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Selective autophagy contributes to the wellbeing of eukaryotic cells by recycling
cellular components, disposing damaged organelles, and removing pathogens,
amongst others. Both the quality control process of selective mitochondrial
autophagy (Mitophagy) and the defensive process of intracellular pathogen-engulfment
(Xenophagy) are facilitated via protein assemblies which have shared molecules, a prime
example being the Tank-Binding Kinase 1 (TBK1). TBK1 plays a central role in the
immunity response driven by Xenophagy and was recently shown to be an amplifying
mechanism in Mitophagy, bring to attention the potential cross talk between the two
processes. Here we draw parallels between Xenophagy and Mitophagy, speculating on
the inhibitory mechanisms of specific proteins (e.g., the 18 kDa protein TSPO), how the
preferential sequestering toward one of the two pathways may undermine the other, and
in this way impair cellular response to pathogens and cellular immunity. We believe that
an in depth understanding of the commonalities may present an opportunity to design
novel therapeutic strategies targeted at both the autonomous and non-autonomous
processes of selective autophagy.
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INTRODUCTION

Running comparative investigations on species-specific processes allows the comprehension of the
underlying biological phenomena; thus, better framing their general value and devising accurate
strategies of intervention. Studies on Xenophagy and Mitophagy are steadily bringing to light
shared elements between these two evolutionary divergent selective types of autophagy detailing
their molecular biology and inspiring novel approaches of exploitation.

Autophagy patrols the intracellular environment and can do so selectively by targeting either
mitochondria (mitophagy) (Lemasters, 2005), protein aggregates (aggrephagy) (Lamark and
Johansen, 2012), lipids (lipophagy) (Weidberg et al., 2009) or pathogens (xenophagy) (Levine,
2005) with new selective autophagy mechanisms being discovered continuously. These means of
cellular quality control rely on molecular mechanism, which may be common between them and
therefore account for a subtle interplay to which little attention has been devoted.

The recent advancements on the molecular function of Tank-binding kinase 1 (TBK1) unveiled
a role in mitophagy thus complementing the established one in Xenophagy (Thurston et al., 2009;
Wild et al., 2011; Pilli et al., 2012) This has provided us with an opportunity to discuss values and
dangers of a similar molecular co-sharing besides posing novel questions on core regulatory aspects
of mammalian cells homeostasis in health and disease.
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In this short contribution, we shall snapshot the fundamentals
of Mitophagy and Xenophagy with the aim of highlighting the
relevance of common elements and in this way pave a path
forward to learn how to enhance or inhibit their unfolding for
potential therapeutic benefit.

HOW SELECTIVE AUTOPHAGY
PROTECTS AGAINST EXTRA- AND
INTRACELLULAR TOXIC ELEMENTS

Autophagy is the conserved and genetically programmed
homeostatic process which traps and degrades intracellular
components that are no longer necessary or have become
dysfunctional or damaged (Mizushima and Klionsky, 2007; Yang
and Klionsky, 2010a). It targets damaged or excessive organelles
by engulfing them into a double-membraned autophagosome
which ultimately fuses with lysosomes for degradation (Levine
and Klionsky, 2004; Mizushima, 2007; Glick et al., 2010).
Examples of autophagy regulators include: autophagy-related
genes (ATGs) (Itakura and Mizushima, 2010), mechanistic target
of rapamycin complexes (mTORC1) (Wong et al., 2015), beclin-1
(mammalian ortholog of Atg6) (Kang et al., 2011), unc-51 like
autophagy activating kinase 1 (ULK1) (Russell et al., 2013) and
Microtubule-associated proteins 1A/1B light chain 3B (LC3)
(Glick et al., 2010; Yang and Klionsky, 2010b).

The main process of macroautophagy, considered to be the
main form of autophagy, a double-membraned phagophore
is formed around ubiquitinated proteins or organelles, which
matures into an autophagosome that ultimately fuses with a
lysosome (Feng et al., 2014). Whereas, during the process of
microautophagy the substrates are directed into the lysosome
through invagination resulting in their degradation (Li et al.,
2012). The chaperone Mediated Autophagy (CMA) occurs
instead through the recognition of a specific motif to which
the chaperone complex binds and forms a substrate/chaperone
complex that fuses with the lysosome upon recognition of the
CMA receptor (Kaushik et al., 2011; Kaushik and Cuervo, 2012).

