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Abstract

Computational models that describe complex physical phenomena tend to be

computationally expensive and time consuming. Partial di↵erential equation

(PDE) based models in particular produce spatio-temporal data sets in high di-

mensional output spaces. Repeated calls of computer models to perform tasks

such as sensitivity analysis, uncertainty quantification and design optimiza-

tion can become computationally infeasible as a result. While constructing an

emulator is one solution to approximate the outcome of expensive computer

models, it is not always capable of dealing with high-dimensional data sets.

To deal with high-dimensional data, in this thesis emulation strategies (Gaus-

sian processes (GPs), artificial neural networks (ANNs) and support vector

machines (SVMs)) are combined with linear and non-linear dimensionality re-

duction techniques (kPCA, Isomap and di↵usion maps) to develop e�cient

emulators. For sensitivity analysis (variance based), a probabilistic frame-

work is developed to account for the emulator uncertainty and the method is

extended to multivariate outputs, with a derivation of new semi-analytical re-

sults for performing rapid sensitivity analysis of univariate or multivariate out-

puts. The developed emulators are also used to extend reduced order models

(ROMs) based on proper orthogonal decomposition to parameter-dependent

PDEs, including an extension of the discrete empirical interpolation method

for non-linear problems PDE systems.
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Chapter 1

Introduction and overview of

methodologies

In this chapter the problems under consideration in this thesis are moti-

vated and introduced, and a review of the relevant literature is provided. An

overview of the methodology then follows. Since the methods and techniques

are diverse and numerous, full details of the methods used are provided in the

relevant chapters. In the overview below, details of the chapter and section in

which each method is used are given. At the end of this chapter, the novelty

and contributions of this thesis are made clear and the remainder of the thesis

is summarised.

Modelling is important in many scientific and engineering fields, as it

can aid experiments to lower costs and timescales and/or it can provide funda-

mental insights when experimental observations are not possible, e.g., ab-initio

methods and distributions of quantities such as an electric potential inside a

device. Mathematical models of physical problems usually have the form of

ordinary or partial di↵erential equations with boundary and/or initial condi-

tions. The models can be solved on a computer by using numerical methods

such as finite di↵erence, finite volume and finite element, to provide a dis-

cretised system. The computer model is also known as a simulator or high

fidelity model.

Although a high fidelity model provides (in theory) accurate insights

into the system under examination, it is often too computationally expensive

for studies such as uncertainty and sensitivity analysis, real time control and
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optimisation, i.e., when thousands of repeated calls are necessary for di↵erent

parameter/input choices. In sensitivity and uncertainty analysis, e.g., Monte

Carlo sampling is used to extract statistics of an output from the model, i.e.,

the simulator is run a high number of times and mean values, variances and

so on are estimated from the outputs. If each simulator run takes 10 minutes,

70 days are required for 1000 runs, which is at the lower end for extracting

reliable Monte Carlo estimates (usually 10000 runs are recommended). Thus,

even moderately expensive simulators can be too expensive and alternatives

methods are required, such as fast mathematical approximations of the simu-

lator called surrogate models, emulators or metamodels.

An emulator is an approximation of a high-fidelity computational model

(simulator) that can be evaluated very cheaply [1, 2, 3, 4, 5]. There are roughly

three di↵erent categories of emulators [6]. The simplest approach (hierarchi-

cal) to create an emulator is by simplifying the physical equations governing a

system or the numerical solution. Another (data-driven) approach is by using

supervised learning, where a dataset with inputs and the corresponding out-

puts is given to train the emulator to provide accurate estimates [3, 5, 7]. The

last category is reduced order models, based on projection schemes.

Hierarchical or multi-fidelity surrogate models are based on a simplifi-

cation of the original model, e.g., 2-d vs. 3-d by exploiting a symmetry, or on

relaxing tolerances in the numerical solution, e.g., reducing the element order

or making the grid coarser (successively refining the grid until an ‘acceptable’

accuracy is achieved). This leads in lowering the fidelity of the initial model

[8, 9]. This category of surrogate model has been used extensively in opti-

mization [10, 11, 12, 13]. The need for reduced resolution to make hierarchical

models faster, and at the same time to capture the most important details of

the original model has led to the development of multi-scale models. In these

types of models usually the global equation is being solved in a coarser grid,

while local problems are dealt with in finer grids. Jenny in [14] proposed a mul-

tiscale finite volume scheme where the domain is divided into smaller volumes.

The centres of the volumes are then used to create a dual grid. Multiscale finite

element and volume methods are not always more computationally feasible,

but they o↵er better parallelization. Methods such as multigrid [15] and adap-

tive mesh refinement [16] allow interpolation techniques to be used on multiple
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scales at the same domain.

Data-driven surrogate models are based on machine learning algorithms

such as artificial neural networks (ANNs) [17, 18], Gaussian process (GP) or

‘Kriging’ models [19, 20], support and relevance vector machines [21], and ra-

dial basis functions [22], applied to a data set provided by a simulator. These

techniques are used to find the map between the inputs and the outputs of the

model. In [23] a feedforward neural network was used to estimate the remain-

ing life of a Lithium-Ion battery. Bicer et al. [24] used an ANN with di↵erent

training methods to model a proton exchange membrane fuel cell. Sainath et

al. [25] proposed a low rank factorization for deep learning in the last weight

layer to reduce the number of parameters of a network trained with a high

number of output targets. GP models o↵er several advantages over ANNs and

other methods, especially for limited data, and for problems in which error es-

timates in the predictions are necessary or desirable. Extending GP models to

multi-output problems is, however, not straightforward, in contrast to ANNs.

This is discussed in detail in the next section.

The last category of the emulators is the Reduced Order Models (ROMs)

which are based on reducing the dimensionality of a problem by Galerkin pro-

jection onto a lower dimensional space. This space is a subspace of the original

output space, and the methods di↵er mainly in how this space is selected, i.e.,

the basis used for the low-dimensional subspace. The dimension of the sub-

space (number of basis vectors) is kept low to ensure e↵ective dimensionality

reduction. Examples include proper orthogonal decomposition (POD) [26]

and modal analysis [27]. ROMs and surrogate models in general are becoming

indispensable in many areas and applications such as optimization, predic-

tive control uncertainty quantification and sensitivity analysis where real-time

model evaluations are needed. In practice, a high-dimensional dataset pro-

duced by a high-fidelity model with many degrees of freedom, can be replaced

by a low dimensional surrogate that contains most of the variance of the vari-

ables. Ghommem et al. [28] developed a combination of a generalized finite

element method and mode decomposition to reduce the model dimensionality

of flows in porous media. To achieve this they discritised the domain using a

finite element method and then used POD and dynamic mode decomposition.

Willcox et al. [29] proposed a model order reduction method based on Fourier
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series. The coe�cients of the discrete Fourier were computed and used to

form a ROM. Their technique provides accurate and stable results, although

its main drawback is the limitation to linear problems. Lieberman [30] used a

greedy algorithm to build a reduced order model for the parameters.

1.1 High dimensional problems

This thesis is focused on emulating outputs of very high dimensionality, pro-

duced by parametrized partial di↵erential equation models. The dimension

of the output is based on the spatial grid where the quantity of interest is

evaluated. In many cases, when a fine grid is needed in a model, the degree of

the output dimensionality can end being very high. The emulation of outputs

having such a dimensionality is challenging due to the computational power

needed.

One of the most common approaches is to use GP emulation in which

the output of the model is treated as a GP [4, 31, 32, 33]. To extend the GP

emulation for multi-outputs, Kennedy [19] used the output as an additional

input parameter although, this can be used only for small grids for low number

of training points [34]. A mutli-dimensional prior was placed over the outputs

by Conti [35] under the assumption of seperability of the covariance structure

leading to the linear model of coregionalization [36]. This approach is com-

putationally feasible however it is based on an assumption that is not always

true. A further development of this method can be found in [37, 38, 39].

Lawrence in [40] introduced an extension of PCA called dual proba-

bilistic PCA, where the linear mappings can become nonlinear by using a

kernel trick with GPs. This leads to Gaussian process latent variable models

(GPLVMs), where instead of marginalising the latent variables for the param-

eter optimisation, the parameters are marginalized and the latent variables are

optimised. In an alternative approach also based on latent variables, Alvarez

and Lawrence in [41] suggested a convolved GP to deal with multi-output

models. The main idea behind their approach is the expression of each output

as a convolution between a smoothing kernel and a latent function which has

been drawn from a Gaussian process. This means that the outputs could be

expressed as jointly Gaussian processes and can be used to model multi-output

4



problems. Damianou and Lawrence [42] proposed deep GP models where the

layers of a deep network are modelled as GPs and fed to subsequent layers.

Their approach leads to learning complex relationships in the data which can

be used in unsupervised and semi-supervised learning.

Higdon et al. [43] proposed GP emulation based on dimensionality re-

duction (PCA) where the coe�cients are independent and uncorrelated. An

alternative scheme was used by Bayarri et al. in [44] based on wavelet decom-

position. The above mentioned techniques are based on linear dimensionality

reduction which will fail on output spaces with high curvatures as will hap-

pen with all linear techniques such as multidimensional scaling and canonical

correlations analysis.

Another alternative is the use of reduced order modeling for emulating

models of partial di↵erential equations [45, 46, 47, 48] which is based on the

projection of the initial system of partial di↵erential equations to a reduced

dimensional subspace. To achieve this, a numerical method such as finite

volume or finite element has to be used to calculate the basis of the POD in

order to get the snapshots of the simulator. Reduced order modeling provides

an insight into the physical properties of the model under consideration and

at the same time a methodological estimation of the errors [48, 49, 50].

Due to the limitation of the linear methods in high-dimensional output

spaces with high curvatures, this thesis extends Higdon’s method [43] by us-

ing manifold learning techniques to deal with this nonlinearities. Kernel PCA

and di↵usion maps are combined with GPs, neural networks and support vec-

tor machines to develop e�cient emulators to overcome the aforementioned

challenges

1.2 Machine learning

Machine learning merges elements from computer science, mathematics, statis-

tics and even biology and neuroscience to detect patterns in data. The aim is

to train a machine to learn from data and find hidden structures and patterns

in it, in order to make predictions about unseen data and make decisions un-

der uncertainty. Machine learning can be used in many fields such as speech

recognition, computer vision and control robotics and in general in classifica-
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tion and regression tasks. The di↵erence between those two is that the output

of the former is categorical while for the latter is continuous. In this thesis

machine learning algorithms were used for regression problems.

1.2.1 Types of learning

• Supervised learning: A training set D is provided which contains the

inputs x
i

, i = 1, ..., N and the corresponding targets t
i

. The algorithm

learns to generalise and make predictions of unseen cases. The input x
i

usually is a D dimensional vector of numbers and the targets t
i

consist

of real values (regression) or is categorical (classification).

• Unsupervised learning: In this type of learning the correct outputs are

not provided, so the algorithm tries to find similarities (patterns) of the

inputs x

i

(categorization). This is not a well defined problem as there

is no metric system i.e. loss function to compare the targets t from

the data D = {x
i

, t
i

} with the output of a model (y). In unsupervised

learning the aim can be seen as a density estimation goal, where a model

is developed in the form of p(x
i

|✓) instead of p(y
i

|x,✓), where p is the

probability, x
i

is the input, y
i

is the output of the model and ✓ is the

hyperparameters. This means that unsupervised is unconditional density

estimation while supervised is conditional [51].

• Semi-supervised or reinforcement learning: Lies in between supervised

(labeled data) and unsupervised (unlabeled data) where a small amount

of labeled data is used in conjunction with unlabeled could improve the

accuracy of the model.

1.2.1.1 Neural Networks

Artificial neural networks or simply neural networks (NN) are inspired from the

way the human brain works. The human brain can be seen as very complex,

nonlinear computer that receives and process informations. It has the ability

of organising its simple component structures known as neurons to perform

many complicated tasks. A NN tries to mimic the human brain in identifying

patterns, processing data and making predictions of unseen values. Due to this
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connection with the human brain they were firstly used in biological systems

[52, 53, 54, 55]. NN is a network of interconnected neurons via weights that

learn from the data. Neurons are the basic elements of an ANN as they provide

local data processing. They are arranged in layers where the first layer is the

input layer and the last is the output layer. In between, there is one or more

hidden layers of neurons. In most NN such the one used in this thesis, the

information is propagated only in one direction (feed-forward NN), meaning

from the input to the output layer while there is no connetions between the

neurons of the same layer. Each layer of neurons is acts as an input for the

next layer of neurons. To be activated each neuron has an activation function.

This function acts on a weighted combination of the inputs from each neuron

to which the neuron in question is connected. The output becomes the input

to neurons in subsequent layers. Each weight expresses information used by

the net to solve a problem while each neuron has an activation function that

is the received signal from the previous neuron.

Due to the flexibility of using di↵erent numbers of neurons and layers in

ANN there are di↵erent architectures. In general, three main architectures can

be identified. A single-layer feed-forward network is the simplest architecture

of a NN that contains the input layer where data is fed and propagates to

last layer which is the output. In between there is only one hidden layer of

neurons. The second category is multilayer feed-forward networks where more

than one hidden layer of neurons exist between the input and the output.

Using more layers leads to a subcategory of neural networks known as deep

NN [56, 57]. The concept in deep learning NN is the same as in multilayer-

feedforward networks. The term hidden layers and neurons cites the fact of

not being directly connected to the input or the output layer. By adding more

layers into a NN it can extract higher order statistics from the input layer. The

input layer provides the information to the second layer (first hidden layer)

which based on the activation function of the neurons propagates the output

of the layer to the next layer. The output layer provides the response of all

the network to the activation pattern of the input layer. The last category is

recurrent networks which are di↵erent than the previous two mentioned before.

In the aforementioned categories the information from the input layer to the

output is transferred only in one way, forward. In recurrent NN sthere is at
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least one feedback loop. It can be said that is this case neurons have their own

internal memory on what it has been computed so far. So, neurons have as

input not only the example they see at the time but also the example of the

previous evaluation. The main issue of recurrent neural networks is that is not

easy to train them. This issue comes from the vanishing and exploding gradient

problem. While during the forward pass the information is passing through a

”squishing” function (e.g. sigmoid) preventing the so called explosion of the

gradient. Although, the backward pass is linear due to the gradient calculation

of the forward pass. This leads to an issue on training RNN with multiple

layers. This thesis deals with multilayer feedforward networks as they are

faster and more accurate at least for the problems that are being solved here.

The main advantage of an ANN is that it can perform di↵erent tasks

such as prediction and pattern recognition. It can be used in complex nonlinear

regression and classification problems with the accuracy that is desired in each

case.

1.2.1.2 Gaussian Processes

In Gaussian processes a prior distribution is placed over the function having the

form of a GP that maps the input to the output space, hence the function is a

random variable. At di↵erent input points the joint distribution of the function

at the selected points is multivariate Gaussian [58]. A GP is described by its

mean and covariance function. When modelling using GPs in the covariance

function exist unknown hyper-parameters which provide the specification of

the model and their value is computed through the GP emulation. In most

cases the mean is chosen to be zero which can achieved by centering the data.

This is the prior knowledge held about on the model without taking into

consideration the dataset and it will update as the data are fed to the model.

There are several covariance functions that could be used in GPs such as

rational quadratic, Ornstein-Uhlenbeck and squared exponential which is also

used in this thesis. A GP can also be seen through a Bayesian framework,

where a prior distribution is placed over the function that maps the inputs

and output and contains the prior belief of the model. Using the dataset

better prediction can be made in order to find the posterior distribution. To

calculate the posterior, the probability distribution of the data given the hyper-

8



parameters (likelihood) has to be evaluated first. Although, the values of the

hyper-parameters are unknown and have to be estimated. The estimation

of the hyper-parameters can be done by incorporating maximum likelihood

estimation where a uniform distribution is assumed over the hyper-parameters

and by applying Bayes’ theorem to get the probability of the hyper-parameters

given the target outputs. By maximizing the probability of the target given

the hyperparameters an estimation of the hyperparameters can be obtained

from maximum a posteriori (MAP) estimation methods.

1.2.1.3 Support Vector Machines

Support vector machines (SVM) is another supervised machine learning tech-

nique that is used for both regression and classification tasks. SVMs intro-

duced by Vapnik [59] and later on Boser [60] applied the kernel trick to make

them able to deal with non-linear problems. Having a dataset consisting of

inputs and the corresponding output for each design point and assuming a

linear function that maps the input and the output, SVM has as target to

solve a convex optimization problem. The optization problem can be defined

as: given an error precision, find a map of the inputs such that its deviation is

not greater than the error for its training point and at the same time is as flat

as possible, although, such a solution is not always feasible. To overcome this

barrier a ”soft margin” loss function can be employed which involves slack vari-

ables. The resulting formulation can be solved by constructing a Lagrangian

function which leads to a dual optimization problem. Taking into account the

Karush-Kuhn-Tucker (KKT) conditions the support vectors can be computed.

1.2.2 Dimensionality Reduction

In many scientific fields there is a dependance on dealing with high-dimensional

data which raises the need of dimensionality reduction. These high-dimensional

data in most cases can be reduced in a lower dimensional space where it is eas-

ier to visualize and analyze them without significant loss of the information

contained of them. In most cases the data cannot be described by a linear

function, hence linear DR techniques will fail. This led to the development

of nonlinear techniques such as kPCA, Isomap and di↵usion maps. In this
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section an overview of the techniques used in this thesis is provided, and a full

explanation of each technique is given in the relevant chapters.

1.2.2.1 Linear Dimensionality Reduction

1.2.2.1.1 Principal component analysis: One of the most used linear

dimensionality reduction techniques is the principal component analysis (PCA)

and it is applied in many di↵erent areas such as the finance sector (risk man-

agement of interest rate derivatives portfolios), engineering (image processing,

denoising) and neuroscience. It is e↵ective especially when data lie on a linear

subspace. Assuming a dataset of inputs and the corresponding outputs, the

target of PCA is to find a low dimensional linear subspace of the ambient

space, which is spanned by a basis vector in a way that as much variance of

the original data is retained. This subspace is defined of mutually orthogonal

axes which are also known as principal components. Having the empirical co-

variance matrix the eigenvectors of the data can be extracted from it. Using

the eigenvectors a new basis can be computed on which the projections of the

original data lie.

1.2.2.1.2 Multidimensional scaling Another linear dimensionality re-

duction technique similar to PCA is multidimensional scaling MDS. Classical

MDS was first developed by Torgerson [61] as a method to capture the mapping

of data points residing on a the Euclidean space. In [62] MDS was generalized

to capture dissimilarities between the data points. The main idea behind MDS

is having a dataset consisting of inputs and outputs to minimize a cost function

that contains the Euclidian distances between all the training points. This op-

timization task is solved by using an eigenproblem. The resulting eigenvalues

are adjusted in increasing order and the eigenvectors are centered. The first

eigenvectors are used to project the data in the low dimensional space.

1.2.2.2 Manifold Learning/Non-linear Dimensionality Reduction

1.2.2.2.1 Kernel PCA The main idea behind kPCA is that instead of us-

ing PCA in the original space where the data may su↵er from high curvatures,

PCA can be performed in a high dimensional feature space where the mapped
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points reside on a linear space, although, mapping to a higher dimensional

space leads to a increased computational cost. To overcome this barrier, the

kernel trick has to be used meaning that the inner product of two points in the

feature space is given by a kernel function. Assuming a dataset of inputs and

the corresponding outputs instead of using the covariance function to perform

the standard PCA, the eigenvalue problem is solved for a kernel matrix. The

right selection of the kernel function depends on the prior knowledge of the

given data.

1.2.2.2.2 Isomap Isomap is an extension of the MDS method that is able

to handle nonlinearities in data with high curvatures. This can be achieved

by using geodesic rather than euclidean distances. For neighbouring data

points the Euclidean distances can be used while for data points that are

far-away from each other the geodesic distances has to be approximated by

a shortest path distance. In the original Isomap it can be calculated from

Dijkstra’s [63] and Floyd’s [64] algorithms. The first step in Isomap is the

determination of the neighbour points based on Euclidean distances. The

simplest approach is the connection of each point with the rest of them that

lie on a fixed radius or the connection of a number of the closest points. The

next step is the construction of the dissimilarity matrix where the distances

between points close to each other are Euclidean while for non-neighbouring

points the distance is computed as the shortest path through neighbouring

points. The final step is the application of the MDS method on the kernel

matrix to obtain the representations of the data. A connection of kPCA and

Isomap can be found in [65, 66]. Moreover, Choi et. al. [66] proposed a variant

known as kernel Isomap to overcome the limitation of the non guaranteed

positive definite kernel matrix where Kronecker delta function is introduced

in the dissimilarity matrix.

1.2.2.2.3 Di↵usion maps In di↵usion maps the data points are mapped

in a subset called di↵usion space and from that the reduced order approxima-

tion can be calculated. The aim is to preserve the di↵usion distances between

the points of the original space to the di↵usion space. In di↵usion maps the

data points are identified as nodes on a graph, while a positive definite kernel
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is constructed to form a Markov chain and also to define the edge weights. A

di↵usion process [67] has to be built on the graph and the kernel matrix has

to be normalized to construct a degree matrix and then the di↵usion matrix.

The di↵usion map maps the original data into another dimensional space by

preserving the di↵usion distances.

1.2.3 Reduced Order Modelling

Model reduction of linear and non parametric problems have been used for

many years now, although, parametric order reduction is still a challenging

area to be explored. Parametric order reduction focuses on systems where

their governing equations hinge on a set of parameters. The aim is to cre-

ate an accurate metamodel that describes the system behaviour for di↵erent

values of parameters. Dynamical systems are the basic scheme in many sci-

entific areas where modelling is needed to describe of complex systems such

as fluid dynamics, signal processing, electrical and mechanical systems etc.

These complex underlying phenomena are being modelled by using numerical

methods and based on the details they include resulting in high dimensional

complex models. Running simulations on these kind of high dimensional data

usually is computationally expensive leading to the need of metamodels to

evaluate fast and accurate the high resolution data to a lower dimensional

space.

In most fields the problems under consideration are described by PDEs

which in most cases are complex to be solved. Projection methods try to min-

imize this complexity by projecting these equation onto a lower dimensional

space spanned by a set of basis vectors. There are several approaches for

dimensionality reduction such as truncated balanced realization [68], Krylov

subspace methods [69] and the most widely used method proper orthogonal

decomposition (POD).

A reduced order model is basically a Galerkin projection for the original

high dimensional space (produced by the simulator also known as full order

model) to a lower dimensional space by forming a basis that retains most

of the information. Applying Galerkin projection on PDE problems leads to

the final form of an algebraic system for steady state models or in the case of
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dynamical models in an ODE system. The basis of the ROM can be calculated

by balanced truncation[70], Krylov subspace method [71] and POD [72, 26],

although, balanced truncation and Krylov method are e�cient for use in linear

problems or problems where non-linearities are not severe [73].

The main idea of POD is that the time response of a system given the

inputs, restrain the main behaviour of the system. These outputs which also

called snapshots have to be calculated first by using the full order model (sim-

ulator). The snapshots describe the system’s state at a specific time and can

be written as a matrix W 2 RN⇥K where N is the total number of snapshots

and K is the total number of variables in each snapshot.

Performing POD in nonlinear parametric PDEs is challenging due to:

• The valid basis construction over the parameter space

• High dimensional spaces

• Sparse data use

• E�cient computation of reduced order system matrices and nonlineari-

ties when using the emulator.

To overcome the nonlinearities and to embody the parametric reliance

several solutions have been proposed:

• Use of a global basis capturing the whole parameter space

• Interpolation of the local basis

• Interpolation of the local system matrices

POD has been used to reduce the dimensionality in many linear systems

or systems with a�ne parametric depences [74]. Nguyen and Peraire [75] men-

tioned the problem that arises when using the standard Galerkin projection

method in high dimensional data due to the computation of the inner products

required to evaluate the weak form of the nonlinearities (in a finite elements

framework) and suggested the best-points interpolation method in order to

find optimal interpolation points. Constructing ROMs for parametrised, non-

linear problems is still a challenging area and the following have to be consid-

ered: 1) the structure of a reliable basis for the whole parameter space which
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most of the times is high dimensional and 2) the computation of the reduced

order matrices and non-linearities. There are di↵erent schemes to introduce

parametric dependence in the model such as the use of a global basis over the

parameter space, the interpolation of a local basis and for the construction

of parametrized ROMs, the construction of local ROMs before the interpola-

tion of these ROMs. In [76] Baur et. al. suggested a tangential interpola-

tion method for the computation of the basis. A Moment-matching technique

has be used for a single parameter case reduced order model in [77, 78] and

extended for the two parameter case in [79]. Meier and Luenberger in [80]

proposed an optimal selection strategy for expansion points and tangential

direction. Gugerkin et. al. [81] improved the above mentioned technique by

introducing the iterative rational Krylov algorithm that fixes the interpolation

points and direction using successive substitution until an optimal point has

been reached. Everson and Sirovich [82] proposed the gappy-POD for data

that are not complete (missing elements from the dataset) and applied it on

face recognition. The idea behind this extension of POD is in every iteration

the dataset is checked for missing values. In this case an initial value is given

based on point-wise mean of all snapshots at that point.

An empirical interpolation method (EIM) has been proposed by Bar-

rault et.al. [83] and used for the approximation of parametric non-linear func-

tion by separable interpolants. Discretization schemes applied in EIM and

used as an empirical interpolation operator [84, 85, 86] and later on as Dis-

crete Empirical Interpolation (DEIM) [87, 88]. The main idea behind EIM

and its discrete version is to replace the Galerkin projection with a computa-

tionaly e�cient interpolation projection of the non-linear terms of a system.

The Gauss-Newton approximation tensors (GNAT) technique was proposed by

Carlberg in [89] which is a Petrov-Galerkin projection connected with residual

minimization on spatio-temporal discretised PDEs and satisfies the consistency

and discrete-optimality conditions.

1.2.4 Sensitivity Analysis

Lowering the time cost of simulations by identifying the most influential pa-

rameters and studying their e↵ects is an e↵ective precursor to tasks such as
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design optimization and uncertainty quantification. This process is referred to

as sensitivity analysis (SA) [90, 91, 92].

SA methods can be categorized in di↵erent ways. In quantitative SA

the influence of a parameter (usually referred to as factor after grouping to-

gether all parameters in the form of a vector called the input) is assigned

(reproducibly) a number called a sensitivity index or importance measure. In

qualitative SA, sensitivity is determined though inspection of the outputs, per-

haps employing visualization tools such as scatter plots [93]. In local SA, the

output variability is studied by perturbing an input around a nominal (base)

value, while methods that attempt to measure the output variability across

the entire input space are termed global . For small variations in the inputs

local methods may be more computationally e�cient. In many cases involving

complex nonlinear models, however, local SA methods are inadequate.

Another way to categorize SA is based on the sampling method: one-

at-a-time (OAT) and all-at-a-time (AAT). In all but the simplest of cases

sensitivity indices must be approximated numerically based on a sample of

the inputs (sampling-based SA), together with the corresponding outputs. In

OAT sampling, output variations are measured by varying one input factor at

a time, while in AAT sampling all input factors are varied using factorial or

fractional factorial methods, which takes into account the joint influences of

factors due to correlations, but comes at the cost of a high number of input

samples in order to achieve accurate results. In local SA, OAT sampling is

employed, while AAT is used in most global SA methods.

In this thesis two di↵erent global approaches of SA were used, the el-

ementary e↵ect test (EET) and variance based sensitivity analysis (VBSA).

The main di↵erence between EET and VBSA is that the former is based on

the OAT sampling while the latter on the AAT. The simplest approach of

SA is to estimate the derivative around a nominal point of the input space.

This partial derivative can be approximated by using finite di↵erence meth-

ods. Although, this method does not provide any insight of the dependance

between di↵erent inputs. An extension of the local SA is to use multiple nomi-

nal points to perform global SA (elementary e↵ect test) as proposed by Morris

in [94]. The EET method is fully described in subsection 3.1.1. The second

SA method used in this thesis is the variance based SA, which is based on
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the AAT sampling strategy. In VBSA the inputs are treated as stochastic

variables leading to a probability distribution over the outputs. There are two

sensitivity indices in VBSA as a measure of the contribution of each input and

the interactions between all the inputs, the first order sensitivity index and

the total e↵ect index respectively. Details of the derivation of both sensitivity

indices are given in subsection 3.1.2. The main advantage of using VBSA is

that can be combined with the bayesian GP emulation to model high dimen-

sional outputs embedded with probability distribution, which means that the

statistics of the distribution can be extracted by using Monte Carlo sampling.

1.2.5 Design of experiments

For the techniques mentioned above, a crucial part that has to be taken into

consideration is the design of experiments (DOE). The dataset that is used in

order to build an emulator with high accuracy must contain adequate infor-

mation for the inputs and the outputs. The dataset is created by using the

simulator at di↵erent inputs, which is also known as design points, to get the

corresponding outputs. To cover the whole input space and obtain the results

at di↵erent points the design of experiments method has to be used [95]. The

choice of the method for design of experiments is based on the problem under

study and there is not a universal best method. In this thesis latin-hypercube

and sobol sequence methods have been used. The former, proposed by McKay

[96], is a statistical method that produces random samples from a multidimen-

sional distribution while the latter belongs to quasi-random low-discrepancy

sequences proposed by Sobol [97]. Both methods considered that they provide

the best coverage of the input space based on [95]. Latin hypercube has been

used in chapter 3 to select the design points for the SA techniques and Sobol’s

sequence was used to select the training points for the emulators used in each

chapter.

1.2.6 Numerical Methods for Partial Di↵erential Equa-

tions

As mentioned earlier, nowadays in many fields the models that have to be de-

veloped in order to describe a physical phenomenon are mostly nonlinear. This
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means that the governing equations of the system are nonlinear and described

by partial di↵erential equations. Moreover, PDEs are generally categorized

based on the order of their highest derivative and also can be classified into

three main categories, elliptic which arises from di↵usion processes, parabolic

which can be seen as a transition between elliptic and hyperbolic PDEs such

as time dependent di↵usion problems, and hyperbolic which involves disconti-

nuities arising for example from shock waves. In most cases PDEs are di�cult

to solve based on only one universal method. The three main methods being

used to solve non-linear partial di↵erential equations are: the finite di↵erence

method, the finite volume method and the finite element method. All three

methods are described in this subchapter. There are also spectral methods

although they are beyond the scope of this thesis [98][99].

Finite di↵erence, volume and element methods have some common steps

for solving PDEs. The first step is to partition the spatial domain of the prob-

lem into smaller domains also know as the mesh. The next step is the approxi-

mation of partial di↵erential equation by using spatio-temporal discretization.

The final step is to solve the nonlinear or linear system of algebraic equations

at the specific selected points of the second step. The main di↵erence in the

afore mentioned methods is that in finite di↵erence the system equations are

solved in their strong form (directly), while in finite volume and finite element

the use of the weak form of the equations is needed, meaning that the equa-

tions are being integrated first. The advantages of using the weak form are the

reduction of continuity requirements on the basis functions and the Neumann

boundary conditions come naturally. Moreover, finite volume and finite ele-

ments give some freedom on constructing the mesh (e.g. shape of the elements

in FEM). In this section, the numerical methods are briefly explained, more

details of the numerical methods used in this thesis are fully described in the

appendix A.

1.2.6.1 Finite Di↵erence (FD)

Having a function of one spatial variable, the finite di↵erence method considers

that the partial derivative of any point on the grid can be approximated by the

values of the variable at neighbour points. This can be done by using the Tay-

lor’s expansion on a selected grid point. Another option is to use polynomial
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interpolation or quadratic approximations of the function over the grid and

then to di↵erentiate. When dealing with continuous PDEs, a discretisation

has to take place first of the spatial field, and then the approximation of the

first order derivative can be approximated by the forward or backwards dif-

ference scheme using the Taylor’s expansion. The use of the above mentioned

schemes on each term of the PDE leads to a dynamical system. Next, the FD

formulation is applied on the temporal derivative (time marching) to obtain

the final approximations of the PDE. More details cane be found in section

A1.1.1

1.2.6.2 Finite Volume (FVM)

The FVM is one of the most used numerical methods in fields such fluid dynam-

ics, finance, image processing etc, due to its flexibility in creating unstructured

mesh without the need of stabilization schemes while at the same time it o↵ers

good conservation of mass, momentum and energy. The first step in the FVM

is the partition of the domain into a finite number of control volumes where

their union forms the initial domain. These volumes form the mesh which can

be regular or sometimes unstructured and define the boundaries of them. For

each cell the governing equation is integrated to obtain an algebraic equation

system. In the simplest approach, the integral is approximated for the central

point of the cell. Then the system is solved to calculate the values of the

output at the discrete point.

