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Assessing spatiotemporal predictability of LBSN: A case study of three 1 

Foursquare datasets 2 

Abstract. Location-based social networks (LBSN) provide new possibilities for researchers to gain 3 
knowledge about human spatiotemporal behavior, and to make predictions about how people might 4 
behave through space and time in the future. An important requirement of successfully utilizing LBSN in 5 
these regards is a thorough understanding of the respective datasets, including their inherent potential as 6 
well as their limitations. Specifically, when it comes to predictions, we must know what we can actually 7 
expect from the data, and how we could maximize their usefulness. Yet, this knowledge is still largely 8 
lacking from the literature. Hence, this work explores one particular aspect which is the theoretical 9 
predictability of LBSN datasets. The uncovered predictability is represented with an interval. The lower 10 
bound of the interval corresponds to the amount of regular behaviors that can easily be anticipated, and 11 
represents the correct predication rate that any algorithm should be able to achieve. The upper bound 12 
corresponds to the amount of information that is contained in the dataset, and represents the maximum 13 
correct prediction rate that cannot be exceeded by any algorithms. Three Foursquare datasets from three 14 
American cities are studied as an example. It is found that, within our investigated datasets, the lower 15 
bound of predictability of the human spatiotemporal behavior is 27%, and the upper bound is 92%. Hence, 16 
the inherent potentials of the dataset for predicting human spatiotemporal behavior are clarified, and the 17 
revealed interval allows a realistic assessment of the quality of predictions and thus of associated 18 
algorithms. Additionally, in order to provide further insight into the practical use of the dataset, the 19 
relationship between the predictability and the check-in frequencies are investigated from three different 20 
perspectives. It was found that the individual perspective provides no significant correlations between the 21 
predictability and the check-in frequency. In contrast, the same two quantities are found to be negatively 22 
correlated from temporal and spatial perspectives. Our study further indicates that the heavily frequented 23 
contexts and some extraordinary geographic venue types such as airports could be good starting points for 24 
effective improvements of prediction algorithms. In general, this research provides novel knowledge 25 
regarding the nature of the LBSN dataset and practical insights for a more reasonable utilization of the 26 
dataset.   27 

Keywords: predictability; spatiotemporal behavior; context; location-based social networks; Foursquare; 28 

citizen sensing; 29 

1 Introduction 30 

Gaining knowledge on human spatiotemporal behavior has ever been a perennial research topic. 31 
Nowadays, due to its abundant potential applications, it is especially valuable even from a more practical 32 
point of view. Exemplary application areas include rather different fields such as analyses of public 33 
transit flows (Steiger et al. 2014), pervasive advertising (Ghafourian and Karimi 2011, Spiegler et al. 34 
2011), route planning (Gu et al. 2014, Zhu et al. 2014), location recommendation (Gavalas and Kenteris 35 
2011, Majid et al. 2013) or disaster management (de Albuquerque et al. 2015).  36 

In order to carry out such research, data proxies that are capturing human behavior are needed. From 37 
a historical point of view, one of the earliest data proxies capturing human behavior was bank notes. 38 
Given that these are used day-to-day and in ordinary situations, there is some tradition of analyzing bank 39 
note dispersal (e.g., Brockmann et al. 2006). Nevertheless, one of the most widely adopted data proxy to 40 
study the human spatiotemporal behavior during the past decades should be the mobile phone data. 41 
Thanks to the GPS technology and the popularization of mobile phones, it is very convenient to recover 42 
individual trajectories from the mobile phone usage data in a rather large scale. Consequently, plenty of 43 
studies have been conducted to model and predict human spatiotemporal behaviors based on this type of 44 
data proxy (González et al. 2008, Barabási 2011, Giannotti et al. 2011, Parent et al. 2013, Do et al. 2015).  45 

The recent years, however, have witnessed a dramatically changed lifestyle of modern society. Along 46 
with the ubiquitous access to the Internet and the popularity of various kinds of location-based social 47 
networks (LBSN), people are increasingly willing to report their personal experiences on the social 48 
networks from their immediate vicinity in all kinds of situations. These reports can be exceptional 49 
happenings, but mostly are very ordinary everyday situations. Hence, this alleged trivial information 50 
allows researchers to observe the human behavior up to a certain level of detail. Popular examples of 51 
LBSNs include, for example, the microblogging service Twitter, the personal communication hub 52 
Facebook and the check-in service Foursquare. The technological and the cultural change have conjointly 53 
provided an ample amount of detailed insights into the users’ everyday life that was never feasible before. 54 
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Given the pervasive nature of such services, the corresponding data sources are nowadays becoming a 1 
popular proxy for reflecting human behavior (see Lee and Sumiya 2010, Preoţiuc-Pietro and Cohn 2013, 2 
Liu et al. 2014).  3 

From the perspectives of citizen sensing (Goodchild 2007, Sheth 2009), each person in these LBSNs 4 
can be regarded a volunteered sensor to report any aspects of a citizen’s daily life. However, unlike 5 
traditional sensors which are often carefully designed and calibrated in order to deliver accurate and 6 
homogeneous measurements, the volunteered social sensors act autonomous and subjective. Therefore, 7 
the information they deliver is typically fuzzy, uncertain and incomplete (Sengstock et al. 2013). This 8 
clearly constitutes a major obstacle towards utilizing these datasets properly. In fields involving more 9 
traditional datasets, researchers often have access to technical specifications that explain the quality and 10 
granularity of the data at hand. Consequently, assessments of the quality of any achieved results are 11 
possible, and are an asset in these cases. With LBSN and other social media feeds, in contrast, this is 12 
typically hampered by the challenges mentioned above. Nonetheless, proving the validity of scientific 13 
results is just as important as the novelty of approaches and applications. 14 