Core elements of the autophagy machinery are retained
in the selective versions of the process of which the most
extensively characterized versions are: (i) Mitophagy which
consists of the degradation of dysfunctional or damaged
mitochondria (Youle and Narendra, 2011; Jin and Youle, 2012)
and (ii) Xenophagy which is instead the removal of invading
pathogens such as bacteria and viruses (Knodler and Celli,
2011; Mao and Klionsky, 2017) (Figure 1). Mitophagy and
Xenophagy are finely tuned processes, which share key steps
such as the ubiquitination of the unwanted elements prior their
disposal via the autophagy-lysosomal pathway (Alomairi et al.,
2015). Both processes depend on three key steps: flagging the
problem (ubiquitination), fusing with degradative machinery
(autophagosome and lysosomal fusion) and breakdown (acidic
and enzymatic degradation). These common elements may
represent co-regulatory framework.

The innate immune system is the frontline defense against
pathogens, which also acts as a bridge for the adaptive
immune response to further control and prevent the invasion

(Iwasaki and Medzhitov, 2015). Innate immunity functions
through a multitude of signaling pathways, which are conserved
across species and grant organisms the fundamental ability to
make a distinction between self and non-self (Mogensen, 2009)
with autophagy playing part in this (Deretic, 2011). Xenophagy
is the activation of a selective breakdown specifically in the
context of invading microbial organisms by contributing the
prominent processes of phagocytosis and recognition (Figure 1).
Xenophagy is distinct from the biological process of phagocytosis
as the former acts as a specialized protective mechanism for cells
which have already been targeted and breached by pathogens
(Flannagan et al., 2009) while phagocytosis is not specific to
pathogens alone, and is often utilized to engulf other cells or
debris as well.

When pathogens undergo recognition through pattern
recognition receptors (PRRs) (Levine and Klionsky, 2004)
whereby PRRs identify the pathogen associated molecular
patterns (PAMPs). This then initiates the immune signaling
preceding the internalization of the pathogen and the activation
of the autophagy machinery resulting in entrapment in
autophagosomes once within the cytosol and subsequent
autolysosomal degradation (Delgado et al., 2009; Oh and Lee,
2014). This is particularly relevant in mammalian cells, which
adopt cytosolic or cell surface bound PRRs [such as Toll-
like receptors (TLRs) or NOD-like receptors (NLRs)] to detect
invading pathogens and signal the upregulation of targeted
Autophagy via Xenophagy (Sanjuan et al., 2007).

Xenophagy relies on components of the immunity pathways
such as Stimulator of interferon genes (STING) and galectin-
8 (Thurston et al., 2012; Watson et al., 2012) which act as
cytosolic sensors of the pathogen and recruit downstream
effectors (Crotzer and Blum, 2010). Studies have now shown that
when the MHC class I protein surface expression is diminished
(Li et al., 2010; Oh and Lee, 2014) a reduction in the levels of
Xenophagy occurs thus implying that a response could not be
successful without selective autophagy embedded and functional
therein.

Xenophagy and Mitophagy are both mediating selective
disposal of unfit elements and therefore considered to be part
of an immune-like response key to maintain cellular homeostasis
(Figure 1).

Mitochondria are pivotal to cellular function as producers
of the majority of cellular adenosine triphosphate (ATP),
intracellular signaling decoders and docking base for cyclic
adenosine monophosphate (cAMP) effectors (Tarasov et al.,
2012; Finkel et al., 2015; Zhang et al., 2016). Mitochondria are
not originally part of the ancestral cell as they are likely of
bacterial origin which make of them “hosted elements” despite
the successful co-habitation (Embley and Martin, 2006; Gray,
2012). There are several theories describing how mitochondria
ended up in mammalian cells; the most prominent of which
is the endosymbiosis (Martin et al., 2001; Archibald, 2015),
whereby the mitochondrion was originally an extracellular
organism [likely α-proteobacterial (Andersson et al., 1998)]
capable of oxidative phosphorylation and therefore engulfed in
eukaryotic cell to improve the energetic capacity (Taanman,
1999; Thiergart et al., 2012; Martin et al., 2015). This evolved
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FIGURE 1 | Tank-binding kinase 1 (TBK1) as a common functional element between Xenophagy and Mitophagy. Panel (A) depicts pivotal steps in the two
processes of selective autophagy against pathogens and mitochondria in which TBK1 plays an equally important role. Panel (B) highlights instead that the similarity
may embrace also inhibitory mechanisms among which the TSPO pathway is proposed (C).

into a successful symbiotic relationship, which crossed evolution.
Mitophagy may have evolved as a response to this, thus acting
as a controller for these foreign organelles. Mitophagy recognizes
and clears the cell of damaged mitochondria preventing the
accumulation of dysfunctional mitochondria harmful to the
intracellular environment. Even though it exploits the same
upstream initiators to general autophagy, the overall mitophagic
response is regulated by process-specific proteins to distinguish
damaged self from integer self within the mitochondrial network
(Ding and Yin, 2012).