1.2.6.3 Finite Element Method (FEM)

In FEM the domain is divided in smaller subdomains that create a mesh. The

initial step is the derivation of the so called weak form of the PDE, which has

also to satisfy the condition of the original/strong form. To derive the weak

form of the PDE, the strong form is multiplied by a test function and then it is

integrated over the domain. The choice of the test function is based in a way

that is being cancelled on the Dirichlet boundary. Next, the discretization of

the domain into subdomains is taking part which called elements and usually

are triangular. Connected to elements are nodes which could appear in the

interior, the edges or even the vertices of the element. Each node is a�liated to

18



a basis function (usually piecewise polynomials) which is nonzero if it is a part

of the element otherwise is zero. Then, the dependent variable is approximated

for each element concluding to a system of algebraic equations or ODEs.

1.2.7 Thesis Contribution

In this thesis ANNs, GPs and SVM for regression are combined with dimen-

sionality reduction techniques to find the mapping of inputs and the output

which lie on high dimensional spaces and applied in spatiotemporal data pro-

duced by a simulator (computer model). As can be seen in chapter 2, Neural

Network models are multilateral and can learn quickly. In comparison to Gaus-

sian Process Emulators, they can learn the various coe�cients of the reduced

order basis at the same time leading in learning multiple outputs and finding

the correlation between them. In order to improve generalisation of the NN

and avoid the use of cross-validation, a Bayesian regularization scheme was

used meaning that a prior Gaussian distribution was placed over the weights

during the training phase. More details can be found in subsection 2.1.4. The

emulators are combined with manifold learning techniques such as Isomap,

kernel principal component analysis (kPCA) and di↵usion maps. The chal-

lenge in manifold learning is to find the inverse mapping also known as the

pre-image problem. A novel and fast approach to the pre-image problem is

introduced based on linear algebra avoiding the usual issues encountered such

as local minima pitfalls and initial conditions.

In the reduced order modelling part, The POD method has been ex-

tended and applied in dynamic, parametric dependent, linear and nonlinear

partial di↵erential equations, in order to approximate the basis of new param-

eters values. In this extended POD method, which has the capability of being

used with methods such empirical interpolation method (EIM), discrete em-

pirical interpolation method (DEIM) greedy algorithms etc. to find the basis

the method of snapshots was used in the place of the direct approximations of

the system matrices. To e�ciently approximate the snapshots, which usually

lie in high dimensional spaces, the manifold learning techniques described in

section 1.2.2.2 have been used. DEIM was used to deal with the nonlinearities

for the approximation of snapshots at the desired location points (design of
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experiments) of the parameter space. The above described method is then

applied to a 2D linear convection-di↵usion problem approximated using finite

volume (subsection 4.3.1), where the stochastic input is the velocity field. A

second application of the method was performed on a nonlinear 1D Burger’s

equation descritised by the finite element method subsection 4.3.2.

When the underlying problem is represented by a system of parameter-

ized steady-state or time-dependent partial di↵erential equations (PDEs), the

simulator outputs are spatial or spatio-temporal fields (e.g. velocity, pressure,

temperature), which are functions of multiple input parameters. The outputs

of interest could include one or more scalar/vector fields or the time evolu-

tion of a scalar quantity. For a single scalar quantity, the simulator can be

represented as a function ⌘⌘⌘ : X ! Rd, taking as inputs x 2 X ⇢ Rl and gener-

ating outputs y 2 Rd. The outputs are the vectorized field variable values at

d discrete points in a spatial domain or time interval. Very few studies have

focused on the emulation of such simulators, which poses enormous challenges

in terms of computational e�ciency. For even moderately coarse spatial dis-

cretizations, e.g., a 100⇥ 100⇥ 100 grid in R3, the value of d is very large. In

problems involving complex geometries or multiple spatial scales, a much finer

grid may be required to adequately resolve small-scale characteristics.

1.2.8 Thesis Outline

In chapter 1 a literature review and an overview of the techniques used in

this thesis have been presented. In chapter 2 an emulator based on ANN

combined with linear and nonlinear dimensionality reduction techniques is

presented in order to emulate high dimensional spatiotemporal data. The

emulator was tested on a model of electromagnetic propagation. The results

were also compared to the GPE approach. The network was trained using a

bayesian approach based on bayesian regularization. The DR techniques used

with the NN are the Isomap and kPCA which are fully explained in section

2.1.1.

In chapter 3, a GP emulator was used to perform a probabilistic sen-

sitivity analysis of high dimensional output data with applications to lithium

ion batteries. Computer aided design and analysis is an important tool in the
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development and testing of battery systems. Full battery models are highly

complex, which impedes their application to tasks such as optimization and

uncertainty analysis. Sensitivity analysis (SA) is an e↵ective method for iden-

tifying the most important parameters in a model (lowering the computa-

tional burden in other tasks of design and analysis), but SA can also involve

a prohibitive time cost, which has motivated the use of emulators. For high-

dimensional output problems, emulators must themselves be computationally

feasible. In this chapter a probabilistic framework for SA of high-dimensional-

output battery models is developed using a Gaussian process emulator based

on dimension reduction in the form of principal component analysis. This

allows the performance of SA under uncertainty for multi-output problems,

providing error bounds for the emulator-based prediction of sensitivity mea-

sures. It is shown how this can be achieved using Monte Carlo sampling or

possibly by using semi-analytical expressions with highly e�cient sampling.

Moreover, SA can be performed for multivariate outputs by ranking the sen-

sitivity measures related to the principal coe�cients.

In chapter 4 a reduced order modelling approach is presented based

on the POD technique which is applied on linear and nonlinear parameter

dependent PDEs. An extension of the DEIM technique is explained in order

to deal with nonlinearities. Two examples are provided for comparison to the

classic global basis approach.

The Di↵usion map is explained in subsection 5.2.1 and kernel PCA in

subsection 2.1.1. In chapter 5 they are combined with a GPE to deal with high

dimensional data. A new approximation of the inverse-mapping for di↵usion

maps and kPCA is also presented in section 5.5. In the same chapter two

more emulation methods (ANN and SVM) are used to compare the results to

Higdon’s method.

1.3 Concluding remarks

In this chapter the motivation and problems under consideration were intro-

duced. A definition for the simulator and the emulator was given and made the

classification of its categories. Also, the main advantages of using an emulator

for high dimensional data were outlined. Moreover, the main categories of
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machine learning (supervised, unsupervised and reinforcement learning) were

presented. The emulators used in this thesis were also briefly discussed and

are thoroughly introduced in its chapter. Linear and non-linear dimensionality

reduction methods explained and the main idea of combining these techniques

with the emulators was given.

Furthermore, the advantages of using sensitivity analysis techniques

with emulators were introduced followed the need of design of experiments

during the building stage when constructing an emulator. Also, the numerical

methods used throughout this thesis for the discretization of partial di↵erential

equations were discussed.
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Chapter 2

Neural Network based

emulation of high dimensional

spatio-temporal data combined

with linear and non-linear

dimensionality reduction

techniques

In this chapter, linear and non linear dimensionality reduction techniques are

combined with feed-forward neural networks to build an e�cient emulator

for high spatiotemporal data and applied on an electromagnetic application.

An ANN has the advantage of being able to learn multiple coe�cients of

the reduced basis meaning that are able to capture e�ciently correlation of

the outputs, although their main drawback is su↵ering from overfitting. To

address this issue, in this chapter the Bayesian Regularization (BR) learning

technique has been used (i.e placing a prior over the weight vector) instead of

using cross-validation.

This chapter is based on [100]: V Triantafyllidis, W Xing, AA Shah,

PB Nair, Neural Network Emulation of Spatio-temporal Data Using Linear

and Nonlinear Dimensionality Reduction in Advanced Computer and Com-
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munication Engineering Technology pp 1015-1029, Lecture Notes in Electrical

Engineering, 2016
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Abbreviations

⌘⌘⌘ representation of computer model as a function

⇠ input vector

y output of the computer model

w
i

PCA basis

z(j)
i

uncorrelated coe�cients of the basis

r number of most dominant basis vectors

D dissimilarity matrix

�
ij

Euclidean distances between points i and j

K Centred kernel matrix

⇤⇤⇤ eigenvalues matrix

V eigenvectors matrix

CF sample covariance matrix in F

E
D

network square error

↵ inverse variance of the zero-mean Gaussian noise

� inverse variance of the weights
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a vector of network weights

D the dataset

M ANN model

N total number of parameters in the model

m number of training points

HMP Hessian matrix

N
n

number of neighbour points

E
z

electric field in the transversal direction z

n refractive index

k0 free space wave number

bn unit normal

b width of rectangular sections of waveguide

! angular frequency of the incident wave

c speed of light

f frequency

✓ angle of incidence

✏ permittivity of air

µ permeability of air

� conductivity of air
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2.1 Emulation of spatio-temporal data sets

An emulator provides a probability distribution for the outputs of a computer

model. The computer model is represented as a function ⌘⌘⌘ : X ! Rd, taking

as inputs (or parameters) ⇠ 2 X ⇢ Rl and generating outputs y = ⌘⌘⌘(⇠) 2 O ⇢
Rd. The emulator is trained using m computer model outputs y(i) = ⌘⌘⌘(⇠(i)),

referred to as training points , at selected design points ⇠

(i) 2 X ⇢ Rl.

Spatio-temporal data sets from parametrized PDE models

Consider a generic parameterized nonlinear computer model (e.g., a system

of parameterized partial di↵erential equations (PDEs)) with input parameters

⇠ 2 Rl and outputs y(x, t; ⇠) computed at di↵erent points in a spatial domain

⌦ ⇢ R2. In this notation, x denotes the spatial variable and t represents time.

The computer model is executed at design points ⇠(k), k = 1, . . . ,m. In steady-

state problems this yields the values of y(x; ⇠) at locations x
i

, i = 1, . . . , d, on

a spatial grid. These values y(k)
i

:= y(k)(x
i

; ⇠(k)) can be vectorized as follows:

y(k) := (y(k)1 , . . . , y(k)
d

)T 2 Rd (2.1)

For dynamic problems, y(k) can be defined in a similar manner, with d =

d0 ⇥ N
t

, where d0 is the number of spatial locations and N
t

is the number

of time steps. The method developed below can be applied to a single field

of interest or to the emulation of multiple fields (PDE systems) as explained

later.

Clearly, an ANN with d (as defined above) output neurons will not

be computationally practical in many cases. For highly complex problems

involving, e.g., interface tracking or phase change, the number of grid points

required to fully resolve phenomena at all scales can lead to d values in excess

of 106. To overcome this issue, DR (of the output space) is employed.

2.1.1 Dimensionality reduction

Linear methods for dimension reduction

PCA provides a basis w
i

, i = 1, . . . , d, for Rd (and therefore O) that is defined

by the eigenvectors of the sample covariance matrix. For each input ⇠(j), the
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corresponding output has a unique representation y(j) =
P

d

i=1 z
(j)
i

w
i

, in which

the uncorrelated coe�cients in this basis, z(j)
i

, are naturally ordered in a non-

increasing manner with i. The data can be projected (potentially) onto a

low-dimensional subspace of Rd by using the r most dominant basis vectors

w
i

: z(j)
r

:= (z(j)1 , . . . , z(j)
r

)T 2 Rr. ANN is then performed on the input-output

pairs (⇠(j), z(j)
r

), j = 1, . . . ,m, to yield a mean value for the random vector

z
r

= (z1, . . . , zr)T corresponding to a test input ⇠. The predicted output at

the test input ⇠ is obtained as the linear combination

y = ⌘⌘⌘(⇠) ⇡
r

X

i=1

z
i

w
i

(2.2)

or y = W
r

z
r

, where W
r

:= [w1 . . .wr

].

Multidimensional scaling (MDS) is a mapping ���
r

: O ! S
r

⇢ Rr that

relates the Euclidean distances �
ij

between data points ���
r

(y(i)) and ���
r

(y(j))

in the mapped space S
r

to ‘dissimilarities’ d
ij

between y(i) and y(j) in data

space O. Let D := [d
ij

] denote the dissimilarity matrix. Classical scaling [61]

is an isometry in which dissimilarities are defined as Euclidean distances:

�
ij

= d
ij

= ||z(i)
r

� z(j)
r

||

for points z(i)
r

and z(j)
r

in S
r

, i, j = 1, . . . ,m. Let bZ
d

:= [z(1)
d

, . . . , z(m)
d

]T , or in

centred form, Z
d

= HbZ
d

. It can be shown that

� (1/2)H(D �D)H = Z
d

ZT

d

= K (2.3)

where K is a centred kernel matrix and � denotes a Hadamard product. Spec-

tral decomposition yields K = V
d

⇤⇤⇤
d

VT

d

, where ⇤⇤⇤
d

:= diag(�1, . . .�d) 2 Rd⇥d

and V
d

:= [v1, . . .vd

] 2 Rm⇥d. The non-zero eigenvalues �
i

, i = 1, . . . , d,

are arranged in a non-increasing order and the corresponding eigenvectors

v
i

2 Rm are normalized. The data can be represented as Z
d

= V
d

⇤⇤⇤1/2
d

2
Rm⇥d, and embedded in an r-dimensional linear subspace S

r

of Rd by setting

V
r

:= [v1, . . .vr

] and ⇤⇤⇤
r

:= diag(�1, . . .�r) to yield

Z
r

= V
r

⇤⇤⇤1/2
r

(2.4)
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The rows z(i)
r

2 S
r

of Z
r

are the low-dimensional representations of the data

points. MDS is equivalent to PCA (the coordinates are identical) when Eu-

clidean distances are used. Both of these linear methods will fail when no

linear subspace of Rd can accurately describe the output space O. In such

cases, nonlinear DR (or manifold learning) can be employed.

Nonlinear methods for dimension reduction

In contrast to MDS, Isomap uses geodesic distances for the dissimilarities be-

tween points on the manifold O [101]. Neighbourhood points on the manifold

can be determined by using either of the following methods: (i) all points

lying within an ✏ ball; or (ii) the n (neighbourhood number) closest points. A

dissimilarity matrix D := [d
ij

] is then constructed by: (i) using Euclidean dis-

tances between neighbours as the geodesic distances; (ii) for non-neighbouring

points, using the shortest path distances through neighbouring points. Clas-

sical scaling on the kernel matrix K = �(1/2)H(D �D)H subsequently yields

a representation of the data in Rr (an r-dimensional parameterization of O).

kPCA [102] maps high-dimensional data in a space O to a higher-

dimensional feature space F via a mapping ��� : O ! F , in which lin-

ear PCA is performed. In our case, the data consists of the training data

y(i) = ⌘⌘⌘(⇠⇠⇠(i)) 2 O ⇢ Rd, i = 1, . . . ,m, i.e., simulator outputs at the design

points ⇠⇠⇠(i) 2 X ⇢ Rl. The eigen-problem for the sample covariance matrix in

F is:

CFw =

 

1

m

m

X

i=1

e���(y(i))
⇣

e���(y(i))
⌘

T

!

w = �w, (2.5)

in which e���(y(i)) = ���(y(i)) � ��� is the i-th centred data point in feature space,

where ��� = (1/m)
P

m

j=1���(y
(j)). The mapping ���(·) is implicitly defined via a

kernel function k(y(i),y(j)) = ���(y(i))T���(y(j)), which generates a kernel ma-

trix K = [K
ij

] with entries K
ij

= k(y(i),y(j)). A centred kernel function
ek(y(i),y(j)) = e���(y(i))Te���(y(j)) and a centred kernel matrix eK = [ eK

ij

] with en-

tries eK
ij

= e���(y(i))Te���(y(j)) are similarly defined. Note that eK = HKH, where

H = I � (1/m)11T is the centering matrix, in which I is the identity matrix

and 1 = (1/m)(1, . . . , 1)T 2 Rm. One of the most widely used kernel functions

is the Gaussian kernel k(y(i),y(j)) = exp (�||y(i) � y(j)||2/s2), where s is a

scale factor.
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Equation (2.5) shows that the eigenvectors w are linear combinations of
e���(y(i)), i.e., w =

P

m

i=1 ↵i

e���(y(i)). Using this expression in Eq. (2.5) and premul-

tiplying by e���(y(i))T (noting that eK is positive semidefinite), yields the eigen-

value problem eK↵↵↵ = m�↵↵↵, where ↵↵↵ = (↵1, . . . ,↵m

)T . Once computed, the

orthonormal ↵↵↵
i

are rescaled by ↵↵↵
i

7! ↵↵↵
i

/
p
�
i

= e↵↵↵
i

. This defines orthonormal

eigenvectors ew
i

=
P

m

j=1 e↵ji

e���(y(j)), i = 1, . . . ,m, where e↵
ji

= ↵
ji

/
p
�
i

and ↵
ji

denote the j-th components of e↵↵↵
i

and ↵↵↵
i

, respectively. Strictly speaking, there

are min(dimF ,m) basis vectors ew
i

, but it is assumed for the purposes of illus-

tration that dimF > m, without loss of generality. A mapped training point
e���(y(j)) can be expressed in the basis {ew

i

}m

i=1 ⇢ F as e���(y(j)) =
P

m

i=1 zi(y
(j))ew

i

,

where the i-th coe�cient is calculated as follows:

z
i

(y(j)) = ewT

i

e���(y(j)) =
m

X

l=1

e↵
li

e���(y(l))Te���(y(j))

=
m

X

l=1

e↵
li

eK
lj

= e↵↵↵T

i

ek
j

= e↵↵↵T

i

H(k
j

�K1),

(2.6)

for i = 1, . . . ,m, where k
j

= (K1j, . . . , Kmj

)T and ek
j

= ( eK1j, . . . , eKmj

)T . It is

therefore possible define z(y(j)) = (z1(y(j)), . . . , z
m

(y(j)))T , where the z
i

(y(j)),

i = 1, . . . ,m, are given by Eq. (2.6).

The main properties of PCA carry over to kPCA. With �
i

< �
i�1,

i = 2, . . . ,m, the variance in the data along ew
i

(equal to �
i

) decreases as

i increases and the coe�cients in an expansion of a mapped training point

in the basis {ew
i

}m

i=1 are uncorrelated. The goal is to find an r-dimensional

approximation of the points e���(y(j)), where ideally r ⌧ m. The reconstruction

error [103] of the projection e���
r

(y(j)) =
P

r

i=1 zi(y
(j))ew

i

of e���(y(j)) onto the

subspace F
r

= span(ew1, . . . , ewr

) is given by ||e���
r

(y(j))�e���(y(j))||2 =
P

m

i=r+1 �
2
i

,

where || · || is the standard Euclidean norm for dimF <1 or the L2(O) norm

of (equivalence classes of) square integrable functions on O for dimF = 1.

The value of r is typically chosen according to a variance criterion (or modal

energy) [103]: Select r such that
P

r

i=1 �i/
P

m

i=1 �i > % for some threshold %.

Now a mapping e���
r

: O ! F
r

is defined as the orthogonal projection of
e���(·) onto {ew

i

}r

i=1:

e���
r

(y(j)) =
r

X

i=1

z
i

(y(j))ew
i

. (2.7)
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The notation z
r

(y(j)) = (z1(y(j)), . . . , z
r

(y(j)))T is used, which, from Eq. (2.6),

is given by z
r

(y(j)) = [e↵↵↵1 . . . , e↵↵↵r

]TH(k
j

�K1).

Remark 1. It is assumed that the training data captures the structure of O suf-

ficiently well to (implicitly) define a representative basis, ew
i

, i = 1, . . . ,m, for

the image e���[O] ⇢ F of the entire space O under e���. Equation (2.7) then yields

a reduced-dimensional approximation e���
r

(y) =
P

r

i=1 zi(y)ewi

for an arbitrary

y 2 O. Equivalently, by the injectivity of y = ⌘⌘⌘(⇠⇠⇠), and assuming that the fea-

ture map is injective, Eq. (2.7) defines a map (e���
r

� ⌘⌘⌘)(·) = e���
r

(⌘⌘⌘(·)) : X ! F
r

,

i.e., directly from the entire permissible input space X to F
r

. The basis vectors

are, however, unknown without an explicit form for ���. For an arbitrary input

⇠⇠⇠ 2 X , the coe�cients z
i

(y) define computable maps z
i

(·) = z
i

(⌘⌘⌘(·)) : X ! R

and z
r

(⌘⌘⌘(·)) : X ! Rr. Thus:

e���
r

(⌘⌘⌘(⇠⇠⇠)) =
r

X

i=1

z
i

(⇠⇠⇠)ew
i

,

z
r

(⌘⌘⌘(⇠⇠⇠)) = (z1(⇠⇠⇠), . . . , zr(⇠⇠⇠))T .

(2.8)

The original problem of approximating ⌘⌘⌘ : X ! O given the training points

{y(j)}m

j=1 is replaced by the problem of approximating z
r

(⌘⌘⌘(·)).

2.1.2 Main algorithm

The emulation algorithm employing DR on the output space is now described

in the pseudo code below, including for multiple spatio-temporal data sets.

The last step relates to reconstruction of the predicted point in physical space

(in O ⇢ Rd) and is described in the sequel.

Algorithm 1: ANN learning of spatio-temporal models using DR

1. Select design points ⇠

(i) 2 X ⇢ Rl, i = 1, . . . ,m, using DOE and con-

struct outputs y(i) = ⌘⌘⌘(⇠(i)) 2 O ⇢ Rd, i = 1, . . . ,m, from the computer

model.
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2. Perform DR (PCA, Isomap or kPCA) on y(i), i = 1, . . . ,m, to obtain

coordinates in a low-dimensional representation: z(i)
r

= (z(i)1 , . . . , z(i)
r

)T ,

i = 1, . . . ,m, with r ⌧ d (for multiple fields y(i)
b

, b = 1, . . . , B, this

would lead to B sets of coe�cients z(i)
r,b

= (z(i)1,b, . . . , z
(i)
r,b

)T .

3. Select a test point ⇠ for prediction and perform ANN on the training

set (z(i)
r

, ⇠(i)), i = 1, . . . ,m, to obtain z
r

= (z1, . . . , zr)T . For multiple

fields the training set is ((z(i)
r,1, . . . , z

(i)
r,B

), ⇠(i)), i = 1, . . . ,m, which yields

z
r

= (z1,1, . . . , zr,1, . . . , z1,B, . . . , zr,B)T 2 RrB for a test point ⇠.

4. Using z
r

approximate the computer model output y = ⌘⌘⌘(⇠) by solving

the pre-image problem (see below).

2.1.3 Pre-image problem (inverse mapping)

When using PCA, the reconstruction of the point in physical space O is given

by the linear combination (2.2). In Isomap and kPCA only the predicted

coordinates, z1, . . . , zr, of a point y = ⌘⌘⌘(⇠) in the reduced space are available.

In Isomap, the Euclidean distances between points in the reduced space are

equal to geodesic distances d
i,⇤ between a predicted point y and points y(i) 2 O

in physical space. Local linear interpolation can be used to approximate the

coordinates of y by using these geodesic distances as weights [104]:

y = ⌘⌘⌘(⇠) ⇡
Nn
X

i=1

w
i

P

Nn

i=1 wi

y(i) (2.9)

where w
i

= 1/d
i,⇤ and N

n

is the number of neighbours selected for the recon-

struction.

The same method can be used for kPCA. ANN on the first r kPCA

coe�cients (in the basis ef
j

) yields an approximation ���(y) of the point y in

feature space. The distance ed
i,⇤ between ���(y(i)) and ���(y) in feature space is

given by:

ed2
i,⇤ = ���(y)T���(y) + ���(y(i))

T

���(y(i))� 2���(y(i))
T

���(y) (2.10)
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Substituting equation (2.7) into equation (2.10) for Gaussian kernel gives:

ed2
i,⇤ = ⌧⌧⌧T�T�⌧⌧⌧ + k(i, i)� 2⌧⌧⌧T�T���(y(i)) = ⌧⌧⌧TK⌧⌧⌧ + 1� 2⌧⌧⌧Tk

i

(2.11)

where
⌧⌧⌧ = H eU

r

z(j)
r

+ 1

k
i

= (k(1, i), . . . , k(m, i))T
(2.12)

For an isotropic kernel (k(y,y(i)) = k(||y � y(i)||2)), the relationship ed2
i,⇤ =

2� 2k(d2
i,⇤) follows from equation (2.10). In the case of a Gaussian kernel:

d2
i,⇤ = �2s2 log

⇣

2� ed2
i,⇤/2

⌘

(2.13)

which is combined with (2.11) to yield d
i,⇤. For other kernel functions [105],

similar relationships can be derived.

It should also be noted that it is also possible to reconstruct y from

the predicted coe�cients using a least-squares approximation. This method

is, however, prone to instability, as is the fixed point algorithm of Mika et al.

[106].

2.1.4 Bayesian Regularization

In order to improve generalization (and avoid cross-validation), Bayesian reg-

ularization [107] is used. A prior (zero-mean, Gaussian) distribution is placed

on the network weights (for a fixed architecture), which leads to the minimiza-

tion of F (a) = �E
D

/2+↵E
W

/2, where E
D

is the network square error, ↵ is the

inverse variance of the zero-mean (assumed) Gaussian noise, � is the inverse

variance of the weights, and E
W

= ||a||2, where a is the vector of network

weights. The posterior density of the weights is given by:

P (a|D,↵, �,M) =
P (D|a, �,M)P (a|↵,M)

P (D|↵, �,M)
(2.14)

where D = {y(i)}m

i=1 is the data set, M indicates the ANN model, P (a|↵,M)

is the prior density and P (D|a, �,M) is the likelihood function. The optimal

weights should maximize the posterior likelihood P (a|D,↵, �,M). A uniform
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prior density P (↵, �,M) for the parameters ↵, � gives:

P (D|↵, �,M) =
Z

F

(↵, �)

Z
D

(�)Z
W

(↵)

exp(��E
D

� ↵E
W

)

exp(�F (a))
=

Z
F

(↵, �)

Z
D

(�)Z
W

(↵)
(2.15)

in which Z
D

(�) = (⇡/�)(m/2) and Z
W

(↵) = (⇡/↵)(N/2), where N is the to-

tal number of parameters in the model. The unknown normalization factor

Z
F

(↵, �) can be approximated in terms of the Hessian matrix HMP of F (a) by

a quadratic Taylor series expansion of F (a) around its minimum, at a = aMP .

Placing the result in (2.15) and di↵erentiating yields

↵MP =
�

2E
W

(aMP )
�MP =

m� �
2E

D

(aMP )
(2.16)

where � = N � 2↵MP/tr(HMP ). To optimize ↵ and �, the Hessian

matrix HMP is required. Using a Gauss-Newton approximation to the Hessian

matrix and the Levenberg-Marquardt algorithm, these hyperparameters are

calculated using an iterative procedure detailed in [108] (implemented in the

trainbr function in Matlab).

2.2 Results and discussion

Details of training and testing

In both examples below, the data set consisted of 500 points (y(i) = ⌘⌘⌘(⇠(i))),

with inputs ⇠(i) selected using a Sobol sequence (uniform sampling) design-of-

experiment (DOE). This was found to be adequate for the examples presented

below. It must be noted that the DOE is, in general, a vital aspect of any

emulation strategy. An appropriate sampling of the input space is paramount

for generating training samples that are representative of the region output

space O that is of interest. In the present case, the training samples must

generate a basis (either in physical space or in a feature space) that accurately

captures the output space. Since these issues are encountered in all emulation

methods, they are not focus of on here.

400 points were reserved for testing and up to 100 points were used for

training (m  100). The relative square errors (total square error divided by

the number of grid points and the magnitudes of the average values of the
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test points) were used to assess the generalization error. Results are shown for

di↵erent numbers of components r in the DR methods. In the case of PCA

(kPCA), the first r ‘components’ are the r principal components corresponding

to the r largest eigenvalues of the (feature space) covariance matrix. For

Isomap the first r ‘components’ are the r Isomap coordinates corresponding

to the r largest eigenvalues of the kernel matrix.

The neighbourhood number method (10 neighbours) was used for Isomap.

For kPCA, a Gaussian kernel was used, with a shape parameter dependent on

the data set. For reconstruction, N
n

= 10 points were used for both Isomap

and kPCA. The ANN architecture in all cases contained a single hidden layer

and the ANN was trained using Bayesian regularization [107]. The number

of neurons for each example was selected using sequential network construc-

tion [108]. In general, an arbitrary ANN architecture can be used within the

framework.

Example 1: 2D h-bend waveguide

This model examines a transversal electric (TE) wave in a h-bend waveguide

with a 90 degree bend. The frequencies f are restricted so that TE10 is the

single propagating mode. The electric field has only one nonzero component

E
z

in the transversal direction z. The model computes the electromagnetic

field by solving Hemholtz equation:

�r2E
z

� n2k2
0Ez

= 0

in which n is the refractive index, k0 is the free space wave number, and ⇠ and

⌘ are the in-plane directions.
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Figure 2.1: Boxplots of the relative errors for di↵erent numbers of components

(r) using ANN with PCA (M = 60) and GPE with PCA (M = 100) in the

waveguide example.

On the domain walls, the tangential component of the electric field is

zero. The input wave is determined by the boundary conditions for Maxwell’s

equations: bn⇥E = 0, where bn is the unit normal. The incident field has the

form:

E = (0, 0, sin(⇡(b/2� ⇠)/b)) = <(Eei!t) (2.17)

in which b is the width of the rectangular sections of the waveguide and ! is

the angular frequency of the incident wave. The model was solved (‘H-Bend

Waveguide 2D’ in the ‘RF Module’ of COMSOL Multiphysics 5.0) for 500

frequency values f between 4 and 6 GHz (⇠(i) = f (i), i = 1, . . . , 500). For each

simulation, the magnitude of the electric field E was recorded on a 100⇥ 100

regular grid in (x1, x2). The d = 104 values of |E (x1, x2)| for each ⇠

(i) at

locations (⇠
l

, ⌘
j

), l, j = 1, . . . , 100, were vectorized (see equation 2.1) to give

500 data points y(i) in Rd. Up to 100 were used for training and the remainder

for testing.

Results

All three dimension reduction methods using ANN gave excellent results for

at least 20 training points (m = 20). In the case of PCA, box plots of the
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relative errors for di↵erent numbers of principal components (on the horizontal

axis) are shown in Figure 2.1 (a) for 60 training points. The other methods

gave similar results, so to conserve space they are omitted. The standard

method of Higdon et. al. [43] using a maximum likelihood estimate (MLE) for

the hyperparameters failed to provide meaningful results, as demonstrated in

Figure 2.1 (b) for m = 100. An example of the worst predictions for m = 60

using ANN with PCA (r = 12) is shown in Figure 2.2. The relative error is

2.3⇥ 10�3.
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Figure 2.2: Representative examples of prediction using ANN with PCA (r =

12, M = 60) for the 2D waveguide.

Example 2: 2D radar interaction with a boat (radar cross section)

The interaction between a boat and the incident field from a radar transmitter

is simulated. The transmitter is distant enough that the field can be treated as

a plane wave (only the boat and its immediate surroundings are considered).

The background field is swept over a range of angles of incidence and the far-

field and radar cross section (RCS) are computed. The 2D geometry consists of

an inner circle containing the boat and the surrounding air, together with an

outer circle representing a perfectly matched layer (PML). The background

electromagnetic field from the radar is described by its out-of-plane electric

field component:

E

b

= exp(ik0(⇠ cos ✓ + ⌘ sin ✓))e
z
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where k0 = 2⇡f/c is the wave number in vacuum, c is the speed of light, f

is the frequency and ✓ is the angle of incidence. The time-harmonic wave

equation is then solved for the relative field, E
rel

= E � E

b

, where E is the

total field:

r⇥
�

µ�1
r

r⇥E

rel

�

�
✓

✏
r

� i�

2⇡f✏0

◆

k2
0E rel

= 0

in which ✏, µ and � denote the permittivity, permeability, and conductivity of

air, respectively (subscripts r denote a ‘relative’ quantity). The RCS per unit

length is defined as

�2D = lim
r!1

2⇡r
|E

rel

|2
|E |2

The model was solved (‘Radar Cross Section’ under the Radio Frequency

module in COMSOL Multiphysics 5.0) for 500 combinations of f and ✓ as

input values; that is ⇠(i) = (f (i), ✓(i))T , i = 1, . . . , 500. The magnitude of the

electric field E was recorded on a regular 500 ⇥ 500 square spatial grid in

(⇠, ⌘). The d = 2.5 ⇥ 105 values of |E (⇠, ⌘)| for each ⇠

(i) at locations (⇠
l

, ⌘
j

),

l, j = 1, . . . , 500, were vectorized to form the data points y(i) 2 Rd used for

testing and training.
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Figure 2.3: Boxplots of the relative errors for di↵erent numbers of components
(r) using ANN with Isomap (M = 80 and 100) in the RCS example.
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Results

PCA with both ANN and GPE (method of Higdon et al. [43]) failed to provide

meaningful results for any number of training pointsm or components r. ANN

with Isomap and kPCA, on the other hand, exhibited good results, especially

in the case of Isomap for m > 60, which captured the trends precisely. Box

plots of the relative square errors are shown in Figures 2.3 (a) and (b), up

to 5 components (beyond which no improvements were visible). Figure 2.4

shows two representative examples of the predictions using ANN with Isomap

(r = 5 and m = 100). In the first case, the relative error is 6.4 ⇥ 10�3 (near

the maximum) and in the second case the relative error is 2.2⇥ 10�3.

