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ABSTRACT
Popular methods for identifying transition paths between energy minima, such as the nudged elastic band and string methods, typically do
not incorporate potential energy curvature information, leading to slow relaxation to the minimum energy path for typical potential energy
surfaces encountered in molecular simulation. We propose a preconditioning scheme which, combined with a new adaptive time step selection
algorithm, substantially reduces the computational cost of transition path finding algorithms. We demonstrate the improved performance of
our approach in a range of examples including vacancy and dislocation migration modeled with both interatomic potentials and density
functional theory.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5064465

I. INTRODUCTION

In computational chemistry, structural biology, materials sci-
ence, and engineering, the time taken for processes is often domi-
nated by transitions between energy minima in a potential energy
landscape. The computational evaluation of the Minimum Energy
Path (MEP) of the transition is a familiar technique used to
find the energy barrier ∆E of such a transition.1 The objective
is the evaluation of the transition rate to leading order which
is given by ν ∼ ν0 exp (−∆E/kBT),2,3 where the attempt rate ν0

may be estimated using Eyring’s heuristic derivation,2 or approx-
imated with Harmonic Transition State Theory,4 kB is the Boltz-
mann constant, and T is the temperature of the system. Know-
ing the transition rate enables the simulation of the transition
on the mesoscale using, for example, the kinetic Monte Carlo
method.5

We restrict our focus to “double ended” cases where both
energy minima are known. The most notable techniques in this
case are the string method6–8 and the Nudged Elastic Band (NEB)
method.9,10 Both methods find the MEP by iteratively relaxing a
discretised path, of N images, until convergence to an approxi-
mate MEP is achieved. Typically, the path is evolved in the energy
landscape via a steepest descent-like optimisation technique, which

may converge slowly when the potential is ill-conditioned, that
is, the Hessian matrix of the potential along the path has a large
condition number.11 Such a situation arises, for example, in large
computational domains or if bonds with significant stiffness vari-
ations are present. Preconditioning is commonly used in linear
algebra and optimisation to effectively reduce the condition num-
ber and thus improve the rate of convergence of an iterative
scheme.11

It has been shown, for example, in Refs. 12–14 how to con-
struct and invert effective preconditioners for the potential energy
landscape of materials and molecules at a cost comparable to the
evaluation of an interatomic potential and much lower than the cost
of evaluating a density functional theory (DFT) model. When used
correctly, preconditioning leads to a substantial reduction in the
number of force calls and thus is expected to significantly improve
computing times.12,15

In this paper, we introduce a simple yet effective way to precon-
dition the standard NEB and string methods to obtain efficient and
robust algorithms for computing MEPs in ill-conditioned geome-
tries. Our scheme is further enhanced by a novel adaptive step
length selection method to improve the robustness of the method.
We demonstrate the effectiveness of this combination on a range of
material modeling examples.
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II. THE NEB AND STRING METHODS
Let x ∈ RM , M ∈ N, be a state, or configuration, of the dynamical

system in question. We denote by V(x) the potential energy of x and
assume that V is twice differentiable and that it has at least two local
minima, which we denote by xA and xB, separated by a single saddle
point xS of Morse index 1 (to ensure that there is a unique direction
of steepest descent at xS16). An MEP of the transition from xA to
xB is defined as the intrinsically parameterised path x∗(s), s ∈ [0, 1],
satisfying

∇⊥V(x∗) ≡ 0, (1)
with end points at the local minima x∗(0) = xA, x∗(1) = xB, where
∇⊥V(x) = (I − x′

∥x′∥ ⊗
x′
∥x′∥)∇V(x) and where x′ = dx

ds . [We note
that, strictly speaking, ∇�V depends on x′ as well as x, but for the
sake of simplicity of notation, we will only write ∇�V(x).] We only
present our derivation of preconditioning and numerical tests for
the original string method6 but not the simplified string method,7
which seems to be used less in practice. However, this is not a funda-
mental restriction, and we expect no major changes when applying
our preconditioning ideas to the simplified string method.

The NEB and string methods discretise a path x(s) by interpo-
lating N discrete points {xn}N

n=1. In the present work, we will employ
cubic spline interpolation,17 imposing the “not-a-knot” boundary
condition, but the methods we discuss can be readily extended to
other interpolation schemes as well.