Beyond the numerous studies that employ social media datasets to identify events or city structures 15 
(Liu et al. 2011, Sun et al. 2016), make recommendations of routes or venues (Noulas et al. 2012, 16 
Kurashima et al. 2013), predict human behavior or interest (Noulas and Scellato 2012, Li et al. 2016), etc., 17 
one can indeed find some studies that investigate the dataset itself. For example, Cramer et al. (2011) 18 
investigated the Foursquare dataset by analyzing 20 in-depth interviews with Foursquare users, and 19 
discussed the performance aspects as well as some norms and conflicts in the dataset. By correlating 20 
Twitter data with the UK census data, Steiger et al. (2015) explored the semantic associations between 21 
tweets and their respective spatiotemporal whereabouts, and examined the potentials of Twitter being an 22 
indicator for people’s whereabouts. With the help of face-to-face interviews and usage of external 23 
datasets, these studies have provided valuable insights into the utilization of social media data. 24 

In this study, as the first goal, we intend to supplement these insights with a kind of intrinsic property 25 
of the dataset that indicates the potentials and limits for making predictions about human’s spatiotemporal 26 
behavior, e.g., predictability. In this paper, it is defined as the degree to which a correct prediction of 27 
user’s spatiotemporal behavior can be made at best and at worst based on some given dataset (see Section 28 
2 for a more thorough definition of predictability). It is quantitatively represented as an interval, where 29 
the lower bound corresponds to the regular behaviors and the upper bound corresponds to the information 30 
amount as is contained in the corresponding dataset. These bounds thus describe the prospects of the 31 
dataset with respect to predictions irrespective of any specific algorithm used. The second goal of our 32 
study is to provide some useful guidance for practical scenarios. Therefore, we also investigate the 33 
relationships between predictability and the check-in frequencies from three different perspectives: 34 
individual, temporal and spatial. The revealed relationships can hint algorithm designers to those parts of 35 
their algorithms that are worth being tuned given a specific dataset at hand. All analyses in this paper are 36 
undertaken on three exemplary Foursquare datasets which originate from the three most populous US 37 
cities: New York City, Los Angeles and Chicago. The obtained empirical results and suggestions can act 38 
as important inputs towards drawing better predictions from such datasets. They allow evaluating 39 
prediction algorithms more realistically, and they further help in increasing their quality. 40 

We start our paper by introducing the formal definition of predictability as well as our assessment 41 
approach in Section 2. Afterwards, the employed datasets as well as the preprocessing steps are described 42 
in Section 3, and the assessment results are presented in the same section. Section 4 unravels the 43 
relationships between predictability and the check-in frequencies from different perspectives. Some 44 
recommendations on how to efficiently improve prediction algorithms are given accordingly. Section 5 45 
concludes the paper by discussing the results. 46 

2 Predictability: definition and assessment  47 

As stated earlier, predictability is supposed to reflect the intrinsic interval of prediction accuracy based on 48 
the data itself. Its definition and assessment should therefore not be restricted by any specific predicting 49 
algorithms, but should rather be understood as the “potential of a dataset”. In this chapter, we lay out our 50 
formal definition and assessment approaches of predictability.  51 

In 2010, Song et al. studied human mobility from the trajectories from mobile phone usage data, and 52 
assessed the predictability of their data. Their research also forms the basis of our study. Therefore, the 53 
relevant part of their work will also be introduced in the related subsections. 54 
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2.1 Formal definition of predictability  1 

 2 
In their work, Song et al. laid out a formal definition of predictability of mobile phone data. The starting 3 
point is a temporally ordered personal trajectory history of length 1n that is represented as4 

1 1 2 1[ , , , ]n n nh X X X   , where 
iX  denotes the user’s location at time i . They define  1nh   as the 5 

probability that a user is at his/her most likely location given his/her trajectory history
1nh 
, that is,  6 

   1 1sup Pr[ | ]n x n nh X x h    . (1)  

The authors then explain that  1nh   contains the full predictive power that is present in the data. 8 

Afterwards, they sum over all possible trajectories of length 1n  , and define the predictability  n for 9 

the trajectories of history length 1n  as:  10 

     
1

1 1

n

n n

h

n p h h


    , (2)  

where  1np h  denotes the probability of observing a particular trajectory history 
1nh 
.  11 

Equation (2) is a function of the trajectory length, while different users possess trajectories of 12 
different lengths. In order to capture the overall predictability within the entire dataset, the authors define 13 
the overall predictability by taking the limit of Equation (2), which leads to:  14 

 
1

lim
n

n
i

i
n

    (3)  