Figure 2.4: Representative examples of the predictions using ANN with Isomap

(r = 5) and 100 training points in the RCS example.
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2.3 Concluding Remarks

In this chapter an e�cient approach for developing emulators based on ANN

and dimensionality reduction techniques of the output space was presented.

The training and prediction time was of the magnitude of a few minutes,

which is a significant reduction in computational time in comparison to the

approximation of of d outputs simultaneously. The developed emulator can be

used for applications such as uncertainty quantification, design optimization,

real-time control and inverse parameter estimation. In most cases standard

linear dimensionality reduction techniques will fail to produce reasonable re-

sults, which was the motivation for developing the techniques used in this

chapter. The results were compared to Higdon’s method [43] to prove the

necessity of non-linear dimensionality reduction techniques when dealing with

high-dimensional complex data.

The drawback of the ANNs is the absence of an uncertainty measure

(compared to GPE) as there are not placed any assumptions, although this has

as a result more accurate predictions. This drawback can be solved by using

Bayesian regularization discussed in this chapter. The developed emulator

was applied on two di↵erent examples, a 2D h-bend waveguide and a 2D radar

interaction with a boat (radar cross section), giving accurate results for all the

methods tested.
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Chapter 3

Gaussian process emulation for

probabilistic global sensitivity

analysis framework
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Abbreviations

⌘⌘⌘ representation of computer model as a function

⇠ input vector

y output of the computer model

Q scalar quantity of interest

⇠⇠⇠ nominal base point

s
i

(·) local sensitivity measure

�
i

finite change

c
i

normalizing factor

p number of levels in EET

µ
i

mean of EE
i

�
i

standard deviation of EE
i

M number of base points

E[· ]expectationoperatorvarianceoperator

Var(·)S
i

first order sensitivity index

S
T i

total e↵ect index
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⇠⇠⇠⇠i vector of all inputs factors ⇠
i

p(·) probability density function

N number of points in latin hypercube

v
i

basis for Rd

w(·) uncorrelated components of PCA

⌃ symmetric and positive definite variance-covariance matrix

y
r

reduced dimensional approximation

c(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

) covariance function

✓✓✓
i

hyperparameters

d
i

data

p(d
i

|✓✓✓
i

) likelihood of d
i

given ✓✓✓
i

)

E
⌘

⌘

⌘r(·) expected value of a quantity with respect to the distribution over ⌘⌘⌘
r

Var
⌘

⌘

⌘r(·) variance of a quantity with respect to the distribution over ⌘⌘⌘
r

J total number used in MC estimate of the expected value

R subset of RL

cp
s

solid Li concentrations in the positive electrode

cn
s

solid Li concentrations in the negative electrode

Ds

j

di↵usion coe�cient of Li in the active material

R
p

i particle radius

a active surface area
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i2 current density in the electrolyte

2 e↵ective ionic conductivity (using a Bruggemann correction

T temperature

F Faraday’s constant

R
U

universal gas constant

�2 electrolyte potential

f
A

mean molar activity coe�cient of the electrolyte

c lithium ion concentration

t0+ is the transference number of Li+

1 e↵ective conductivity of the solid

�1 solid-phase potential

✏
j

volume fraction of electrolyte (j = p for the positive electrode, j = n for the

negative electrode and

j = s for the separator)

D
j

e↵ective di↵usion coe�cient of the Li+ through the electrolyte

⌫+ number of cations

↵
a

charge transfer coe�cients for the negative electrode

↵
c

charge transfer coe�cients for the positive electrode

c
t

total concentration of lithium

k
j

rate constant
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⌘
j

overpotential at an electrode

U
j

equilibrium potential.

SOC
in

initial state of charge

R
p

particle diameter in the positive electrode

✏
p

porosity of positive electrode

m
t

number of points used for testing
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In the context of electrochemical cell models, which are highly complex

in their fullest forms, very little attention has been paid to SA. In the major-

ity of cases, formal SA methods are not used; the model is simply run mul-

tiple times by varying factors OAT and inspecting the outputs, using ad-hoc

measures or by employing visualization tools, e.g., [109, 110, 111] for proton

exchange membrane fuel cell (PEMFC) models, and [112] for a lithium-ion

battery model. Such methods are computationally ine�cient and do not take

into account interactions between factors. In a small number of studies more

rigorous approaches have been used, but almost invariably with highly sim-

plified models. In [113] SA was performed on a equivalent circuit model for a

Li-ion battery based on the elementary e↵ect test, and Laoun et al. [114] per-

formed a variance-based sensitivity analysis using a simple algebraic PEMFC

model.

Applying formal SA methods to complex battery and fuel cells models

is computationally burdensome and often not feasible, particularly with brute

force Monte Carlo (MC) approaches. In order to overcome this issue an emu-

lator or meta-model can be used to replace the complex model. The emulator

itself can be di�cult to construct when outputs in high-dimensional spaces

are required (e.g., a temperature or electric potential field). If the quantity

of interest (QoI), which is derived from the output, is a scalar, an alternative

is to use an emulator directly between the inputs and QoI. It may be the

case, however, that there are multiple QoIs, in which case it would be ideal

to emulate the output, especially when other tasks (e.g., optimization and un-

certainty quantification) involving di↵erent quantities, including perhaps the

original output, are to be performed subsequently.

To address these issues, an approach for SA of a nonlinear Li-ion battery

model (full balances for charge and mass) is developed, by employing a Gaus-

sian process emulator based on dimensionality reduction to approximate entire

charge-discharge curves. E�ciencies are extracted from the curves in order to

perform a SA using two global methods, namely the elementary e↵ect test

[94] and a variance-based method. Further more, estimates of the statistics of

sensitivity measures in a variance-based approach [115] is derived, extending

previous results for the scalar case considered by Oakley and O’Hagan [116]

to linear functional QoIs derived from the multi-dimensional output.
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3.1 Problem setup and sensitivity analysis

The three main aims of sensitivity analysis are [117]: (i) factor ranking (mea-

sure the contribution of each factor to variations in the QoI); (ii) factor screen-

ing to identify those factors that have a negligible e↵ect on the QoI; and (iii)

mapping to determine regions of the input space that produce extreme QoI

values. The main aim determines which SA approach should be used. The

procedure in SA is as follows: (i) define a model and identify parameters (fac-

tors) of interest as well as QoIs; (ii) assign probability density functions (pdfs)

over the inputs or define intervals; (iii) use a sampling method to generate an

input matrix in order to generate a matrix of QoIs; and (iv) use local or global

methods to quantify the influences of factors on the QoI.

The model is often complex, and typically comprises a system of or-

dinary or partial di↵erential equations, expressing, e.g., conservation laws.

Examples of factors are operating conditions and transport parameters. QoIs

could be one or more of the dependent variables or (more often) a scalar quan-

tity derived from these outputs, e.g., the value of a field at a point in a domain

or a linear functional such as a spatial average.

Suppose that the model output is y = ⌘(x;⇠⇠⇠) 2 F for some func-

tion space F , where x represents, e.g., space, time or space-time and ⇠⇠⇠T =

(⇠1, ⇠2, ..., ⇠k) 2 X ⇢ Rk is a vector of input factors; that is, a spatial, tempo-

ral or spatio-temporal field, parameterized by inputs ⇠⇠⇠. The computer model

(simulator), on the other hand, provides a finite-dimensional approximation of

⌘(x;⇠⇠⇠), e.g., at discrete times and/or spatial points in a grid (or in terms of a

finite basis, e.g., in a finite-element solution). In any case, one may write the

simulator output as a vector y 2 Rd, in which the d components of y represent

values of ⌘(x;⇠⇠⇠) at d di↵erent points in a spatial domain or d di↵erent times

in a temporal grid. The simulator can therefore be considered as a mapping

⌘⌘⌘ : X ! Y ⇢ Rd between a feasible input space X ⇢ Rk and an output space

Y , i.e., y = ⌘⌘⌘(⇠⇠⇠).

When Q is a scalar QoI that is derived from y via a linear functional G :

F ! Q ⇢ R, it can instead be considered as a mapping F = (G�⌘)(⇠⇠⇠) : ⇠⇠⇠ 7! Q

directly between X and Q, i.e., Q = F (⇠⇠⇠) = G(⌘(x;⇠⇠⇠)). In reality, there is an

approximation q = f(⇠⇠⇠) ofQ, where the functional f : X ! Q is derived from a
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discrete linear functional g : Y ! Q that acts on the simulator outputs y, that

is f(⇠⇠⇠) = (g �⌘⌘⌘)(⇠⇠⇠) = g(⌘⌘⌘(⇠⇠⇠)). The aim is to develop a SA framework in which

the outputs y are estimated by an emulator. It is also wished to characterize

the uncertainty in the sensitivity measures as a result of the uncertainty in

y. In the following two sections the SA methods used are described and the

construction of the emulator, as well as methods for estimating the uncertainty

in the sensitivity measures induced by the emulator. The battery model and

SA results are then presented.

3.1.1 The elementary e↵ect test

The simplest approaches to SA are (local) methods that perturb the input

factors one at a time (OAT) and rely on visual inspection of the QoIs. A more

systematic approach measures the sensitivity of the QoI by estimating the

derivative @f/@⇠
i

around a nominal (base) point ⇠⇠⇠, again OAT. Approximation

methods are used to calculate the partial derivatives, e.g., one can form finite

di↵erences [118]:

s
i

(⇠⇠⇠) ⌘ c
i

@f/@⇠
i

(⇠⇠⇠)

⇡ c
i

⇥

f(⇠1, . . . , ⇠i + �
i

, . . . , ⇠
k

)� f(⇠1, . . . , ⇠i, . . . , ⇠k)
⇤

/�
i

(3.1)

where s
i

(⇠⇠⇠) is used as a local sensitivity measure for ⇠
i

, �
i

is a finite

change in ⇠
i

and c
i

is a normalizing factor to prevent scaling issues. To calculate

all the s
i

, k + 1 model evaluations are required. Selecting the �
i

is largely

through trial and error; if they are too small s
i

may not provide a useful guide

of the e↵ect on q if the model is highly nonlinear. The main weakness of

OAT local sensitivity methods is that they provide no information on how the

sensitivity to a given ⇠
i

depends on the values of the other factors.

In order to extend this method to a global analysis, in a way that is less

computational expensive than AAT global methods, multiple points {⇠⇠⇠
j

}r

j=1

may be used rather than a single ⇠⇠⇠, which leads to the class of elementary

e↵ect methods . There are several ways to achieve this [119], di↵ering in terms

of how the di↵erences are calculated, and the methods for selecting the ⇠⇠⇠
j

and

�
i

. The most well known approach is due to Morris [94]. Suppose that X is

the unit hypercube, and each direction ⇠
i

is discretized into p levels (points).
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The elementary e↵ect of ⇠
i

at ⇠⇠⇠
j

= (⇠
j,1, . . . , ⇠j,k)

T is:

EE(j)
i

⌘ 1

�
i

⇥

f(⇠
j,1, . . . , ⇠j,i + �

i

, . . . , ⇠
j,k

)� f(⇠
j,1, . . . , ⇠j,i, . . . , ⇠j,k)

⇤

, (3.2)

where �
i

is a value in {0, 1/(p � 1), 2/(p � 1) . . . , 1}. Typically, �
i

= �, 8i.
Morris [94] proposed two sensitivities measures for each ⇠

i

, namely the mean

and the standard deviation of the finite distribution F
i

over {EE(j)
i

}r

j=1 (an

improvement is to use |EE(j)
i

|, which ensures that in sample mean approxi-

mation negative values do not cancel positive values). The mean µ
i

of EE
i

provides information on the influence of ⇠
i

, while the standard deviation �
i

measures the degree of interaction with the other factors.

To calculate the statistics for each elementary e↵ect, i.e., µ
i

and �
i

, M

base points {⇠⇠⇠
j

}M

j=1 can be chosen, then construct so-called trajectories in X of

k+1 points ⇠⇠⇠
j

[{⇠⇠⇠
j,n

}k

n=1 for each j. Setting ⇠⇠⇠
j,0 = ⇠⇠⇠

j

, the trajectory point ⇠⇠⇠
j,n

is obtained by perturbing a randomly chosen factor of ⇠⇠⇠
j,n�1 by ±� until all

factors have been perturbed, but with the property that ⇠⇠⇠
j,n

and ⇠⇠⇠
j,n�1 di↵er

in only one factor. The model is run at every point in each of the trajectories

(a total of M(k + 1)) to obtain EE
i,j

, i = 1, . . . k, j = 1, . . .M , to yield:

µ
i

=
1

M

M

X

j=1

EE
i,j

and �2
i

=
1

M � 1

M

X

j=1

(EE
i,j

� µ
i

)2. (3.3)

3.1.2 Variance based SA

A more sophisticated approach to SA, embedded in probability, involves treat-

ing the inputs as stochastic variables, which leads to a distribution over the

QoI [115, 120, 118]. A variance based first-order e↵ect of each input factor is

given by Var
⇠i(E⇠

⇠

⇠⇠i [q|⇠i]), where E[·] and Var(·) denote expectation and vari-

ance operators with respect to the distribution over a subscripted random

variable (or with respect to p(⇠⇠⇠) if no subscript is present, i.e. E[·] ⌘ E
⇠

⇠

⇠

[·]).
The quantity ⇠⇠⇠⇠i is the vector of all inputs factors excluding ⇠

i

(and similarly

for multiple indices). The first order sensitivity index (or main e↵ect index)

for the input ⇠
i

is defined as

S
i

⌘ Var
⇠i(E⇠

⇠

⇠⇠i [q|⇠i])/Var(q) (3.4)
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which measures the contribution of the main e↵ect of ⇠
i

to the total QoI

variance. Another measure of sensitivity, defined below, is the total e↵ect

index , which incorporates interactions between the factors ⇠
i

:

S
Ti ⌘

E
⇠

⇠

⇠⇠i [Var⇠i(q|⇠⇠⇠⇠i)]
Var(q)

= 1� Var
⇠

⇠

⇠⇠i(E⇠i [q|⇠⇠⇠⇠i])
Var(q)

. (3.5)

The variance-based SA framework can be couched in terms of the decompo-

sition of the variance of q. Suppose q = f(⇠⇠⇠) 2 L2(X ) (square integrable

functions defined on X ) and X is (without loss of generality) a unit hypercube

X = {⇠⇠⇠|0  ⇠
i

 1; i = 1, . . . , k}. It is also assumed that the factors are in-

dependently and uniformly distributed within X , which means that the prob-

ability density functions p(⇠
i1 , . . . , ⇠il) = 1[0,1]l for {i1, . . . , il} ⇢ {1, . . . , k},

where 1
A

is the indicator function on a set A, and the expectation operators

E
⇠

⇠

⇠⇠i1...il
[·] are simple unweighted integrals over ⇠

i1 , . . . , ⇠il . The function f(⇠⇠⇠)

can be decomposed in the following way (Hoe↵ding decomposition) [121]:

f(⇠⇠⇠) = f0 +
k

X

i=1

f
i

(⇠
i

) +
k

X

i=1

k

X

j=i+1

f
ij

(⇠
i

, ⇠
j

) + . . .+ f1...k(⇠1, . . . , ⇠k), (3.6)

where f0 is a constant, f
i

(⇠
i

) (the main e↵ect of ⇠
i

) is a function only of ⇠
i

,

f
ij

(⇠
i

, ⇠
j

) (the interaction) is a function only of ⇠
i

and ⇠
j

, and so on. The

following condition is imposed [121]:

Z 1

0

f
i1i2...is(⇠i1 , ⇠i2 , . . . , ⇠is)d⇠iw = 0, (3.7)

for 1  i1 < i2 < . . . < i
s

 k and i
w

2 {i1, i2, . . . , is}. One consequence of

this condition and the decomposition is that the summands are orthogonal,

that is:

Z

X
f
i1i2...im(⇠i1 , ⇠i2 , . . . , ⇠im)fi01i02...i0n(⇠i01 , ⇠i02 , . . . , ⇠i0n)d⇠⇠⇠ = 0, (3.8)

for {i1, i2, . . . , im} 6= {i01, i02, . . . , i0n}. Other consequences are that f0 = E[q] =
R

X f(⇠⇠⇠)d⇠⇠⇠, f
i

= E
⇠

⇠

⇠⇠i [q|⇠i] � f0, fij = E
⇠

⇠

⇠⇠ij [q|⇠i, ⇠j] � f
i

� f
j

� f0, etc.. By

squaring and integrating Eq. (3.6) and using the orthogonality property, one
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obtains a decomposition of the total variance: V = Var(q) =
R

X f 2(⇠⇠⇠)d⇠⇠⇠ � f 2
0 :

V =
k

X

i=1

V
i

+
k

X

i=1

k

X

j=i+1

V
ij

+ . . .+V1...k, (3.9)

in which

V
i

= Var
⇠i(fi(⇠i)) = Var

⇠i(E⇠

⇠

⇠⇠i [q|⇠i])
V

ij

= Var
⇠i⇠j(fij(⇠i, ⇠j))

= Var
⇠i⇠j(E⇠

⇠

⇠⇠ij [q|⇠i, ⇠j])� Var
⇠i(E⇠

⇠

⇠⇠i [q|⇠i])� Var
⇠j(E⇠

⇠

⇠⇠j [q|⇠j])
(3.10)

and so on. The terms V
i1...il

, l  k are called partial variances and it is clear

that the main e↵ect indices S
i

are simply the partial variances normalized by

the total variance. It is also possible to define higher order sensitivity indices

by normalizing the V
i1...il

, e.g. the second-order index S
ij

= V
ij

/V , which

measures the e↵ect of interactions between ⇠
i

and ⇠
j

on q. It is also straight-

forward to show that the sensitivity indices sum to 1 due to the normalization

by V :
P

k

i=1 Si

+
P

k

i=1

P

k

j=i+1 Sij

+ . . .+ S1...k = 1.

To compute the main and total indices the quasi MC method described

in [122] is used. The first step is to generate a matrix X = [⇠
i,j

], i = 1, . . . , 2k,

j = 1, . . . , N , of N points in the 2k hypercube, using a low-discrepancy se-

quence such as a Latin hypercube. This is done according to the distribution

p(⇠⇠⇠) over the factors, e.g., p(⇠⇠⇠) = 1[0,1]k for independent, uniformly distributed

factors ⇠
i

⇠ U [0, 1]. X is then partitioned into a matrix A 2 RN⇥k consisting

of the first k columns and a matrix B 2 RN⇥k consisting of the remaining k

columns. This provides two independent sets of N samples in the k hypercube.

A third matrix C
i

consists of the columns of matrix B except the i-th column,

which is set to the i-th column of A.

The next step is to compute the QoI q by running the model at the

selected inputs contained in the sample matricesA, B, andC
i

to yields vectors

qA = f(A), qB = f(B) and qCi = f(C
i

) (f(A) is used to denote vectorized

q values from the set consisting of the rows of A). The indices S
i

and S
Ti are
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then calculated from:

S
i

=
V

i

V
=

Var
⇠i(E⇠

⇠

⇠⇠i [q|⇠i])
Var(q)

=
qT

AqCi � f 2
0

qT

AqA � f 2
0

=
(1/N)

P

N

j=1 qA,j

qCi,j � f 2
0

(1/N)
P

N

j=1 q
2
A,j

� f 2
0

,

S
Ti = 1� Var

⇠

⇠

⇠⇠i(E⇠i [q|⇠⇠⇠⇠i])
Var(q)

=
qT

BqCi � f 2
0

qT

AqA � f 2
0

=
(1/N)

P

N

j=1 qB,j

qCi,j � f 2
0

(1/N)
P

N

j=1 q
2
A,j

� f 2
0

,

(3.11)

where qA,j

is the j-th coordinate of qA (etc.) and f0 = (1/N)
P

N

j=1 qA,j

is the

sample mean. This procedure is repeated for each i = 1, . . . , k. The first of

Eqs. (3.11) follows from the basic definition:

Var
⇠i(E⇠

⇠

⇠⇠i [q|⇠i]) =
Z

[0,1]

E2
⇠

⇠

⇠⇠i
[q|⇠

i

]d⇠
i

�
Z

[0,1]

(E
⇠

⇠

⇠⇠i [q|⇠i]d⇠i)2 (3.12)

The second term on the r.h.s. is clearly E2[q] = f 2
0 , while the first term can be

written as:
Z

[0,1]

E2
⇠

⇠

⇠⇠i
[q|⇠

i

]d⇠
i

=

Z

[0,1]k

Z

[0,1]k�1

f(⇠1, . . . , ⇠i, . . . , ⇠k)⇥ f(x01, . . . , ⇠i, . . . , x
0
k

)d⇠⇠⇠d⇠⇠⇠0⇠i,
(3.13)

i.e., the expectation over ⇠⇠⇠ and ⇠⇠⇠0⇠i of f(⇠1, . . . , ⇠i, . . . , ⇠k)⇥f(x01, . . . , ⇠i, . . . , x0
k

),

which explains the MC estimate in Eq. (3.11). A similar explanation can be

given for the S
Ti estimate.

The cost of this procedure is 2N runs of the model to generate the ma-

trices A and B, and an additional Nk runs to obtain the QoIs corresponding

to the C
i

. This give a total of N(k+ 2), which is much lower than the cost of

brute-force MC estimates of Var
⇠i(E⇠

⇠

⇠⇠i [q|⇠i]) and Var
⇠

⇠

⇠⇠i(E⇠i [q|⇠⇠⇠⇠i]). The for-

mer, e.g., would require O(N) runs (N � k) to estimate the inner expectation

for a fixed ⇠
i

, which it would be would need to repeat O(N) times to estimate

the outer variance, leading to O(N2) runs for each i. A number of alternatives

to the estimates (3.11) have been proposed and details of these estimates can
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be found in [122].

3.2 Gaussian process emulation of the model

outputs

Suppose the given training points {y
j

}m

j=1 ⇢ Y are values of y = ⌘⌘⌘(⇠⇠⇠) at the

design points {⇠⇠⇠
j

}m

j=1. Without loss of generality the mean of the training

points is taken to be zero. Suppose further that Y is a low-dimensional mani-

fold embedded in Rd. Specifically, it is assumed that Y is a linear subspace of

Rd (trivial manifold). This is a perfectly rational assumption to make since the

solver (based on physical laws) is deterministic and, therefore, the response

manifold dimension will be limited by the dimensionality k ⌧ d of the input

space. A basis is possible to be approximated for the linear subspace Y by

using principal component analysis (PCA) [103]. That is, a linear transforma-

tion w(⇠⇠⇠) = VTy of the training points can be found, in which V 2 Rd⇥d has

orthogonal columns v
i

(a basis for Rd) and the uncorrelated components w
i

(⇠⇠⇠)

of w(⇠⇠⇠) have decreasing variance with i.

Let⌃ = E[yyT ] be the symmetric and positive definite variance-covariance

matrix, i.e., covariances between coordinates of y. The eigenvalue problem

⌃v = �v yields the v
i

and corresponding positive eigenvalues �1 > · · · >

�
d

. The components of a point in this basis satisfy Var[w
i

(⇠⇠⇠)] = �
i

and

E[w
i

(⇠⇠⇠)w
j

(⇠⇠⇠)] = 0 for i 6= j. Any point y 2 Y can be written in the form

y = Vw(⇠⇠⇠) =
d

X

i=1

w
i

(⇠⇠⇠)v
i

=
d

X

i=1

(vT

i

y)v
i

(3.14)

and an r-dimensional approximation y
r

2 Y
r

= span(v1, . . . ,vr

) of y is given

by y
r

= V
r

w(⇠⇠⇠) =
P

r

i=1 wi

(⇠⇠⇠)v
i

, where V
r

= [v1 . . .vr

]. It can be demon-

strated [103] that E [ky � y
r

k2] =
P

d

i=r+1 �i, from which a value of r can be

selected based on a chosen tolerance.

In practice ⌃ is not known and must be approximated by the sample

covariance matrix ⌃ = (1/m)YYT where Y = [y1 . . .ym

]. The PCA basis

v1, . . . ,vr

extracted from the sample covariance matrix is strictly valid only

for the training points. If there is a su�cient number of training points,

53



however, this basis will provide a good approximation for all points in Y .

The coe�cients w
i

(⇠⇠⇠) = vT

i

y of a point y = ⌘⌘⌘(⇠⇠⇠) are assumed to be real-

izations of scalar, uncorrelated GPs, which means that they are also mutually

independent. These coe�cients can be emulated in a reduced-dimensional ap-

proximation y
r

= ⌘⌘⌘
r

(⇠⇠⇠) ⌘ V
r

w
r

(⇠⇠⇠) 2 Y
r

(w
r

(⇠⇠⇠) = (w1(⇠⇠⇠), . . . , wr

(⇠⇠⇠))T ) of

y = ⌘⌘⌘(⇠⇠⇠) = Vw(⇠⇠⇠) 2 Y [43]. The coe�cients w
i

(⇠⇠⇠) are realizations of mutu-

ally independent GPs, so can be approximated separately for a chosen value

of ⇠⇠⇠ using GP regression.

Focusing on w
i

(⇠⇠⇠) for some i 2 {1, . . . , r}, it is desired to approximate

w
i

(⇠⇠⇠) : X ! R given values of the function at design points {⇠⇠⇠
j

}m

j=1. In GPR,

a GP prior distribution indexed by ⇠⇠⇠ 2 X is placed over w
i

(⇠⇠⇠). For a fixed ⇠⇠⇠,

w
i

(⇠⇠⇠) is a random variable, whereas {w
i

(⇠⇠⇠)}
⇠

⇠

⇠2X is a realization of the GP (a

deterministic function of ⇠⇠⇠). The joint distribution p(w
i

(⇠⇠⇠1), . . . , wi

(⇠⇠⇠
m

)) for

an arbitrary finite collection of indices {⇠⇠⇠1, . . . ,⇠⇠⇠m} is a multivariate Gaussian.

The GP prior is w
i

(⇠⇠⇠)|✓✓✓
i

⇠ GP (0, c(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

)), i.e., w(⇠⇠⇠) is distributed according

to a GP with an identically zero mean function (without loss of generality the

values of w
i

(⇠⇠⇠
j

) are centred using the mean w
i

, i.e., w
i

(⇠⇠⇠
j

) 7! w
i

(⇠⇠⇠
j

)�w
i

) and

a covariance function c(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

), given the values of hyperparameters ✓✓✓
i

. In

this work, an anisotropic square-exponential covariance function is employed

(for all i):

c(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

) = ✓0 exp
�

�(⇠⇠⇠ � ⇠⇠⇠0)Tdiag(✓
i,1, . . . , ✓i,k)(⇠⇠⇠ � ⇠⇠⇠0)

 

, (3.15)

where ✓✓✓
i

= (✓
i,0, . . . , ✓i,k)T , in which ✓

i,1, . . . , ✓i,k are the inverse square correla-

tion lengths. The hyperparameters are typically estimated as part of the GPR

framework. The given data d
i

⌘ (w
i

(⇠⇠⇠1), . . . , wi

(⇠⇠⇠
m

))T (from a PCA) is used

to update the prior (GP) belief to obtain a new posterior GP distribution. A

distribution over value of w
i

(⇠⇠⇠) at each value of ⇠⇠⇠ is therefore obtained. The

updated mean function is the expected value E[w
i

(⇠⇠⇠)] across ⇠⇠⇠, while the up-

dated covariance function yields predictive variances in these estimates, as a

consequence of the finite data and assumed model.

The distribution of d
i

given ✓✓✓
i

(the likelihood) is p(d
i

|✓✓✓
i

) = N (0,C
i

),

with covariance matrix C
i

= [c(⇠⇠⇠
i

,⇠⇠⇠
j

;✓✓✓
i

)]m
i,j=1. The joint distribution over

54



w
i

(⇠⇠⇠) and d
i

satisfies p(w
i

(⇠⇠⇠),d
i

|✓✓✓
i

) = N (0,C0
i

(⇠⇠⇠)), where:

C0
i

(⇠⇠⇠) =

"

C
i

c
i

(⇠⇠⇠)

c
i

(⇠⇠⇠)T c(⇠⇠⇠,⇠⇠⇠;✓✓✓
i

)

#

, (3.16)

in which c
i

(⇠⇠⇠) = (c(⇠⇠⇠1,⇠⇠⇠;✓✓✓i), . . . , c(⇠⇠⇠m,⇠⇠⇠;✓✓✓i))T . The predictive distribution at

new inputs ⇠⇠⇠ 2 X is obtained from the joint distribution p(w
i

(⇠⇠⇠),d
i

|✓✓✓
i

) by

conditioning on d
i

[58]:

w
i

(⇠⇠⇠)|d
i

,✓✓✓
i

⇠ GP (m0
i

(⇠⇠⇠), c0
i

(⇠⇠⇠,⇠⇠⇠0)) ,

m0
i

(⇠⇠⇠) = c
i

(⇠⇠⇠)TC�1
i

d
i

+ w
i

,

c0
i

(⇠⇠⇠,⇠⇠⇠0) = c(⇠⇠⇠,⇠⇠⇠0;✓✓✓
i

)� c
i

(⇠⇠⇠)TC�1
i

c(⇠⇠⇠0),

(3.17)

accounting for the mean w
i

that was subtracted. The hyperparameters can

be specified by point estimates [2, 123] such as the maximum log likelihood

estimate (MLE):

✓✓✓
i,MLE

= arg max
✓

✓

✓i

�

� ln |C
i

|/2� dT

i

C�1
i

d
i

/2
�

. (3.18)

This procedure is repeated for each i = 1, . . . , r to obtain w
r

(⇠⇠⇠) =

(w1(⇠⇠⇠), . . . , wr

(⇠⇠⇠))T . Using MLE estimates, E[w
r

(⇠⇠⇠)] = m0(⇠⇠⇠) ⌘ (m01(⇠⇠⇠), . . . ,m
0
r

(⇠⇠⇠))T

is obtained. The predicted variance of each coe�cient is Var(w
i

(⇠⇠⇠)) = c0
i

(⇠⇠⇠,⇠⇠⇠).

The model outputs are therefore distributed according to a multivariate GP

with mean and cross-covariance matrix function as follows:

y
r

= ⌘⌘⌘
r

(⇠⇠⇠) = V
r

w
r

(⇠⇠⇠) ⇠ GP (myr , cyr(⇠⇠⇠,⇠⇠⇠
0))

m
r

(⇠⇠⇠) = E[⌘⌘⌘
r

(⇠⇠⇠)] = V
r

m0(⇠⇠⇠),

c
r

(⇠⇠⇠,⇠⇠⇠0) = Cov (⌘⌘⌘
r

(⇠⇠⇠),⌘⌘⌘
r

(⇠⇠⇠0)) = V
r

diag(c01(⇠⇠⇠,⇠⇠⇠
0), . . . , c0

r

(⇠⇠⇠,⇠⇠⇠0))VT

r

,

(3.19)

by virtue of the fact that Cov (w
i

(⇠⇠⇠), w
j

(⇠⇠⇠)) = 0 for i 6= j.