To evolve the discrete path to equilibrium, we introduce a
pseudo-temporal coordinate τ and write ẋ = dx

dτ . The evolution of
xn(τ) is then described by the system of ODEs,

ẋn = −∇⊥V(xn) + η, (2)

where η = 0 leads to the string method, while the NEB method intro-
duces elastic interactions between adjacent images along the path by
adding the term

η = ηneb = κ(x′′ ⋅ x′

∥x′∥)
x′

∥x′∥ .

System (2) can be solved with any ordinary differential equation
(ODE) numerical integrator. Most commonly, Euler’s method7 is
used, which yields an update step of the form

xk+1
n = xk

n + αk[−∇⊥V(xk
n) + ηk

n], (3)

where ηk
n = η((xk

n)′, (xk
n)′′) and αk is the time step at iteration k.

While for NEB, the presence of the elastic interaction η enforces
an approximate equidistribution of the nodes along the path, the
string method reparameterises the path after each iteration to ensure
that the images remain equidistant with respect to a suitable met-
ric. In the continuous limit, as N → ∞, a converged discretised
path tends to the correct MEP, independently of the choice of the
reparameterisation metric.8 We initially use the standard `2-norm
defined by ∥x∥2 = x⋅x, but we will introduce a different notion of
distance later on.

To summarise, the updating relations are given by (3) where,
for the string method only, there is an additional redistribution of
the images after the update step. We follow precisely the approach
described in Eq. (12) in Ref. 7 but for simplicity of presentation do
not make this step explicit.

The updating steps Eq. (3) for the string and NEB methods as
well as the subsequent analysis were defined in terms of total deriva-
tives of the path variable x (i.e., in terms of x′ and x″), as they are
motivated from the respective laws of classical dynamics. This infor-
mation is available at each iteration at no extra cost as we use cubic
spline interpolation to find an expression for x(s).6,9

III. PRECONDITIONING
The NEB and string methods have slow convergence rates when

they are subjected to ill-conditioned energy landscapes V. How-
ever, a suitable preconditioner P ∈ RM×M that is cheap to compute
can be used to reduce the condition number of the Hessian ∇∇V
along the path. In the steepest descent optimisation, precondition-
ing has related but distinct interpretations: (a) as an approximation
of the Hessian, P ≈ ∇∇V, in analogy to Newton’s scheme or (b) as
a coordinate transformation in the state space, x ↦ P1/2x, that cap-
tures information of the local curvature of the potential landscape
(mapping hyperellipsoids to balls).11

We will now describe a preconditioning technique for NEB and
string methods. The same preconditioners used in geometry optimi-
sation of interatomic potentials12,13 are expected to be valid for the
purposes of preconditioning each image separately. We first present
our construction of the preconditioned string method which has a
simpler updating step.

A. Preconditioned string method
Let us first consider the simple case where P is constant in x.

Starting from the coordinate transformation

x ↦ P−1/2x ∶= x̃, (4)

with corresponding Ṽ(x̃) = V(P1/2x̃), it is trivial to deduce that
∂x̃i
∂xj

= P1/2
ij . The string method in the transformed space has the

updating step x̃k+1
n = x̃k

n − αk∇⊥Ṽ(x̃k
n) which for convenience we

rewrite as

x̃k+1
n = x̃k

n − αk(I − t̃k
n ⊗ t̃k

n)∇x̃Ṽ(x̃k
n),

t̃k
n =

(x̃k
n)′

∥(x̃k
n)′∥

.
(5)

Reversing the coordinate transformation, we obtain an equivalent
formulation in the original coordinates with the updating step

xk+1
n = xk

n − αk(P−1 − tk
P,n ⊗ tk

P,n)∇xV(xk
n),

tk
P,n =

(xk
n)′

∥(xk
n)′∥P

,
(6)

where care needs to be taken to normalise the tangents x′ with
respect to the P-norm, ∥y∥P = (y⋅Py)1/2, instead of the usual
`2-norm, ∥y∥ = (y⋅y)1/2.

