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Abstract 
Proper brain function requires high precision neuronal expansion and wiring, processes 

controlled by the transmembrane Roundabout (Robo) receptor family and their Slit ligands. 

Despite their great importance, the molecular mechanism by which Robos’ switch from “off” 

to “on” states remains unclear. Here, we report a 3.6 Å crystal structure of the intact human 

Robo2 ectodomain (domains D1-8). We demonstrate that Robo cis dimerization via D4 is 

conserved through hRobo1, 2, and 3, and the C. elegans homolog SAX-3, and is essential for 

SAX-3 function in-vivo. The structure reveals two levels of auto-inhibition that prevent 

premature activation: 1) cis blocking of the D4 dimerization interface, and 2) trans interactions 

between opposing Robo receptors that fasten the D4-blocked conformation. Complementary 

experiments in mouse primary neurons and C. elegans support the auto-inhibition model. 

These results suggest that Slit stimulation primarily drives the release of Robo auto-inhibition 

required for dimerization and activation.  

 

In Brief  
Robo receptors are auto-inhibited for dimerization by intra- and inter-molecular contacts, 

which are critical for axon guidance and signaling. 

 

Highlights  
• Crystal structure of the intact hRobo2 ectodomain at 3.6 Å.  

• Dimerization through the extracellular domain 4 (D4) is required for Robo axon 

guidance.  

• Robo receptors are maintained in an auto-inhibited conformation in which D4 is 

blocked.  

• We suggest that Slit dissociates trans-interacting Robos, leading to auto-inhibition 

relief, which is followed by dimerization and signaling.  
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Introduction 
The Robo family of transmembrane receptors mediate a variety of neuronal responses, 

including neurogenesis, migration, branching, dendritic patterning, synaptogenesis and 

axonal guidance. Outside the nervous system they are involved in angiogenesis, and 

organogenesis of kidney, diaphragm, lungs, heart, and bone (Blockus and Chedotal, 2016). 

Robo receptors are considered to be attractive drug targets for the treatment of several types 

of cancer (Ballard and Hinck, 2012; Gara et al., 2015; Gohrig et al., 2014; Gu et al., 2015; 

Huang et al., 2015; Mehlen et al., 2011) and various developmental and chronic diseases, 

such as ocular neovascular diseases (Rama et al., 2015), loss of bone mass (Xu et al., 2018), 

kidney diseases and proteinuria (Fan et al., 2012; Hwang et al., 2015), and liver fibrosis 

(Chang et al., 2015). However, there is currently no Robo directed therapeutic approach 

available because of an insufficient structural and mechanistic understanding of Robo 

activation and signaling. 

Robo receptors, and their Slit ligands, are evolutionary conserved and can be identified across 

animals with bilateral anatomical symmetry, from Caenorhabditis elegans nematodes to 

humans. Indeed, similar aspects of biological activity were demonstrated in Robo receptors 

from Drosophila (Brose et al., 1999; Kidd et al., 1998), C. elegans (Hao et al., 2001), beetles 

(Evans and Bashaw, 2012), chicken (Hammond et al., 2005), Xenopus (Chen et al., 2000), 

zebrafish (Challa et al., 2001) and mouse (Yuan et al., 1999). In several animal lineages, gene 

duplication events resulted in multiple active Robo paralogs, with humans and other mammals 

having four Robos (1-4), along with three Slits (1-3), while Drosophila has three Robos (1-3) 

and one Slit. However, C. elegans has maintained a single cognate Robo/SAX-3 receptor and 

Slit/SLT-1 ligand. Following duplication, adaptive mutagenesis and alternative splicing led to 

a divergence in certain Robo functions. For example, mammalian Robo3 became insensitive 

for Slit, and instead of eliciting axon repulsion at the CNS midline, as Robo1/2 do, it facilitates 

attraction (Zelina et al., 2014). However, other functions overlap, such as Robo1 and Robo2 

response to Slit2 in mouse retinal neovascularization (Rama et al., 2015). Complementation 

between paralogs, as in the formation of Robo hetero-dimers, is yet another form of 

specialization that was shown in the inhibitory trans-interaction between Drosophila Robo1 

(presented on crossing axons) and Robo2 (presented on midline cells) that allow midline 

crossing of commissural axons (Evans et al., 2015) and between Drosophila muscle and 

tendon cells (Ordan and Volk, 2015). Interestingly, although Robo paralogs in insects and 

vertebrates are thought to have emerged from independent duplication events (Zelina et al., 

2014), similar trans hetero interactions are also reported in promoting axon outgrowth of 

mouse retinal neurons (Hivert et al., 2002).  