3.2.1 Probabilistic and multivariate sensitivity analysis

The advantage of using the emulation method described above is that it ex-

tends Bayesian GP modelling to multiple (including high-dimensional) outputs

in a probabilistic manner, furnishing an explicit distribution over the output
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(Eqs. (3.19)) and possibly over QoIs. This means that estimates of the statis-

tics of sensitivity measures can be extracted(with respect to the emulator

distribution) using full MC sampling. Take for example the main e↵ect index

S
i

= Var
⇠i(E⇠

⇠

⇠⇠i [q|⇠i])/Var(q). The expected value and variance of a quan-

tity with respect to the distribution over ⌘⌘⌘
r

are denoted E
⌘

⌘

⌘r [·] and Var
⌘

⌘

⌘r(·),
respectively. Since q = f(⇠⇠⇠) = g(⌘⌘⌘(⇠⇠⇠)), a MC estimate of E

⌘

⌘

⌘r [Si

] is given by:

E
⌘

⌘

⌘r [Si

] = E
⌘

⌘

⌘r



Var
⇠i(E⇠

⇠

⇠⇠i [g(⌘⌘⌘(⇠⇠⇠))|⇠i])
Var(g(⌘⌘⌘(⇠⇠⇠))

�

= E
⌘

⌘

⌘r

"

E
⇠i

⇥

E2
⇠

⇠

⇠⇠i
[g(⌘⌘⌘(⇠⇠⇠))|⇠

i

])
⇤

� E2 [g(⌘⌘⌘(⇠⇠⇠))]

E [g(⌘⌘⌘(⇠⇠⇠))2]� E2 [g(⌘⌘⌘(⇠⇠⇠))]

#

⇡ 1

J

J

X

j=1

N�3
P

N

l=1

⇣

P

N

n=1 g(⌘⌘⌘
(j)(⇠⇠⇠(n)⇠i , ⇠

(l)
i

))
⌘2

�N�2
⇣

P

N

n=1 g(⌘⌘⌘
(j)(⇠⇠⇠(n))

⌘2

N�1
P

N

n=1 g(⌘⌘⌘
(j)(⇠⇠⇠(n))2 �N�2

⇣

P

N

n=1 g(⌘⌘⌘
(j)(⇠⇠⇠(n))

⌘2

(3.20)

where ⌘⌘⌘(j)
r

is drawn from p(⌘⌘⌘
r

) = GP (m
r

(⇠⇠⇠), c
r

(⇠⇠⇠,⇠⇠⇠0)) and the ⇠
i

⇠ U [0, 1] are

independent. The notation ⌘⌘⌘(j)(⇠⇠⇠(n)⇠i , ⇠
(l)
i

) means that ⌘⌘⌘(j)(⇠⇠⇠) is evaluated at

⇠
i

= ⇠(l)
i

, ⇠⇠⇠⇠i = ⇠⇠⇠(n)⇠i for some i 2 {1, . . . , k}.
In this MC procedure S

i

⌘ S
i

(⌘⌘⌘) is interpreted as a random function

of the random vector ⌘⌘⌘ and samples ⌘⌘⌘(j)(⇠⇠⇠) (deterministic functions of ⇠⇠⇠) from

p(⌘⌘⌘
r

) is obtained to approximate the outer integral. Samples from ⇠⇠⇠⇠i ⇠
U [0, 1]k�1 and ⇠

i

⇠ U [0, 1] approximate the inner integrals of g(⌘⌘⌘(⇠⇠⇠)) = f(⇠⇠⇠),

which is a random function of ⇠⇠⇠. In practice, the samples of ⇠⇠⇠⇠i and ⇠
i

are

generated, and then samples from the distributions over w
i

(⇠⇠⇠), i = 1, . . . , r

taken using a Cholesky decomposition (see [124] for precise details) to obtain

partial realizations (at the sampled values of ⇠⇠⇠) of w
r

(⇠⇠⇠), from which (partial)

realizations of ⌘⌘⌘
r

(⇠⇠⇠) = V
r

w
r

(⇠⇠⇠) can be obtained. In fact, the last step is not

necessary since it is possible to work directly with w
r

(⇠⇠⇠) to obtain realizations

of the QoI q = g(⌘⌘⌘(⇠⇠⇠)), i.e., g(⌘⌘⌘(⇠⇠⇠)) = g(V
r

w
r

(⇠⇠⇠)). Var
⌘

⌘

⌘r(Si

) is estimated in

the same way and the same procedure can be used for S
Ti or indeed any other

sensitivity measure.

In the scalar output case (the output being the QoI), Oakley and

O’Hagan derived semi-analytical expressions for estimating the expectations

E
⌘

⌘

⌘r [·] and possibly variances Var
⌘

⌘

⌘r(·) of several sensitivity measures using only
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a very small number of MC runs (e.g. O(1) vs. O(N) for E
⌘

⌘

⌘r [Si

] as required in

full MC to estimate Var
⇠i(E⇠

⇠

⇠⇠i [g(⌘⌘⌘(⇠⇠⇠))|⇠i])) [116]. Equivalent semi-analytical

expressions can be established for certain types of scalar QoIs derived from the

multivariate output emulator used in this chapter, namely QoIs arising from

a linear functional of the output, e.g., the value at a fixed point in space or

time or a spatial/temporal average.

Consider a scalar linear functional QoI Q = F (⇠⇠⇠) = (G � ⌘)(⇠⇠⇠) derived
from the output of the model y = ⌘(x;⇠⇠⇠) 2 F via the linear functional G :

F ! R. For example, considering G(y) =
R

R ⌘(x;⇠⇠⇠)w(x)dµ(x), for some

measure µ on a compact subset R of RL representing space or time (provided

⌘(x;⇠⇠⇠) and w(x) are measurable, ⌘(x;⇠⇠⇠) is integrable and w(x) is bounded).

To keep matters simple, set w(x) ⌘ 1/µ(R), use the Lebesgue measure and

assume that ⌘(x;⇠⇠⇠) is continuous; then the Riemann and Lebesgue integrals

coincide and approximations to G(y) by Riemann sums or Gauss quadratures

will converge � Newton-Cotes formulae, on the other hand, are not guaranteed

to converge even if ⌘(x;⇠⇠⇠) is analytic in R [125].

In reality of course, discret output y
r

= (y1, . . . , yd)T = ⌘⌘⌘
r

(⇠⇠⇠) approxi-

mates ⌘(x;⇠⇠⇠) at, say, points {x
l

}d

l=1 ⇢ R. Correspondingly, a discrete approx-

imation g(y) of G(y) is defined by a quadrature g(y
r

) = µ(R)�1
P

d

0

j=1 bjylj ,

where {y
lj}d

0
j=1 ⇢ {y

l

}d

l=1 (approximating ⌘(x
lj ;⇠⇠⇠), j = 1, . . . , d0) is a subset of

the coe�cients of y
r

and b
j

are quadrature weights. If a Gauss quadrature is

used, the points x
lj are specified and must be included in the design {x

l

}d

l=1.

For ease of presentation, and without loss of generality, a mid-point Riemann

sum is used, so that f(⇠⇠⇠) = g(⌘⌘⌘
r

(⇠⇠⇠)) = g(y
r

) = d�1
P

d

l=1 yl.

Rather than a point estimate of y
r

there is in fact a distribution over

functions (3.19), which leads to distributions over q = f(⇠⇠⇠) and therefore

over the sensitivity measures, as a consequence of the uncertainty in the em-

ulator output. The typical sensitivity measures employed are S
i

= V
i

/V =

Var
⇠i(E⇠

⇠

⇠⇠i [q|⇠i])/Var(q) and S
Ti = 1 � Var

⇠

⇠

⇠⇠i(E⇠i [q|⇠⇠⇠⇠i])/Var(q). Oakley and

O’Hagan [116] also propose the main e↵ects f
i

= E
⇠

⇠

⇠⇠i [q|⇠i] � f0 as useful

graphical summaries of the influences of each variable. Here, semi-analytical

estimates of the means and variances of these various quantities are derived,

extending the analysis in [116] to multiple output problems.

Recalling relationship (3.19): y
r

=
P

r

i=1 wi

(⇠⇠⇠)v
i

. Denoting the l-th

57



component of v
j

by vl
j

:

E
⌘

⌘

⌘r [E⇠

⇠

⇠⇠i [q|⇠i]]

= E
⌘

⌘

⌘r



E
⇠

⇠

⇠⇠i



1

d

X

d

l=1
y
l

�

�

�

�

⇠
i

��

= 1
d

E
⌘

⌘

⌘r



E
⇠

⇠

⇠⇠i



P

d

l=1

P

r

j=1 wj

(⇠⇠⇠)vl
j

�

�

�

�

⇠
i

��

=
1

d
E
⌘

⌘

⌘r



E
⇠

⇠

⇠⇠i



X

r

j=1
w

j

(⇠⇠⇠)
X

d

l=1
vl
j

�

�

�

�

⇠
i

��

= 1
d

E
⌘

⌘

⌘r



E
⇠

⇠

⇠⇠i



P

r

j=1 bjwj

(⇠⇠⇠)

�

�

�

�

⇠
i

��

=
1

d
E
⇠

⇠

⇠⇠i



X

r

j=1
b
j

E
⌘

⌘

⌘r [wj

(⇠⇠⇠)]

�

�

�

�

⇠
i

�

= 1
d

E
⇠

⇠

⇠⇠i



P

r

j=1 bjm
0
j

(⇠⇠⇠)

�

�

�

�

⇠
i

�

=
1

d

X

r

j=1
b
j

Z

[0,1]k�1

m0
j

(⇠⇠⇠)d⇠⇠⇠⇠i

= 1
d

P

r

j=1 bjTj

(⇠
i

)

(3.21)

where b
j

=
P

d

l=1 v
l

j

and the functions T
j

(⇠
i

) are defined by the integrals in the

last line. Similarly:

E
⌘

⌘

⌘r [E[q]] =
1

d

X

r

j=1
b
j

Z

[0,1]k
m0

j

(⇠⇠⇠)d⇠⇠⇠ =
1

d

X

r

j=1
b
j

T 0
j

(3.22)

where T 0
j

are now constants since the integration is over all input factors. Thus:
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The integrals in (3.21) and (3.22) can be approximated numerically at a very

low computational cost. A slight abuse of notation is introduced and denoted

by ⇠⇠⇠⇠I the vector of factors excluding those corresponding to the index set
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I ⇢ {1, . . . , k} and denote by ⇠⇠⇠I , the subset of factors corresponding to I.Thus:
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in which the last step follows from the mutual independence of the w
i

, and

the posterior covariances c
j

(⇠⇠⇠,⇠⇠⇠0) are given in Eqs. (3.17). Now, Var
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on the right hand side is already known. The first to third terms are calculated

by using the definition of covariance and Eq. (3.24) with (I,J ) = ({i}, {i}),
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⌘r [E[q]]. The integrals in Eq. (3.24) are again cheap to evaluate. The

means of all the f
i

, evaluated separately for selected values of ⇠
i

in [0, 1], can

be combined on a single plot together with standard deviation bounds [116]

to identify the strengths of influences of the factors.
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uated as follows:
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in which ⇠⇠⇠⇤ = (⇠⇤1 , . . . , ⇠i, . . . , ⇠
⇤
k

)T . These integrals are readily and cheaply

approximated numerically. A first order Taylor expansion yields E
⌘

⌘

⌘r [Si

] =

E
⌘

⌘

⌘r [Vi

/V ] = E
⌘

⌘

⌘r [Vi

]/E
⌘

⌘

⌘r [V ], from which the main e↵ect indices can be ap-

proximated.

Another feature of this method is that it is possible to investigate the

sensitivity of multivariate outputs under uncertainty to the inputs by sepa-

rately (by virtue of their independence) ranking the sensitivity indices for the

coe�cients w
i

(⇠⇠⇠), i = 1, . . . , r, using the procedures described above (i.e.,

q = w
i

(⇠⇠⇠)). Since the contributions of these coe�cients decay with i, one may

only need to investigate the first one or two.

3.3 Li-ion battery model

A Li-ion battery comprised of a LiMn2O4 positive electrode and a graphite

Li
x

C6 porous negative electrode is cinsidered. The electrolyte consists of a

non-aqueous carbonate solvent mixture and a lithium salt LiPF6 in a mixture

of ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1 ratio) dispersed

in an inert polymer matrix to provide mechanical support. The domain is 1-d

(direction x) and the positive and negative current collectors are located at

x = 0 and x = L, respectively. The model is based on that of Newman et

al. [126, 127], which includes mass and charge balances in the solid and liquid

phases. The intercalation of Li in the solid phases of the electrodes is described

by a mass balance with di↵usion in a pseudo dimension R (into spherical solid

particles). The solid Li concentrations in the positive and negative electrodes,
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cp
s

and cn
s

respectively, are given by:

@cs
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◆

, (3.26)

whereDs

j

(j = p for the positive electrode and j = n for the negative electrode)

is the di↵usion coe�cient of Li in the active material. The boundary conditions

are @cs
j

/@R|
R=0 = 0 and �Ds

j

@cs
j

/@R|
R=Rp = (1/aF )@i2/@x, where R

p

is the

particle radius, a is the specific active surface area and i2 is the current density

in the electrolyte, given by:
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where 2 is the e↵ective ionic conductivity (using a Bruggemann correction,

i.e. multiply the free space value by the volume fraction of electrolyte raised

to the power of 3/2), T is the temperature, F is Faraday’s constant, R
U

is the

universal gas constant, �2 is the electrolyte potential, f
A

is the mean molar

activity coe�cient of the electrolyte, c is the lithium ion (Li+) concentration

and t0+ is the transference number of Li+. The solid phase current density i1

is governed by Ohm’s law: i1 = �1@�1/@x, where 1 is the e↵ective conduc-

tivity of the solid (using a Bruggemann correction) and �1 is the solid-phase

potential. Charge conservation demands that i1 + i2 = I, for a total current

density I. The boundary conditions for the potentials (galvanostatic) are:
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= 0, (3.28)

while the electronic charge fluxes are zero and the ionic charge fluxes are

continuous at the separator interfaces. The mass balance for Li+ is:
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✓

✏
j

D
j

@c
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◆

� (1� t0+)

⌫+F

@i2
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, (3.29)

where ✏
j

is the volume fraction of electrolyte (j = p for the positive electrode,

j = n for the negative electrode and j = s for the separator), D
j

is the e↵ective

di↵usion coe�cient of the Li+ through the electrolyte, and ⌫+ is the number

of cations into which a mole of electrolyte dissociates. The flux at both ends
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of the cell (�✏
j

D
j

@c/@x by virtue of the zero ionic charge flux) is set to zero.

The current density is given by the Butler-Volmer equation:
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(3.30)

where ↵
a

and ↵
c

are the charge transfer coe�cients for the negative (j = n) and

positive (j = p) electrode reactions, c
t

is the total concentration of lithium,

k
j

is the rate constant for the relevant reaction and ⌘
j

= �1 � �2 � U
j

is

the overpotential at the relevant electrode, in which U
j

is the corresponding

equilibrium potential.

3.4 Results and discussion

3.4.1 Emulator performance and selection

The Li-ion battery model was implemented in COMSOL Multiphysics1. A

total of 500 simulations were performed by varying the initial state of charge

SOC
in

(initial cs
n

divided by c
t

), the particle diameter in the positive electrode

R
p

and the positive electrode porosity ✏
p

.

⇠⇠⇠ = (SOC
in

, R
p

, ✏
p

)T 2 X ⇢ Rk was set as the input, with the k = 3

factors given by the components. The inputs for the 500 simulations were

selected using a Sobol sequence (pseudo-uniform). A current pulse i(t) con-

sisting of 12 s of 120 A discharge, followed by 12 s of relaxation (0 A load),

and then 12 s of 120 A charge was simulated (galvanostatic operation). The

output was taken to be the cell voltage E
cell

(t)[V] (a function of time) at 0.5

s intervals, yielding a total of 73 values at t = 0, 0.5, 1, . . . , 35.5, 36 s. These

values were vectorized to form the outputs:

yT = ⌘⌘⌘(⇠⇠⇠) = (E
cell

(0), E
cell

(0.5), . . . , E
cell

(35.5), E
cell

(36)) 2 Y ⇢ Rd (3.31)

where ⌘⌘⌘ as before represents the simulator (battery model) and d = 73. The

1
For details of the default parameter values and the implementation please refer to https:

//www.comsol.com/models/batteries-and-fuel-cells-module (‘1D Lithium-Ion Bat-

tery Model for Internal Resistance and Voltage Loss Determination’). Last accessed 28

September 2017.
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first 100 outputs (and corresponding inputs) were reserved for training the

emulator and the remaining m
t

= 400 were used for testing the emulator. The

training data set is denoted {(⇠⇠⇠
j

,y
j

)}m

j=1, as before, and the test data set is

denoted {(⇠⇠⇠⇤
j

,y⇤
j

)}mt
j=1. The QoI in this example is the energy e�ciency, defined

as:

q = f(⇠⇠⇠) =

R

[d] i(t)Ecell

(t)dt
R

[c] i(t)Ecell

(t)dt
2 Q = [0, 1] (3.32)

in which [d] ([c]) is the discharge (charge) time interval. q measures the energy

recovered during discharge as a proportion of the energy used to charge the

battery to an equivalent initial SOC.

3 4 5 6 7 8 9 10

PCA basis dimension

10
-8

10
-7

10
-6

10
-5

R
e
la

ti
v
e
 e

rr
o
r

3 4 5 6 7 8 9 10

PCA basis dimension

10
-9

10
-8

10
-7

10
-6

R
e
la

ti
v
e
 e

rr
o
r

Figure 3.1: Boxplots of the emulator errors on the test set {(⇠⇠⇠⇤
j

,y⇤
j

)}mt
j=1 using

the training set {(⇠⇠⇠
j

,y
j

)}m

j=1 with m = 50 (left) and m = 100 (right).

63



0 10 20 30
Time/s

3.4

3.6

3.8

4

4.2

C
e
ll 

vo
lta

g
e
 /
 V

0 10 20 30
Time/s

3.4

3.6

3.8

4

4.2

C
e
ll 

vo
lta

g
e
 /
 V

Figure 3.2: Example predictions y⇤
r,j

(dashed lines) of the cell voltage during

the discharge-charge cycle y⇤
j

(solid lines) using r = 5 for m = 50 (left) and

r = 10 for m = 100 (right). The worst case predictions (highest ✏⇤) are the

thick lines and 4 further examples are shown for each value of m.

Figure 3.1 shows Tukey boxplots of the relative errors on the test set

{(⇠⇠⇠⇤
j

,y⇤
j

)}mt
j=1 using the training set {(⇠⇠⇠

j

,y
j

)}m

j=1 with m = 50 and m = 100

training points for an increasing number of PCA basis dimensions r. The

errors were defined as follows ✏⇤ = ||y⇤
r,j

�y⇤
j

||/||y⇤
j

||, in which y⇤
r,j

is the mean

GP prediction of y⇤
j

using Eq. (3.19). It can be seen that the emulator error

decreases with increasing r, plateauing at r = 5 for m = 50 and r = 10 for

m = 100. It is also evident that increasing the number of training points leads

to more accurate predictions. For both values of m, example predictions of

the cell voltage during the discharge-charge cycle are shown in Figure 3.2. The

worst case predictions (highest ✏⇤) are shown, alongside 4 further examples for

each value of m. It is clear that both values of m capture the trends well,

and are quantitatively accurate, even in the worst case. For m = 100, the

predictions are particularly accurate, so for the SA m = 100 and r = 10 were

selected.

3.4.2 Sensitivity analysis

The SA was performed using the SAFE package developed by Pianosi et al.

[128]. For the variance-based method a uniform distribution was placed on the

factors and points X = [⇠
i,j

], i = 1, . . . , 2k, j = 1, . . . , N (N = 5000) in the 2k
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hypercube using a Latin hypercube design were sampled. The physical ranges

were 0.1  ✏
p

 0.4, 0.5  R
p

[µm]  2 and 0.4  SOC
in

 0.6, and the factors

were scaled to obtain X = [0, 1]3. The sampled inputs were used to produce

the three input matrices A 2 RN⇥k, B 2 RN⇥k and C
i

2 RN⇥k, i = 1, . . . , k,

from which the QoI values qA = f(A), qB = f(B) and qCi = f(C
i

) were

extracted. The S
i

and S
Ti were then calculated from Eqs. (3.11).
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Figure 3.3: Box plots of the main and total e↵ects for the energy e�ciency.
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Figure 3.4: Box plots of the main and total e↵ects for the cell voltage drop

during discharge.

Figure 3.3 presents both the main and total e↵ects for the three factors.

As expected, the particle size and porosity are the most influential, while the

initial SOC mainly a↵ects the open-circuit potential (slight shift in the charge-

discharge curve up or down) so has relatively little influence on q. The porosity

determines the e↵ective ionic conductivity (the volume fraction of electrolyte

is ✏
p

) and since the ohmic loss is predominantly su↵ered in the ionic phase,

✏
p

has a major influence on the internal resistance. Moreover, the reaction
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rate depends upon the concentration (per unit volume of the electrode) of

Li+ according to the Butler-Volmer law (3.30), so a restricted supply of Li+

in the positive electrode will lead to a large concentration overpotential for a

fixed current (the overpotential in (3.30) must increase as c decreases in order

to maintain a fixed left hand side, i.e, applied current density). The particle

radius determines the level of mass transport resistance for the solid Li (which

has to di↵use through the particle to react at R = R
p

) as well as the specific

surface area for reaction (smaller particles lead to higher specific areas). Thus,

increasing the particle radius will lead to a higher concentration overpotential

and, therefore, a deterioration in performance.

The ordering here is specifically for the energy e�ciency (for a constant

current charge-discharge cycle the energy e�ciency is simply the average cell

voltage during discharge divided by the average cell voltage during charge) so

it is dangerous to draw too many conclusions. For another QoI, such as the

voltage drop during discharge, ✏
p

has the greatest influence, followed by R
p

and lastly SOC
in

, as shown in Figure 3.4. The combined e↵ect of an increased

Ohmic drop and a higher concentration overpotential on the total polariza-

tion caused by a lower ✏
p

outweighs the e↵ect of an increased concentration

overpotential caused by a smaller R
p

.
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Figure 3.5: Means and standard deviations of the elementary e↵ects with and

without confidence intervals in the case of the energy e�ciency.
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Figure 3.6: Convergence of the elementary e↵ects for di↵erent numbers of

model evaluations without confidence bounds (left) and with 95% confidence

intervals (right) in the case of the energy e�ciency.

The next results are for the elementary e↵ect test (EET) on the same

data set. A uniform distribution was selected for the three factors, which were

again scaled to yield X = [0, 1]3. A major di↵erence between the variance-

based method and the EET is the sampling strategy. The EET is highly

e�cient, requiring only M(k + 1) model evaluations vs. N(k + 2) to calculate

the main e↵ect indices; in the results above, N(k + 2) = 5000 ⇥ (3 + 2) =

25000, much higher than typical values of M(k + 1). Figure 3.5 shows the

mean and standard deviation estimates using M = 100 trajectories (100 ⇥
(3 + 1) = 400 model runs), both with and without confidence bounds. The

confidence bounds were obtained using bootstrapping [129], which consists

of re-sampling the base points with replacement to produce P copies of the

trajectories and for each of the P copies to use the EET to estimate µ
i

and

�
i

. This provides empirical distributions over µ
i

and �
i

from which means and

confidence intervals (CIs) (such as the 95% CIs in Figure 3.5) can be estimated.

The ranking of the inputs is the same as in the variance-based method.

The trends in the means of the µ
i

both with and without confidence intervals

are depicted in Figure 3.6 for increasing M . The means stabilize at around

M = 500 (2000 model runs). There are small but noticeable fluctuations in

the mean for ✏
p

around the value 0.25 even at much higher values of M but

this behaviour is stable. The cause is the broad range of ✏
p

in comparison

with the other factors and, therefore, the relatively small number of samples.
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Moving to a higher value of M the confidence intervals shrink, suggesting

greater accuracy in the predictions. The ranking, however, is accurate even

for very low numbers of M , which shows that the EET is more e�cient than

the variance based method.

Further indication of this is provided in Figure 3.7, which shows the

EET predictions for di↵erent M in the case of the voltage drop during charge.

The results are again consistent with the variance-based method (there are

similar fluctuations in the mean for ✏
p

). Although time cost is not an issue

for the emulator, which provides extremely rapid predictions (on the order of

a few seconds for 2000 predictions), in cases where a full simulator is used

the much lower number of model runs for the EET represents an enormous

advantage.
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Figure 3.7: Convergence of the elementary e↵ects for di↵erent numbers of

model evaluations without confidence bounds (left) and with 95% confidence

intervals (right) in the case of the voltage drop during discharge.

To investigate the sensitivity of the charge-discharge curve, the main

and total e↵ects of the PCA coe�cients w
i

(⇠⇠⇠) are examined using the same

Latin hypercube design and N = 5000 (e.g., ⌘
E

is replaced with w
i

(⇠⇠⇠), i 2
{1, . . . , r}). The results are depicted in Figure 3.8 for w1 and w2. Figure 3.9

shows an example (from the test set) of the contributions from the PCA eigen-

vectors (w
i

v
i

, up to i = 4) towards the final (mean centred) voltage profile.

The first two contributions can be seen to have by far the most influence.

The sensitivities of the coe�cients w1 and w2 are highest for ✏
p

and R
p

, with
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roughly equal contributions from each, while higher-order coe�cients (w3 and

w4) were more heavily influenced by SOC
in

.
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Figure 3.8: Main and total e↵ects for the first two PCA coe�cients (for the

cell voltage curve).
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Figure 3.9: An example of the contributions from the PCA eigenvectors (w
i

v
i

)

towards the final (mean centred) voltage profile. In the left-hand figure, w
i

v
i

is successively added to the mean.

3.5 Concluding remarks

SA is often computationally unfeasible with complex computer models. In

such cases emulators, of varying degrees of sophistication, can be employed.

Quantifying the uncertainty in the emulator predictions is desirable, but this
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is only achievable for certain approaches. For multivariate outputs (especially

in high dimensional spaces), SA under uncertainty is especially challenging,

even when the QoI is a scalar.

In this chapter a GP emulation approach is proposed for performing

SA under uncertainty when the model output is multivariate (possibly in a

high-dimensional space). An example for a Li-ion battery is presented, re-

vealing that the method is e�cient and accurate. It is also able to perform a

probabilistic SA on scalar QoIs and also on the output itself by ranking sensi-

tivity measures for the random principal coe�cients. Two di↵erent methods

(EET and VBSA) are presented for achieving this aim, either through full

MC sampling or by using semi-analytical expressions that are extensions of

those derived by Oakley and O’Hagan [116]. The EET needs less number

of model evaluations to provide accurate results as it belongs to OAT sam-

pling method, while VBSA needs more number of model evaluations in order

to extract higher order statistics. It also shown in this chapter that despite

the more model evaluations VBSA usually needs, adapting the GPE method

developed here this limitation can be overcome.
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Chapter 4

Reduced order modeling of

parameter dependent, linear

and non linear dynamic partial

di↵erential equation models

In this chapter Proper Orthogonal Decomposition (POD) is described and

used for the solution of dynamic parametrized PDEs (linear and non-linear).

As mentioned in the introduction, POD is one of the most widely used reduced

order method techniques for approximating the solutions of PDEs. The basic

challenge of POD is the approximation of the basis for new unseen parame-

ters along with dealing with nonlinear surfaces. To overcome the issue with

nonlinearities the discrete empirical interpolation method (DEIM) is extended

and described in detail in section 4.2. The outline of the chapter is as follows,

ROMs for PDEs are presented at first following by the basic emulation strat-

egy that has been used. Two examples are presented to compare the results

with the mainstream global basis approach.

This chapter is based on the publication [130]: A. A. Shah, W. W. Xing,

V. Triantafyllidis, Reduced-order modelling of parameter-dependent, linear and

nonlinear dynamic partial di↵erential equation models, Volume 473, issue 2200

in Proceedings of the Royal Society A, 2017
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Abbreviations

⌘⌘⌘ representation of computer model as a function

⇠ input vector of parameters

x points in a regular domain

t time

u(·, ·, ·) dependent variable

L(·) linear dependant parameter

N (·) non- linear dependant parameter

g(·) source term

d degrees of freedom

u(i)(·) snapshots of the original model

u(·) coe�cients of u(i)(·)

v
j

(·) orthonormal basis

C(·, ·, ·) spatial autocovariance matrix

� eigenvalues

r number of most dominant eigenvectors
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w
i

(·) basis vectors for DEIM

e

p1 standard Euclidean basis vector

n number of design points

z
i

(·) coordinates of points in F compositemappingofz
i

(·)

z
i

(·)q fluid velocity

µ contaminant di↵usion coe�cient

e

i

unit vector in the x
i

direction

n number of training points

n
t

number of testing points

N
n

number of points used for the inverse mapping

s2 free parameter of the Gaussian kernel

✏ normalized error

m number of snapshots

Re Reynold’s number

M mass matrix

S sti↵ness matrix
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4.1 ROMs for parameterised dynamic PDEs

using POD

4.1.1 Problem definition and Galerkin projection

Let x = (x1, . . . , xL

) denote a point in a bounded, regular domain D ⇢ RL

(L = 1, 2, 3), let t 2 [0, T ] denote time and let ⇠⇠⇠ 2 X ⇢ Rl denote a vector

of parameters. For the purposes of illustration, consider a parameterised,

parabolic PDE for a dependent variable u(x, t;⇠⇠⇠):

@
t

u+ L(⇠⇠⇠)u+ N (⇠⇠⇠)u = g(x;⇠⇠⇠) (x, t) 2 D ⇥ (0, T ]

u(x, 0;⇠⇠⇠) = u0(x;⇠⇠⇠) x 2 D
(4.1)

augmented by linear boundary conditions. Here, L(⇠⇠⇠) and N (⇠⇠⇠) are parameter

dependent linear and nonlinear partial di↵erential operators, respectively. The

dependence on the parameters can be through the operators, the source term

g(x;⇠⇠⇠) or the initial/boundary conditions.

Let H be a separable Hilbert space with inner product (·, ·)H and in-

duced norm || · ||H, e.g., L2(D), the space of square integrable equivalence

classes of functions with inner product (v, v0)
L

2(D) =
R

D v(x)v0(x)dx. From

hereon, the subscript in the notation for the inner product and norm in

L2(D) is dropped. It is assumed that for each ⇠⇠⇠, u 2 L2(0, T ;H), i.e., t 7!
u(·, t;⇠⇠⇠) is a measurable map from (0, T ) to H with finite norm ||u||

L

2(0,T ;H) :=
R

T

0 ||u(·, t;⇠⇠⇠)||H. Then u(·, t;⇠⇠⇠) 2 H for each t 2 (0, T ). A spatial discretization

of (4.1) leads to a system of ODEs in time:

u̇(t;⇠⇠⇠) = A(⇠⇠⇠)u(t;⇠⇠⇠) + f(u(t;⇠⇠⇠);⇠⇠⇠), u(0;⇠⇠⇠) = u0(⇠⇠⇠) (4.2)

for a discrete state variable u(t;⇠⇠⇠) = (u1(t;⇠⇠⇠), . . . , ud

(t;⇠⇠⇠))T , which is referred

to as the solution vector . d is the number of grid points in a finite di↵erence

(FD) approximation, or the number of cells in a cell-centred finite volume (FV)

approximation or the number of nodes (basis functions) in a finite-element

(FE) approximation. The matrix A(⇠⇠⇠) 2 Rd⇥d arises from the linear term

L(⇠⇠⇠)u and f(u(t;⇠⇠⇠);⇠⇠⇠) 2 Rd arises from a combination of N (⇠⇠⇠)u, g(x;⇠⇠⇠) and
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possibly the boundary conditions. The latter is nonlinear for N (⇠⇠⇠)u 6= 0.

The precise relationship between u(t;⇠⇠⇠) and u(x, t;⇠⇠⇠), the forms of

A(⇠⇠⇠) and f(u;⇠⇠⇠), and the incorporation of boundary conditions depend on

the method used. For a FD approximation, problem (4.1) is solved directly

and the boundary conditions are incorporated in f(u;⇠⇠⇠). In a FE approxima-

tion a weak form is solved with test functions in H or a dense subspace V of H,

with boundary conditions incorporated in f and/or the definition of H. The

form of A(⇠⇠⇠) is determined by the dependence of L(⇠⇠⇠) on ⇠⇠⇠. The simplest case

is an a�ne form: A(⇠⇠⇠) =
P

i

c
i

(⇠⇠⇠)A
i

, where the functions c
i

(⇠⇠⇠) are known and

the matrices A
i

are constant.

For FD, FV and nodal-basis FE discretizations, the coe�cients u
i

(t;⇠⇠⇠)

of u(t;⇠⇠⇠) correspond to the values of u(x, t;⇠⇠⇠) at locations x(i) 2 D, i =

1, . . . , d, i.e., u
i

(t;⇠⇠⇠) = u(x(i), t;⇠⇠⇠).This is assumed to be the case. A numerical

solution of (4.2) yields the solution vector u(i)(⇠⇠⇠) := u(t(i);⇠⇠⇠) at times {t(i)}m

i=1.

Each of the discrete solutions u(i)(⇠⇠⇠) 2 Rd is referred to as a snapshot .