Song’s work unraveled the potentials of mobile phone data for studying human mobility, and 16 
provided an answer to their research question “to what degree is human behavior predictable”. Their 17 
findings also hint on many follow-up studies of human mobility based on mobile phone datasets (see e.g., 18 
Salah et al. 2010, Calabrese et al. 2011). However, Song’s approach cannot be directly applied to social 19 
media feeds because of the significant differences between the two kinds of datasets. On the one hand, 20 
mobile phone data comes up to a very high and more or less balanced coverage. That is, a broad range of 21 
people are using these services regularly, and the dataset is less prone to being dominated by single 22 
individuals. Contrarily, according to Li et al. (2015), more than 80% of the entire Foursquare check-ins 23 
are contributed by merely 1% of the entire user community. Therefore, it is, for a great deal of users, not 24 
feasible to recover the individual personal trajectories from such a “heavy-tail distributed” dataset. 25 
However, the personal trajectory is the most fundamental element in Song’s work. On the other hand, in 26 
comparison to mobile phone datasets where locations are usually represented as simplified geometric 27 
points, social media datasets contain rich semantic and contextual information, and these semantics of 28 
locations or contextual conditions in turn have great influences on user behaviors. For example, 29 
McKenzie et al. (2015) proves that the temporal characteristics of human behavior differ significantly 30 
with the semantics of the place, or the place type. 31 

Hence, in this work, we adapt Song’s approach to the social media datasets. Instead of considering 32 
predictability from personal trajectory history, our adapted definition of   is based on the contextual 33 
conditions. This follows from the fact that semantic venues enriched by contextual information such as 34 
location and time have been massively explored with check-in datasets (see McKenzie et al. 2013, 35 
Krueger et al. 2014). Put formally, the adapted version writes as 36 

 
i

i i

c

p c 


 
C

, (4)  

where each element ic C  is either an atomic type (e.g., space or time) or a composition of various types 37 

of contextual information (e.g., tuples consisting of both temporal and spatial information). In addition, πi 38 
in Equation (4)Error! Reference source not found. is the probability that a user checks in at the most 39 
likely venue given the observed contextual condition ic . It is formally defined as: 40 

  sup Pr |i v i iV v c   , (5)  

where iV  is the user’s check-in venue given the contextual condition ic .  41 

Hence, i  represents the theoretical limit of the probability of making correct predictions given the 42 

realization of a certain type of contextual condition ic , and   represents the overall probability of the 43 

dataset across all possible kinds of contextual conditions. Since the definition does not concern any 44 
details of specific prediction algorithms,   can be regarded as a measure of the inherent predictability 45 
contained in the dataset itself, rather than an evaluation of some algorithm’s predictive power. In the next 46 
two subsections, we will explore the bounds of    ( min max  ).  47 
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2.2 The upper bound 1 

In Song’s work, the upper bound is determined based on the Shannon’s entropy (Shannon 1948) and 2 
Fano’s inequality (Fano 1961), which are written respectively in Equation (6) and (7):  3 

Shannon’s entropy: 4 

     log
x

H X p x p x


 
X

, (6)  

where  p x is the probability mass function of the random variable X . 5 

Fano’s inequality: 6 

       | log 1H X Y H e p e N    (7)  

where    ˆPr ap e X x   is the probability of making erroneous predictions,  H e is the corresponding 7 

entropy following Equation (6), and N is the number of all possible predictions. In addition,  |H X Y  is 8 

the conditional entropy of a random variable X  given the knowledge of another random variable Y : 9 

       | | log |
x y

H X Y p x y p x y p y
 

 
X Y

 (8)  

Based on Equations (6) and (7), Song et al. proved that max can be determined with the following 10 
Equation (8): 11 

       max max max max max( | ) log 1 log 1 1 log 1H X Y N          (9)  

With the term predictability redefined in our context, a direct application of Equation (8) and (9) into 12 
social media datasets would yield problems. Due to the heavy-tailed distribution, the sample size would 13 

be too small for plausible estimation of conditional probability  |p x y  and thereby  |H X Y . Therefore, 14 

the estimation of  |H X Y  must be corrected to cope with the small sample issues. Here we apply the 15 

Miller-Madow bias correction (Miller 1955) (the 1 2N  summand in Equation (10)), which is the most 16 

classic correction approach to solve the small sample issues. This additional term positively corrects the 17 

otherwise appearing underestimation of the entropy. Hence, we get the corrected estimation of  |H X Y18 

as Equation (10), where the random variable X  is represented with the unknown venues V , and the 19 
conditional random variable Y  is represented with the known contextual conditions C : 20 
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C V

C V

. (10)  

Here λm is the number of check-ins under some given condition m. Together with Equations (9) and 21 
(10), the upper bound of predictability of social media datasets can then be determined.  22 

2.3 The lower bound 23 

As stated by Song et al., “not only that a certain amount of randomness governs their future whereabouts, 24 
but also that there is some regularity in their movement that can be exploited for predictive purposes.” In 25 

their research, Song et al. firstly defines regularity  at the n -th step  R n  as the expected probability 26 

that the user is in his/her most likely position given the observed history
1nh 
. That is, regularity is 27 

measured as    1Pr |ML nR n X x h   , and the overall regularity R  (i.e., regardless of n) is achieved by 28 

taking the limit, i.e.,  
1

lim
n

n
i

R R i
n

  . The authors further proved that R  , and therefore the value 29 

of R  represents the lower bound of predictability.  30 
The regularities of human spatiotemporal behavior can be well illustrated by the regular day-to-day 31 

routine of people. For example, if a user checks-in at Starbucks every morning between 8 and 9am, this 32 
information will be reflected in the data by principle, regardless of the prediction performance. Therefore, 33 
even the simplest prediction algorithm will be able to exploit this information. Thus, it is also intuitively 34 
comprehensible to capture the lower bound of predictability with regularity. 35 

