such as classification and

recognition. For different training sets, an optimal network

structure is adaptively generated for classification. Moreover,

for small training sets, high classification accuracy can also be

achieved, which helps to find low-frequency attacks in

intrusion detection systems. In the future, we will consider to

optimize the other parameters of the deep network, reduce the

training time and improving the accuracy.

REFERENCES

[1] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the
Internet of Things: perspectives and challenges,” Wireless Networks, vol.

20, pp. 2481–2501, 2014.

[2] A. Abduvaliyev, A.K Pathan, J. Zhou, R. Roman and W. Wong, “On the
Vital Areas of Intrusion Detection Systems in Wireless Sensor

Networks”, Communications Surveys & Tutorials, IEEE vol. 15, pp.
1223-1237, 2013.

[3] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in internet of things: The road ahead,” Computer

Networks, vol. 76, pp. 146–164, 2015.

[4] M. Farooq , M. Waseem , A. Khairi , and S. Mazhar , "A Critical Analysis
on the Security Concerns of Internet of Things (IoT),” Perception, vol.

111, pp. 1-6, 2015.

[5] Tuhin Borgohain, Uday Kumar, Sugata Sanyal, “Survey of Operating

Systems for the IoT Environment”, arXiv preprint arXiv:1504.02517,

vol. 6, pp. 2479-2483, 2015

[6] H HaddadPajouh, A Dehghantanha, R Khayami, KK Choo, “A deep

Recurrent Neural Network based approach for Internet of Things
malware threat hunting”, Future Generation Computer Systems, vol. 85,
pp. 88–96, 2018.

[7] M Conti, A Dehghantanha, K Franke, S Watson, “Internet of Things
Security and Forensics: Challenges and Opportunities”, Elsevier Future

Generation Computer Systems Journal, vol. 78, pp. 544-546, 2017.

[8] H. H. Pajouh, R. Javidan, R. Khayami, D. Ali, and K. K. R. Choo, “A

two-layer dimension reduction and two-tier classification model for

anomaly-based intrusion detection in iot backbone networks,” IEEE
Transactions on Emerging Topics in Computing, vol. PP, no. 99, pp. 1–1,

2016.

[9] W. Lee and S. J. Stolfo. Data mining approaches for intrusion detection.
In Proceedings of the 7th USENIX Security Symposium, San Antonio,

TX, pp. 120–132, January 1998.

[10] L. Khan, M. Awad, and B. M. Thuraisingham. A new intrusion detection

system using support vector machines and hierarchical clustering.
VLDB J., 16(4):507–521, 2007.

[11] E. Hodo, X. Bellekens, A. Hamilton, P. L. Dubouilh, E. Iorkyase, C.
Tachtatzis, and R. Atkinson, “Threat analysis of iot networks using

artificial neural network intrusion detection system,” in 2016

International Symposium on Networks, Computers and
Communications (ISNCC), May 2016, pp. 1–6.

[12] A. Diro and N. Chilamkurti, ‘‘Distributed attack detection scheme using

deep learning approach for Internet of Things,’’ Future Generat. Comput.
Syst., vol. 282, pp. 761–768, May 2017.

[13] R. Beghdad, “Critical study of neural networks in detecting intrusions,”
Computers and Security, vol. 27, pp. 168-175, 2008.

[14] S. Mukkamala, G. Janoski, and A. Sung. “Intrusion detection using
neural networks and support vector machines,” Proceedings of the

International Joint Conference on Neural Networks (IJCNN’02),

Honolulu, HI, USA, pp. 1702–1707, 2002.

[15] E. Hodo, X. J. A. Bellekens, A. Hamilton, C. Tachtatzis, and R. C.

Atkinson, “Shallow and deep networks intrusion detection system: A
taxonomy and survey,” CoRR, vol. abs/1701.02145, 2017.

[16] J. Ryan, M. Lin, and R. Miikkulainen, “Intrusion detection with neural

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2903723, IEEE
Access

 11

networks,” in Proc. Advances NIPS 10, Denver, CO, pp. 943–949, 1997.

[17] E. Yu, and P. Parekh, “A Bayesian Ensemble for Unsupervised Anomaly
Detection,” in arXiv preprint arXiv:1610.07677, pp. 1–5, 2016.