With the exception of the divergent mammalian Robo4, Robo homologs share a similar 

architecture, containing five Ig-like and three FnIII extracellular domains (D1–8), a single-pass 
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transmembrane segment, and an unstructured cytosolic region to which intracellular effectors 

bind (Fig. 1A, S1) (Blockus and Chedotal, 2016). The basic architecture of Slits is also 

conserved, and includes four leucine-rich repeat domains (LRR 1-4), 7-9 EGF repeats, a 

laminin-G domain, and a carboxy-terminal cysteine knot (Fig. 1A). Slit-Robo interaction 

involves the Slit LRR2 (Howitt et al., 2004), and Robo D1 (Liu et al., 2004; Morlot et al., 2007). 

Heparan sulfate proteoglycans (HSPGs) tighten Slit-Robo interactions by forming a Slit-Robo-

HSPG tertiary complex (Hu, 2001; Hussain et al., 2006). Slits are cleaved into N’ and C’ 

terminal products (Wang et al., 1999), and whereas the full-length Slit and the large N’ product, 

which harbors the LRR2 domain, stimulate Robo-mediated responses (Nguyen Ba-Charvet et 

al., 2001), the shorter C’ product is a ligand for the Plexin1A receptor (Delloye-Bourgeois et 

al., 2015). Full-length Slit was also shown to induce axon extension in Drosophila through 

interaction with another cell surface receptor - Dscam1 (Alavi et al., 2016; Dascenco et al., 

2015), demonstrating non-monogamous Slit-Robo relations. Crystal and NMR structures of 

several Robo domains have been determined, notably the hRobo1D1-hSlit2LRR2 complex (PDB 

2V9T) (Morlot et al., 2007), the dRoboD1-2-heparin complex (PDB 2VRA) (Fukuhara et al., 

2008), and the hRobo1D7-8 juxtamembrane (PDB 4HLJ) (Barak et al., 2014; Barak and 

Opatowsky, 2013). These structures provided important information about Robo binding to Slit 

and HSPGs, and hRobo1 ectodomain proteolysis. More recently, our crystal structure of 

hRobo2D4-5 (PDB 5NOI) (Yom-Tov et al., 2017) identified D4 as a dimerization domain in vitro, 

and the crystal structures of hRobo1D1-4 (PDB 5OPE, 5O5G) that, as will be discussed here, 

reveals an identical dimerization interface. Also insightful is the low-resolution electron 

microscopy single particle structure of hRobo1D1-8 (Aleksandrova et al., 2018), showing a 

head-to-head dimer of dimers trans arrangement of the receptor. However, none of these 

provide the mechanistic insights needed to address how Robo receptors become stimulated 

and avoid premature activation. 

In this report, we first describe the hairpin-like architecture of intact hRobo2 ectodomain 

(domains D1-8). In this structure, D4 is intramolecularly blocked and unable to mediate 

dimerization. We show that D4 mediated dimerization is required for Robo signaling, leading 

to the conclusion that the hRobo2D1-8 structure displays an auto-inhibited conformation. The 

structure also reveals how intermolecular trans interactions can impose a tighter auto-

inhibition, and cluster Robo molecules close together. Our cell assays support the importance 

of these intra and intermolecular contacts on Robo signaling, while genetic experiments in C. 

elegans and mouse neuronal outgrowth assays further substantiate the conservation of these 

observations. Based on the results presented here, we describe a mechanism for Robo auto-

inhibition and activation, in which D4-mediated dimerization is key for Robo activation, and D4 

occlusion - for maintaining Robo inactive. Accordingly, we suggest that stimulation by Slit 
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involves dissociation of trans-interacting Robos, leading to relief of auto-inhibition that is 

followed by dimerization and signaling.  
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Results 
 

Overall structure of an intact hRobo2 ectodomain monomer 

The entire ectodomain of hRobo2 (24LRQ…KQP859) is composed of eight domains, designated 

D1-8 (Fig. 1, S1), and was expressed in insect cells using the baculovirus expression system. 