Similarly, we define regularity as the expected probability of finding a user in his/her most likely 36 
visited venue given a specific contextual condition, which can be written as: 37 
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   min Pr |
i

i ML i

c

R p c X x c


   
C

, (11)  

where 
MLx  is the most likely visited venue conditioned on the contextual condition 

ic . Thus, if a user 1 

does possess regular behavior like described above, this value will be relatively high. Elsewise, if a user 2 
behaves rather random, the value will be low, meaning that algorithms would need to be more 3 
sophisticated for achieving useful results. 4 

The determination of the conditional probability  ˆPr |ic

ML iX x c  is challenging again. The traditional 5 

estimation of p  by using the available information is relying on large-sample theory, and thus 6 

convergence of the estimated parameter p̂  against the true one. However, as we are dealing with small 7 

sample sizes, we must incorporate the estimation error / uncertainty into our considerations. One of the 8 
very commonly applied algorithms to achieve this is the so-called Wilson score interval. Further, as we 9 
are working with multinomial data, we correct the probability estimation with the corresponding 10 
multinomial version this technique (Wilson 1927), and estimate the conditional probability with the 11 
following equation: 12 

2

2 2
ˆ MLxn z
p prior

n z n n z
   

 
, (12)  

where z  is the 
1

1
2
  percentile of a standard normal distribution,  is the confidence level, n  is the 13 

sample size conditioned on the context 
ic , and prior describes the a priori knowledge of the targeted 14 

venue ˆ ic

MLx  that is extracted from all users under that context. Taking the 95% confidence interval, i.e., 15 

0.05  , and thus 1.96z   (since the Wilson score is approximating the bounds by a standard normal 16 
distribution),  the lower limit of predictability can be determined from Equations (11) and (12). 17 

3  A case study of Foursquare 18 

In this section, we assess the bounds of predictability as outlined in the previous section with three 19 
Foursquare datasets from three major American cities (see Section 3.1). Due to the pronounced data 20 
sparseness, some preprocessing steps are necessary to ensure the statistical validity of our achieved 21 
results (Section 3.2). The estimated results of predictability for the examined datasets following the 22 
approach explained in Section 2 are then presented in Section 3.3. 23 

3.1 Investigated datasets 24 

Our experiment is carried out based on the Foursquare datasets. Foursquare offers the great advantage of 25 
following a well-defined hierarchy with respect to their venue descriptions. This makes Foursquare 26 
check-ins highly valuable for analyzing human spatiotemporal behavior, since it allows accurate 27 
characterizations of the visited venues. This advantage is even more valuable when considering that the 28 
hierarchy is not an authoritatively imposed one, but has been agreed on by the users themselves and 29 
became only standardized globally later on. Thus, the particular categories reflect (to a certain extent) 30 
what is relevant to the users instead of some subjective organization.  31 

Our data originates from the three most populous American cities: Chicago, Los Angeles and New 32 
York City. Each check-in record from the dataset includes information on time, location and user as well 33 
as profiles of the venues attached to the respective check-ins (e.g., name, category and subcategory). In 34 
total we have collected 183,837 (Los Angeles), 138,211 (Chicago) and 579,786 (New York City) check-35 
in records during a period of five months from February 1

st
 to June 30

th
 2014. 36 

3.2 Preprocessing: aggregation of the sparse data 37 

Similar to many other LBSN datasets, the Foursquare check-in dataset is large but sparse. That sparseness 38 
is caused by the fact that a relatively small percentage of highly active users accounts for a large portion 39 
of the overall data. The cumulative distribution function (CDF) in Figure 1 shows that more than 90% of 40 
all users create fewer than 30 records during the 150 observed days. Specifically, we found that the 41 
distribution of the individual numbers of check-ins over all users is well approximated by a truncated 42 
power law: 43 

    /

0Pr exp xx x x
    , (13)  

http://en.wikipedia.org/wiki/Percentile_rank
http://en.wikipedia.org/wiki/Standard_normal_distribution
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which is parameterized as follows: 1.7, 1.71, 1.59;Ch LA NYC     0 0 00.98, 0.82, 1.4,Ch LA NYCx x x   and 1 

the cut-off value 291, 103, 157.Ch LA NYC       2 

 3 
Figure 1. A truncated power law distribution of users’ personal check-in frequency for all three cities. a) 4 
probability mass function, b) cumulative distribution function. 5 

Based on such sparse data, it is problematic to draw valid statistical conclusions. In order to deal this 6 
issue, it is pretty much common sense to filter out inactive users based on some criterion (Rattenbury et al. 7 
2007, Quercia and Lathia 2010). This approach is indeed simple and effective; but the research is then 8 
limited to a rather small portion of the overall users which dominate any results. Further, the dataset is not 9 
leveraged to its full potential. Another way to deal with this problem is collaborative filtering, i.e. to learn 10 
knowledge of one user from other similar users (Pham et al. 2011, Ye et al. 2011, Liu et al. 2013). We 11 
are convinced that the data from inactive users also contributes to a thorough understanding of users’ 12 
spatiotemporal behavior. That is, in order to describe the whole dataset, we must include all constituting 13 
parts, which include these users too. Therefore, we will aggregate the data by considering user similarity.  14 