Expressing the reparameterisation step in terms of coordinates
in the configuration space is trivial, as it suffices to replace the usual
`2-norm with the P-norm, due to linearity of the d

ds operator.
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The systems of interest, however, are described by precondi-
tioners that are not constant in the configuration space,12 which
leads to a Riemannian metric framework, and, in particular, the
analogue of Eq. (5) involves the evaluation of ∇P1/2(xk

n) which is
computationally expensive. We circumvent these issues entirely by
dropping these terms. Preliminary tests (which we do not discuss
here) showed that this does not lead to any loss of performance.
Thus, we obtain the preconditioned string method

xk+1
n = xk

n − αk∇⊥VP(xk
n), (7)

where we defined the quantity

∇⊥VP(xk
n) = ([Pk

n]−1 − tk
P,n ⊗ tk

P,n)∇xV(xk
n),

tk
P,n =

(xk
n)′

∥(xk
n)′∥Pk

n

,

in terms of Pk
n = P(xk

n). We are left to specify how to re-parameterise
the path. Recall that in the continuous limit, we are free to use any
parameterisation for the path. In our setting, the premise is that ∥⋅∥P
is a more natural notion of distance than the standard `2-norm ∥⋅∥;
hence, we will use the following notion of distance along the path:

dP(x, y) ∶=
⎛
⎝
(x − y) ⋅ (P(x) + P(y)

2
)(x − y)

⎞
⎠

1/2

. (8)

We note that dP is not a metric in the technical sense as it does not
satisfy the triangle inequality. However, it is an approximation (dis-
cretisation) of the geodesic distance on the Riemannian manifold
induced by the preconditioner P; hence, it is reasonable to expect
that it can be used for the reparameterisation of the path. In prac-
tice, we have not encountered any difficulties related to this issue.
The details of the preconditioned reparameterisation algorithm are
given in Appendix.

B. Preconditioned NEB method
An entirely analogous argument yields the preconditioned NEB

method,

xk+1
n = xk

n + αk[−∇⊥VP(xk
n) + (ηneb, P)

k
n], (9)

where

(ηneb, P)
k
n = κ

⎛
⎝
(xk

n)′′ ⋅ Pk
n

(xk
n)′

∥(xk
n)′∥Pk

n

⎞
⎠

(xk
n)′

∥(xk
n)′∥Pk

n

.

Notice that this class of preconditioning schemes disregards
the interactions between images and, therefore, the preconditioner
aids the convergence of the path only in the transverse direction.
This is justified when the main source of ill-conditioning is due to
the potential energy landscape, which is the case when only few
images are used as is often done in practice. To summarise, the
preconditioned updating relations are given by

xk+1
n = xk

n + αk[−∇⊥VP(xk
n) + (ηP)

k
n], (10)

where, in analogy to our earlier notation, (ηP)
k
n = 0 for the string

method and (ηP)
k
n = (ηneb,P)

k
n for NEB.

C. ODE solvers and steepest descent
The optimisation step Eq. (3) was derived by applying Euler’s

method to the first order differential equation (2), but any ODE
solver can be used instead. Here, we use an adaptive ODE solver
based on Ref. 18 to allow for some adaptivity in the step selection
mechanism.

The user supplies an absolute and a relative tolerance atol and
rtol, which control the accuracy of the solution. We will demon-
strate that choosing these two parameters is more intuitive and more
robust than choosing the step length of the static method.

We modify an adaptive ODE solver, ode12.18 To begin, we
compute a trial step xk+1

n using Eq. (10) with a given step-length
αk. Next, we use xk+1

n to compute a second-order solution to the
underlying ODE system via

x̃k+1
n = xk

n + 1
2α

k[f k
n + f k+1

n ],

where f k
n = −∇⊥VP(xk

n) + (ηP)
k
n is the driving force on image n at

time step k. We can then use the difference x̃k+1
n −xk+1

n or equivalently
the difference f k

n − f k+1
n as an error indicator.

Taking this as a starting point and following, for example,
Ref. 19 to implement an adaptive time-stepping algorithm, we obtain
an algorithm that underestimates the local error in the neighbour-
hood of equilibria and, in particular, will not converge as k → ∞.
To overcome this, we add a second step-length selection mechanism
based on minimising the residual. In essence, the adaptive ODE
step selection should be used in the pre-asymptotic regime while
minimising the residual is a suitable mechanism in the asymptotic
regime.