Purified hRobo2D1-8 was subjected to extensive crystallization screening and optimization, 

followed by structural determination to a resolution of 3.6 Å (Table S1). For structure 

determination, a hRobo2D2-3 crystal structure (Table S1) was determined and used as a search 

model in molecular replacement to provide the first accurately-located domains. This was 

followed by the positioning of individual D4, D5, D1, D6, D7 and D8 domains (by that order) 

available from crystal and NMR structures of hRobo1 and 2 (PDB codes 2V9Q, 5NOI, 2EO9, 

1UEM, 4HLJ).  

hRobo2D1-8 shows an intricate hairpin-like domain arrangement with approximate dimensions 

of 130 × 80 × 165 Å (Fig. 1B), and bears no resemblance to any other known protein structure 

in the PDB. The D1, D2, D3, D4, and D5 domains have a typical Ig-like C2 fold, and domains 

D6, D7 and D8 have a Fibronectin type III (FnIII) fold (Fig. S2). In D3 and D4, a 310 helix 

appears at the loop connecting strands E and F. A 9-residue alpha helix is located at the N-

terminus of D7, extending out from the main FnIII fold. 

There are three molecules of hRobo2D1-8 in the crystal asymmetric unit, baring only small cross-

differences, resulting in R.M.S.D values of 1.9 - 2.6 Å between all atoms of the three copies. 

The overall high quality of the electron density maps, combined with the availability of high 

resolution crystal structures of individual Robo domains, and the unbiased locations of 

Selenomethionine (SeMet) substructures (calculated from the anomalous signal of SeMet -

derivatized hRobo2D1-8 crystals) allowed us to trace ~85% of the residues with high confidence 

(Fig. 1D). The exception is D8, in which the atomic side chain details are not clearly observed 

due to high B-factor values.   

The special domain organization of hRobo2D1-8 requires that the loops linking individual 

domains are of a particular length. In this way, short one-residue linkers between D1-2, D2-3, 

D3-4, and D7-8 enforce compact rod-like arrangements, while the 11-residue long D5-6 linker 

enables the antiparallel head-to-tail arrangement of the two domains, and the 9-residue long 

D6-7 linker facilitates the flanking of D4 on two opposing faces. Notably, while the sequence 

identities of the D5-6 and D6-7 linkers are not well conserved between Robo orthologs and 

paralogs (Fig. S1), their lengths are no shorter than those of hRobo2, demonstrating the key 

role these linkers play in facilitating a correct domain organization. 
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Preclusion of D4 dimerization interface in the hRobo2D1-8 structure 

D4 is located at the center of the hRobo2D1-8 structure, flanked by D3 on its N’ terminal side, 

D5 and D6 on one domain face, and by D7 on the other (Fig. 1B, 2C). Remarkably, we have 

previously identified the same surface of D4 that is sequestered by D7 as a direct mediator of 

dimeric hRobo2 interactions (Yom-Tov et al., 2017). Specifically, we showed that a 

predominantly hydrophobic surface on D4 mediates close homotypic contacts with a reciprocal 

D4 in the crystal lattice of hRobo2D4-5 (PDB 5NOI) (Fig. 2A, S1, S3).  

The identification of D4 as a Robo dimerization module is supported by the recently published 

structure of hRobo1D1-4 (PDB 5O5G and 5OPE) (Aleksandrova et al., 2018), which forms 

identical crystal contacts with those observed in the hRobo2D4-5 structure (Fig. 2A, B, S3). 

Given the differences between the two Robo paralogs, in sequence (hRobo1 vs. hRobo2), 

constructs used (D1-4 vs. D4-5), and crystallization conditions in these two studies, we 

consider the overlapping crystal contacts to genuinely reflect a conserved role and functionality 

for D4 dimerization in Robo signaling.  