Suppose each user
iu  is characterized by a visit vector 

1 2, , ,
T

J

i i i in n n   U , where each element 
j

in15 

indicates the number of visits of venue j  by user 
iu . The user similarity is then measured by the cosine 16 

distance between their visit vectors. Such design follows one of the most frequently used approaches to 17 
measure user similarity (see Woerndl et al. 2009, Cho et al. 2011, Noulas et al. 2012). Thereafter, k-18 
means is adopted to cluster the users based on their similarity. 19 

The choice of k  is the crux to k-means clustering. In order to find a suitable k , we carry out some 20 
preliminary experiments. On the one hand, we observe the degree of statistical reliability after clustering. 21 
This is measured with the proportion of clusters that contain enough records for statistical purposes, e.g., 22 
30. On the other hand, we observe the preservation of heterogeneity. This is measured by the ratio of 23 
Between Sum of Squares (BSS) and Total Sum of Squares (TSS). As is known from the analysis of 24 
variance (ANOVA), the total sum of squares (TSS) is the sum of the so-called “within-samples” sum of 25 
squares (WSS) and “between-samples” sum of squares (BSS), and WSS is a representation of the intra-26 
cluster heterogeneity. After clustering, the records in the same cluster will be treated equally, thus the 27 
WSS will be neglected. Hence, a higher ratio of BSS and TSS indicates a smaller WSS to be neglected; in 28 
other words, more heterogeneity can be preserved.  29 

Figure 2(a) shows some exemplary outcomes of this pre-analysis derived from Chicago data. As the 30 
number of clusters ( k ) decreases, each cluster will include a larger number of check-ins, which generally 31 
leads to more reliable statistical results. At the same time the ratio of BSS and TSS is decreasing, which 32 
means more intra-cluster heterogeneity has been sacrificed. Hence, the actual decision of k  involves a 33 
trade-off between the preservation of heterogeneity and the statistical reliability. 34 
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 1 
Figure 2. Identification of the number of clusters ( k ) based on two criteria: the degree of heterogeneity 2 
preservation (ratio of BSS and TSS) and the degree of statistical reliability (percentage of clusters 3 
containing more than 30 records). A more detailed variation of the two criteria with k  is given in (a) for 4 
Chicago and the overall trend of variation is given in (b) for all three cities. 5 

Figure 2(b) shows how the two criteria, i.e., the degree of heterogeneity preservation and the degree 6 
of statistical reliability, proceed along with k  across all the three cities. Based on the available trends 7 
from Figure 2(b), k  is set as 1000, 1000 and 2500 respectively for the three cities, so that over 95% of 8 
the clusters have more than 30 check-ins, while over 95% of the heterogeneity in the data remains 9 
preserved. This leads to clusters that subsume users that are showing similar check-in activity. In the 10 
following we consider each of those clusters as if they were one individual. This guarantees to have 11 
reasonable check-in numbers and allows more efficient analyses. 12 

3.3 The assessment result of predictability  13 

In this section, we present the assessment result of predictability. The predictability is assessed using the 14 
approaches described in Section 2 and conditioned on the spatial and temporal contexts. More specifically, 15 
the spatial condition will be represented by the zip code region of the check-in records, while the 16 
temporal condition will be represented by the hour slots of the check-ins. We consider the spatiotemporal 17 
information because this information has been heavily exploited in the existing studies of LBSN data, and 18 
its influences on human behaviors have been widely acknowledged.  19 

The assessment results of the predictability of the three pre-processed Foursquare datasets across the 20 
three study sites are presented in Figure 3. The figure shows that the upper bounds of predictability 21 
conditioned on the spatiotemporal contexts are around 92% for all the three cities, while the lower bounds 22 
are around 27%. This indicates that about 27% of the spatiotemporal behaviors are rather regular in space 23 
and time and can easily be anticipated, while about 8% of them are totally random and cannot be 24 
predicted in theory 25 
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 1 
Figure 3. Probability density functions of the upper and lower bounds of the predictability 2 

Put into simple words, these findings can be interpreted as follows: by considering spatiotemporal 3 
contextual information any prediction algorithm will at least make around 27% correct predictions on 4 
average, because 27% of the dynamics that are exhibited by the datasets are governed by very regular 5 
activities. Beyond the initial 27%, the users’ spatiotemporal behavior can still be predicted with optimized 6 
algorithms, because the dataset contains further information than the obvious regularities. The algorithm 7 
can be tuned up to a maximum value of 92%. The remaining 8% are “unpredictable,” because they are 8 
governed by randomness such as some emergent behavior. Hence, for example, if for any prediction 9 
algorithm a prediction accuracy of 30% is being stated, it means that besides the inherited 27% regularity 10 
in user’s spatiotemporal behavior, the optimization of an algorithm is actually responsible for the extra 3% 11 
gain in accuracy. Furthermore, we would also know that there is still much room left for this algorithm to 12 
improve its accuracy. 13 