For a fixed input ⇠⇠⇠ 2 X , a Galerkin projection approximates the prob-

lem (4.2) in a proper (low-dimensional) subspace S of Rd. Let v
j

(⇠⇠⇠) 2 Rd,

j = 1, . . . , r, be an orthonormal basis for S (dim(S) = r ⌧ d), where the

notation makes explicit the dependence on the input. An approximation

u
r

(t;⇠⇠⇠) 2 S of u is assumed in the space span(v1(⇠⇠⇠), . . . ,vr

(⇠⇠⇠)):

u
r

(t;⇠⇠⇠) =
r

X

j=1

a
j

(t;⇠⇠⇠)v
j

(⇠⇠⇠) = V
r

(⇠⇠⇠)a(t;⇠⇠⇠) (4.3)

where a = (a1(t;⇠⇠⇠), . . . , ar(t;⇠⇠⇠))T and V
r

(⇠⇠⇠) = [v1(⇠⇠⇠) . . .vr

(⇠⇠⇠)]. The Galerkin

projection of equation (4.2) onto the basis vectors v
i

(⇠⇠⇠), i = 1, . . . , r, yields

(replacing u with u
r

):

ȧ(t;⇠⇠⇠) = A
r

(⇠⇠⇠)a(t;⇠⇠⇠) + f
r

(a(t;⇠⇠⇠);⇠⇠⇠) , a(0;⇠⇠⇠) = V
r

(⇠⇠⇠)Tu0(⇠⇠⇠) (4.4)

whereA
r

(⇠⇠⇠) := V
r

(⇠⇠⇠)TA(⇠⇠⇠)V
r

(⇠⇠⇠) and f
r

(a(t;⇠⇠⇠);⇠⇠⇠) := V
r

(⇠⇠⇠)T f (V
r

(⇠⇠⇠)a(t;⇠⇠⇠);⇠⇠⇠).

Equations (4.4) represent a system of r ODEs in time for the coe�cients

a
i

(t;⇠⇠⇠). The basic premise of POD (outlined below) is the construction of a

basis {v
j

(⇠⇠⇠)}r

j=1 using the snapshots {u(i)(⇠⇠⇠)}m

i=1.
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4.1.2 Proper orthogonal decomposition

POD is presented in a number of ways (e.g., error minimization, ‘variance’

maximization) in the literature and often under di↵erent names. In this section

a brief description of the motivation and practical (discrete) implementation

is provided.

For a fixed ⇠⇠⇠ 2 X , POD extracts an ‘optimal’ basis for a field u(x, t;⇠⇠⇠),

(x, t) 2 D ⇥ [0, T ], given an ensemble of ‘snapshots’ {u(x; t
j

,⇠⇠⇠)}m

j=1, x 2 D.

These are continuous equivalents of the discrete snapshots u
j

(⇠⇠⇠). u(x, t;⇠⇠⇠) can

be regarded as a realization of a stationary (w.r.t. t) random field indexed by

(x, t) [72, 26, 131]. Applying Karhunen-Loéve (KL) theory [132] for a fixed

t yields u(x, t;⇠⇠⇠) = lim
M!1

P

M

i=1 ai(t;⇠⇠⇠)vi(x;⇠⇠⇠). The v
i

(x;⇠⇠⇠) form an L2(D)

orthonormal basis and are the eigenfunctions of an integral operator C with

kernel given by the spatial autocovariance function C(x,x0;⇠⇠⇠), x,x0 2 D.

In practice, one must work within a finite-dimensional setting. Defining

U(⇠⇠⇠) := [u1(⇠⇠⇠) . . .um

(⇠⇠⇠)], the spatial variance-covariance matrix is given by

C(⇠⇠⇠) = U(⇠⇠⇠)U(⇠⇠⇠)T ⇡ E[u(t;⇠⇠⇠)u(t;⇠⇠⇠)T ]. The continuous eigenvalue problem

for C can be approximated numerically (non-uniquely) by a principal compo-

nent analysis (PCA): C(⇠⇠⇠)v
i

(⇠⇠⇠) = �
i

(⇠⇠⇠)v
i

(⇠⇠⇠) for eigenvectors v
i

(⇠⇠⇠) 2 Rd and

eigenvalues �
i

(⇠⇠⇠) > 0, i = 1, . . . , d, arranged in decreasing order. The first r of

these vectors define the space S(⇠⇠⇠). In certain cases it may be computationally

convenient to use variants of POD/PCA to determine the v
i

(⇠⇠⇠). In appendix

B details of the method of snapshots and singular value decomposition are

provided.

4.2 Basis emulation and DEIM extension

For each input/parameter ⇠⇠⇠ the snapshot matrix U(⇠⇠⇠) is obtained from the

FOM and the basis V
r

(⇠⇠⇠) is constructed according to section subsection 4.1.2.

To perform an analysis w.r.t. the inputs, this procedure is computation-

ally prohibitive. A global basis across the parameter space of interest [133]

can be constructed by computing a set of snapshot matrices U(⇠⇠⇠
j

) for ⇠⇠⇠
j

2
X , j = 1, . . . , n. The v

i

(⇠⇠⇠) are extracted from a global snapshot matrix

[U(⇠⇠⇠1), . . . ,U(⇠⇠⇠
n

)] 2 Rd⇥nm (usually after a SVD to avoid rank deficiency).
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The global basis method uses information only from the “truth approx-

imation”, i.e., the FOM. The optimality of the POD method, on the other

hand, is violated since the snapshots used to derive the basis do not pertain

to the parameter value of interest (the particular dynamical system under

consideration) during the online phase. Furthermore, the range of validity of

the global basis could be limited for complex mappings between the parame-

ters and the outputs [134]. Interpolation methods (and the method proposed

here) violate the truth approximation in the sense that the snapshots or quan-

tities derived therein are not obtained from the original model. In contrast to

the global basis, however, these methods attempt to construct more accurate

ROMs during the online phase. The main limitation is the accuracy of the

interpolation or emulation, which depends on the data available and on the

method itself. Moreover, it may not be possible to obtain sharp error bounds

using such methods (in cases where the underlying PDE problem is amenable

to a rigorous analysis).

Another problem associated with the standard POD-Galerkin approach

is that the computational e�ciency is compromised when f(·;⇠⇠⇠) 2 Rd is a

strong nonlinearity, since the evaluation of f
r

in Eq. (4.4) has a computational

complexity that depends on d [135]. The DEIM [136] seeks a set of vectors

w
i

(⇠⇠⇠) 2 Rd, i = 1, . . . , d, such that the subspace span(w1(⇠⇠⇠), . . . ,ws

(⇠⇠⇠)) ⇢ Rd

for some s ⌧ d well approximates f(u(t;⇠⇠⇠);⇠⇠⇠) for an arbitrary t. That is,

an approximation f(u(t;⇠⇠⇠);⇠⇠⇠) ⇡W(⇠⇠⇠)h(t;⇠⇠⇠), where W(⇠⇠⇠) = [w1(⇠⇠⇠) . . .ws

(⇠⇠⇠)]

and h(t;⇠⇠⇠) 2 Rs. The basis {w
i

(⇠⇠⇠)}d

i=1 is constructed from snapshots of the

nonlinearity {f
i

(⇠⇠⇠)}m

i=1, where fi(⇠⇠⇠) = f(u
i

(⇠⇠⇠);⇠⇠⇠), from which the matrix F(⇠⇠⇠) =

[f1(⇠⇠⇠) . . . fm(⇠⇠⇠)] is formed. A PCA on F(⇠⇠⇠)F(⇠⇠⇠)T or SVD of F(⇠⇠⇠) yields the

{w
i

(⇠⇠⇠)}d

i=1, arranged such that the corresponding eigenvalues decay with i.

Since the system f(u(t;⇠⇠⇠);⇠⇠⇠) = W(⇠⇠⇠)h(t;⇠⇠⇠) is overdetermined in h(t;⇠⇠⇠),

the DEIM selects s of the d equations to obtain an ‘optimal’ solution. The

matrix P = [e
p1 . . . eps ] 2 Rd⇥s is introduced, where e

pi is the standard Eu-

clidean basis vector in Rd with nonzero entry located at the p
i

-th coordinate.
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Assuming PTW(⇠⇠⇠) is nonsingular, one obtain:

f
r

(a(t;⇠⇠⇠);⇠⇠⇠) ⇡ V
r

(⇠⇠⇠)TW(⇠⇠⇠)h(t;⇠⇠⇠) = V
r

(⇠⇠⇠)TW(⇠⇠⇠)(PTW(⇠⇠⇠))�1PT f(u(t;⇠⇠⇠);⇠⇠⇠)

= V
r

(⇠⇠⇠)TW(⇠⇠⇠)(PTW(⇠⇠⇠))�1f(PTu(t;⇠⇠⇠);⇠⇠⇠)
(4.5)

assuming that the function f (·;⇠⇠⇠) acts pointwise. The indices p
i

2 {1, 2, . . . , d},
i = 1, . . . , s are specified by a greedy algorithm [136] that satisfies the following

error bound (for a given s):

||f � bf ||  ||(PTW(⇠⇠⇠))�1|| ||(I�W(⇠⇠⇠)W(⇠⇠⇠)T )f || (4.6)

where || · || is the standard Euclidean norm and bf := W(⇠⇠⇠)(PTW(⇠⇠⇠))�1PT f is

the DEIM approximation of f . This estimate is valid for a given t (considering

f as a function of t) by virtue of the second factor on the r.h.s., which is the

error in the best 2-norm approximation of f in Range(W(⇠⇠⇠)).

In this chapter, a systematic and rigorous method to approximate the

local basis and the nonlinearity is introduced by first approximating the snap-

shots {u
i

(⇠⇠⇠)}m

i=1 and {f
i

(⇠⇠⇠)}m

i=1 for an arbitrary input ⇠⇠⇠ using Bayesian nonlin-

ear regression. These snapshots lie in very high-dimensional spaces and thus

a recently developed method is used that exploits manifold learning to yield

a computationally feasible Gaussian process (GP) model. Below the compo-

nents of this emulation method are described and subsequently explain how it

can be used for a POD analysis of parameterized, dynamic problems.

4.2.1 Formulation and solution of the learning problem

For an arbitrary input ⇠⇠⇠, consider the mapping ⌘⌘⌘ : X ! O ⇢ Rmd defined

below:

y = ⌘⌘⌘(⇠⇠⇠) =
�

u1(⇠⇠⇠)
T , . . . ,u

m

(⇠⇠⇠)T
�

T 2 Rmd (4.7)

i.e., a vectorial rearrangement of snapshots {u
i

(⇠⇠⇠)}m

i=1 for the given value of

⇠⇠⇠. A similar map yf = ⌘⌘⌘f (⇠⇠⇠) for snapshots of the nonlinearity {f
i

(⇠⇠⇠)}m

i=1 can

be defined. The emulation procedure mirrors that described below for the

snapshots {u
i

(⇠⇠⇠)}m

i=1.

The aim is to approximate the mapping ⌘⌘⌘(·) given training points y
j

=
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⌘⌘⌘(⇠⇠⇠
j

) 2 O (in a high dimensional space) for design points ⇠⇠⇠
j

2 X , j = 1, . . . , n.

One of the main methods for dealing with such high dimensional outputs is

to define approximate outputs in an q�dimensional subset O
q

⇢ O (q ⌧ md)

using PCA and independently emulate the q coe�cients of the points in O
q

for

new values of ⇠⇠⇠ [43]. Shah and co-workers [137, 138] extended the latter method

by replacing PCA with manifold learning methods, making it applicable to a

broader class of output spaces O. In this chapter the method of [137, 138]

is employed with kernel PCA (kPCA), which is outlined in subsection 2.1.1,

together with an approximation of the inverse map. kPCA [102] defines a map

���
q

: O ! F
q

, where F
q

is a q-dimensional feature space. The coordinates z
i

(y)

of points ���
q

(y) in F
q

define composite maps from the input space X to R, i.e.,

z
i

(⇠⇠⇠) := z
i

(⌘⌘⌘(⇠⇠⇠)), i = 1, . . . , q. Independent GP priors are placed over these

maps, justified by the properties of kPCA.

The approximation of ⌘⌘⌘ : X ! O given the training points {y
j

}n

j=1

is then substituted for independent approximations of the coe�cients z
i

(⇠⇠⇠),

i = 1, . . . , q, given training data {z
i

(⇠⇠⇠
j

) = z
i

(⌘⌘⌘(⇠⇠⇠
j

)}n

j=1. The value of z
i

(⇠⇠⇠) for

a new input ⇠⇠⇠ is inferred from scalar GP emulation (outlined in section 3.2) as

the mean of a posterior distribution. Given {z
i

(⇠⇠⇠)}q

i=1, an approximation of the

inverse ����1
q

: F
q

! O yields an approximation of y = ⌘⌘⌘(⇠⇠⇠) 2 O, from which

{u
i

(⇠⇠⇠)}m

i=1 can be obtained using definition (4.7). GP emulation is exact at

the training points if there are no (spurious) errors in the training data. In the

present case, an error is introduced in the pre-image map so that the training

snapshots will not be recovered exactly. This error, however, is negligible

(section 4.3). I should be noted that the size of md is not a limitation for the

manifold learning methods employed in this chapter, in which the eigenvalue

problems are primarily dependent on the number of training points n.

4.2.2 Main Algorithm

Once the snapshots {u
i

(⇠⇠⇠)}m

i=1 (and {f
i

(⇠⇠⇠)}m

i=1 for nonlinear problems) are

obtained using the procedure outlined in sections 4.1 and 4.2.2 for a new input

⇠⇠⇠, POD can be performed in the usual manner (with the extended DEIM for

nonlinear problems). The entire procedure is outlined in Algorithm 1. It has

to be mentioned that kPCA can be replaced with other manifold learning
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Algorithm 1 kGPE-POD (steps 1a-7a) and kGPE-POD-DEIM (steps 1a-7a
and 1b-7b).

1a: Snapshots from FOM:
uj(⇠⇠⇠i)

T , i = 1, . . . , n, j = 1, . . . ,m

2a: Set: yi  ⌘⌘⌘(⇠⇠⇠i)

 (u1(⇠⇠⇠i)
T , . . . ,um(⇠⇠⇠i)

T )T ,i = 1, . . . , n

3a: Do kPCA for {y
i

}n
i=1

! {(z1(yi), . . . , zq(yi))
T }ni=1

4a: for j  1 to q do

{⌘(⇠⇠⇠i) zj(⇠⇠⇠i) zj(yi)}ni=1

Perform scalar GPE: zj(⇠⇠⇠)  
E[⌘(⇠⇠⇠)]

end for

5a: Inverse map:
⌘⌘⌘(⇠⇠⇠) 

P
j2J yj�(dj,⇤)/

P
i2J �(di,⇤)

6a: Snapshots for input ⇠⇠⇠:
(u1(⇠⇠⇠)

T , . . . ,um(⇠⇠⇠)T )T  ⌘⌘⌘(⇠⇠⇠)

7a: Perform POD with {ui(⇠⇠⇠)}mi=1

1b: Collect nonlinearity snapshots:
fj(⇠⇠⇠i), i = 1, . . . , n, j = 1, . . . ,m

2b: Set: yf
i  ⌘

⌘

⌘

f (⇠⇠⇠i)

 (f1(⇠⇠⇠i)T , . . . , fm(⇠⇠⇠i)T )T , i = 1, . . . , n

3b: Do kPCA for {yf

i

}n
i=1

! {(zf1 (y

f

i

), . . . , zf
q

(y

f

i

))

T }n
i=1

4b: for j  1 to q do

{⌘f (⇠⇠⇠
i

) zf
j

(⇠⇠⇠
i

) zf
j

(y

f

i

)}n
i=1

Perform scalar GPE: zf
j

(⇠⇠⇠)  
E[⌘f (⇠⇠⇠)]
end for

5b: Inverse map:

⌘⌘⌘f (⇠⇠⇠)  
P

j2J y

f

j

�(d
j,⇤)/

P

i2J �(d
i,⇤)

6b: Snapshots for nonlinear term:

(f1(⇠⇠⇠)T , . . . , f
m

(⇠⇠⇠)T )

T  ⌘⌘⌘f (⇠⇠⇠)
7b: Perform DEIM on {f

i

(⇠⇠⇠)}m
i=1

methods, e.g., di↵usion maps or Isomap [137, 138]. The terminology ‘kGPE-

POD’ is introduced to denote the method of Algorithm 1 without the extended

DEIM (i.e, steps 1a-7a alone). Similarly, the terminology ‘kGPE-POD-DEIM’

to denote the method of Algorithm 1 with the extended DEIM (steps 1a-7a

and steps 1b-7b together) is used.

4.3 Applications, results and discussion

4.3.1 2D contaminant transport

The transport of a contaminant governed by a convection-di↵usion equation

is considered. This model can be used, e.g., for real-time prediction or for

quantifying uncertainty in the concentration to support decision making [139].

The problem is specified as follows:

@
t

u+ q ·ru� µr2u = 0 x = (x1, x2) 2 D := [0, 1]⇥ [0, 1]

u = 0 x 2 @D, u(x, t) = u0 t = 0
(4.8)
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where u(x, t;⇠⇠⇠) denotes the contaminant concentration (mol m�3), q is the

fluid velocity (m s�1) and µ is the contaminant di↵usion coe�cient (m2 s�1).

The input ⇠⇠⇠ is defined below. The initial concentration is given by u0(x) =

(2⇡k0)�1/2
P3

i=1 ki exp(�k0(x � x
i

)T (x � x
i

)/2), where x1 = (0.2, 0.2)T , x2 =

(0.2, 0.8)T , x3 = (0.8, 0.8)T , k0 = 0.01, k1 = 1, k2 = 2 and k3 = 3. The

magnitude of the velocity field is inversely proportional to the distance from

x = (bx1, bx2)T :

q(x) =
a1(x1 � bx1)e1 + a2(x2 � bx2)e2

(x1 � bx1)2 + (x2 � bx2)2
(4.9)

where e1 and e2 are unit vectors in the x1 and x2 directions, respectively, and

a
i

2 R. To avoid the singularity at x = (bx1, bx2)T , the norm of velocity is set

to zero at this location. Also, a1 = a2 = 1, µ = 1 and variations in the input

⇠⇠⇠ = (bx1, bx2)T 2 X := [0, 1]⇥ [0, 1] are considered.

The problem was discretized in space using a cell-centered finite volume

method with d = 2500 square cells (control volumes). Central di↵erencing was

used for the di↵usive term and a first-order upwind scheme for the convective

term, defining the velocity values on a staggered grid. A fully implicit Euler

method was used to solve the resulting semi-discrete linear problem with 100

equal time steps in t 2 [0, T ], T = 0.2 s. A total of 500 inputs ⇠⇠⇠
j

2 X ,

j = 1, . . . , 500, were generated using a Sobol sequence [97]. For each input,

the FOM was solved to yield solution vectors (snapshots) u
i

(⇠⇠⇠
j

) 2 Rd, i =

1, . . . , 100, j = 1, . . . , 500. The data points (vectorized snapshots) y
j

= ⌘⌘⌘(⇠⇠⇠
j

),

j = 1, . . . , 500, were obtained using Eq. (4.7). Of the 500 data points, n
t

= 300

were reserved for testing. Training points were selected from the remaining

200 data points (n  200).

A Gaussian kernel was used for kPCA. The free parameter s2 was

taken to be the average square distance between observations in the origi-

nal space [140]: s2 = n�2
P

n

i,j=1 ||y
i

� y
j

||2. Polynomial, multi-quadratic and

sigmoid kernels were also tested. The best performance was achieved with the

sigmoid and Gaussian kernels. For the inverse mapping, N
n

= n was used

(i.e., all training points). For the GP emulation, a squared exponential co-

variance function and a zero mean function (after centering) were used. The

hyperparameters were found using a MLE (gradient descent). Errors in the

predictions of the vectorised snapshots y
j

were measured using a normalized
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error: ✏ = ||yp

j

� y
j

||/||y
j

||, where yp

j

denotes the prediction of the test point

y
j

= ⌘⌘⌘(⇠⇠⇠
j

), j = 1, . . . , n
t

, using steps 1a-6a of Algorithm 1. Errors in the

predictions using kGPE-POD/kGPE-POD-DEIM at ⇠⇠⇠
j

were measured using

a relative error ✏
r

:

✏
r

=
1

m

m

X

i=1

||up

i

(⇠⇠⇠
j

)� u
i

(⇠⇠⇠
j

)||
||u

i

(⇠⇠⇠
j

)|| (4.10)

where up

i

(⇠⇠⇠
j

) is the prediction (steps 1a-7a in Algorithm 1) of the test point

(snapshot) u
i

(⇠⇠⇠
j

).

First the normalized errors ✏ in the predictions of the test data points

y
j

= ⌘⌘⌘(⇠⇠⇠
j

), j = 1, . . . , n
t

are examined. Using m = 10 of the snapshots

(selecting every 10), Fig. 4.1 shows Tukey box plots of ✏ for the n
t

= 300 test

cases as the manifold dimension q is increased, using n = 80 training points.

Outliers are plotted individually using a ‘+’ symbol. It may be noted that

when predicting the training set in this case using q = 10 the maximum value

of ✏ was around 10�11, while the median was around 10�12. As a comparison

the result for Isomap (replacing kPCA in Algorithm 1) is also included. The

best results were obtained with kPCA, for which the errors converge after q = 6

dimensions (negligible further decrease). Di↵usion maps were also tested and

gave results similar to kPCA. The same pattern was observed at n = 40, 120

and 200 training points and also for all values of m up to 100. Based on the

results, the approximating manifold dimension was set to q = 10 for all values

of n and m (using kPCA).
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Figure 4.1: Tukey box plots of ✏ with increasing q for the contaminant trans-
port model (n

t

= 300, n = 80 and m = 10): (a) kPCA; (b) Isomap.

Fig. 4.2 compares kGPE-POD with a global basis method for increasing

POD dimension r. In the global basis method the snapshot matrices compris-
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Figure 4.2: Tukey box plots of ✏
r

with increasing r for the contaminant trans-
port model (n

t

= 300 and n = 80). (a) kGPE-POD with m = 10; (b) global
basis with m = 10; (c) kGPE-POD with m = 100; (d) global basis with
m = 100.
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ing the global snapshot matrix corresponded to the n = 80 training points

used for kGPE-POD. An SVD was performed on the global matrix before ex-

tracting the POD basis. For n = 40, the results were similar to the results

depicted in Fig. 4.2, with a slight decrease in accuracy for both methods. Us-

ing m = 10 snapshots, the decrease in the relative errors ✏
r

in kGPE-POD

is negligible for r > 15, while the global basis method continues to improve

beyond r = 50. In principle, kGPE-POD uses the correct bases for the test

parameter values. It is possible, therefore, that kGPE-POD would approach

the true result for a smaller value of r compared to the global basis approach,

which uses a single basis extracted from snapshots that do not pertain to the

test parameter values.
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Figure 4.3: Histograms of ✏
r

corresponding to m = 10, r = 15 in Fig. 4.2,
using: (a) kGPE-POD; and (b) a global basis.

For m = 10, kGPE-POD exhibits a minimum ✏
r

that is lower by more

than an order of magnitude, while the maximum ✏
r

for both methods is roughly

the same (0.04 for r � 15). At r = 15 in Figs. 4.2(a) and (b), the value of ✏
r

using kGPE-POD is lower than the minimum ✏
r

in the global basis method in

109 of the 300 test cases. For the global basis at r = 15, there are 131 cases

with an error below the median (3.9⇥ 10�3), while for kGPE-POD, 217 cases

have errors below this value. kGPE-POD clearly exhibits a broader range of

✏
r

values, with a higher median for r > 25. Fig. 4.3 shows histograms of ✏
r

for the two methods in the case of r = 15, m = 10. The broader range of ✏
r

is due to the much lower minimum and to the presence of a greater number

of cases with ✏
r

> 0.012. The number of such cases (13) is, however, small.

For m = 100 snapshots, both methods improve, with the global basis method
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exhibiting the greater improvement (e.g., the maximum ✏
r

is decreased by

around an order of magnitude whereas for kGPE-POD the decrease is by a

factor of 4 at r = 15). The global basis method has a lower median ✏
r

for

r � 20, but also again a considerably higher minimum (more than an order of

magnitude at r = 25). At r = 30, e.g., there are 77 cases in kGPE-POD with

a lower ✏
r

than the minimum for the global basis.

To gain an indication of the actual quality of the predictions for di↵erent

✏
r

, Fig. 4.4 compares the predicted kGPE-POD concentration fields in two

test cases: (a) near the median (✏
r

⇡ 0.0021) and near the upper whisker

(✏
r

⇡ 0.0127) at r = 10 in Fig. 4.2(a). The change in the profiles from one

input to the other is well captured. Figs. 4.4(e) and (f) show the absolute

pointwise errors for the two examples. It can be seen that there are localized

regions of high error. For the first case (⇠⇠⇠ = (0.7382, 0.4179)T ), a comparison

of the region of highest error (lower right quadrant) with the test is shown

in Fig. 4.5, which clearly highlights the fine-scale di↵erences leading to the

error. The trends and general profile (and in most of the domain the actual

concentration values) are nevertheless well captured even with a small value

of r.

In order to assess the generalization accuracy more fully, a UQ prob-

lem for the accumulated contaminant concentration ū(x;⇠⇠⇠) :=
R

T

0 u(x, t;⇠⇠⇠)dt

at the location x
c

= (0.5, 0.5)T was considered, by considering ⇠⇠⇠ to be a ran-

dom vector distributed according to p(⇠⇠⇠) = N (µµµ, �2I), where µµµ = (0.5, 0.5)T

and �2 = 0.1. The distribution of ū(x
c

;⇠⇠⇠) was estimated using Monte Carlo

sampling with N
M

samples ⇠⇠⇠i (this notation is to avoid confusion with the

design points) drawn from p(⇠⇠⇠). The setting q = 6, n = 80, N
M

= 3000 were

used, and ū(x
c

;⇠⇠⇠) approximated with a trapezoidal rule. Fig. 4.6 compares

the histograms obtained from kGPE-POD, the global basis method and the

FOM, usingm = 10 snapshots. The FOM took 55.18 h to complete and yielded

µ
ac

= 0.011087 and �
ac

= 0.001218, obtained from µ
ac

= (1/N
M

)
P

NM

i=1 ū(x;⇠⇠⇠
i)

and �2
ac

= (N
M

� 1)�1
P

NM

i=1 (ū(x;⇠⇠⇠
i) � µ

ac

)2. For r = 10, kGPE-POD exhib-

ited reasonable accuracy with regards to µ
ac

(within 0.2 %) and �
ac

(within

8.7 %), while the global basis method was inaccurate (50 % error in �
ac

). For

m = 10, r = 50, both methods were accurate, with kGPE-POD still providing

better estimates of µ
ac

and �
ac

. For m = 100, the results are shown in Fig. 4.7.
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Figure 4.4: (a) The FOM and (b) the kGPE-POD prediction of the con-
centration field (mol m�3) for the contaminant transport model at ⇠⇠⇠ =
(0.7382, 0.4179)T and t = 0.02s (✏

r

⇡ 0.0021). (c) The FOM and (d) the
kGPE-POD predictions at ⇠⇠⇠ = (0.7539, 0.7461)T and t = 0.2s (✏

r

⇡ 0.0127).
In all cases n = 80, m = 10 and q = 6. (e) Absolute pointwise er-
ror for the case ⇠⇠⇠ = (0.7382, 0.4179)T and (f) absolute pointwise error for
⇠⇠⇠ = (0.7539, 0.7461)T .
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Figure 4.5: A close-up of (a) the kGPE-POD prediction and (b) the test
corresponding to Figs. 4.4(a) and (b).
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Figure 4.6: Estimated distribution of ū(x
c

;⇠⇠⇠) from N
M

= 3000 MC samples
using n = 80 and m = 10: (a) kGPE-POD with r = 10; (b) global basis with
r = 10; (c) kGPE-POD with r = 50; (d) global basis with r = 50.
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Figure 4.7: Estimated distribution of ū(x
c

;⇠⇠⇠) from N
M

= 3000 MC samples
with n = 80 and m = 100: (a) kGPE-POD with r = 10; (b) global basis with
r = 10; (c) kGPE-POD with r = 30; (d) global basis with r = 30.

kGPE-POD was again more accurate for r = 10, while for r = 30, the two

methods exhibited a similar level accuracy.

4.3.2 Burgers equation

A 1-D Burgers equation was considered, with inputs ⇠⇠⇠ to be defined later:

@
t

u+
1

2
@
x

(u2)� 1

Re
@
xx

u = g(x), x 2 D := (0, 1)

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x) := sin(k⇡x)e�(c1x+c2)

(4.11)

where u(x, t;⇠⇠⇠) is the flow velocity, c1, c2 2 R, k 2 N, Re is the Reynold’s

number and g(x) is a source term. A weak solution u(x, t;⇠⇠⇠) 2 V := H1
0 (D) is

sought satisfying:

(@
t

u, v) +
1

2
(@

x

(u2), v) +
1

Re
a(u, v) = (g, v) 8v 2 V (4.12)
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where a('1,'2) := ('01,'
0
2), '1,'2 2 V , defines a bilinear functional, in which

a prime denotes an ordinary derivative w.r.t. x. The interval D = [0, 1] is

partitioned into N + 1 equally sized subintervals [x
i

, x
i+1], where x

i

= (i �
1)/(N +1), i = 1, . . . , d = N +2. A standard piecewise linear basis { 

i

(x)}d

i=1

defines the approximating space Vh := span( 1, . . . , d

) ⇢ V .
The FE approximation u(x, t;⇠⇠⇠) ⇡ uh(x, t;⇠⇠⇠) =

P

d

j=1 uj

(t;⇠⇠⇠) 
j

(x) leads

to the weak formulation: find u = uh(x, t;⇠⇠⇠) 2 Vh such that (4.12) holds

8v = vh(x) 2 Vh. Use is also made of the group (product) approximation

[141]: u(x, t;⇠⇠⇠)2 ⇡
P

d

j=1 uj

(t;⇠⇠⇠)2 
j

(x) 2 Vh. Setting u = uh and vh =  
j

in

(4.12) gives the semi-discrete problem:

d

X

i=1

u̇
i

(t;⇠⇠⇠)( 
i

, 
j

) +
1

2

d

X

i=1

u
i

(t;⇠⇠⇠)2( 0
i

, 
j

) +
1

Re

d

X

i=1

u
i

(t;⇠⇠⇠)( 0
i

, 0
j

) = (g, 
j

)

(4.13)

together with
P

d

i=1 ui

(0;⇠⇠⇠)( 
i

, 
j

) = (u0, j

), 8j = 1, . . . , d. Defining the

solution vector u(t;⇠⇠⇠) = (u1(t;⇠⇠⇠), . . . , ud

(t;⇠⇠⇠))T , Eq. (4.13) and the initial

condition lead to:

Mu̇(t;⇠⇠⇠) + b(u(t;⇠⇠⇠)) +
1

Re
Su(t;⇠⇠⇠) = g, Mu(0;⇠⇠⇠) = u0 (4.14)

where the (i, j)-th elements of the mass and sti↵ness matrices M and S are

given by ( 
i

, 
j

) and
�

 0
i

, 0
j

�

, respectively, and the j-th components of u0 and

g are (u0, j

) and (g, 
j

), respectively, The nonlinear vector function b(u(t;⇠⇠⇠))

arises from the second term in (4.13). A Runge-Kutta method with a variable

time step was used to solve the semi-discrete problems in this example.

The coe�cients u
i,j

(⇠⇠⇠), j = 1, . . . , d, of the snapshots u
i

(⇠⇠⇠) = u(t
i

;⇠⇠⇠),

i = 1, . . . ,m, for an arbitrary value of ⇠⇠⇠ are the nodal coe�cients in the FEM

solution, and thus correspond to functions u
i

(x,⇠⇠⇠) :=
P

d

j=1 ui,j

(⇠⇠⇠) 
j

(x) 2 Vh.