To study Robo extracellular (EC) dimerization at cell membranes, we developed a protein 

chimera system, replacing the catalytically inactive Robo cytosolic portion with the intracellular 

(IC) tyrosine kinase domain of the stem cell factor (SCF) receptor cKIT (Fig. 3). The chimera 

readout system is based on the principle that cKIT cannot phosphorylate itself or a distant 

molecule. Rather, following cKIT dimerization by SCF, one cKIT phosphorylates in trans the 

now-juxtapositioned second cKIT molecule (Fig. 3A) (Lemmon et al., 1997; Lev et al., 1992; 

Opatowsky et al., 2014). In our RoboEC-cKITIC chimera system, the tyrosine phosphorylation 

intensity is indicative of the dimerization strength mediated by the extracellular Robo portion.    

First, we tested three hRobo2 constructs: hRobo2D1–8-cKITIC, and the truncated hRobo2D1–4-

cKITIC and hRobo2D1–3-cKITIC. As a control, we measured the tyrosine phosphorylation of full-

length cKITFL, before and after addition of the SCF dimerizing ligand (Fig. 3B). To confirm the 

surface expression of all protein constructs in this experiment, we used FITC-linked 

immunolabeling (Fig. 3E). The results show a strong dimerization of hRobo2D1–4-cKITIC, and 

weaker, but still considerable responses of hRobo2D1–8-cKITIC and hRobo2D1–3-cKITIC, 

indicating that the latter two are not strictly monomeric.  

Next, we examined whether auto-inhibition of D4-mediated dimerization is conserved in other 

Robo orthologs and paralogs, and compared the dimerization of D1–8 and D1-4 constructs 

from hRobo1, hRobo3, and SAX-3 using the cKIT chimera phosphorylation assay. In all cases, 

the D1-8 constructs show different levels of weaker dimerization when compared with their 

equivalent D1-4 based constructs (Fig. 3C). To support these results, we conducted 

sedimentation equilibrium analytical ultracentrifugation (SE-AUC) measurements to determine 

the oligomeric state of hRobo2D1-8 and hRobo2D4–5 in solution. We found that hRobo2D1-8 is 

predominantly monomeric, with a weak estimated dimerization constant KD of 100-300 μM 
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(Fig. S4). In comparison, our previous AUC measurements of isolated hRobo2D4-5 (Yom-Tov 

et al., 2017) showed a significant dimeric fraction, with a calculated dimerization dissociation 

constants of 16.9 μM.  

Finally, because D7 directly sequesters the D4 dimerization interface in the hRobo2D1-8 

structure, we postulated that removal of D7 should release the autoinhibitory constraints for 

D4 dimerization. Indeed, a hRobo2D1–8∆7-cKITIC truncation mutant shows increased 

dimerization in comparison with intact hRobo2D1–8-cKITIC, and hRobo2D1–8∆5-cKITIC and 

hRobo2D1–8∆6-cKITIC deletion mutants (Fig. 3D). Based on these results, we conclude that D4 

makes a dominant contribution to hRobo2 dimerization, and that D4 is predominantly 

sequestered from cis-dimerization in the context of an intact Robo ectodomain.  

 

Importance of D4-mediated dimerization in vivo  

To investigate the functional role of Robo D4-mediated dimerization, and other aspects of 

Robo activation in vivo, we used the C. elegans AVM neuron model system. Specifically, we 

investigated how putative loss- and gain-of-function mutations in sax-3, designed based on 

the Robo structure, affect AVM migration pattern. Notably, unlike Drosophila and mouse Slit-

Robo model systems with several Robo paralogs, C. elegans has maintained a single cognate 

Robo/SAX-3 and Slit/SLT-1, offering a simple and well characterized in vivo model to probe 

mechanistic elements of Robo activation.  