[18] A Saraswati, M Hagenbuchner, Zhi Quan Zhou, “High Resolution SOM
Approach to Improving Anomaly Detection in Intrusion Detection

Systems”, Carcinogenesis, vol.9992, pp.947-954, 2016.

[19] G. Wang, J. Hao, J. Ma, L. Huang, “A new approach to intrusion
detection using artificial neural networks and fuzzy clustering”, Exp.

Syst. Appl. pp. 6225–6232, 2010.

[20] T Ma, F Wang, J Cheng, Y Yu, and X Chen, "A hybrid spectral clustering

and deep neural network ensemble algorithm for intrusion detection in
sensor networks," in Sensors vol. 16, no. 10, 2016.

[21] Z Chiba, N Abghour, K Moussaid, and M Rida, "A cooperative and
hybrid network intrusion detection framework in cloud computing based

on snort and optimized back propagation neural network," in Procedia

Computer Science vol. 83 pp. 1200-1206, 2016.

[22] S. Karsoliya. “Approximating number of hidden layer neurons in

multiple hidden layer BPNN architecture,” International Journal of

Engineering Trends and Technology, vol.3, pp. 713–717, 2012.

[23] C Yin, Y Zhu, J Fei, and X He, "A deep learning approach for intrusion

detection using recurrent neural networks," in IEEE Access vol. 5 pp.
21954-21961, 2017.

[24] B. Abolhasanzadeh, “Nonlinear dimensionality reduction for intrusion
detection using auto-encoder bottleneck features,” in 2015 7th

Conference on Information and Knowledge Technology (IKT), Urmia,
Iran, pp. 1–5, 2015.

[25] N. Gao, L. Gao, Q. Gao, and H. Wang, “An Intrusion Detection Model

Based on Deep Belief Networks,” in 2014 Second International

Conference on Advanced Cloud and Big Data, Huangshan, China, pp.
247–252, 2014.

[26] M. Z. Alom, V. Bontupalli, and T. M. Taha, “Intrusion detection using
deep belief networks,” in 2015 National Aerospace and Electronics

Conference (NAECON), Dayton, Ohio, USA, pp. 339–344, 2015.

[27] Q. Tan, W. Huang, and Q. Li, “An intrusion detection method based on
DBN in ad hoc networks,” in International Conference on Wireless

Communication and Sensor Network, Wuhan, China, pp. 477–485,

2016.

[28] Y. Liu, J. A. Starzyk, and Z. Zhu, “Optimizing number of hidden neurons
in neural networks,” in Proceedings of the IASTED International

Conference on Artificial Intelligence and Applications (AIA ’07),
Innsbruck, Austria, pp. 121–126, February 2007.

[29] I. Rivals I. and L. Personnaz, “A statistical procedure for determining the

optimal number of hidden neurons of a neural model,” in Proceedings of
the Second International Symposium on Neural Computation (NC’2000),
Berlin, May, 23-26, 2000.

[30] K. Z. Mao and G. B. Huang, “Neuron selection for RBF neural network
classifier based on data structure preserving criterion,” IEEE

Transactions on Neural Networks, vol. 16, no. 6, pp. 1531–1540, 2005.

[31] C. A. Doukim, J. A. Dargham, and A. Chekima, “Finding the number of

hidden neurons for an MLP neural network using coarse to fine search
technique,” in Proceedings of the 10th International Conference on

Information Sciences, Signal Processing andTheir Applications

(ISSPA ’10), pp. 606–609,May, 2010.

[32] K.G. Sheela, S.N. Deepa, “Review on methods to fix of hidden neurons

in neural networks”, Mathematical Problems in Engineering, vol. 2013,
2013.

[33] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep

belief nets,” Neural Computation, vol. 18, pp. 1527–1554, 2006.

[34] Y. Bengio, “Learning deep architectures for AI,” Foundat. and Trends

Mach. Learn., vol. 2, no. 1, pp. 1–127, 2009.

[35] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A Detailed Analysis
of the KDD CUP 99 Data Set,” Submitted to Second IEEE Symposium
on Computational Intelligence for Security and Defense Applications

(CISDA) , Ottawa, ON, 2009.

[36] A, Alghuried, “A Model for Anomalies Detection in Internet of Things
(IoT) Using Inverse Weight Clustering and Decision Tree,” Masters

dissertation, Dublin Institute of Technology, 2017.