This leads to the following step-length selection algorithm,
which we label ode12r: we define the re-scaled residual error

Rk+1 = max
n

∥Pk
n∇⊥VP(xk

n)∥
∞

(11)

and local error

Ek+1 = max
n,j

⎧⎪⎪⎨⎪⎪⎩

1
2 ∣(f

k
n − f k+1

n )j∣
max{∣(xk

n)j∣, ∣(xk+1
n )j∣, atol

rtol }

⎫⎪⎪⎬⎪⎪⎭
,

where the index j denotes vector components. We then accept the
proposed xk+1

n if the scaled residual error satisfies either one of the
two following conditions:

(1) Rk+1 ≤ Rk(1 − c1αk),
(2) Rk+1 ≤ Rkc2 AND Ek+1 ≤ rtol,

for contraction and growth parameters c1 and c2 ∈ R.
Whether the step is accepted or rejected, we now compute two

step-length candidates using (1) the adaptive solver and (2) a simple
line-search procedure.

The step-length candidate given by the ode12 solver is αk+1
ode12

= 1
2α

k
√

rtol/Ek+1. For the second candidate, we approximate the
driving force along the previous search direction by its linear
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FIG. 1. Convergence rate of the string method applied to vacancy migration in a
249-atom bcc W supercell modeled with the EAM4 potential.20 Optimal static time
stepping, time stepping with ode12, and time stepping with ode12r were used with
a path consisting of 5 images.

interpolant (1−θ)f k
n+θf k+1

n . We then minimise ∥(1 − θ)f k
n + θf k+1

n ∥2
Pk

n

with respect to θ to obtain αk+1
ls = θαk.

If the current step xk+1 is accepted, then the next step-length
candidate is chosen to be

αk+1 = max ( 1
4α

k, min (4αk,αk+1
ls ,αk+1

ode12)).

If the step xk+1 is rejected, then the new step-length candidate
starting from xk is

αk = max ( 1
10α

k, min ( 1
4α

k,αk+1
ls ,αk+1

ode12)).

Figure 1 demonstrates how ode12 effectively selects appropri-
ate step lengths in the pre-asymptotic regime but stagnates in the
asymptotic regime for the case of vacancy migration in tungsten
modeled with the EAM4 class of the Embedded Atom Model (EAM)
interatomic potential proposed by Marinica et al.20 The conver-
gence rate of the modified ode12r agrees with the results of ode12 in
the pre-asymptotic regime but successfully converges upon reaching
the asymptotic regime.

IV. RESULTS
We tested our preconditioning scheme for a variety of exam-

ples. First, we looked at examples using interatomic potentials which
are not the main target as these are typically fast models and con-
structing a preconditioner may not be computationally efficient rel-
ative to force evaluations. These examples, however, demonstrate
how the number of force evaluations can be reduced with the
use of the preconditioner. Further fine-tuning the preconditioner
implementation and application (e.g., our current implementation
updates the preconditioner after each iteration, which could be
avoided), one would still obtain significant practical speed-ups for
severely ill-conditioned cases.

We then compare with a density functional theory (DFT)
model to confirm our earlier results. In the following tables, we com-
pare the number of force evaluations per image needed to converge
to “coarse” and “fine” target accuracies (maximum force less than
10−1 eV/Å and 10−3 eV/Å, respectively) using unpreconditioned
and preconditioned schemes with either static or adaptive ode12r
step selection. The criterion for convergence is the magnitude of the
residual error Rk+1 as defined in Eq. (11). For the use of the ode12r

step selection, fitting the rtol and atol parameter was simple as it
was observed that rtol = 0.1 was sufficient in most cases for conver-
gence but other values rtol = 1 and rtol = 0.01 were occasionally more
appropriate. The value of atol was chosen so that atol/rtol = 1 in all
cases except the 2D vacancy of Sec. IV A, where atol/rtol = 0.01 had
to be used instead.