Given their origin, the adaptation of the mitochondrion to the
early ancestral eukaryotic cell would require a unique subset of
proteins to sense and regulate the organelle. Examples include the
PTEN-induced kinase 1 (PINK1) which is capable of recognizing
dysfunctional mitochondria (Jin and Youle, 2012). It is expressed
at very low levels in healthy mitochondria due to successful
cleaving of the protein into smaller products after its import
into the inner mitochondrial membrane. If a mitochondrion
is damaged, however, full-length PINK1 will accumulate on
the outer membrane. This leads to the recruitment of the E3
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ubiquitin ligase Parkin which ubiquinates the mitochondria,
tagging them for lysosomal degradation (Jin and Youle, 2013;
Kane et al., 2014; Hamacher-Brady and Brady, 2016).

Notably, various conditions exploit this pathway leading to
its impairment spanning from metabolic diseases (e.g., Fanconi
anemia) to neurodegeneration, all leading to persistent cellular
and tissue damage. Dysfunctional mitochondria can lead to
cytotoxicity (Nicholls, 2002; Akbar et al., 2016), hyperactivation
of the NLRP3 inflammasome (Lopez-Armada et al., 2013) and
cell death via uncontrolled release of the Cytochrome c (Kubli and
Gustafsson, 2012). Mitophagy therefore maintains the balance
of multiple cellular signaling pathways, downregulating ROS
production and helping to maintain a healthy population of
mitochondria in the cell (Lazarou, 2014).

Another common element between Mitophagy and
Xenophagy is that may remain functional in absence of ubiquitin.
In ubiquitin-independent mitophagy mitochondrial receptors
like Nip3-like protein X (Nix) (Koentjoro et al., 2017) and
FUNDC1 (Liu et al., 2012) interact directly with LC3 (and hence
with the autophagosome) leading to lysosomal degradation.
Ubiquitin-independent Xenophagy sees galectin-8 capable of
recognizing the glycans of the vacuole within which the pathogen
resides: this recruits the cargo receptor NDP52 (CALCOCO2)
to complete degradation via autophagy (Thurston et al., 2012).
In addition, the LC3-associated phagocytosis (LAP), a novel
form of non-canonical autophagy, can also be considered an
ubiquitin-independent type of Xenophagy hijacking components
of the autophagy machinery to aid phagocytosis of extracellular
particles and pathogens (Martinez et al., 2015). In LAP LC3 is
quickly covering the phagosome for a rapid fusion with lysosome
resulting in degradation without pro-inflammatory immune
response (Heckmann et al., 2017; Schille et al., 2018).

Whether Mitophagy should be considered equal to
Xenophagy in defining the immune response process is
debatable. Undeniable though is that operates as an adaptor
via mechanisms (memory based) resembling features of
immunity exploited against mitochondria (Krysko et al.,
2011). Can Mitophagy inform Xenophagy and vice-versa? Are
there common functional elements between the two, which
could dictate their mutual influence and dictate their efficiency
according to the physiopathology of the cell? The recent advances
on TBK1 imply this may be highly plausible.

THE UNCOVERING OF ANOTHER
COMMON CONDUIT

The Serine/threonine-protein kinase, TBK1, is known to be
required in Xenophagy to maintain structural integrity of the
pathogen-containing vacuoles. Studies have convincingly shown
that knocking down of TBK1 as well as of NDP52, with which it
complexes, results in defective clearance of bacteria allowing their
escape into the cytosol (Radtke et al., 2007; Thurston et al., 2009;
Pilli et al., 2012). The cargo-associated “eat-me” signals as well as
the receptors mediating selective autophagy to bridge cargo and
phagosomes have been previously unveiled for both processes as
reviewed by Randow and Youle (2014).