For the definition of the POD basis the L2(D) norm was chosen for optimal-

ity; that is, H = L2(D). A FE approximation of the POD basis functions

{vh
j

(x;⇠⇠⇠)}d

j=1 is given by vh
j

(x;⇠⇠⇠) =
P

d

i=1 vj,i(⇠⇠⇠) i

(x) 2 Vh, j = 1, . . . , d, in

which the nodal coe�cient v
j,i

(⇠⇠⇠) is the i-th component of the POD basis

vector v
j

(⇠⇠⇠), given by v
j

(⇠⇠⇠) = M�1/2v
j

(⇠⇠⇠), where v
j

(⇠⇠⇠) is an eigenvector of

M1/2C(⇠⇠⇠)M1/2. Note that L2(D) orthogonality of the basis {vh
j

(x;⇠⇠⇠)}d

j=1 is

equivalent to orthogonality of the v
j

(⇠⇠⇠) w.r.t. hv
j

(⇠⇠⇠),v
i

(⇠⇠⇠)iM := v
j

(⇠⇠⇠)TMv
i

(⇠⇠⇠).
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The solution vector is then expanded as in Eq. (4.3): u(t;⇠⇠⇠) ⇡ u(t;⇠⇠⇠) =
P

r

j=1 aj(t;⇠⇠⇠)vj

(⇠⇠⇠) = V
r

(⇠⇠⇠)a(t;⇠⇠⇠), leading to the reduced order model:

ȧ(t;⇠⇠⇠) +V
r

(⇠⇠⇠)Tb (V
r

(⇠⇠⇠)a(t;⇠⇠⇠)) +
1

Re
V

r

(⇠⇠⇠)TSV
r

(⇠⇠⇠)a(t;⇠⇠⇠) = V
r

(⇠⇠⇠)Tg

a(0;⇠⇠⇠) = a0(⇠⇠⇠) := V
r

(⇠⇠⇠)Tu0

(4.15)

Another choice for optimality is H = H0
1 (D) with a(·, ·) as the inner product

and associated semi-norm |'|1 = a(',')1/2. The POD eigenvalue problem
R

T

0 a(u, v)udt = �v leads to the eigenvalue problem C(⇠⇠⇠)TSv
j

(⇠⇠⇠) = �v
j

(⇠⇠⇠).

The POD basis vectors are then given by v
j

(⇠⇠⇠) = S�1/2v
j

(⇠⇠⇠), where v
j

(⇠⇠⇠) is

an eigenvector of S1/2C(⇠⇠⇠)S1/2, and are mutually orthogonal w.r.t. h·, ·iS. In

the present example this approach gave almost identical results.

Case 1. In the first example t g(x) ⌘ 0 and k = 1 were set. The inputs

were defined as ⇠⇠⇠ = (c1, c2, Re)T 2 X = [2, 5] ⇥ [0.1, 1] ⇥ [10, 1000]. A total

of 500 inputs ⇠⇠⇠
j

2 X were selected using a Sobol sequence and numerical

experiments were performed by solving the FOM model (4.14) with d = 64

nodes, for each j = 1, . . . , 500, to obtain the solution vectors u(t
i

;⇠⇠⇠
j

) and

nonlinearity b(u(t
i

;⇠⇠⇠
j

)) at times, t
i

= 0.25i, i = 1, . . . , 40 (m = 40). This

yielded the data points (vectorized snapshots) y
j

= ⌘⌘⌘(⇠⇠⇠
j

) and yf

j

= ⌘⌘⌘f (⇠⇠⇠
j

),

j = 1, . . . , 500, according to Eq. (4.7). Of the 500 data points, n
t

= 300 were

reserved for testing, and training points were selected from the remaining 200

points. The details of kPCA and GP emulation were as described in the

previous example.

Analysis of the normalized errors ✏ for the n
t

test cases with n = 160

training points showed convergence after q = 8 dimensions. Isomap gave

similar results while Di↵usion maps was inferior. A value of q = 9 (kPCA) was

used in the results presented below. Fig. 4.8(a) shows the results of kGPE-

POD-DEIM for an increasing r (with s = r). The relative errors converge

after r = 30, i.e., further decreases are negligible. Fig. 4.8(b) compares the

predicted velocity profiles at t = 0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s from kGPE-

POD-DEIM and the FOM for a point (✏
r

⇡ 0.041) above the upper whisker

at r = 10 in Fig. 4.8(a). The two sets of profiles are very close. The inset

in Figure (b) shows the absolute pointwise error at each point x in the 1-d
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Figure 4.8: (a) Tukey box plots of ✏
r

with increasing r using kGPE-POD-
DEIM for Burgers model case 1 (n = 180, n

t

= 300 and m = 15). (b) Velocity
profiles at t = 0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s simulated with the FOM (filled
circles, every third node) and kGPE-POD-DEIM (solid lines) for a case with
✏
r

⇡ 0.041 at r = 10. The inset in Figure (b) shows the absolute pointwise
error at t = 2.5 s (dashed), 5 s (solid) and 10 s (dashed dotted).
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Figure 4.9: Tukey box plots of ✏
r

with increasing r for Burgers model case 1
(n

t

= 300, m = 40 and n = 180): (a) kGPE-POD; (b) a global basis.
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spatial domain. In other words, at each point x in the discretisation, the

absolute (i.e., magnitude) di↵erence between the full solution and the POD

solution. This is shown for three di↵erent times (2.5 s, 5 s and 10 s) to show

how the error changes along the x axis and also how it evolves with time.

Inspection of the full set of profiles showed that the error grew with time until

the front developed, after which the error decayed. The highest absolute error

was around 8.62 ⇥ 10�4 at x = 0.703, t = 5.65s, for which u(x, t) ⇡ 0.103 m

s�1. Thus, the maximum error was around 0.84 %.
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Figure 4.10: Tukey box plots of ✏
r

with increasing s for Burgers model case 2
(n

t

= 300, n = 180 and m = 200) using kGPE-POD-DEIM with: (a) r = 30;
and (b) r = 50.

With no approximation of the nonlinearity, a comparison between kGPE-

POD and the global basis method exhibited trends similar to those seen in the

previous example. For m < 30 and n  200, kGPE-POD required fewer

POD vectors to achieve a given level of accuracy; the lower bound for ✏
r

at

r = 10 was one order of magnitude smaller for kGPE-POD. Both methods

improved with increasing m, with the global basis method showing a greater

improvement, especially in the lower bound for ✏
r

. For m = 30 and n = 180

the results are illustrated in Fig. 4.9, which shows that around r = 28 both

methods exhibit similar levels of accuracy in terms of the maximum, minimum

and median ✏
r

.

Case 2. In a second case g(x) = 0.02ex, k = 3 and c2 = 0.2 were set, with

inputs ⇠⇠⇠ = (c1, Re)T 2 X = [2, 5] ⇥ [10, 1000]. As before 500 inputs were

selected using a Sobol sequence and the FOM ran to generate data points,

with n
t

= 300 reserved for testing. In this case d = 128 nodes were used and

after inspection of the normalized errors ✏ q = 9 was set. In contrast to the
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previous case, a large m (m > 120) was required for accurate results.

Fig. 4.10 shows the trends in the kGPE-POD-DEIM relative error ✏
r

on

the n
t

= 300 test points with increasing s for two values of r, using n = 180 and

m = 200. For a fixed r, the errors decrease with an increasing s. For a fixed

s, the errors were seen to decrease as r was increased up to a certain value.

For higher values of r the solutions became less stable, with a corresponding

increase in the error. This was more pronounced for small values of s. The

optimal distribution of errors (in terms of the median, quartiles and extrema)

was achieved for values of s between 5 and 10 higher than the value of r.

Similar results for Burgers equation can be found in, e.g., [142, 85].
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Figure 4.11: Velocity profiles predicted by the FOM (filled circles, every third
node) and kGPE-POD-DEIM (solid lines) at t = 0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s
for Burgers model case 2. (a) A point near the median (✏

r

⇡ 0.0022) at r = 30,
s = 40 in Figure 4.10(a); (b) a point near the upper whisker (✏

r

⇡ 0.0154)
at r = 30, s = 40; (c) point with the highest error (✏

r

⇡ 0.0282) at r = 30,
s = 40; (d) point with the highest error (✏

r

⇡ 0.0072) at r = 50, s = 55 in
Figure 4.10(b).

For r = 30 and s = 40, Figs. 4.11(a) and (b) compare the FOM and

kGPE-POD-DEIM profiles at t = 0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10 s. The first of

these corresponds to a point near the median of the relevant box plot in Fig.
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4.10(a), while the second corresponds to a point near the upper whisker. Fig.

4.11(c) shows the point with the highest error using the same values of r and s.

In this case, instability develops as the front forms but eventually settles. Using

r = 50 and s = 55, the case with the highest error is shown in Fig. 4.11(d).

In Fig. 4.11(d) it is seen that the solutions at early times are more stable.

The observed instability is a common feature of POD models [143, 144, 145].

Stabilization schemes, e.g., alternative inner products, post-processing steps

and modification of the underlying model [144, 146, 147] can be incorporated

within the framework developed in this work in order to eliminate or minimize

such problems.

4.4 Concluding remarks

The aim of the chapter was to develop e�cient meta-models based on reduced

order modeling techniques for parameterized PDEs where the quantities of

interest are spatio-temporal fields. This new POD-ROM method uses bayesian

inference to predict the new basis for new parameter values. In contrast to the

global POD method, the new method proposed here is more computational

expensive due to the diagonalization of the snapshot matrix, although, this

cost is low as can be seen in the first example presented in this chapter. In

comparison to the FOM the method proposed here is almost 380 faster for

solving the desired quantity of interest (depending on the example), while at

the same time remains accurate.

Moreover, in the examples considered here, a higher value of POD basis

dimensions (r) is needed in order to perform similar to the POD-ROM method

described earlier, especially, for lower values of snapshots. This means that

the advantages of the global basis method as a meta-model become limited as

the number of POD basis dimensions increases.

The method developed in this chapter can be seen as a general frame-

work and alternations can be made to solve di↵erent problems. Someone can

use di↵erent manifold learning technique and stabilization approaches. Fur-

thermore, the developed Gaussian process based emulator could be used to the

POD basis Vr(⇠) or even the system matrix Ar(⇠). Comparing the developed

method of this chapter to the full order model has been proven that it reduces
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the computational cost.

Reduced order models use a linear subspace of the original output space

and therefore are linear and struggle to find solutions for complex non-linear

data, which in turn can a↵ect the computational time they usually need to find

a solution. In contrast, data driven methods may not be able to approximate

the solution of non-linear models like the full order model can.
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Chapter 5

GP Emulation with kernel PCA

and Di↵usion maps

Emulators can be used to find computational feasible approximations of com-

puter models that are based on partial di↵erential equations. Although, they

may struggle to provide meaningful results when dealing with high-dimensional

spaces or when the response surface is highly nonlinear. In this chapter a Gaus-

sian process emulator is developed in conjunction with dimensionality reduc-

tion techniques i.e. kPCA and di↵usion maps. In terms of di↵usion maps, the

main challenge is the computation of the inverse mapping. Etynier et al. [148]

proposed a low rank-approximation for the inverse mapping while Gepshtein

et al. [149] proposed an approach which is based on discrete approximation

by using spectral relaxation. Here, an e�cient approximation of the inverse

map is proposed and tested.

This chapter is based on [138]: W. W. Xing, V. Triantafyllidis, A.A.

Shah, P.B. Nair, N. Zabaras, Manifold learning for the emulation of spatial

fields from computational models Journal of Computational Physics, vol. 326,

pp. 666-690, 2016.
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Abbreviations

⌘⌘⌘ representation of computer model as a function

⇠ input vector of parameters

x points in a regular domain

y output of the simulator

⇣
i

, ⇣⇤
i

SVM slack variables

k(·, ·) kernel

D degree matrix

P Markov matrix

K kernel matrix

s
i

eigenvectors

�
i

eigenvalues

pt

j

probability mass function

r
i

right eigenvectors

l
i

left eigenvectors

   t di↵usion map
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m(·) mean function of a GP

c(·, ·) covariance function of a GP

✓✓✓ vector of hyperparameters

� data matrix

d
i,⇤ distance measure

K augmented kernel matrix

D augmented degree matrix

P augmented Markov matrix

m number of training points

m
t

number of testing points

u(·, ·, ·) dependent variable

v flow velocity

T temperature

p pressure

g gravitational acceleration

⇢ fluid density

✏ porosity of the medium

 permeability of the medium

! dynamic viscosity

c
e

coe�cient of volumetric thermal expansion
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� volume averaged thermal conductivity of the fluid-solid mixture

C
p

heat capacity

r number of dimension

Re Reynold’s number

j
a

(⌘
a

) anode transfer current density

j
c

(⌘
c

) cathode transfer current density

R
agg

radius of the agglomerate

D
agg

di↵usion coe�cient of the agglomerate

L
act

catalyst layer thickness

i0a exchange current density of the anode reaction

i0c exchange current densities of the cathode reaction

CO2,ref reference concentration of oxygen

CH2,ref reference concentration of hydrogen

CO2,agg surface concentration of oxygen

CH2,agg surface concentrations of hydrogen

T temperature

F Faraday’s constant

R universal gas constant

�
e

(�
e

) ionic conductivity

�
s

(�
s

) electronic conductivity
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E
eq,a

anode equilibrium potential

E
eq,c

cathode equilibrium potential

100



5.1 Statement of the problem

Consider a parameterized nonlinear, system of dynamic PDEs of arbitrary

order for dependent variables (scalar fields) u
i

(x,⇠⇠⇠), i = 1, . . . , J , where ⇠⇠⇠ 2 Rl

is a vector of parameters and x is the spatial variable. To give a concrete

example, the u
i

could refer to velocity components (say i = 1, 2, 3) and pressure

(i = 4) in a fluid flow model. The PDEs are permitted to be fully nonlinear

and parameterized in an arbitrary fashion (including the initial and boundary

conditions). It is assumed that the PDE model is well-posed (solutions exist

and are unique) for the range of values of ⇠⇠⇠ considered.

The quantity or quantities of interest can include any or all of the u
i

, or

functions derived from the u
i

. For the purposes of exposition, consider a single

quantity of interest, denoted simply as u(x;⇠⇠⇠). The simulator provides values

of u(x;⇠⇠⇠) at specified (fixed) locations, x(i), i = 1, . . . , d, on a spatial grid.

For di↵erent inputs ⇠⇠⇠(j) 2 Rl, j = 1, . . . ,m, the outputs of the simulator can

be represented as vectors: y(j) = (u(x(1);⇠⇠⇠(j)), . . . , u(x(d);⇠⇠⇠(j)))T 2 Rd. This

process can be repeated for other spatial fields of interest to derive multiple

vectorized outputs in Rd. An example of the simultaneous emulation of mul-

tiple field outputs is given in Section 5.6. It is assumed for now that a single

output y (derived from a single scalar field u(x;⇠⇠⇠)) is the target for emulation.

The simulator can be considered as a mapping ⌘⌘⌘ : X ! M (assumed

to be injective), where M ⇢ Rd is the permissible output space and X ⇢ Rl

is the permissible input space. That is, ⌘⌘⌘(⇠⇠⇠) = y = (u(x(1);⇠⇠⇠), . . . , u(x(d);⇠⇠⇠))T

for an arbitrary input ⇠⇠⇠. The goal of statistical emulation is to approximate

the mapping ⌘⌘⌘ given training points y(j) = ⌘⌘⌘(⇠⇠⇠(j)) 2 M, j = 1, . . . ,m. The

corresponding inputs ⇠⇠⇠(j) 2 X are referred to as design inputs or design points .

To infer outputs of the simulator at new inputs, Conti and O’Hagan [35]

took the approach of placing a d-dimensional GP prior over ⌘⌘⌘, indexed by ⇠⇠⇠.

E↵ectively, the same assumption was made by Higdon et al. [43] but in that

case the outputs were a linear combination of PCA basis vectors with coe�-

cients treated as independent univariate GPs indexed by ⇠⇠⇠. In this chapter, a

similar approach is adopted but rather than using PCA coe�cients, GP priors

were placed over coe�cients of a reduced-dimensional approximation of points

in M, obtained by manifold learning methods. It is assumed that M is a
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smooth manifold in Rd. The high dimension d of the output space and the

inability of linear dimensionality reduction methods such as PCA to capture

complex response surfaces is the motivation for this approach.

5.1.1 Support Vector Machines

An other popular supervised learning technique is the Support Vector Machine

(SVM) developed by Vapnik et. al. [59] which was extended by Boser [60] to

non-linear tasks by introducing the kernel trick. Assuming a training dataset

D = {yi, ⇠i}m

i=1, where y 2 R and ⇠ 2 X ⇢ Rl, in the epsilon-insensitive SVM

regression the function ⌘(⇠),where w 2 X and b 2 R has a linear form

⌘(⇠) = wT

⇠ + b (5.1)

and the aim is to solve a convex optimization problem of the form:

minimize
1

2
wTw

subject to y(i) �wT

⇠

(i) � b  "

wT

⇠

(i) + b� y(i)  "

(5.2)

in order for ⌘(⇠) to be as flat as possible and at the same time its

deviation from y(i) to be less or equal to ".

Cortes in [150] introduced the ’soft margins’ for the SVM in which

there are involved two slack variables ⇣
i

, ⇣⇤
i

. As a result the Equation 5.2 can

be rewritten in the form

minimize
1

2
wTw + C

m

X

i=1

(⇣
i

+ ⇣⇤
i

)

subject to y(i) �wT

⇠

(i) � b  "+ ⇣
i

wT

⇠

(i) + b� y(i)  "+ ⇣⇤
i

⇣
i

, ⇣⇤
i

� 0

(5.3)

where C is a constant positive term that controls the values outside the margin

" and also acts as regularization factor that prevents overfitting. In the linear

epsilon-insensitive loss function the errors that lie within " distance of the
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output are treated as zero, hence the loss function measures the values between

the output y and the " boundary:

L
"

=

8

<

:

0, if |y � ⌘(⇠)|  "

|y � ⌘(⇠)|� " otherwise
(5.4)

By using nonnegative Lagrange ↵
i

,↵⇤
i

, �
i

, �⇤
i

multipliers and forming a

Lagrangian function Equation 5.3 can be solved as:

L =
1

2
wTw + C

m

X

i=1

(⇣
i

, ⇣⇤
i

)�
m

X

i=1

↵
i

("+ ⇣
i

� y(i) +wT

⇠ + b)

�
m

X

i=1

↵⇤
i

("+ ⇣⇤
i

+ y(i) +wT

⇠ + b)�
m

X

i=1

(�
i

⇣
i

, �a

i

st⇣⇤
i

)

(5.5)

Taking the derivatives of the Lagrangian Equation 5.5 with respect to

w, b, ⇣
i

, ⇣⇤
i

and equating to zero results in:

@L

@b
=

m

X

i=1

(↵⇤
i

� ↵
i

) = 0

@L

@w
= w �

m

X

i=1

(↵
i

� ↵⇤
i

)⇠(i) = 0

@L

@⇣
i

= C � ↵� �
i

@L

@⇣⇤
i

= C � ↵⇤
i

� �⇤
i

(5.6)

Which can also be written in the dual representation form as:

maximize
1

2

m

X

i,j=1

(↵
i

� ↵⇤
i

)(↵
j

� ↵⇤
j

)(⇠(i))T⇠(j)

� "
m

X

i=1

(↵
i

+ ↵⇤
i

) +
m

X

i=1

(↵
i

� ↵⇤
i

)y(i)

subject to
m

X

i=1

(↵
i

� ↵⇤
i

) = 0

↵
i

,↵⇤
i

2 [0, C]

(5.7)
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To obtain the optimal solutions the Karush-Kuhn-Tucker complemen-

tarity conditions must be taken into consideration:

↵
i

("+ ⇣
i

� y(i) +wT

⇠ + b) = 0

↵⇤
i

("+ ⇣
i

+ j(i) �wT

⇠ � b) = 0

(C � ↵
i

)⇣
i

= 0

(C � ↵⇤
i

)⇣⇤
i

= 0

(5.8)

After these conditions have been met, the computation of b is:

b = y(i) �wT

⇠

(i) � " if ↵
i

2 (0, C)

b = y(i) �wT

⇠

(i) + " if ↵⇤
i

2 (0, C)
(5.9)

The dual form of SVM involves the observation vectors in the form

of inner product. By using the kernel trick [60][151] the original data could

be mapped in a feature and compute the inner product making the use of a

kernel function. This leads to be able for nonlinear problems to be solved in

the feature space instead of the original space. The kernel trick is also used in

this thesis for the kPCA and is presented in the following section.

5.2 Manifold learning methods

5.2.1 Di↵usion maps

In di↵usion maps, the training data y(i) 2 M ⇢ Rd, i = 1, . . . ,m are

mapped to a subset of Rm called the di↵usion space from which a reduced-

dimensional approximation is subsequently obtained [152, 153]. The mapping

embeds the data points in di↵usion space by preserving a di↵usion distance

defined between the points in physical space. The data points y(i) are iden-

tified with nodes on a graph and a Markov chain is constructed by specify-

ing a measure of ‘connectivity’ (or a ‘kernel’) between the nodes. Consider

a weighted undirected graph G with vertex set {y(1), . . . ,y(m)} representing

the training points. Edge weights are defined by a symmetric and positive

definite kernel k(y(i),y(j)) between the data points, e.g., the Gaussian kernel

k(y(i),y(j)) = exp(�||y(i)�y(j)||2/s2). It is assumed that G is connected (oth-
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erwise the maps can be constructed separately on each connected component).

A di↵usion process [67] on G is constructed by normalizing the con-

nectivity (adjacency) matrix K = [K
ij

], where K
ij

= k(y(i),y(j)). The degree

matrix is defined as D = diag(d1, . . . , dm), where d
i

=
P

j

K
ij

, and an m⇥m

di↵usion matrix is defined by P = D�1K. P = [P
ij

] is a Markov matrix; the

entry P
ij

is considered to be a transition probability p(y(i),y(j)) from node y(i)

to y(j) in a random walk on G. The corresponding t step transition probability

p
t

(y(i),y(j)) (from y(i) to y(j) in t 2 N = 1, 2, . . . steps) is given by the (i, j)-th

entry of Pt = P⇥ · · ·⇥P.

Since G is connected, P is ergodic and, therefore, possesses a unique

stationary distribution ⇡⇡⇡ with entries ⇡
i

= d
i

/
P

j

d
j

[152]. The symmetric

matrix P0 = D�1/2KD1/2 possesses the same eigenvalues �0
i

as P. A spectral

decomposition yields P0 = S���0ST , where the columns of S are the orthonormal

eigenvectors s
i

, i = 1, . . . ,m, of P0 and ���0 = diag(�01, . . . , �
0
m

). The eigenvalues

are arranged such that 1 = �01 > · · · > �0
m

and the eigenvector s1 has entries
p
⇡
i

[154]. P has the spectral decompositionP = Q���0Q�1, whereQ = D�1/2S.

The right and left eigenvectors of P are r
i

= D�1/2s
i

and l
i

= D1/2s
i

, respec-

tively. Therefore l1 = ⇡⇡⇡
q

P

j

d
j

and r1 = 1T/
q

P

j

d
j

. The right and left

eigenvectors are bi-orthogonal, i.e., lT
i

r
i

= �
ij

, where �
ij

is the Kronecker

delta. By the orthogonality of S, Pt = Q���tQ�1, or Pt =
P

m

i=1(�
0
i

)tr
i

lT
i

. The

j-th row vector of Pt, denoted pt

j

, is:

pt

j

= (p
t

(y(j),y(1)), . . . , p
t

(y(j),y(m)))T =
m

X

i=1

(�0
i

)tr
ji

l
i

, (5.10)

where r
ji

is the j-th coordinate of r
i

. pt

j

can be considered as a probability

mass function, where the i-th entry, i = 1, . . . ,m, is the probability of being

at node y(i) after t steps of a random walk that started at node y(j).

A di↵usion distanceD
t

(in physical space) is then defined as follows [152]:

D
t

(y(i),y(j)) =
�

(pt

i

� pt

j

)TD�1(pt

i

� pt

j

)
�1/2

. (5.11)

Now a family of di↵usion maps    t : M ! D(t) ⇢ Rm can be defined between
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the training points y(j) and di↵usion spaces D(t) as follows [152, 153]:

   t(y(j)) =
�

(�01)
tr

j1, . . . , (�
0
m

)tr
jm

�

T

. (5.12)

The maps are indexed by the free parameter t. The coe�cients of a mapped

point y(j) are the coe�cients of pt

j

in the non-orthogonal basis {l
i

}m

i=1. Di↵u-

sion maps embed the data points in D(t) in the following sense [152, 153, 155]:

||   t(y(i))�   t(y(j))|| = D
t

(y(i),y(j)), (5.13)

where || · || denotes the standard Euclidean norm. Equation (5.13) follows from

the bi-orthogonality of the left and right eigenvectors. From Eq. (5.12) and

the decay in the eigenvalues, mappings    t

r

(y(j)) : M! D(t)
r

⇢ Rr are defined

as follows:

   t

r

(y(j)) = ((�01)
tr

j1, . . . , (�
0
r

)tr
jr

)T , (5.14)

which give approximations of the training data {y(j) = ⌘⌘⌘(⇠⇠⇠(j))}m

j=1 in Rr, where

ideally r ⌧ m.

In practice, the value of r is usually selected according to a criterion on

the eigenvalues, e.g., as the largest index j such that |(�0
j

)t| > �|(�02)t| holds
for a pre-selected precision � [152]. The di↵usion distance, and therefore the

di↵usion map, depends on t. As t increases, the di↵usion distances between

points decrease since each row of Pt approaches the stationary distribution

(see Eq. (5.10)). Algorithm 2 summarizes di↵usion maps for data {y(i)}m

i=1.

In order to develop an inverse map approximation, di↵usion maps are

generalized to all points in M by taking the limit m ! 1. In this limit,

the random walk on the discrete graph using a Gaussian kernel converges to a

discrete-time walk on the continuous state space M [152, 153, 155, 156]. Let

µ be a probability measure on M defining the density of points. In the limit

m!1, a one-step transition kernel for the Markov chain on M can be defined

by p(y0,y) = k(y,y0)/d(y0), from an arbitrary y0 2M to an arbitrary y 2M,

where d(y0) =
R

M k(y,y0)dµ(y). A corresponding forward transfer operator

is defined by L'(y) =
R

M p(y0,y)'(y0)dµ(y0) for '(y) 2 L2(M, µ). This

operator is the continuous analogue of multiplication of P from the left. The

t-step operator Lt' = L�L�· · ·�L' has a corresponding t-step transition kernel
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Algorithm 2 Di↵usion maps
1a: Form a kernel matrix K using a kernel function k(·, ·).

Degree of node i: d
i

 
P

j

K
ij

i = 1, . . . , m.
Degree matrix: D diag(d1, . . . , dm).
P

0  D

�1/2KD

1/2.

2a: Eigenvalue problem: P

0
s = �s ! (s

i

, �0
i

), i = 1, . . . , m.

r

i

 D

�1/2
s

i

and l

i

 D

1/2
s

i

.

3a: Select r as the largest index j such that |(�0
j

)

t| > �|(�02)t| for a precision �:

   t

r

(y

(j)
) ((�01)

tr
j1, . . . , (�

0
r

)

tr
jr

)

T j = 1, . . . , m.

p
t

(y,y0). A backward transfer operator R'(y) =
R

M p(y,y0)'(y0)dµ(y0) can

be similarly defined , which is the analogue of multiplication of P from the

right.

The kernel p
t

(y,y0) admits the decomposition p
t

(y,y0) =
P1

i=1 �
t

i

r
i

(y)l
i

(y0), where �
i

, r
i

(y) and l
i

(y) are the (common) eigenval-

ues and eigenfunctions of L and R, respectively. They are, respectively, the

continuous-space equivalents of �0
i

, r
i

and l
i

. Moreover 1 = �1 > �2 > · · · .
For a fixed y 2 M, p

t

(y,y0) is the continuous version (a probability

density in y0 2 M) of the probability mass function defined by Eq. (5.10);

in the latter case, y = y(j) and y0 2 {y(1), . . . ,y(m)}, i.e., the finite set of

states accessible from y(j). The j-th components of r
i

and l
i

are, respectively,

approximations of r
i

(y(j)) and l
i

(y(j)) based on the training data. The di↵usion

distances between any two points y,y0 2 M are given by D
t

= ||p
t

(y,y0) �
p
t

(y,y0)||1/d, where ||'||21/d =
R

y02M |'(y0)|2/d(y0)dµ(y0) for functions {' :

||'||1/d <1}. In turn, di↵usion maps    t : M! D(t) ⇢ `2 are defined on the

whole space M by    t(y) = (�t1r1(y), �
t

2r2(y), . . .). Here, `2 denotes the space

of sequences {(x1, x2 . . .) :
P1

j=1 x
2
j

< 1}. Truncating the expansion of p
t

at

the first r terms leads to r-dimensional approximations of the di↵usion maps

   t

r

: M! D(t)
r

⇢ Rr, i.e.,    t

r

(y) = (�t1r1(y), . . . , �
t

r

r
r

(y))T .

Given an isotropic kernel k(y,y0), di↵usion maps can be generalized by

defining a family of anisotropic kernels k(↵)(y,y0) = k(y,y0)/(d(y0)↵d(y)↵), for

↵ 2 R, and normalizing the resulting kernel to generalize p(y0,y) (or P in

107



the discrete case) [152, 157, 158]. The standard algorithm described above

corresponds to the limiting case of ↵ = 0 (isotropic kernel), and anisotropic

kernels are not considered in this chapter due to the lack of inverse mappings

for such special cases. In Section 5.5.2, a new inverse map for the isotropic

case only is described.

Remark 2. It is possible to instead consider the mappings (   t

r

� ⌘⌘⌘)(·) =

   t

r

(⌘⌘⌘(·)) : X ! D(t)
r

⇢ Rr that map all points in the input space to D(t)
r

.

The mapped point is given by the first r coordinates of the transition kernel

p
t

(y,y0) (considering y to be fixed) in the basis {l
i

}1
i=1. The coe�cients are

the products of the eigenvalues and the corresponding eigenfunctions r
i

evalu-

ated at y = ⌘⌘⌘(⇠⇠⇠). Composite functions r
i

(·) = r
i

(⌘⌘⌘(·)) : X ! R are defined to

obtain:

   t

r

(⌘⌘⌘(⇠⇠⇠)) = (�t1r1(⇠⇠⇠), . . . , �
t

r

r
r

(⇠⇠⇠))T 2 D(t)
r

. (5.15)

The original problem of approximating ⌘⌘⌘(·) is replaced with the problem of

approximating    t

r

(⌘⌘⌘(·)) using the empirical eigenvalues �0
i

and empirical eigen-

functions (eigenvectors) l
i

and r
i

.

A multivariate GP prior indexed by ⇠⇠⇠ is placed over    t

r

(⌘⌘⌘(⇠⇠⇠)). Algo-

rithm 2 applied to the original data set {y(i)}m

i=1 yields the new training points

for emulation:    t

r

(⌘⌘⌘(⇠⇠⇠(j))) =    
r

(y(j)) = ((�01)
tr

j1, . . . , (�0
r

)tr
jr

)T , j = 1, . . . ,m,

obtained from the empirical eigenfunctions and empirical eigenvalues.

5.3 Emulation of coe�cients in reduced-

dimensional approximations

As explained in Remarks 1 and 2, rather than emulating the outputs in M
directly, multivariate GP priors are placed over the reduced-dimensional rep-

resentations in F
r

or D(t)
r

. In the actual approach described in Section 5.4,

univariate GP priors are placed over the individual coe�cients r
i

(·) or z
i

(·)
and these coe�cients are emulated separately. In this section, scalar GPE is

therefore outlined.

A scalar valued simulator is a function ⌘ : X ! R of inputs ⇠⇠⇠ 2 X ⇢ Rl.

In univariate GPE, a GP prior indexed by ⇠⇠⇠ 2 X is placed over ⌘(⇠⇠⇠) and

the emulator is trained using simulator outputs ⌘(⇠⇠⇠(i)) at design points ⇠⇠⇠(i).
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The notation t = (⌘(⇠⇠⇠(1)), . . . , ⌘(⇠⇠⇠(m)))T is used. The prior is ⌘(⇠⇠⇠)|✓✓✓,��� ⇠
GP (m(⇠⇠⇠), c(⇠⇠⇠,⇠⇠⇠0)), where GP (m(·), c(·, ·)) represents a GP with mean and

covariance functions m(·) and c(·, ·), respectively. The most common choices

for the mean function are a linear function or a constant. In this work, m ⌘ 0

was assumed by centering the data. ✓✓✓ is a vector of hyperparameters (e.g.,

parameters in the covariance function) that are typically unknown a priori .

Remark 3. A GP noise term can be added to the model, in which case ⌘(⇠⇠⇠) is a

latent function while the simulator outputs are the observables: t(⇠⇠⇠) = ⌘(⇠⇠⇠) +

✏(⇠⇠⇠), in which ✏(⇠⇠⇠) ⇠ GP(0, �2
n

�(⇠⇠⇠,⇠⇠⇠0)), where �(·, ·) is the Kronecker delta.

The noise can represent modelling or simulation errors or can be included for

numerical stability. It can be included directly as an additional term in the

covariance function c(⇠⇠⇠,⇠⇠⇠0) (a so called ‘jitter’ or ‘nugget’ [159]), which leads

to the same result for GP priors over the noise and latent function.