A. Vacancy migration
First, we consider the diffusion of a vacancy in a two dimen-

sional 60-atom triangular lattice governed by a Lennard-Jones
potential V(r) = 4�[(σ/r)12 − 2(σ/r)6] with parameters � = 1.0, σ =
2−

1
6 . The vacancy is located at the centre of the cell initially and

migrates in the y direction by one lattice spacing. Periodic boundary
conditions are imposed in the x and y directions. Table I shows the
number of force calls per image required for convergence. The expo-
nential preconditioner (Exp) introduced in Packwood et al.12 with
parameters A = 3.0 and rcut = 2.5, which utilises bond-connectivity
information to treat the ill-conditioning of the system allowed con-
vergence beyond the 10−3 tolerance, which the unpreconditioned
case could not achieve within a reasonable number of iterations. The
latter came as a surprise to us as on the contrary to the real vacancy
migration systems that we study next, this artificial setup exhibits
more severe ill-conditioning. We note that for the unpreconditioned
case when using the ode12r time stepping for the string method,
we had to use atol/rtol = 0.01. The absolute differences ∥x1 − x2∥∞
between the positions x1 and x2 for the image nearest the saddle
in converged paths with and without preconditioning, were of the
order of 8 × 10−3.

Next, we considered a three dimensional system containing
a vacancy, specifically a 107-atom Cu fcc supercell in a fixed cell
with periodic boundary conditions. Interactions were modeled with
a Morse potential with parameters A = 4.0, � = 1.0 and the near-
est neighbour distance r0 = 2.55 Å with interactions between atoms
expressed by V(r) = ϵ(e−2A(r/r0−1) − 2e−A(r/r0−1)). The exponen-
tial preconditioner introduced in Packwood et al.12 was used with
parameters A = 3.0 and rcut = 2.2r0 = 5.62 Å. Table II shows the num-
ber of force evaluations per image needed for convergence to two
preset tolerance limits. This example demonstrates how the ode12r
solver can aid the performance of the string and NEB methods if

TABLE I. Number of force evaluations per image required by the string and NEB
methods to converge the vacancy migration MEP in a 9 image path of a 60-atom
2D cell modeled with a Lennard-Jones potential, with either the static or ode12r step
length selection methods. In the cases marked ∗, the algorithm did not converge
within a reasonable number of iterations.

2D Vacancy

Step selection Static ode12r solver

Tol 10−1 10−3 10−1 10−3

String 197 ∗ 52 ∗
String (p) 16 38 12 33
NEB 200 ∗ 53 ∗
NEB (p) 19 60 14 67
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TABLE II. Force evaluations per image needed for the string and NEB methods for the
migration of a vacancy in a 107-atom Cu fcc supercell modeled by a Morse potential.
The MEP was discretised with 5 images.

Vacancy in Cu supercell

Step selection Static ode12r solver

Tol (eV/Å) 10−1 10−3 10−1 10−3

String 8 74 8 41
String (p) 7 38 8 21
NEB 8 57 8 27
NEB (p) 7 37 8 19

a static step is not suitable. Preconditioning gave almost a 2-fold
speedup for the higher accuracy results but no improvement for the
lower accuracy. The absolute differences of the positions of the con-
verged paths at the saddle, as performed before, were well below
3 × 10−14 Å.

A 53-atom W bcc supercell modeled with the EAM4 poten-
tial described in Ref. 20 was examined as well. Periodic boundary
conditions were imposed. A force field (FF) preconditioner was con-
structed by suitably modifying the EAM Hessian to enforce positiv-
ity; see the work of Mones et al.13 (p. 9) for full details. This yields
up to 6 times faster convergence for higher accuracies as shown in
Table III. The absolute differences of the positions of the converged
paths at the saddle were well below 5 × 10−9 Å.

We studied the same 53-atom W vacancy system with den-
sity functional theory (DFT) as implemented in the Castep21 soft-
ware. The exchange correlation functional was approximated by the
Perdew, Burke, and Ernzerhof (PBE) generalised gradient approxi-
mation (GGA),22 with a plane wave energy cutoff of 500 eV and a
2 × 2 × 2 Monkhorst-Pack grid to sample the Brillouin zone (a com-
parison of convergence behavior obtained with a 3 × 3 × 3 k-point
grid was carried out which showed that the use of the 2 × 2 × 2 k-
point grid is sufficient). Step selection with ode12r step and static
step selection schemes was studied. A regularised FF preconditioner
based on the EAM Hessian was used, P = (1 − λ)PFF + λPExp + cI,

TABLE III. Force evaluations per image needed for the string and NEB methods to
converge the MEP for vacancy migration in a 53-atom W bcc supercell modeled by
the EAM4 potential.20 The path was discretised by 5 images, and the preconditioner
was constructed from the force field.13

Vacancy in W supercell

Step selection Static ode12r solver

Tol (eV/Å) 10−1 10−3 10−1 10−3

String 7 77 7 49
String (p) 5 12 5 9
NEB 8 58 7 35
NEB (p) 5 10 8 17

where c = 0.05, λ = 0.4, PFF is described in Ref. 13, p. 9, and the PExp
parameters were fitted to PFF.