A follow-up question that occurs naturally will then be: How can one achieve these improvements? 14 
We assume that the precision of prediction is not equal across different kinds of contextual conditions. 15 
Instead, the overall precision is to some degree a result of neutralization (some conditions contribute 16 
positively; some others might lower the achieved precision). If the variation patterns of predictability 17 
underlying different conditions could be revealed, one might gain better knowledge on how to improve 18 
some algorithm. This information will be revealed in the following Section 4.   19 

4 Practical implications  20 

Our study does not only focus on the mere theoretical numbers of the bounds of predictability. We also 21 
consider the practical implications of these values. In this section we investigate the relationships between 22 
predictability and the check-in frequencies from three perspectives (individual, time and space),, hoping 23 
to provide some further insights for future studies on prediction algorithms. Three predictability-related 24 
quantities are involved in this investigation: max , min and delta . Here max  and min  are the upper and 25 
lower bounds as determined in the previous Section 3, and thus the difference max min   gives the 26 
theoretical room for improvement on an absolute scale. Since we care more about the leverage effects of 27 
the partial improvements for the overall precision, i.e. the improvement efficiency, a related relative 28 

quantity delta  is defined as  max min min/    to capture the theoretical efficiency of improvement.  29 

4.1 Individual perspective 30 

In this section, we attempt to clarify the relationship between predictability and check-in frequency from 31 
the perspective of individuals. It appears quite reasonable to assume some kind of relationship between 32 
predictability and check-in frequency: either by assuming a positive relationship (more information = 33 
better informed predictions) or a negative one (more information = more fuzzy predictions). However, 34 
Figure 4 reveals that these quantities are unrelated. This finding holds for all three investigated datasets. 35 
Note that each dot in Figure 4 represents a cluster of users that are aggregated together in the 36 
preprocessing step because of their similarity. 37 
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 1 
Figure 4. Variations of bounds of predictability ( max , min ) and improvement efficiency ( delta ) with 2 
check-in frequency from an individual perspective.  3 

One hypothesis to explain the dispersed nature of the scatterplots in Figure 4 is that users might show 4 
some similar check-in patterns, regardless of how frequently they are actually using the service. If this 5 
were true, it would be quite reasonable to leverage the “collective wisdom” under certain spatiotemporal 6 
contexts to predict the behavior of the inactive users or even new users. Another hypothesis is that the 7 
more active users might provide more information from which to be learned, which is good for the 8 
purpose of predicting. However, their activities tend to be more dynamic, which increases the challenge 9 
in predicting. Thus the final dispersed distribution could result from both perspectives. Either way, Figure 10 
4 shows that the common practice of filtering inactive users (Rattenbury et al. 2007, Quercia and Lathia 11 
2010) is not quite efficient for improving the overall performance of a prediction algorithm. 12 

4.2 Temporal perspective 13 

Figure 5 depicts the relationship between the three predictability-related quantities and the check-in 14 
frequency from the perspective of time. A negative correlation can be found for both bounds of 15 
predictability ( max , min ), while a positive one is found for theoretical improvement efficiency ( delta ).  16 

 17 
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Figure 5. Temporal variation patterns of predictability in forms of the upper bounds (upper three 1 
subplots), lower bounds (three subplots in the middle) and improvement efficiency (lower three subplots). 2 
The labelled dots relate to the time slots explained within the subsequent Figure 6.  3 

The negative correlations in the upper three subplots suggest that busier hourly slots provide poorer 4 
initial prediction accuracy. In other words: these slots still provide plenty of room for refining the 5 
prediction accuracy. Additionally, the positive correlations shown in the lower three subplots suggest that 6 
busier hourly slots also provide stronger leverage effects with respect to improving algorithms. Both of 7 
these aspects indicate that focusing on the busy time slots can help to diagnose and improve a prediction 8 
algorithm both effectively and efficiently. 9 

In order to further unravel the reason why busy hours correspond to poor predictability, Figure 6 10 
explores the semantical composition of  three typical time slots (a lower outlier “01”, an upper outlier “05” 11 
and a tail point “19” in Figure 5). The temporal semantics are represented by the probability mass 12 
function over the check-in categories within the respective time slots.  13 

 14 
Figure 6. Temporal semantics: probability mass function (PMF) of the categories of check-in venues in 15 
three typical hours. Note that these hours (numbers in the head of the figure) do actually relate to real 16 
hours of the day. 17 

According to Figure 6, the reason for higher predictability in less busy hours could be related to 18 
simpler temporal semantics. During 1 am and 5 am, the users rarely check in at venues of categories other 19 
than Nightlife Spot and Travel and Transport. Correspondingly, these time slots tend to have a high initial 20 
predictability, while the room for improvements is quite narrow. In other words: if the users just check in 21 
at a limited number of venue types it is quite likely to achieve precise predictions. In contrast, during the 22 
busy hours, users tend to pursue much more diverse activities and the temporal semantics are much more 23 
complex for predictions, see the temporal semantics for 19 pm in Figure 6.  24 

Therefore, the indication here is that more effort should be invested in further enriching the busy 25 
hours with more detailed contextual information. In contrast, the predictions for hours showing low 26 
activity rates might be rather accurate by just simply considering temporal contextual information. 27 
Improving the prediction accuracy for these hourly slots is not worth the effort. Fortunately, the busy 28 
hours come with a much richer wealth of data to learn from; therefore it is also practical to shift the focus 29 
to these busy time slots only. 30 