A square exponential covariance function is used:

c(⇠⇠⇠,⇠⇠⇠0) = ✓0 exp
�

�(⇠⇠⇠ � ⇠⇠⇠0)Tdiag(✓1, . . . , ✓l)(⇠⇠⇠ � ⇠⇠⇠0)
�

+ �2
n

�(⇠⇠⇠,⇠⇠⇠0), (5.16)

where the last term is the jitter, and ✓✓✓ = (✓0, . . . , ✓l, �2
n

)T . The parameters

✓1, . . . , ✓l are the inverse square correlation lengths. Alternatives to Eq. (5.16)

include the Matérn class of functions and piecewise polynomials, which are

also stationary [58].

The conditional predictive distribution at new inputs ⇠⇠⇠ is obtained in a

straightforward manner from the joint distribution p(⌘(⇠⇠⇠), t|✓✓✓) [58]:

⌘(·)|t,✓✓✓ ⇠ GP (m0(·;✓✓✓), ⌫ 0(·, ·;✓✓✓)) ,
m0(⇠⇠⇠;✓✓✓) = c(⇠⇠⇠)TC�1t and ⌫ 0(⇠⇠⇠,⇠⇠⇠0;✓✓✓) = c(⇠⇠⇠,⇠⇠⇠0)� c(⇠⇠⇠)TC�1c(⇠⇠⇠0),

(5.17)

where C = [C
ij

] is the covariance matrix with entries C
ij

= c(⇠⇠⇠(i),⇠⇠⇠(j)), i, j =

1, . . . ,m, and c(⇠⇠⇠) = (c(⇠⇠⇠(1),⇠⇠⇠), . . . , c(⇠⇠⇠(m),⇠⇠⇠))T .

The hyperparameters ✓✓✓ are unknown. Point estimates [19, 160] such as

the maximum likelihood estimate (MLE) are employed in most cases; that is,

the predictive distribution is given by Eq. (5.17) using the MLE estimate. The

MLE is given by arg max
✓

✓

✓

R(✓✓✓), where R(✓✓✓) = log p(t|✓✓✓) is the log likelihood:

R(✓✓✓) = �1

2
ln |C|� 1

2
tTC�1t� m

2
ln(2⇡). (5.18)

109



In a Bayesian inference approach, predictions at a new input ⇠⇠⇠ are made by

integrating over ✓✓✓ in the joint distribution of ✓✓✓ and ⌘(⇠⇠⇠) given t (the poste-

rior predictive distribution). The integral is analytically intractable but can

be approximated using Monte Carlo integration, e.g., importance sampling,

or Markov Chain Monte Carlo [161] to sample from the posterior over the

hyperparameters p(✓✓✓|t).

5.4 Multi-output emulation using manifold learn-

ing

The problem of emulating ⌘⌘⌘ : X !M has been replaced with the problem of

emulating the map z
r

(⌘⌘⌘(·)) defined by Eq. (2.8) or the map    t

r

(⌘⌘⌘(·)) defined by

Eq. (5.15). Multivariate GP priors are placed over these maps, with training

points for emulation given by Algorithms 1 and 2 for kPCA and di↵usion maps,

respectively. These multivariate GP priors take a particularly convenient form

by assuming independence of the coordinates, as explained below.

The kPCA coe�cients, z
i

(⇠⇠⇠), i = 1, . . . , r are mutually uncorrelated; fol-

lowing Higdon et al. [43] (see also the wavelet decomposition approach in [44])

the approximation is therefore made that they arise from independent GPs.

The di↵usion map coe�cients �
i

r
i

(⇠⇠⇠), i = 1, . . . , r, on the other hand, are not

uncorrelated. As a simplification, however, the underlying GPs are treated as

independent (see Remark 4). For both manifold learning methods, univariate

GPE is then performed separately on each coe�cient to approximate its value

for a new input ⇠⇠⇠. The process is summarized below for each case, making

clear the link between the notation of Sections 5.2 and 5.3.

1. kPCA: For a fixed i = 1, . . . , r, ⌘(⇠⇠⇠) = z
i

(⇠⇠⇠) is set. The training points

are given by Eq. (2.6): ⌘(⇠⇠⇠(j)) = z
i

(⇠⇠⇠(j)) = e↵↵↵T

i

H(k
j

�K1), j = 1, . . . ,m.

Recall that z
i

(⇠⇠⇠(j)) = z
i

(⌘⌘⌘(⇠⇠⇠(j))) = z
i

(y(j)). The expected (mean) value

at an input ⇠⇠⇠, given by Eq. (5.17), yields a prediction that is denoted

z
i

(⇠⇠⇠) (to avoid introducing new notation, there is no distinguish between

z
i

(⇠⇠⇠) and E[z
i

(⇠⇠⇠)]). Set z
r

(⌘⌘⌘(⇠⇠⇠)) = (z1(⇠⇠⇠), . . . , zr(⇠⇠⇠))T . Again, this is the

expected value E[z
r

(⌘⌘⌘(⇠⇠⇠))].

2. Di↵usion maps: For a fixed i = 1, . . . , r, ⌘(⇠⇠⇠) = r
i

(⇠⇠⇠) is set. The train-
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ing points are given by Eq. (5.14): ⌘(⇠⇠⇠(j)) = r
i

(⇠⇠⇠(j)) = r
ji

, j = 1, . . . ,m.

Recall that r
i

(⇠⇠⇠(j)) = r
i

(⌘⌘⌘(⇠⇠⇠)(j))) = r
i

(y(j)). For a new input ⇠⇠⇠, Eq. (5.17)

yields E[r
i

(⇠⇠⇠)], denoted simply as r
i

(⇠⇠⇠). One then obtains (the expected

value of)    t

r

(⌘⌘⌘(⇠⇠⇠)) = ((�01)
tr

i

(⇠⇠⇠), . . . , (�0
r

)tr
r

(⇠⇠⇠))T , which approximates

   t

r

(⌘⌘⌘(⇠⇠⇠)) = (�t1ri

(⇠⇠⇠), . . . , �t
r

r
r

(⇠⇠⇠))T . Note that while the GPE provides

a prediction of the function r
i

(⇠⇠⇠), it can provide no information on the

eigenvalues �
i

= lim
m!1 �0

i

, which do not depend on ⇠⇠⇠. Thus, the �0
i

found from Algorithm 2 are used to compute the predicted value of

   t

r

(⌘⌘⌘(⇠⇠⇠)).

Remark 4. To take account of the correlations between the coe�cients when

using di↵usion maps, the linear model of coregionalization (LMC) [36, 162]

could be used to emulate the coe�cients simultaneously. Alternatively, the GP

model could be replaced by an artificial neural network (ANN). For moderately

sized r, neither approach is computationally expensive. In this chapter, the

approach of univariate GPs is compared with ANN using Bayesian regulariza-

tion [107, 108].

To complete the emulation, the inverse map must be approximated from the

reduced-dimensional space F
r

or D(t)
r

to the physical space M ⇢ Rd. This

so-called pre-image problem can be solved in a number of ways for kPCA

but a stable, computationally e�cient solution for di↵usion maps in high-

dimensional spaces does not exist. In the next section, details of the inverse

map approximations are provided for both methods, including a new pre-

image solution for di↵usion maps. The main algorithm for GPE of outputs in

high-dimensional spaces is given in Section 5.5.3.

Remark 5. The GPE framework furnishes predictive variances, given by

Eq. (5.17). The variances pertain to the coe�cients (z
i

or r
i

) in an abstract

space and there is no obvious method to translate this information into vari-

ances in the predictions y = ⌘⌘⌘(⇠⇠⇠) 2 M. The inverse maps discussed below

provide only the predictive means of the points y. However, Monte Carlo

(MC) estimates of higher-order statistics can be derived for a fixed input ⇠⇠⇠ by

drawing samples from the posterior predictive Gaussian distribution (defined

by Eq. (5.17)) over the coe�cients r
i

(y) = r
i

(⇠) or z
i

(y) = z
i

(⇠⇠⇠) and using

the deterministic inverse maps described below.

111



5.5 Inverse mappings: Reconstruction of points

in M
The final step is to find approximations of the inverse mappings ����1

r

(·) : F
r

!
M and (   t

r

)�1(·) : D(t)
r

! M for kPCA and di↵usion maps, respectively.

Note that these are the inverse mappings for the manifold learning methods

(from the reduced dimensional space to physical space) and not the inverse

mappings for the composite functions ���
r

(⌘⌘⌘(·)) and    t

r

(⌘⌘⌘(·)). In practical terms

(since the feature map is unknown), for kPCA the mapping z�1
r

(·) : Rr !M,

or z
r

7! y = ⌘⌘⌘(⇠⇠⇠) is sought. This can be achieved via a closed-form least-

squares solution [163, 164]. This method, however, can su↵er from numerical

instabilities if m < d (number of training points is less than the dimension of

M), as can the fixed-point iterative algorithm of Mika et al. [165] and other

minimization routines.

For di↵usion maps there has been little progress towards finding an in-

verse map approximation. Etyngier et al. [166] proposed an optimization pro-

cedure designed for 2-d shapes embedded in R3 (a closely related method can

be found in [167]). This method uses a Delaunay triangulation into r-simplices

of the embedded points in D(t)
r

and takes the points in the simplex containing

   t

r

(y) =    t

r

(⌘⌘⌘(⇠⇠⇠)) to be the mapped nearest r+1 neighbours of y = ⌘⌘⌘(⇠⇠⇠) in M.

It then proceeds to minimize over the point y and its barycentric coordinates

w.r.t. its r+1 closest neighbours. For large values of r and d, in particular for

d� m, this procedure will be highly unstable and computationally expensive.

Given the reduced-dimensional representation z
r

(y) or    t

r

(y) of an un-

known point y, a general method for finding the pre-image is to use a weighted

average ofN
n

neighbouring (in some well defined sense) points of y. The neigh-

bouring points are taken from the data set, for which the reduced dimensional

representations have been computed. In the present case, the data set consists

of the m training points {y(i)}m

i=1. The weighted average can be written as

follows:

y =
X

j2J
#(y(j))y(j), (5.19)

in which the weight #(y(j)) is associated with the data point y(j), j 2 J , and
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J ✓ {1, 2, . . . ,m}, which has cardinality N
n

, defines the neighbouring points.

For example, the weights can be defined in terms of the distances d
i,⇤, between

y and the data points y(i), i = 1, . . . ,m. The simplest approach, known as

local linear interpolation [168, 104] is to take #(y(j)) = d�1
j,⇤/

P

m

j=1 d
�1
j,⇤ and to

select the index set J according to the N
n

points of {y(j)}m

i=1 with the largest

values of #(y(j)). A generalization of this approach uses an isotropic kernel

density �(y,y0) = �(||y � y0||) to weight the samples [169]:

#(y(j)) =
�(y,y(j))

P

m

i=1 �(y,y
(i))

=
�(d

j,⇤)
P

m

i=1 �(di,⇤)
, (5.20)

The particular form of kernel density used in this chapter is �(y,y0) = exp(�||y�
y0||2), which was found to yield more stable and accurate results than local

linear interpolation.

The problem is now reduced to finding the distances d
i,⇤, i = 1, . . . ,m,

between y and the training points y(i). For both manifold learning methods,

these distances are calculated by finding the corresponding kernel values and

exploiting relationships between the kernel function and distances in M.

5.5.1 Kernel PCA

The data matrix � = [���(y(1)), . . . ,���(y(m))] can be centered in feature space

by e� = �H, yielding ew
i

=
P

m

j=1 e↵ji

e���(y(j)) = e�e↵↵↵
i

= �He↵↵↵
i

, where the e↵↵↵
i

are

known from Algorithm 1. The uncentered projection ���
r

(y) 2 F
r

of e���(y) 2 F
onto the first r basis vectors is given by:

���
r

(y) =
r

X

i=1

z
i

ew
i

+ ��� =
r

X

i=1

z
i

�He↵↵↵
i

+ �1

= � (H[e↵↵↵1 . . . , e↵↵↵r

]z
r

+ 1) = �⌧⌧⌧ .

(5.21)

To find the distances d
i,⇤, it may be noted that the distance ed

i,⇤ between ���(y(i))

and ���(y) in F is given by:

ed2
i,⇤ = ���(y)T���(y) + ���(y(i))T���(y(i))� 2���(y)T���(y(i)). (5.22)
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Taking ���(y) ⇡ ���
r

(y) and substituting Eq. (5.21) into Eq. (5.22) yields:

ed2
i,⇤ ⇡ ⌧⌧⌧TK⌧⌧⌧ + k(y(i),y(i))� 2⌧⌧⌧Tk

i

, (5.23)

with ⌧⌧⌧ defined as in Eq. (5.21). Note that �T� = K and k
i

= �T���(y(i)).

For an isotropic kernel normalized such that k(y0,y0) = 1, Eq. (5.22) gives
ed2
i,⇤ = 2 � 2k(y(i),y), which, equating to the right hand side of Eq. (5.23),

yields k(y(i),y). For the Gaussian kernel, therefore, d2
i,⇤ = �s2 ln k(y(i),y)

is obtained. Similar relationships exist for other commonly used kernel func-

tions [170], e.g., the polynomial kernel k
n

(y,y0) =
�

yTy0 + c
�

n

, c 2 R, n = N.

In combination with Eqs. (5.19) and (5.20), the values of d
i,⇤ yield an approx-

imation of y = ⌘⌘⌘(⇠⇠⇠).

5.5.2 Di↵usion maps

t = 1 is assumed (without loss of generality) to simplify the notation. At the

practical level, one must work within the finite-dimensional setting in which

there are m + 1 data points; the training points {y(i)}m

i=1, and the unknown

prediction y = ⌘⌘⌘(⇠⇠⇠). The original kernel, degree and Markov matrices (K, D

and P) based on the training points can be augmented to reflect the addition

of the point y. The augmented kernel matrix, denoted K, is:

K =

"

K (k(y(1),y), . . . , k(y(m),y))T

(k(y(1),y), . . . , k(y(m),y)) k(y,y)

#

. (5.24)

The corresponding degree matrix, denoted D, is:

D =

"

bD 0

0 k(y,y) +
P

j

k(y(j),y)

#

, (5.25)
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where bD = D + diag(k(y(1),y), . . . , k(y(m),y)). The new Markov chain, de-

noted P = D�1K, is given by:

P =

2

6

4

bD
�1
K bD

�1
(k(y(1),y), . . . , k(y(m),y))T

(k(y(1),y), . . . , k(y(m),y))

k(y,y) +
P

j

k(y(j),y)

k(y,y)

k(y,y) +
P

j

k(y(j),y)

3

7

5

.

(5.26)

The (m + 1)-st row vector of P is denoted p
m+1

. The i-th entry in p
m+1

is

the transition probability from y to y(i), i = 1, . . . ,m (the last entry is the

transition probability from y to y). From the discussion in Section 5.2.1, it

is known that the i-th entry of p
m+1

approximates (based on the finite set

{y(i)}m

i=1) the value of the transition kernel p(y,y0) =
P1

j=1 �jrj(y)li(y
0) with

y = ⌘⌘⌘(⇠⇠⇠) fixed, and with y0 = y(i); the last entry is the value at y0 = y. Thus:

p
m+1

⇡
1
X

j=1

�
j

r
j

(y)(l
j

(y(1)), . . . , l
j

(y(m)), l
j

(y))T

⇡
r

X

j=1

�
j

r
j

(y)(l
j

(y(1)), . . . , l
j

(y(m)), l
j

(y))T ,

(5.27)

by virtue of the decay in �
i

. The value of l
j

(y(i)), i = 1, . . . ,m, is approximated

by the i-th component l
ij

of l
j

(the empirical eigenfunction obtained from the

training points). The predicted di↵usion coordinates satisfy:

   
r

(y) = (�01r1(⇠⇠⇠), . . . , �
0
r

r
r

(⇠⇠⇠))T = (�01r1(y), . . . , �
0
r

r
r

(y))T . (5.28)

Recall that r
i

(⇠⇠⇠) = r
i

(⌘⌘⌘(⇠⇠⇠)), which is numerically equal to r
i

(y) for i = 1, . . . , r,

and is thus known. Thus the i-th entry p
m+1,i

of p
m+1

can be approximated

as follows:

p
m+1,i

⇡
r

X

j=1

�0
j

r
j

(⇠⇠⇠)l
ij

, i = 1, . . . ,m. (5.29)

Equating this expression with that of the equivalent entry in Eq. (5.26), the

following it is obtained:

r

X

j=1

�0
j

r
j

(⇠⇠⇠)l
ij

=
k(y(i),y)

k(y,y) +
P

m

j=1 k(y
(j),y)

, i = 1, . . . ,m. (5.30)
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For a Gaussian kernel k(y,y) = 1, so solving the system of m equations

above yields the unknown kernel values k(y(i),y), i = 1, . . . ,m. The Euclidean

distances d
i,⇤ are recovered from the kernel values. For a Gaussian kernel,

d2
i,⇤ = �s2 ln k(y(i),y). In combination with Eqs. (5.19) and (5.20), these

values of d
i,⇤ yield an approximation of y = ⌘⌘⌘(⇠⇠⇠).

The results of this inverse map approximation on a conical spiral are

illustrated in Fig. 5.1. A conical spiral is a 1-d manifold embedded in 3-d, and

is defined by the following equations:

x1 = 4⇡t cos(4⇡t), x2 = 4⇡t sin(4⇡t), x3 = 40⇡t, (5.31)

for a single variable t 2 R. A total of 500 points were sampled from the spi-

ral by sampling 500 values of t from a standard uniform distribution U(0, 1).

Figure 5.1(a) shows the sampled points, Fig. 5.1(b) shows the 2-d (r = 2)

approximation of the points using di↵usion maps, and Fig. 5.1(c) shows the re-

construction of the original points using the inverse mapping described above.

Here, t = 1 and a Gaussian kernel with s2 given by the average square dis-

tance between observations in the original space were used [140], as detailed

in Section 5.6.1. Similarly accurate results were obtained for other standard

test sets, e.g., the swiss roll and a Gaussian surface.

5.5.3 Main algorithm

The proposed procedure for GPE of outputs in high-dimensional spaces is

summarized in the pseudocode Algorithm 1, based on a Gaussian kernel for

both kPCA and di↵usion maps.
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Figure 5.1: Illustration of the pre-image method for data lying on a conical
spiral. 500 points were randomly sampled from the spiral, shown in Fig. (a).
A 2-d approximation using di↵usion maps is shown in Fig. (b). The recon-
struction is illustrated in Fig. (c). Each point in Fig. (a) has a unique color,
which is retained in Figs. (b) and (c).
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Algorithm 3 GPE for high-dimensional spaces using manifold learning.
1a: Manifold Learning for reduced-dimensional space approximation

kPCA Di↵usion maps

Algorithm 1: Algorithm 2:

�

(z1(y(j)
), . . . , z

r

(y

(j)
))

T

 

m

j=1

�

(�01rj1, . . . , �0rrjr)T
 

m

j=1

z
i

(⌘⌘⌘(⇠⇠⇠(j))) z
i

(y

(j)
) r

i

(⌘⌘⌘(⇠⇠⇠(j))) r
i

(y

(j)
) r

ji

2a: for i 1 to r do

kPCA Di↵usion maps

�

z
i

(⇠⇠⇠(j)) z
i

(⌘⌘⌘(⇠⇠⇠(j)))
 

m

j=1

�

r
i

(⇠⇠⇠(j)) r
i

(⌘⌘⌘(⇠⇠⇠(j)))
 

m

j=1
�

⌘(⇠⇠⇠(j)) z
i

(⇠⇠⇠(j))
 

m

j=1

�

⌘(⇠⇠⇠(j)) r
i

(⇠⇠⇠(j))
 

m

j=1

Scalar GPE: z
i

(⇠⇠⇠) E[⌘(⇠⇠⇠)] Scalar GPE: r
i

(⇠⇠⇠) E[⌘(⇠⇠⇠)]

3a: end for

kPCA Di↵usion maps

z

r

(⌘⌘⌘(⇠⇠⇠)) (z1(⇠⇠⇠), . . . , z
r

(⇠⇠⇠))T    t

r

(⌘⌘⌘(⇠⇠⇠)) (�t1ri

(⇠⇠⇠), . . . , �t
r

r
r

(⇠⇠⇠))T

4a: Inverse map

y 
Nn
X

i=1

 

�(d
i,⇤)

P

Nn
i=1 �(d

i,⇤)

!

y

(i)

kPCA Di↵usion maps (t = 1)

k(y

(i),y) 1
2

�

1� ⌧⌧⌧TK⌧⌧⌧ + 2⌧⌧⌧Tk
i

�

r

X

j=1

�0
j

r
j

(⇠⇠⇠)l
ij

 k(y(i),y)

1 +

P

m

j=1 k(y
(j),y)

d
i,⇤  

p

�s2 ln k(y

(i),y) d
i,⇤  

p

�s2 ln k(y(i),y)

5.6 Results and discussion

In this section, three examples are considered. In the first example, a single

field is emulated, while the second example is concerned with the emulation of

three fields simultaneously. The final example considers a nonlinear 2-d model

of a hydrogen fuel cell. Unless otherwise stated, for each example a total of 500

inputs were generated using a Sobol sequence. A Sobol sequence [97] is a quasi-

random sequence that is specifically designed to generate samples as uniformly

as possible over the unit hypercube [122]. For each input ⇠⇠⇠(i), i = 1, . . . , 500,

118



simulations were performed to yield data points y(i) = ⌘⌘⌘(⇠⇠⇠(i)) 2 Rd. Of the

500 data points, m
t

= 300 were reserved for testing and the training points

were selected from the remaining 200 (m  200). The predicted value of y(i)

at a test input ⇠⇠⇠(i) using Algorithm 3 is denoted by y(i)
p

= ⌘⌘⌘(⇠⇠⇠(i)). A relative

error is defined as:

Relative error =
||y(i)

p

� y(i)||2
||y(i)||2 , (5.32)

where || · || is the standard Euclidean norm.

5.6.1 Computational details

Details of the scalar GPE, the manifold learning techniques and the software

employed in the implementation of Algorithm 3 are provided below.

1. kPCA. A Gaussian kernel was used with the free parameter s2 taken

to be the average square distance between observations in the original

space [140]: s2 = (1/m2)
P

m

i,j=1 ||y(i) � y(j)||2. Polynomial and multi-

quadratic kernels were also tested but found to be inferior. A sigmoid

kernel was found to give similar results to those obtained with a Gaussian

kernel. In the inverse mapping, all m points were employed for the

reconstruction in physical space (inverse mapping).

2. Di↵usion maps. A Gaussian kernel was used, in which the value of s2

was determined as described above. Again, all m points were employed

for the reconstruction. A value of t = 1 was used in the results presented

below. Higher values of t did not lead to any significant changes.

3. Gaussian Process Emulation. The square exponential covariance

function Eq. (5.16) was used and the mean function was taken to be

identically zero after centering the data (coe�cients extracted from the

manifold learning technique). The hyper parameters were estimated us-

ing the MLE method based on a gradient descent algorithm.
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5.6.2 Free convection in porous media

Subsurface flow in a porous medium can be modelled by Brinkman’s equation

(with a Boussinesq buoyancy term) and a thermal energy balance [171]:

�
�

!�1v +rp
�

�r · !✏�1
�

rv +rvT

�

= ⇢gc
e

(T � T
c

),

⇢C
p

v ·rT �r · (�rT ) = 0,

r · v = 0,

(5.33)

in which v is the flow velocity, T is temperature, p is pressure, g is the grav-

itational acceleration, ⇢ is the fluid density at a reference temperature T
c

, ✏

and  are the porosity and permeability of the medium, ! is the dynamic

viscosity, c
e

is the coe�cient of volumetric thermal expansion, � is the volume

averaged thermal conductivity of the fluid-solid mixture, and C
p

is the specific

heat capacity of the fluid at constant pressure.

A 2-d domain (x1, x2) 2 [0, 10]⇥ [0, 10] (in cm) is considered filled with

water. The temperature boundary conditions are illustrated in Fig. 5.2. The

temperature ranges from T
h

to T
c

< T
h

along the outer edges. The � in Fig. 5.2

is a variable that goes from � = 0 at the surface x2 = 0 (so that T = T
h

at

this surface), to � = 1 at the cut-o↵ (the dashed line at x2 = 0.1cm on the

right hand boundary), so at this cut-o↵ T = T
c

. In other words, temperature

decreases linearly along the right hand boundary from T = T
h

at x2 = 0,

to T = T
c

at the cut-o↵ point i.e x2 = 0.1. Similarly for the left hand side

boundary, the temperature goes from T = T
h

at x2 = 0, to T = T
c

at x2 = 1.

Note that in this case the there is no cut-o↵, so delta is actually the same as x2

(both go from 0 to 1 along that segment of the boundary). To summarize, � is

generic variable that goes from 0 to 1 along a particular segment (the segment

0 to 0.1 on the right hand boundary and the segment 0 to 1 on the left hand

boundary).

Buoyant flow is generated by the nonuniform temperature. No-slip con-

ditions on all boundaries (with an arbitrary reference p) are assumed. The

model was solved using the finite element method (FEM) with triangular el-

ements and a quadratic Lagrange nodal basis. Details of the implementation

and default parameter values can be found in [172].

Training and Testing. In this example, the input parameters were ⇠⇠⇠ =
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Figure 5.2: Temperature boundary conditions for the free-convection example.
� is a variable that represents the relative length of a boundary segment and
goes from 0 to 1 along the segment as x2 increases. The cut-o↵ shown by the
horizontal dash along x1 = 10 cm is located at x2 = 1 cm.

(c
e

[K�1], T
h

[oC])T 2 [10�11, 10�8]⇥ [40, 60]. For each input ⇠⇠⇠(i), i = 1, . . . , 500,

the magnitude |v| of the velocity was recorded at each grid point on a regular

100⇥ 100 square spatial grid and the d = 104 values of |v| were vectorized to

yield the data points y(i) 2 Rd, i = 1, . . . , 500. In the notation of Section 5.1,

u(x;⇠⇠⇠) = |v|, J = 1, l = 2 and d = 104.

Results. Figure 5.3 shows Tukey box plots of the relative errors for the 300

test cases as the number of training points m and the approximate manifold

dimension r are increased. For each box, the central line is the median, the

lower and upper edges signify the first (Q1) and third (Q3) quartiles. The

lower and upper lines (whiskers) define the errors within 1.5 ⇥ (Q3 � Q1)

of the first and third quartiles. All other points (considered outliers) are

plotted individually using a ‘+’ symbol. A decrease in the relative error for an

increasing r is seen for both kPCA and di↵usion maps. For both methods, the

errors converge at around r = 6 dimensions. The median value of the error

is marginally lower with kPCA, but it was found that the number of outliers

was slightly higher using this method. For a high number of training points

(m � 80), both methods provided accurate predictions and the di↵erences in

the errors were not significant. A comparison to Higdon’s method [43] can

be found in Figure 5.4, where the same problem is considered and equivalent

boxplots are provided. The performance of both kPCA and di↵usion maps is
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Figure 5.3: Tukey box plots of the relative error ||y(i)
p

� y(i)||2/||y(i)||2 in
the free-convection example using Algorithm 3 with increasing approximate
manifold dimension r on the 300 test points for: (a) kPCA with 40 training
points; (b) di↵usion maps with 40 training points; (c) kPCA with 120 training
points; (d) di↵usion maps with 120 training points.
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Figure 5.4: Boxplot of Higdon’s method for free convection porous media using
40 training points.

Examples of the predictions are shown in Fig. 5.5 for 120 training points

and r = 5. For both kPCA and di↵usion maps, the error with respect to the

first test example (Figs. 5.5(a)-(c)) lies around the median of the r = 5 boxplot

in Fig. 5.3. The errors with respect to the second test example are close to the

upper whiskers in the same boxplots. In both cases, Algorithm 3 with either

kPCA or di↵usion maps yields highly accurate predictions. An example of

the outliers for both methods in the r = 5 boxplots in Figs. 5.3(c) and 5.3(d)

is shown in Fig. 5.6. This figure demonstrates the worst level of prediction,

which, nevertheless, captures the qualitative features of the velocity field and

remains quantitatively accurate to a reasonable level.

Boxplots of the errors using an ANN and support vector machine re-

gression (SVMR) for emulation of the coe�cients, rather than GPE, are shown

in Fig. 5.7 for m = 120. In the first case, the correlations between the coef-

ficients are naturally taken into account by approximating the r coe�cients

simultaneously. To avoid overtraining and cross validation, Bayesian regular-

ization [107, 108] was used for the ANN, implemented in the Matlab Neural

Network Toolbox. In this method, zero-mean Gaussian priors are placed over

the network weights and an additive noise. Estimates of the weights and hy-
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Figure 5.5: Predictions of the velocity field using 120 training points and
r = 5 coe�cients in the free-convection example. Figure (a) is the test point
corresponding to ⇠⇠⇠ = (3.18⇥ 10�9[K�1], 56.7[oC])T , while Figs. (b) and (c) are
the corresponding predictions using kPCA and di↵usion maps, respectively.
Figure (d) is the test point corresponding to ⇠⇠⇠ = (7 ⇥ 10�11[K�1], 46.7[oC])T ,
while Figs. (e) and (f) are the corresponding predictions using kPCA and
di↵usion maps, respectively.
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Figure 5.6: Predictions of the velocity field using 120 training points and r = 5
coe�cients in the free-convection example in the case of an outlier. Figure (a)
is the test point corresponding to ⇠⇠⇠ = (1⇥10�9[K�1], 40.7[oC])T , while Figs. (b)
and (c) are the predictions using kPCA and di↵usion maps, respectively.
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perparameters (variances in the priors) are found by an iterative procedure

based on a Laplace approximation to the posterior over the weights and an

evidence approximation for the hyperparameters [161]. A single hidden layer

was employed and the number of neurons was selected using a sequential net-

work construction [108]. For the SVMR, Gaussian and polynomial kernels

were tested (with varying order), together with an L1 loss function.

Comparing with Figs. 5.3(a) and (b), it may be seen that GPE and

ANN exhibit similar levels of accuracy. This indicates that in this example

the assumption of independent GPs for the coe�cients in di↵usion maps in

the GPE framework did not significantly a↵ect the accuracy. Although this

will not be true in general, either ANN or LMC can be used to rigorously

incorporate the correlations. For SVRM (implemented in the Statistics and

Machine Learning Toolbox in Matlab), a Gaussian kernel gave the best results

for both kPCA and di↵usion maps. Fig. 5.7 indicates that, at least in this

example, GPE and ANN are superior.

5.6.3 Lid driven cavity

A square 2-d cavity (x1, x2) 2 [0, 1]⇥[0, 1] filled with liquid water is considered.

The top boundary represents a sliding lid, which drives the liquid flow. The

problem is governed by the steady-state, dimensionless Navier-Stokes equa-

tions:
(v ·r)v �Re�1r2v +rp = 0, r · v = 0, (5.34)

where v = (v1, v2)T is the liquid velocity, p is the liquid pressure and Re is the

Reynolds number. The boundary conditions are v = (v01, 0) for x2 = 1, where

v01 is the lid velocity, and v = 0 on the other three boundaries. The model was

solved using finite di↵erence method on a staggered grid with implicit di↵usion

and a Chorin projection for the pressure [173].

Training and Testing. The Reynold’s number and lid velocity were used

as input parameters: ⇠⇠⇠ = (Re, v01)
T 2 [700, 1200] ⇥ [0.01, 10]. All other pa-

rameters were kept at the default values. For each input ⇠⇠⇠(i), i = 1, . . . , 500,

the pressure p and the component velocities v1 and v2 were recorded at each

grid point on a regular 100 ⇥ 100 spatial grid. The d/3 = 104 values of each

field variable were vectorized to yield vector outputs y(i)
v1 2 Rd/3, y(i)

v2 2 Rd/3
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Figure 5.7: Tukey box plots of the relative error ||y(i)
p

� y(i)||2/||y(i)||2 in the
free-convection example using Algorithm 3 with an ANN and SVMR for an
increasing approximate manifold dimension r on the 300 test points. In both
cases, 120 training points were used. (a) kPCA with ANN; (b) di↵usion maps
with ANN; (c) kPCA with SVMR; (d) di↵usion maps with SVMR.
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and y(i)
p

2 Rd/3. The three vectors were then combined into a single vector

y(i) = [y(i)
v1 y(i)

v2 y(i)
p

] 2 Rd to account for the correlations between the fields.

In the notation of Section 5.1, J = 3, l = 2 and d = 3⇥104. This is a multiple

field example discussed in Section 5.1, with, e.g., u1 = v1, u2 = v2 and u3 = p.