The path is made up of 5 images, and traversing the path in
subsequent iterations of the NEB and string methods was performed
in an alternating order, allowing efficient reuse of previous electronic
structure data to start the next optimisation step.

Unlike the EAM case above, the preconditioner we used for the
DFT model does not describe the potential energy surface of the DFT
model exactly but nevertheless gives a speed-up of a factor of two for
an accuracy of ∼10−2 eV/Å and furthermore allows accuracies of the
order of ∼10−3 eV/Å to be achieved, unlike the unpreconditioned
case, as shown in Figs. 2 and 3. The results of Table III suggest that
constructing a better preconditioner would improve these results
further. Notice further that the number of force evaluations needed
for convergence and the time needed for convergence are in agree-
ment (by comparison of the upper and lower panes of Figs. 2 and 3),
confirming that the computational cost of constructing the precon-
ditioner model is negligible compared to the cost of computing DFT
forces, justifying our earlier assumptions. We note that the gain of
preconditioning would be expected to further increase with the sys-
tem size.12 The absolute differences of the positions of the converged
paths at the saddle were of the order of 1 × 10−4 Å.

B. Screw dislocation
In the final example, we study a 1

2 ⟨111⟩ screw dislocation in
a 562-atom W bcc structure confined in a cylinder of radius equal
to 20 Å and surrounded by an 11 Å cylindrical shell of clamped
atoms, with periodic boundary conditions along the dislocation line
(z) direction. The system is simulated with the same EAM4 poten-
tial. The dislocation advances by one glide step. Table IV shows the

FIG. 2. Convergence of the string and NEB methods with and without precondi-
tioner for a 53-atom bcc W supercell containing a vacancy and modeled with DFT.
The upper panel (a) shows the error as a function of the number of force evalua-
tions per image and the lower (b) as a function of the time required to converge.
Time stepping with ode12r was used with a path of 5 images. Comparison shows
that constructing and evaluating the preconditioner is negligible compared to the
cost of force computation.
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FIG. 3. Convergence of the string and NEB methods with and without precondi-
tioner for a 53-atom W bcc supercell containing a vacancy and modeled with DFT.
The upper panel (a) shows the error as a function of the number of force evalua-
tions per image and the lower panel (b) shows the error as a function of the time
required to converge. The static time step was chosen by extrapolating the ode12r
data. The path was discretised by 5 images.

computational costs for converging the MEP with the NEB and
string methods, using either static or ode12r step length selection.
A force field preconditioner built from the same EAM potential was
used for geometry optimisation.

Upon preconditioning, we observed a 5-fold speed up for the
static case for low accuracies but only a 2-fold speed up for the
ode12r case. For a higher accuracy, a speed up of a factor of 6 was
observed and there was a speed up of a factor of at least 2 from using
the ode12r step selection over the static step selection for both the
unpreconditioned and preconditioned cases. This indicates that the
fitted static step is only suitable in the pre-asymptotic regime and a
larger step size is suitable in the asymptotic regime, showcasing the
advantages of using the adaptive ode12r scheme over the hand-tuned
static step. The absolute differences of the positions of the converged
paths at the saddle were below 2 × 10−3 Å.

TABLE IV. Computational cost for the NEB and string methods for a screw dislocation
in a 562-atom W bcc cylinder simulated with the EAM4 Marinica potential.20 The
circular boundary is fixed at a radius of R = 20 Å. Periodic boundary conditions were
imposed in the z direction. The path was discretised by 9 points.