In 2016, Dikic and colleagues showed that TBK1 integrates
the ubiquitin dependent signaling events in Mitophagy upstream
of the process (Heo et al., 2015; Moore and Holzbaur, 2016;
Richter et al., 2016). They have convincingly shown that TBK1
phosphorylates the Mitophagy receptor Optineurin (OPTN), on
the ubiquitin-binding domain (UBD) and the LC3-binding ones.
Via this processing TBK1 control and regulates the degradation
of dysfunctional mitochondria to which it is selectively
recruited. TBK1 mediates phosphorylation of OPTN on the
S473 thus expanding the binding capacity of OPTN to multiple
ubiquitin chains necessary for both TBK1 recruitment and
OPTN targeting to ubiquitinated mitochondria. Mutated TBK1
instead fails to phosphorylate OPTN and therefore stalls the
downstream signaling cascade for the activation of Mitophagy.
This process of phosphorylation is also implicated in the Parkin
independent and PINK1 mediated Mitophagy, highlighting an
important molecular partnership in the regulation of homeostatic
Mitophagy. Dikic and colleagues were also able to show that
multiple Mitophagy receptors beyond OPTN are targeted by
TBK1 such as NDP52 (CALCOCO2), TAX1BP1, and p62
(SQSTM1).

This TBK1-mediated phosphorylation establishes therefore an
amplification loop that activates the molecular pathway driving
the selective degradation of mitochondria.

In Xenophagy the identification of the Serine/threonine-
protein kinase TBK1 was paradigm shifting since it helped to
clarify the regulatory and recruitment mechanisms of pathogen
ubiquitin regulation. The wealth of subsequent literature better
contextualized the significance of TBK1 as amplifying signaling
in Xenophagy (Weidberg and Elazar, 2011; Helgason et al., 2013;
Yang et al., 2016).

Being now aware that TBK1 is required to amplify the
removal of both invading pathogens and damaged mitochondria
makes us wonder whether defective Mitophagy may indirectly
impact Xenophagy. Explicitly, whether defective Mitophagy may
undermine Xenophagy recruiting pools of TBK1 to undertake the
process (i) or whether a high degree of Xenophagy could impact
the unfolding of Mitophagy (ii). Above all interesting to encrypt
would be whether a detectable hierarchy exists between the two
processes.

The potential cross talk between these two processes, as well
as the mutual hijacking of core molecules here hypothesized,
calls for further studies which should begin by considering the
inhibitory mechanisms of both these processes which we detail
below.

THE IMPLICATIONS FOR COMMON
CONDUITS

Pathogens have evolved distinct mechanisms to evade
Xenophagy, particularly by avoiding autophagic consumption.
There are a variety of methods that pathogens exploit to
avoid lysosomal degradation. These include: (i) creating a
neutral compartment within cells where the pathogen can
replicate and then escape as exploited by Brucella abortus
(Case and Samuel, 2016); (ii) Hijacking the pathway and
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FIGURE 2 | Sequence alignment of mycobacterial TspOs with the human homolog. Sequences were aligned using Clustal Omega and show approximately 30%
amino acid identity with the human homolog. Stars indicate identical amino acid residues and dots indicate semi-conserved (similar residues) in all three sequences.

FIGURE 3 | Undermining mitochondria to establish bacterial infections. The figure depicts the ability of certain bacterial species to release mitochondria impairing
toxins (i.e., antimycin to impair mitochondria) which upregulate mitophagy, perhaps as a way to hijack the common molecules used in both autophagy processes
and as such allow the bacteria to propagate within the host cell.

persisting within quiescent membrane reservoirs inside the
autophagosome to later re-establish recurrent infections as
done by the uropathogenic Escherichia coli (UPEC) (Mulvey
et al., 2001; Mysorekar and Hultgren, 2006; Lewis et al., 2016);
(iii) Mycobacterium Tuberculosis (MT) instead, prevents the
maturation of the phagosome into the autolysosome by releasing
inhibitory factors of the likes of ESAT-6 and Rab5 (Chandra
et al., 2015; López de Armentia et al., 2016; Russell, 2016).

It can therefore be considered that the evolutionary selective
pressure exerted by the innate immune response, in the form
of Xenophagy, has driven adaptation in pathogens for enhanced
virulence.