4.3 Spatial perspective 31 

In analogy to the temporal characteristics we also investigate the relationship between spatial check-in 32 
frequency and the three predictability-related quantities (Figure 7). Here, we are using zip code areas as 33 
our spatial units.  34 

 35 
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1 
Figure 7. Spatial correlation of check-in frequency with the  upper and lower bounds (upper three 2 
subplots) and with the improvement efficiency (lower three subplots) for three investigated datasets 3 
respectively. Each dot in the figure corresponds to one zip code area. 4 

The gray lines in Figure 7 capture the overall functional relationship between the check-in frequency 5 
and predictability. In general, the heavily frequented spatial regions are associated with lower 6 
predictability and better improvement efficiency. Hence, Figure 7 from the spatial perspective reveals 7 
quite similar patterns as that of Figure 5 from the temporal perspective. Therefore, we assume similar 8 
underlying reasons to be effective: the heavily frequented spatial regions also tend to contain complicated 9 
semantics because of the complex functions they typically provide. Hence, the initial prediction accuracy 10 
is low while the efficiency for improvement is quite high.  11 

However, compared with the temporal correlations in Figure 5, Figure 7 distinguishes itself by 12 
showing several noticeable outliers which lie far from the central gray line. These outliers are represented 13 
by triangular dots. In these outlier zip code areas, users are frequently checking in, yet the predictability is 14 
still quite high. Thus, it would be interesting to further investigate these outliers and find out why these 15 
regions do not follow the general trend. Hence, Figure 8 inspects the spatial semantics of the outliers with 16 
respect to their categorical distributions.  17 
 18 

19 
Figure 8. Spatial semantics: probability mass function of the categories of check-in venues in the outlier 20 
regions as highlighted in Figure 7. 21 

Figure 8 shows that, regardless of the outlier category, these outlier regions are dominated by just 22 
one single semantic category each (e.g., Travel and Transport, Arts and Entertainment). Hence, these 23 
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outliers actually confirm our assumptions that were raised earlier: simpler semantics result in higher 1 
initial prediction accuracy while providing lower improvement efficiency.  2 

 3 
Table 1 An overview of the outlier regions. 4 
 City Postal Region Geographic Phenomena Dominant Venue 

1 Chicago 60609 Baseball park US Cellular Field 

2 Chicago 60612 Sports arena United Center 

3 Chicago 60629 Airport Chicago Midway International Airport 

4 Chicago 60666 Airport O’Hare International Airport 

5 Los Angeles 90045 Airport Los Angeles International Airport 

6 New York City 10452 Baseball park Yankee Stadium 

7 New York City 11368 Baseball park Citi Field 

8 New York City 11371 Airport LaGuardia Airport 

9 New York City 11430 Airport John F. Kennedy International Airport 

 5 
When the outlier instances are all mapped back into geographic space, it is found that each outlier 6 

region contains either a large airport or a large sports stadium (see Table 1). The special types of 7 
geographic venues attract huge amount of users meanwhile reducing the diversity of human behavior in 8 
their corresponding localities. Therefore, together with Figure 8, Table 1 shows how tremendously certain 9 
venue types can impact human’s spatiotemporal behavior. 10 

The dominance of some venue types can be regarded as a general phenomenon. For instance, we can 11 
expect international airports to attract an enormous number of check-ins in most cities, even well beyond 12 
our study sites. In contrast, the dominance of some other types of venues might be explicitly local effects; 13 
and can therefore not be generalized to a universal viewpoint as easily. Baseball, for example, is one of 14 
the most popular sports in the United States. Therefore, baseball parks strongly impact human’s 15 
spatiotemporal behavior across this particular country. Compared to New York City, however, the users 16 
in Chicago do also show a great passion on basketball. Therefore the United Center, which is the home to 17 
the Chicago Bulls of the National Basketball Association (NBA), dominates the spatiotemporal behavior 18 
in the corresponding zip code area. Anyway, it seems to be a valid statement that mass events like sports 19 
games should attract a large number of check-ins across the world. 20 

5 Discussion and Conclusions  21 

Researchers working with LBSN datasets are often confronted by themselves or others with doubts 22 
regarding the quality or the potential of their datasets. It is reasonable to be skeptical, indeed. Therefore, 23 
in this article, we investigate one aspect which is governing parts of the quality of LBSN datasets: their 24 
inherent predictability. Knowledge on the predictability can help researchers gaining a deeper 25 
understanding of their working datasets. Further, a more thorough anticipation of prediction algorithms as 26 
well as a more reasonable explanation of results drawn from their application can be made. Additionally, 27 
knowledge on the relationships between the check-in frequencies and the predictability can further hint on 28 
those parts of any algorithm that are worth being tuned in order to improve the quality of the drawn 29 
predictions. Our work therefore contributes such useful but yet missing knowledge about the 30 
predictability of LBSN datasets regarding these two aspects. 31 