Results. Tukey box plots of the relative error on the 300 test points are

shown in Fig. 5.8 for an increasing r (approximate manifold dimension) and

m. Around r = 5 is su�cient for both values of m using both methods. In

this case, the di↵erences between the methods was almost negligible, except

that again there were fewer outliers for di↵usion maps, particularly for low

numbers of training points. Figure 5.9 shows the equivalent boxplots using

Higdon’s method [43]. For this example, Higdon’s method also performed

well, with superior performance at the lower number of training points and

slightly inferior performance at a higher number of training points.

Two examples of the predictions are shown in Fig. 5.10 for 120 training

points and r = 5. Here, the normalized velocity field is shown as a quiver

plot and the surface plot is the pressure field, with contours in black. Note

that since only rp is meaningful, homogeneous Neumann conditions are pre-

scribed for the pressure Poisson equation, so p is defined only up to a con-

stant (hence the negative values). Stream lines representing contour lines of

a stream function ⇣ are also shown, in black. The stream function is defined

by �r2⇣ = @
x2v1 � @x1v2. For both kPCA and di↵usion maps, the error with

respect to the first test example (Figs. 5.10(a)-(c)) lies close to the median in

the r = 5 boxplot in Fig. 5.8. The second test example corresponds to an out-

lier for both methods (relative error around 0.07). The results of Algorithm 3

remain accurate, especially for di↵usion maps. The error in kPCA is primarily

due to the prediction of the pressure field, in particular the maximum value

in the top right corner. Nevertheless, the profile is well captured.

As a further test, a modification of this example is considered, in which

the number of inputs is increased to 13 (l = 13) using the following boundary
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Figure 5.8: Tukey box plots of the relative error ||y(i)
p

� y(i)||2/||y(i)||2 in the
lid-driven cavity example using Algorithm 3 with an increasing approximate
manifold dimension r on the 300 test points for: (a) kPCA with 80 training
points; (b) di↵usion maps with 80 training points; (c) kPCA with 120 training
points; (d) di↵usion maps with 120 training points.
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Figure 5.9: Tukey box plots of the relative error ||y(i)
p

� y(i)||2/||y(i)||2 in
the lid-driven cavity example using Higdon’s method [43] with an increasing
approximate manifold dimension r on the 300 test points for: (a) 80 training
points; (b) 120 training points.

conditions:

v1(x1, 1) = 5c1 sin(c2⇡x1)e�c3x1 , v2(x1, 1) = 0,

v1(x1, 0) = 5c4 sin(c5⇡x1)e�c6x1 , v2(x1, 0) = 0,

v2(1, x2) = 5c7 sin(c8⇡x2)e�c9x2 , v1(1, x2) = 0,

v2(0, x2) = 5c10 sin(c11⇡x2)e�c12x2 , v1(0, x2) = 0,

(5.35)

for constants c1, . . . , c12. The inputs were defined as ⇠⇠⇠ = (Re, c1, . . . , c12)T 2
[500, 1000] ⇥ (0, 1) ⇥ (0, 1) ⇥ · · · ⇥ (0, 1). Inputs ⇠⇠⇠(i), i = 1, . . . , 1000 were

generated using a Sobol sequence and simulations were performed to yield

1000 data points. Of the 1000 data points, m
t

= 300 were reserved for testing

and the training points were selected from the remaining 700. Both kPCA and

di↵usion maps exhibited excellent performance, as illustrated in the boxplots

in Fig. 5.11, showing the relative error on the 300 test points for an increasing

r (approximate manifold dimension) with m = 500. Two examples of the

fields are shown in Fig. 5.12 using kPCA with r = 10 and m = 500. The first

example corresponds to an error near the median (for r = 10) and the second

example is an outlier with a large relative error in the corresponding boxplot.

As expected, for a higher dimensional input space, more training points are

needed to capture the surface M accurately. In this case, any lower than 400
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Figure 5.10: Predictions of the velocity field using 120 training points and
r = 5 coe�cients in the lid driven cavity example. Figure (a) is the test point
corresponding to ⇠⇠⇠ = (874.8, 7.79)T , while Figs. (b) and (c) are the correspond-
ing predictions using kPCA and di↵usion maps, respectively. Figure (d) is the
test point corresponding to ⇠⇠⇠ = (773.24, 0.77)T , while Figs. (e) and (f) are the
corresponding predictions using kPCA and di↵usion maps, respectively.
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Figure 5.11: Tukey box plots of the relative error ||y(i)
p

� y(i)||2/||y(i)||2 in
the lid-driven cavity example with boundary conditions as in Eq. (5.35). The
trends are shown for an increasing approximate manifold dimension r using
600 training points and 300 test points for: (a) kPCA and (b) di↵usion maps.

training points led to poor performance from all methods.

5.6.4 Hydrogen fuel cell model

In this example, a hydrogen/oxygen polymer electrolyte membrane (PEM)

fuel cell model that incorporates species conservation was considered, charge

conservation and a momentum balance in the porous layers. The 2-d domain

includes the porous gas di↵usion layers (GDLs), through which the species

(oxygen, water and hydrogen) are transported from the channels to the reac-

tion sites in the catalyst layers, which are adjacent to the PEM (Fig. 5.13).

The oxidation reaction in the anode is 2H4 ! 2H+ + 4e� and the re-

duction reaction in the cathode is 2O2 + 4H+ + 4e� ! 2H2O, both of which

are assumed to be governed by a modified Butler-Volmer law for charge trans-

fer [174]. The catalyst layer morphology is approximated as clusters (agglom-

erates) of carbon-supported platinum coated with the electrolyte. The transfer
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Figure 5.12: Predictions of the velocity and pressure fields using m = 500
training points and r = 10 coe�cients in the lid driven cavity example with
the boundary conditions of Eq. (5.35). Figure (a) is a test point and Fig. (b)
is the corresponding prediction using kPCA, with a relative error of 0.0244.
Figure (c) is a second test point and Fig. (d) is the corresponding prediction
using kPCA, with a relative error of 0.2275.
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Figure 5.13: A schematic of the PEM fuel cell and the components that form
the model domain.

current densities are expressed as follows [175]:

j
c

= �12L
act

FD
agg

R2
agg

CO2,agg(1� ✏mac

)(1� �
c

coth�
c

),

j
a

= �6L
act

FD
agg

R2
agg

CH2,agg

⇣

1� e�
2F
RT ⌘a

⌘

(1� ✏
mac

)(1� �
a

coth�
a

),

�
c

=

s

i0cSR2
agg

4FCO2,refDagg

e
F

2RT ⌘c �
a

=

s

i0aSR2
agg

2FCH2,refDagg

,

(5.36)

where j
a

(⌘
a

) and j
c

(⌘
c

) are the anode and cathode transfer current densities

(overpotentials); R
agg

and D
agg

are the radius of the agglomerate and the dif-

fusion coe�cient of the reactant through the agglomerate; L
act

is the catalyst

layer thickness (same in both half cells); i0a and i0c are the exchange current

densities of the anode and cathode reactions; CO2,ref and CH2,ref are reference

reactant concentrations; CO2,agg and CH2,agg are the (catalyst) surface concen-

trations of the reactants; T is temperature, F is Faraday’s constant and R
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is the universal gas constant. The reactants dissolve in the electrolyte at the

agglomerate surfaces at a rate governed by Henry’s law, so that:

CH2,agg = pXH2/KH2 CO2,agg = pXO2/KO2 , (5.37)

where X
i

(K
i

) is the mole fraction (Henry constant) of species i and p is the

gas pressure.

The charge balances are given by:

�r · (�
e

r�
e

) = 0 and �r · (�
s

r�
s

) = 0, (5.38)

in which �
e

(�
e

) and �
s

(�
s

) are the ionic and electronic potentials (conductiv-

ities), respectively. These equations apply to the GDLs. The catalyst layers

are approximated by infinitesimally thin surfaces, depicted by @⌦
a

and @⌦
c

in Fig. 5.13. The overpotentials (defined only on these boundaries) take the

form:

⌘
a

= �
s

� �
e

� E
eq,a

and ⌘
c

= �
s

� �
e

� E
eq,c

, (5.39)

in which E
eq,a

and E
eq,c

are the equilibrium potentials for the reactions.

Flow through the GDLs is governed by continuity and Darcy’s law:

r · (⇢v) = 0, v = �k
p

!�1rp, (5.40)

where ! is the gas viscosity and k
p

is the GDL permeability. The ideal gas

law is used to determine the density: ⇢ = (p/RT )
P

i

M
i

X
i

, in which M
i

is the

molecular weight of species i 2 {H2,O2,H2O,N2}. The transport of species

through the GDLs is governed by convection and multicomponent di↵usion

(Stefan-Maxwell) [176]. In the cathode, the species are I1 = {O2,H2O,N2}
and in the anode the species are I2 = {H2,H2O,N2}. The transport equations
in the cathode are given by:

�r ·
⇢

⇢Y
i

P

j2I1
j 6=i

D
i,j

(rX
j

+ (X
j

� Y
j

)rp/p)
�

= �⇢v ·rY
i

,

YN2 = 1� YO2 � YH2O,

(5.41)

for i 2 {O2,H2O}. Y
i

is the mass fraction of species i and the D
i,j

are binary
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di↵usivities [176]. Identical equations for species I2 are solved in the anode.

The boundary conditions for the potential impose a cell voltage V
cell

:

�
s

= 0 x 2 @⌦
a,cc

,

�
s

= V
cell

x 2 @⌦
c,cc

,

�n ·r�
s

= 0 otherwise,

(5.42)

where n is the outwardly pointing unit normal. At the inlets (@⌦
a,in

and

@⌦
c,in

) and outlets (@⌦
a,out

and @⌦
c,out

), the total gas pressures and the mole

fractions of the reactants are specified. At @⌦
a

and @⌦
c

, the gas velocity is

calculated from the total mass flow based on Faraday’s law [174]:

�n · v = j
a

(MH2/2 + �H2OMH2O) /(⇢F ) x 2 @⌦
a

,

�n · v = j
c

(MO2/2 + [1/2 + �H2O]MH2O) /(⇢F ) x 2 @⌦
c

,
(5.43)

where �H2O is the water drag number [174]. At the other boundaries except

the inlets and outlets �n · (⇢v) = 0 is imposed. At the catalyst layer surfaces

the mass fluxes of reactants are determined by Faraday’s law:

�n · nH2 = MH2ja/(2F ) x 2 @⌦
a

,

�n · nO2 = MO2jc/(4F ) x 2 @⌦
c

,

�n · nH2O = MH2Ojc (1/2 + �H2O) /F x 2 @⌦
c

,

(5.44)

where n
i

= �⇢Y
i

P

j 6=i

D
i,j

(rX
j

+(X
j

�Y
j

)rp/p)+⇢vY
i

is the flux of species

i. At all other boundaries except the inlets and outlets, n
i

= 0. The model was

solved using the FEM with 10236 triangular domain elements, 582 boundary

elements and a Lagrange basis of order 2. Details of the implementation and

the default parameter values can be found in [177].

Training and Testing. The cell voltage V
cell

and the membrane/electrolyte

conductivity �
e

were used as input parameters: ⇠⇠⇠ = (V
cell

[V], �
e

[S m�1])T 2
[0.2, 0.8] ⇥ [1, 15]. For each input ⇠⇠⇠(i), i = 1, . . . , 500, the mole fraction of

water XH2O was recorded at each point on a regular 150 ⇥ 300 spatial grid

in the cathode GDL. XH2O in the cathode (where water is produced) is a

key quantity. High values can lead to flooding of the electrode, which would
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prevent the fuel cell from operating. The d = 4.5 ⇥ 104 values of XH2O were

re-ordered into vector form to yield vectors y(i) 2 Rd. In the notation of

Section 5.1, u(x;⇠⇠⇠) = XH2O, J = 1, l = 2 and d = 4.5⇥ 104.

Results. Figure 5.14 shows the Tukey box plots of the relative error for

increasing r (approximate manifold dimension) and m. The results using both

methods are highly accurate, particularly for m = 120 (in fact, m = 80 was

found to give a similar level of performance). The performance with di↵usion

maps is better for m = 60, while the performance with kPCA is slightly

superior with m = 120. Again there are more outliers in the box plots for

kPCA. Examples of the predictions are shown in Fig. 5.15 for 120 training

points and r = 7. In the first example (Figs. 5.15(a)-(c)), the error with

respect to the test case lies close to the median in the r = 7 boxplot for kPCA

(Fig. 5.14(c)), while for di↵usion maps the error is near the upper whisker

in the corresponding boxplot (m = 120, r = 7 in Fig. 5.14(d)). The second

example (Figs. 5.15(d)-(f)) is an outlier for both kPCA and di↵usion maps

(second and third highest errors, respectively). Even in the latter case, the

predictions are accurate.
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Figure 5.14: Tukey box plots of the relative error ||y(i)
p

� y(i)||2/||y(i)||2 in
the PEM fuel cell example using Algorithm 3 with increasing approximate
manifold dimension r on the 300 test points for: (a) kPCA with 40 training
points; (b) di↵usion maps with 40 training points; (c) kPCA with 120 training
points; (d) di↵usion maps with 120 training points.
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Figure 5.15: Predictions of the water mole fraction using 120 training points
and r = 7 coe�cients in the PEM fuel cell example. Figure (a) is the test point
corresponding to ⇠⇠⇠ = (0.525[V], 1.492[S m�1])T , while Figs. (b) and (c) are
the corresponding predictions using kPCA and di↵usion maps, respectively.
Figure (d) is the test point corresponding to ⇠⇠⇠ = (0.301[V], 9.039[S m�1])T

obtained using direct simulation, while Figs. (e) and (f) are the corresponding
predictions using kPCA and di↵usion maps, respectively.139



5.7 Concluding Remarks

An emulator can be used to find an approximation of complicated computer

models. There are cases though that an emulator will fail to provide accurate

results, especially when dealing with high-dimensional or extremely non-linear

data. Here, a Gaussian Process emulator has been developed for high dimen-

sional output space. To achieve this non linear dimensionality reduction tech-

niques (kPCA, Di↵usion map) were used. Both methods have their challenges

of finding a valid basis approximate the solution.

Also, GP replaced by SVM for regression and ANNs to compare the re-

sults of di↵erent emulators for both non-linear dimensionality reduction tech-

niques. The results showed that for the examples considered here ANN and

GPs are superior as they were able to capture the behaviour of the systems

and give more accurate results.

In both techniques the inverse map from the low dimensional to the

physical space were implemented. For kPCA there are several techniques for

the approximation of the inverse map which are accurate and stable. The

challenges arise for the pre-image problem of di↵usion maps. The methods

proposed until now in the literature are based on Delaunay triangulation which

are highly unstable and computationally expensive. An other approach to the

pre-image problem is to take the weighted average of N
n

neighbouring points.

In this chapter, a new distance measure is presented which is accurate and

stable for high dimensional output spaces as it can be seen from the examples.

Moreover, there are several non-linear dimensionality reduction tech-

niques that tested and potentially could replace those carried out in this chap-

ter such as Laplacian Eigenmaps but their results are not presented as they

are preliminary and further tests have to be done to assure they are accurate.
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Chapter 6

Conclusion and further work

The target of this thesis was the construction of e�cient emulators for param-

eter dependent partial di↵erential equations, where the quantities of interest

are spatio-temporal fields. Emulators can help to avoid repeated calls of the

simulator for computationally expensive applications such as sensitivity and

uncertainty analysis, optimization and inverse parameter estimation.

Although, in some cases the emulator can fail to give accurate and

reliable results when the problem under consideration is of high dimensionality

or its response surface is highly non linear. To overcome this issue, in this thesis

nonlinear statistical emulation strategies has been developed.

Neural networks have seen a lot of attention the last years and have

been used in many scientific fields. In this thesis swallow and deep neural

networks were used and applied on electromagnetic fields giving accurate and

stable results. The activation function used for its neuron was the softmax

although its main limitation is that in some cases can lead to vanishing the

gradient. For the problems of this thesis that was not the case, although

newly developed activation function such as rectified linear units and scaled

exponential linear unit can be used to test their accuracy, stability and the

improvements could be o↵er.

The limitation of the rectified linear unit activation function is that

could lead to a known issue, the ”explosion” of the gradient Scaled exponential

linear unit from the other hand seems promising but more testing has to

be made to validate its accuracy. Also, more research can be done in the

deep architecture of the network, meaning more experiments on the number
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of hidden layers and the trade o↵ between the accuracy and the computational

time of the problems under consideration.

Non-linear dimensionality techniques (kernel PCA and di↵usion map)

were introduced in conjunction with emulation strategies such as NN, GPs

and SVM for regression. For the di↵usion map part, a new solution to the

pre-image problem was presented based on a new metric measure to map from

the feature space back to the physical space.

An extension of this work could be the development of a general frame-

work for the pre-image solution applicable to most non-linear dimensionality

reduction techniques. From the results presented throughout the thesis it has

been proven that the method is more accurate and stable for nonlinear re-

sponse surfaces than Higdon’s method [43]. Although, Higdon’s method can

be quite useful in linear tasks due to the insight it provides to the predictive

variances without the need of using Monte Carlo techniques.

In addition to the techniques presented in this thesis, there are manifold

learning techniques that have the potential to solve non-linear tasks such as

Laplacian eigenmaps and local linear embeddings. The usual issue of those

techniques is the the mapping from the feature space to the physical space,

which it could be solved by the pre-image solution presented in this thesis. A

promising dimensionality reduction technique worth testing with the general

emulation framework developed in this thesis is the t-distributed stochastic

neighbour embedding (t-SNE), as it be used for visualization of high dimen-

sional data. The objective function of t-SNE is minimized using a gradient

descent optimization that is initiated randomly.

A promising approach is the unsupervised Gaussian Process Latent

Variable Models (GPLVM) that could be used for nonlinear dimensionality

reduction technique as soon as a solution can be found for the scalability is-

sues when the number of parameters is very high.

Another alternative to deal with high dimensional datasets is to per-

form sensitivity analysis to do the screening and ranking of inactive variables.

Two di↵erent methods tested here, namely the elementary e↵ect test and the

variance base sensitivity analysis, where both gave accurate results. Using a

stochastic emulator such as GP it is possible to perform SA under uncertainty

of high-dimensional multi-output problems. More SA techniques (regression
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analysis, variogram analysis of response surfaces and Fourier amplitude sen-

sitivity test) can be tested with the GPE framework developed here to check

their performance in terms of accuracy, stability and computational power

that they need.

Finally, a reduced order model was developed in this thesis based on

an extension of proper orthogonal decomposition to linear and nonlinear re-

sponse surfaces by expanding the Discrete Empirical Interpolation Method to

dynamic, parameter dependent problems. The method developed here, over-

comes the main challenges of the accuracy and approximation of new param-

eter values of the POD bases, and in addition can handle nonlinear response

surfaces. Compared to the global basis POD the extension proposed found

from the results to be more accurate and needing almost the same computa-

tional time. An extension of this work could be the use of di↵erent nonlinear

techniques or machine learning algorithms and their application on broader

class of disciplines and problems as it would be useful to examine more their

accuracy and stability.
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Appendix A: Numerical

Methods

A1.1 Numerical Methods

In appendix A the three di↵erent numerical methods used in this thesis are

presented. The numerical methods used for discretization are finite di↵erence,

finite volume and finite elements.

A1.1.1 Finite Di↵erence Method

Finite Di↵erence Method is the simplest from the three numerical methods

that are described in this subchapter in therms of coding and mathematical

background needed. The key idea is to replace the derivatives of the govern-

ing equations with finite di↵erences which leads to an algebraic system to be

solved. Consider the heat (parabolic) equation which has the form u(x, t) such

that:

u
t

= u
xx

, 8(t, x) 2 (0, t
F

)⇥ (0, 1) (A1)

u(0, t) = u(1, t) = 0 8t 2 (0, t
F

) (A2)

u(x, 0) = u0(x), 8x 2 [0, 1] (A3)

where t
F

is the final time step of the model and (0, 1) is the space domain.

The first step in using the finite di↵erence method is the discretization of the

domain in a uniform grid:

t
n

= n�t,�t =
t
f

N
, n = 1, . . . , N (A4)
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x
j

= j�x,�x =
1

j
, j = 1, . . . , J (A5)

Finite di↵erence can be implemented both implicitly and explicitly. The dif-

ference between these two forms is that in the explicit scheme the output (e.g.

t
n+1) depends on itself so there is need for a recursive computation, while in

order to solve the explicit schemes an iterative method (for nonlinear prob-

lems) or a matrix-inverse (for linear) has to used. The explicit also known as

forward scheme takes the form:

u
t

(x
j

, t
n

) ⇡
un+1
j

� un

j

�t
(A6)

u
xx

(x
j

, t
n

) ⇡
un

j+1 � 2un

j

+ un

j�1
(�x)2

(A7)

Substituting these two equation into equation Equation A1 the explicit scheme

becomes:

un+1
j

= un

j

+
�t

�x
(un

j+1� 2un

j

+un

j�1), 1  j  J, 0  n  N � 1 (A8)

The boundary and initial conditions can be calculated as:

un

0 = un

J

= 0, 0  n  N � 1 (A9)

u0
j

= u0(j�x), 0  j  J (A10)

The approximated solution un+1
j

can be acquired by marching in time

(explicit scheme).

A similar procedure can be used in the implicit scheme where:

u
t

(x
j

, t
n

) ⇡
(un

j

)� un�1
j

|deltat (A11)

u
xx

(x
j

, t
n

) ⇡
un

j+1 � 2un

j

+ un

j�1
(�x)2

(A12)

are being substituted in A1 leads to the implicit scheme:

� �t

(�x)2
un

j�1+(1+2
�t

(�x)2
)un

j

� �t

(�x)2
un

j+1 = un�1
j

1  j  J�1 (A13)
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Both schemes, the explicit and implicit, can be generalized in the so

called ✓-method which has the form:

un+1
j

� un

j

�t
=
✓Dx

+D
x

�u
n+1
j

+ (1� ✓)Dx

+D
x

�u
n

j

(�x)2
0  ✓  1, 1  j  J � 1

(A14)

For ✓ = 0 the Equation A14 takes the form of the explicit method, when

✓ = 1 takes the form of the implicit method and if ✓ = 1
2 corresponds to the

implicit second order Crank-Nicolson scheme.

A1.1.2 Finite Volume Method

A numerical method that has been used in many research fields such as Compu-

tational Fluid Dynamics, electromagnetics etc. is the Finite Volume Method.

It has the advantage of being able to be applied on complex and unstructured

meshes and at the same time is more robust (numerically) than Finite Element

Method. The first step in FVM method is the discretization of the domain into

smaller called control volumes or cells which they form a grid. The boundaries

of of each cell are defined by the grid while the computational node lies in the

centre of the cell. During the next step, the governing algebraic equations have

to be derived for each control volume. By doing this, an algebraic equation

system is formed. The final step is the solution of the algebraic system in

order to find the solution of the dependent variables at each volume. Com-

pared to FDM described before, provides good conservation of mass, energy

and momentum by using integration on the mesh and can handle complicated

domains with ease. Consider the general transport equation

�(⇢�)

�t
+ div(⇢u�) = div(� grad �) + S (A15)

where �(⇢�)
�t

is the unsteady term, div(⇢u�) is the convection term,

div(�grad�) is the di↵usion term, S is the source term, � is the di↵usion

coe�cient and � is the dependent variable (i.e mass, temperature etc.) In the

1-D case the governing equation of di↵usion is

d

dx
(�

d�

dx
) + S = 0 (A16)
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As mentioned earlier, the first step is the grid generation. Let P be the

general nodal point, W and E are the nodes west and east of P respectively, w

and e are the west and east faces of the control volume. For the discretization

the 1-D steady state di↵usion can be written as:

I

�V

d

dx
(�

d�

dx
)dV +

Z

�V

SdV = (�A
d�

dx
)(e)� (�A

d�

dx
)(w) +S 0�V = 0 (A17)

where A is the segmentation area of the cell, �V is the volume of

each cell, s0 is the average source. To calculate the di↵usion coe�cients and

gradients of the west and east cell node linear approximation can be used:

�
w

=
�
W

+ �
P

2
�
e

=
�
P

+ �
E

2
(A18)

while the di↵usion fluxes are:

✓

�A
d�

dx

◆

e

= �
e

A
e

✓

�
E

� �
P

�x
PE

◆

(A19)

✓

�A
d�

dx

◆

w

= �
w

A
w

✓

�
P

� �
W

�x
WP

◆

(A20)

Which after rearrangement gives the equation:

✓

�
e

�x
PE

A
e

+
�
w

�x
WP

A
w

�S
p

◆

�
P

=

✓

�
w

�x
WP

A
w

◆

�
W

+

✓

�
e

�x
PE

A
e

◆

�
E

+S
u

(A21)

Identifying the coe�cients �
W

and �
E

as ↵
w

and ↵
E

respectively the

discretised convection/di↵usion equation can be written as:

↵
P

�
P

= ↵
W

�
W

+ ↵
E

�
E

+ S
u

(A22)

where

↵
W

=
�
w

�x
WP

A
w

↵
E

=
�
e

�x
PE

A
e

↵
P

= ↵
W

+ ↵
E

� S
P

(A23)
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The 1-D convection di↵usion problem discussed earlier, can be extended

in 2-D where in addition to the west and east nodes of the central node P now

there are also the south S and north N . The steady state di↵usion equation

is:
@

@x

✓

�
@�

@x

◆

+
@

@y

✓

�
@�

@y

◆

+ S = 0 (A24)

which after discretization takes the form:

↵
P

�
P

= ↵
W

�
W

+ ↵
E

�
E

+ ↵
S

�
S

+ ↵
n

�
N

+ S
u

(A25)

where

↵
W

=
�
w

�x
WP

A
w

↵
E

=
�
e

�x
PE

A
e

↵
S

=
�
s

�y
SP

A
s

↵
N

=
�
n

�y
PN

A
n

↵
P

= ↵
W

+ ↵
E

�+↵
S

+ ↵
N

� S
P

(A26)

The FVM method described above in based on the central di↵erencing

scheme. Although it is a second order method, it is stable for Peclet number

below 2 (PE  2). The Peclet number is a measure of the relative strengths

of convection and di↵usion and is defined as:

Pe =
⇢u

�/�x
(A27)

with �x being the length of the control volume. This instability for high ve-

locity flows had as a result the need for the development of schemes such as

the upwind di↵erencing and hybrid schemes. The upwind di↵erencing scheme

introduces the direction of the flows [178]. Spalding in [179] combined cen-

tral and upwind di↵erencing and proposed the hybrid di↵erencing scheme.

The main idea behind it is to use the second-order central di↵erencing while

Pe  2 and upwind which is good in cases where the transportiveness has to

be satisfied. The implementation of the Semi-Implicit Method for Pressure-

Linked Equations (SIMPLE) can be found in chapter 4.
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A1.1.3 Finite Element Method

Finite Element Method (FEM) is another numerical method for solving partial

Di↵erential Equations (PDEs). Due to its capability of dealing with compli-

cated mashes it has been used primarily is solid mechanics[180] but its use is

not limited to that, it has also been used in other fields such as biomedicine

[181], electromagnetics [182] etc. Basic functions cannot provide analytical so-

lutions for PDEs when dealing with complex geometries. FEM discretizes the

original domain ⌦ into smaller subdomains called elements and can have di↵er-

ent shapes (triangular, rectangular, polygons). The elements form a mesh and

its vertex called node which also can appear in on the edges or the interiors.

Consider the following steady state equation describing the temperature

distribution on a heat sink.

r(��rT ) = g(T,x) in ⌦ (A28)

where ⌦ is the original domain of the problem under consideration, � is the

thermal conductivity, T is the temperature with boundary conditions:

T = T0 in @⌦1

�(�rT )n = h
T

(T � T
amp

) in @⌦2

�(�rT ) = 0 in @⌦3

(A29)

where h
T

is the heat coe�cient and n is the outward unit normal vector.

The first step in FEM is the multiplication of both sides of Equation A28

with a test function ⇠ and then to integrate the equation to get its weak form:

Z

⌦

r(��rT )⇠dV =

Z

⌦

g⇠dV (A30)

The test function is chosen from a function space that is able to expunge

the Dirichlet boundary condition. By using Green’s identity and integrating

by parts Equation A30 becomes

Z

⌦

�rTr⇠dV +

Z

@⌦

(��rT )n⇠dS =

Z

⌦

g⇠dV (A31)
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The weak formulation unbends the continuity requirements of the strong

formulation such as the number of the partial derivatives and leads to the use

of easy to construct polynomials e.g Lagrange polynomials. Having the weak

formulation the next step is the discretization of Equation A31 such that

T = T
h

which can be written as a combination of basis function �
i

, i, . . . , N

T
h

(x) =
X

i

T
i

�
i

(x) (A32)

which leads to the discretised equivalent of Equation A31:

X

i

T
i

Z

⌦

�r�
i

r�
j

dV +
X

i

Z

@⌦

(��T
i

r�
i

)n�
j

dS =

Z

⌦

g

✓

X

i

T
i

�
i

◆

�
j

dV

(A33)

After the discretization and having the boundary conditions prescribed

the Equation A33 can be written in a matrix form as:

ATh = b (A34)

where Th is the dependent variable, and A is the coe�cient matrix also known

as sti↵ness matrix.

151



Appendix B: Variants of POD

The method of snapshots is an indirect application of POD suitable for prob-

lems in which m ⌧ d. A temporal autocovariance function K(t, t0;⇠⇠⇠) =
R

D u(x, t;⇠⇠⇠)u(x, t0;⇠⇠⇠)dx is defined, with associated operator:

Ka
i

(t;⇠⇠⇠) :=

Z

T

0

K(t, t0;⇠⇠⇠)a
i

(t0;⇠⇠⇠)dt0

The orthogonal eigenfunctions a
i

(t;⇠⇠⇠) of K are the POD coe�cients and the

eigenvalues are identical to those of C. Using E[a
i

(t;⇠⇠⇠)a
j

(t;⇠⇠⇠)] = �0
i

(⇠⇠⇠)�
ij

, the

POD modes are given by v
i

(x;⇠⇠⇠) = (1/�0
i

(⇠⇠⇠))
R

T

0 u(x, t;⇠⇠⇠)a
i

(t;⇠⇠⇠)dt. The dis-

crete form (in space and time) of the eigenvalue problem is X(⇠⇠⇠)TX(⇠⇠⇠)a
i

(⇠⇠⇠) =

�
i

a
i

(⇠⇠⇠), where K(⇠⇠⇠) := X(⇠⇠⇠)TX(⇠⇠⇠) is a kernel matrix with entries K
ij

=

u(i)(⇠⇠⇠)Tu(j)(⇠⇠⇠), i.e., the space-discrete form of K(t(i), t(j);⇠⇠⇠). The eigendecom-

position is K(⇠⇠⇠) = A(⇠⇠⇠)⇤⇤⇤(⇠⇠⇠)A(⇠⇠⇠)T , where ⇤⇤⇤(⇠⇠⇠) = diag(�1(⇠⇠⇠), . . . ,�m(⇠⇠⇠)) and

the columns of A(⇠⇠⇠) are given by the a
i

(⇠⇠⇠). The j-th component a
i,j

(⇠⇠⇠) of a
i

(⇠⇠⇠)

approximates a
i

(t(j);⇠⇠⇠) yielding the discrete-time approximation v
i

(x;⇠⇠⇠) =

(1/�
i

(⇠⇠⇠))
P

m

j=1 u(x, t
(j);⇠⇠⇠)a

i,j

(⇠⇠⇠), i.e., a linear combination of the snapshots.

In the fully-discrete case, using the normalization a
i

(⇠⇠⇠) 7! a0
i

(⇠⇠⇠)/
p

�
i

(⇠⇠⇠),

v
i

(⇠⇠⇠) = X(⇠⇠⇠)a0
i

(⇠⇠⇠)/
p

�
i

(⇠⇠⇠) is obtained.

These relationships are also evident from the singular value decomposi-

tion (SVD) of X(⇠⇠⇠), that is X(⇠⇠⇠) = A0(⇠⇠⇠)⇤⇤⇤(⇠⇠⇠)1/2V(⇠⇠⇠)T , where the columns of

V(⇠⇠⇠) are given by the v
i

(⇠⇠⇠) and the columns of A0(⇠⇠⇠) are given by the a0
i

(⇠⇠⇠). In

this context, the columns of A0(⇠⇠⇠) and V(⇠⇠⇠), given respectively by the eigen-

vectors of K(⇠⇠⇠) and C(⇠⇠⇠), are referred to as left and right singular vectors. It

is straightforward to show that v
i

(⇠⇠⇠) = kX(⇠⇠⇠)a0
i

(⇠⇠⇠) for k 2 R. Thus, the earlier

relationship is recovered by taking k = 1/
p

�
i

(⇠⇠⇠) to normalise the v
i

(⇠⇠⇠).
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