Screw dislocation

Step selection Static ode12r solver

Tol (eV/Å) 10−1 10−3 10−1 10−3

String 40 272 14 124
String (p) 7 48 9 21
NEB 40 312 14 162
NEB (p) 7 47 7 21

We investigated this system further, focusing on the NEB
implementation to allow comparison with the widely used Limited
memory Broyden—Fletcher—Goldfarb—Shanno (LBFGS)23 opti-
misation algorithm, which can be used with the NEB implemen-
tation10 in the Atomic Simulation Environment (ASE).24 This
required fixing the end points of the path at the minima as is per-
formed in the ASE code. The comparison was carried out on sys-
tems of two sizes. A force field preconditioner was used as before
for the preconditioned cases. Figure 4 shows the convergence rate
of the various NEB schemes for a radius of 20 Å in the upper
panel (a) and for a radius of 40 Å in the lower panel (b). Note
that although LBFGS gave good convergence in the unprecondi-
tioned case, it lacks robustness. This is because the force field of
the NEB algorithm is not conservative, violating one of LBFGS’s
assumptions. LBFGS constructs a Hessian matrix corresponding to
a scalar field, failing to capture the effects of the transport terms
of the NEB force field. Moreover, the lack of the energy function
prevents the use of line search, required to ensure the method’s
stability; in the ASE LBFGS implementation, a heuristic is instead
used to impose a maximum step length of 0.04 Å. Furthermore,
it should be noted that because our preconditioning scheme does
not treat the longitudinal force components, it is inappropriate for

FIG. 4. Convergence of NEB variants for a screw dislocation in a 562-atom W bcc
cylindrical structure (a) and a 1489-atom W bcc cylindrical structure (b) modeled
with the EAM4 Marinica potential.20 Atoms outside outer radii of R = 20 Å and
R = 40 Å, respectively, were clamped with periodic boundary conditions along
the dislocation line. The path was discretised with 7 images (excluding the min-
ima at each end, which were held fixed). The horizontal axis of the plots was cut
after 160 force evaluations per image to focus on the performance of the precon-
ditioned schemes. The static unpreconditioned NEB method converged after 312
force evaluations per image for the R = 20 Å case and after 343 force evaluations
per image for the R = 40 Å case.
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us to use it together with the LBFGS method for MEP finding
methods.

V. CONCLUSIONS
We have demonstrated that MEP finding techniques such as

the NEB and the string method can exhibit slow convergence rates
due to poor search direction and step-length selection during the
optimisation procedure. We have introduced a new optimisation
technique combining an adaptive time-stepping scheme with pre-
conditioning to address ill-conditioning of the energy landscape in
directions transverse to the path and to allow faster convergence to
the minimum energy path.

We observed that our new scheme gives a significant speed
up and improved robustness over currently used approaches for a
range of systems using both force fields and DFT. Moreover, it allows
higher accuracies to be reached than existing methods.

However, our preconditioning scheme targets transverse ill-
conditioning only. The longitudinal terms (e.g., the NEB spring
interactions) are unaffected by the preconditioner, suggesting that
our scheme provides a baseline for further improvements.

An open source prototype implementation of our technique is
available at https://github.com/cortner/SaddleSearch.jl.
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APPENDIX: REPARAMETERISING IN
PRECONDITIONED STRING

The path reparameterisation described in Eq. (12) in Ref. 7
assumes that the `2-metric is used to measure distance. Here, we
briefly describe the modifications required when it is replaced with
the metric dP defined in (8), used in the preconditioned string
method introduced in Sec. III A.

After accepting an optimisation step k of Eq. (7), the following
steps are performed:

1. Compute the relative distances dP(xk
n, xk

n−1) between the
images {xk

n}n, for all n = 2, . . ., N.
2. Define

s1 = 0,

sn = ∑
n
m=2 dP(xk

m, xk
m−1)

∑N
m=2 dP(xk

m, xk
m−1)

, for n = 2, . . . , M.
(A1)

3. Use cubic spline interpolation17 of {sn, xk
n}N

n=1 to obtain xk(s) :
[0, 1]→ RN .

4. The new images are then given by

xk
n = xk( n−1

N−1), n = 1, . . . , N. (A2)

This algorithm does not ensure that images will be equidis-
tributed according to dP. However it does ensure that images remain
bounded away from one another, which is the key property required
for the string method.
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