In the first part of our work we evaluate the bounds of the predictability by investigating three 32 
exemplary Foursquare datasets. This evaluation is based on the intrinsic amount of information contained 33 
in the respective datasets, as this is linked to the predictive power which a dataset provides. We found that 34 
the predictability of the spatiotemporal behavior attached with Foursquare datasets is bounded to an 35 
interval approximately between 27% and 92% for the three investigated datasets from three US cities 36 
(Chicago, Los Angeles and New York City). This finding is useful with respect to two aspects. On the 37 
one hand, these findings provide a way to assess existing prediction algorithms. An analyst can use the 38 
range mentioned above for comparing any actually achieved performance against it. Doing so allows a 39 
more realistic assessment of the quality of predictions and thus of associated algorithms. On the other 40 
hand, our findings also allow gaining a more comprehensive understanding of the investigated datasets. 41 
That is, we learn something about the informative value a dataset can provide. This includes information 42 
well beyond pure predicting. For instance, the lower bound of 27% does in turn also unveil that a 43 
considerable amount of users must show a regular spatiotemporal behavior. This is promising because it 44 
shows that people seem to at least partially integrate these services into their daily routines. 45 

In the second part of our work we reveal the relationship between the check-in frequencies and the 46 
predictability from the perspectives of the individual, time and space. From the individual perspective it is 47 
found that the predictability is unrelated to individual check-in frequencies. This indicates that all 48 
available users can (and should) be used for making predictions without the need to filter out the less 49 
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active ones. In contrast, from the temporal and spatial perspectives, predictability is found to be 1 
negatively correlated with the check-in frequency. In other words: The downside of the more heavily 2 
frequented time slots and spatial regions is that these come up with more complex temporal or spatial 3 
semantics. It is thus more difficult to achieve good prediction results from these by employing trivial 4 
approaches. Meanwhile, however, these heavily frequented time slots and spatial regions do also provide 5 
the advantage of offering strong leverage effects on the prediction accuracy. Therefore, focusing on these 6 
particular contexts might be a good starting point for more effective improvements of prediction 7 
algorithms. Simply put, these slots and regions provide a lot of room for improvement. However, in some 8 
situations one also encounters peculiar situations that contradict these general rules and might appear as 9 
outliers. Further investigations on these outliers have shown that some extraordinary geographic venue 10 
types, such as airports and sports stadiums, have strong influences on spatiotemporal behaviors and thus 11 
the predictability values. An ad hoc treatment to these geographic phenomena is required in order to 12 
improve the overall quality of prediction algorithms. 13 

In summary, the practical implications of our work are twofold. First of all, we serve analysts and 14 
algorithm designers with information about the extent of the intrinsic predictability that derives from 15 
LBSN datasets. That is, we provide the minimum and maximum possibilities with respect to the 16 
prediction performance in the presence of the predictive power of some specific underlying dataset. We 17 
further hint on the most effective characteristics that analysts should focus on in order to tune the 18 
prediction performance of their algorithms. 19 

This paper focusses on predictions based on the spatiotemporal contextual conditions. Despite the 20 
essential role that the spatiotemporal information is playing in the related research, throughout the 21 
literature one can also find many prediction algorithms with emphases of other kinds of contextual 22 
information. For instance, Cheng et al. (2013) attempted to make predictions based on previously visited 23 
venues. The predictability values determined in the presented paper cannot be directly applied to such 24 
algorithms which are adopting other kinds of contexts. However, the approach of determining 25 
predictability that we proposed is not constrained to certain types of contexts (see, for example, Equation 26 
(6)). Readers might still extend our approach to determine their contextualized version of predictability 27 
measure fitted to their respective needs. It would further be an interesting future research task to assess 28 
the bounds of predictability on the background of interplay between our considered context types and 29 
others like the venues considered by Cheng et al.  30 

In addition, we investigated the variation patterns of predictability from three perspectives: 31 
individuals, time and space. In practice, readers might face more specialized situations and may be 32 
interested in tailoring our proposed approach to their specific needs. In such case, readers can perform 33 
analyses similar to the approach presented in this work from other perspectives, or introduce their own 34 
situation-adapted approach as long as the analysis could provide them useful insight. Nevertheless, our 35 
work contributes to a better understanding of predictability in a rather general sense (i.e. beyond highly 36 
specialized application scenarios). Thus, we believe that the chosen focus on the spatial and temporal 37 
contexts is important for a broad range of studies on spatiotemporal behavior. 38 

Furthermore, in this work, we leveraged the most basic information as provided by LBSN datasets, 39 
which is the spatial and temporal information. However, the LBSN datasets are also accompanied by 40 
some other types of information in the forms of texts, photos, networks, demographics, etc. These kinds 41 
of additional information are much more heterogeneous than the spatial and temporal information, while 42 
their potentials are not yet fully utilized in existing studies. In the future we are very interested in 43 
integrating this information into our research frame, and gain a more thorough understanding of the 44 
dataset.  45 

Finally, in order to put our results into a broader context, we should mention that the 46 
representativeness of the spatiotemporal behavior from LBSNs with respect to the underlying 47 
comprehensive real-world human spatiotemporal behavior still remains mostly unknown to us (Ruths and 48 
Pfeffer 2014). Therefore, the predictability values detected from the LBSN datasets might not be 49 
applicable to the complicated human behavior in reality, just as the predictions drawn from LBSNs. 50 
Nevertheless, since the behavior represented by the dataset undeniably is one part of (contemporary) the 51 
real human behavior, it will definitely inherit some interesting features (e.g., the truncated power law 52 
distribution we have found in user contribution) and can be regarded as kind of a “window” to better 53 
understand the multi-dimensional real-world human spatiotemporal behavior. 54 
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