Concomitantly, the subversion of Xenophagy by pathogens
could have evolved to form a symbiotic relationship and

underpin the successful co-habitation of mitochondria within
the hosting cell. This is particularly relevant for a pathogen
like MT and UPEC which can lie in a state of dormancy
for many years and cause diseases which are increasingly
difficult to treat. Based on this, Mitophagy-inhibiting molecules
could exploit the same evasion mechanisms as understood with
Xenophagy. Hitherto, there is one prominent molecule described
as Mitophagy inhibitor: the mitochondrial Translocator Protein
(TSPO) (Gatliff et al., 2014) whose role in Xenophagy remains
unaddressed (Figure 1) in spite of its high degree of conservation
between mammalian and bacterial genomes (Li et al., 2016).
A bacterial homolog of the mammalian TSPO, Tryptophan-rich
sensory protein (TspO) was first identified in the photosynthetic
bacterium Rhodobacter Sphaeroides (RS), where it is thought
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to be enrolled in the biosynthetic pathway for photosynthetic
pigments acting as a negative regulator of photosynthesis genes
in response to light and oxygen availability (Yeliseev and
Kaplan, 1999). Since its initial discovery in RS, Tspo homologs
have been found in a wide range of bacterial taxonomic
groups (Chapalain et al., 2009) and human pathogens such
as Bacillus anthracis, Legionella pneumophila, Staphylococcus
haemolyticus, and Clostridium perfringens. Expression of tspO
in Pseudomonas fluorescens increases adhesion and decreases
apoptosis (Chapalain et al., 2009) (Figure 2). These observations
suggest a role for bacterial TspOs in virulence, particularly when
this is delivered intracellularly. It is therefore arguable that
bacterial tspOs might represent a conduit to: a) give further
insight on the Xenophagy evasion mechanisms exploited by
intracellular parasites and b) Enlighten on the crosstalk with
Mitophagy (Figure 1).

In this regard, what if mammalian cells overexpressing TSPO
(and subsequently bearing impairment in the cellular mitophagic
response) undermine xenophagy, enabling the establishment
of bacterial infections? We are tempted to speculate that if
Mitophagy requires greater commitment by the machinery
dedicated to the process (such as in the cases in which TSPO
is overexpressed) this is likely to de-potentiate Xenophagy.
Intriguingly, we know nothing of the ability of TBK1 to retain
its amplificatory role in both Mitophagy and Xenophagy in
presence of inhibitory elements such as TSPO thus posing the
question whether unfolding of the processes are preserved during
pathological conditions, as it is known that TSPO is generally
overexpressed in these (Liu et al., 2014; Roncaroli et al., 2016).

The possibility for which defective Mitophagy could
undermine the efficiency of Xenophagy has never been
properly contemplated nor considered in depth, in spite of
some evidences available in the literature. The Streptomyces
antibioticus, for example, is capable of producing antimycin,
an inhibitor of the respiratory chain complex III (Rehacek
et al., 1968) also used in combination to trigger mitophagy.
In line with this Francione et al., 2009 reported that patients
suffering from mitochondrial diseases show an increased
susceptibility for infection by legionella supporting that
pathogens could well exploit Mitophagy enhancing factors to
repress Xenophagy.

The above evidence, as well as the mechanistic advancements
on TBK1 and the parallel characterization of anti-mitophagic
stress response elements such as TSPO (Gatliff et al., 2014) make

us speculate that if amplificatory mechanisms are required for
Mitophagy completion, this is likely impaired and therefore the
recruitment of the shared elements, may deprive Xenophagy of
core elements for its proper unfolding allowing the spread of
invading pathogens (Gatliff and Campanella, 2016; Kimmey and
Stallings, 2016) (Figure 3).

We conclude that the unveiling of common elements may
represent a viable approach to succeed in manipulating cellular
fate and with it the ability to combat diseases and disorders
caused by deficient or abnormally upregulated Mitophagy and
Xenophagy.

Below we summarize the unanswered questions in the field
of selective autophagy hoping for greater attention and ad hoc
investigation:

1. How many common traits between mitophagy and
xenophagy remain unaddressed?

2. Which are the consequences on cellular pathophysiology
of the shared amplificatory role of TBK1 in mitophagy and
xenophagy when both these pathways are activated?

3. Could the high degree of conservation between bacterial
and mammalian genomes of the antimitophagy protein
TSPO represent an exploitable target to maximize
the therapeutic value of xenophagy to co-adjuvate
antimicrobial therapy?
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