In this model, the knockout of sax-3 has severe consequences on C. elegans physiology 

(Zallen et al., 1998), including reduced viability, and defects in animal morphology, movement 

and egg-laying. Defects were also identified and characterized in several neurons, most 

notably in the mechanosensory AVM. In w.t animals, the AVM’s cell body is positioned on the 

lateral hypodermis and projects an axon ventrally to the ventral midline, which then turns 

anteriorly, forming a distinctive inverse “L” shape, that we refer to here as the “turn” phenotype 

(Fig. 4A). Two signaling systems, repulsive and attractive, act in parallel in AVM ventral 

guidance: SLT-1 is secreted from dorsal muscles and acts through SAX-3 to repel the AVM 

axon (Hao et al., 2001); and UNC-6 (Netrin), which is secreted from ventral cord axons, 

attracts the AVM axon through its cognate receptor UNC-40 (DCC) (Yu et al., 2002). Mutations 

in either component of the SLT-1/SAX-3 and UNC-6/UNC-40 signaling systems result in 

defective AVM ventral guidance, failing to grow ventrally, and instead directly extending 

anteriorly (Fig. 4A). Hereafter, we refer to this AVM phenotype as “straight”.   

In our experiments, we used a sax-3(-/-) (ky123) mutant strain, carrying a Pmec-4::gfp 

transcriptional reporter expressed in six neurons, including AVM (Hao et al., 2001). In this 

strain, 70% of the animals (n=71) showed a “straight” AVM growth, and 24% had a “turn” 

phenotype. Contrary to that, w.t. Pmec-4::gfp animals (n=89) showed an inverse ratio of 15% 

“straight” and 77% “turn”. Clearly, both phenotypes are naturally occurring, but the “turn” is 
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much more prevalent in w.t animals, and the “straight” in sax-3(-/-) ones. We have also 

observed a few other AVM phenotypes that are neither “turn” nor “straight”, and include indirect 

ventral-anterior routes, and ventral positioning of the AVM cell body. These phenotypes, which 

we refer to as “other”, are rare in w.t and sax-3(-/-) animals, but constitute a significant portion 

in some of the rescue mutant strains (Fig. S5). We consider that these “other” phenotypes 

reflect a miss-regulated SAX-3 function, and not necessarily loss- or gain-of-function. To avoid 

unnecessary interpretations, we have therefore based most of our statistical analyses on the 

“straight” phenotype percentage, which is clearly associated with loss-of-function.    

On the sax-3(-/-) (ky123) background we established several Pmec-7 transgene strains to 

drive expression of mCherry-fused SAX-3 and SAX-3 mutants in AVM (and 13 other neurons). 

In a Pmec-7::sax-3w.t rescue transgene, we found that 69% of the animals (n=93) showed a 

“turn” AVM phenotype, while 24% were “straight”, and 7% had “other” phenotypes. These 

proportions are not significantly different than the w.t animals, showing a sax-3 rescue by the 

transgene in the AVM neuron. However, a rescue transgene with a D4 deletion Pmec-7::sax-

3∆D4 had only 31% of the total animals (n=91) showing the “turn” phenotype, 53% “straight” 

and 16% “other”, demonstrating a near-complete loss of SAX-3 function. To directly address 

the role of dimerization of D4 in SAX-3 activity, we introduced a F360R point mutation, directed 

to specifically interfere with D4 dimerization. The D4-D4 dimerization interface, as revealed in 

the crystal structures of hRobo2D4-5 and hRobo1D1-4, includes several conserved residues, one 

of which is hRobo2 F357 / hRobo1 F394 (Fig. S1, S3). Previously, we found that a F357R 

substitution eliminates hRobo2D4-5 dimer formation in AUC measurements (Yom-Tov et al., 

2017), and therefore targeted the homologous SAX-3 F360 in the C. elegans AVM guidance 

model. As anticipated, the Pmec-7::sax-3F360R transgene showed a loss-of-function phenotype, 

with only 30% of the total animals (n=91) with a “turn” phenotype, 53% “straight”, and 16% 

other phenotypes.  

Taken together, these results establish the critical role of D4 in SAX-3 function, and link D4-

mediated dimerization, which we have demonstrated to be important in vitro and in cell culture 

assays, with SAX-3 function in vivo.    

 

D5 is important for hRobo1-hRobo2 trans interactions 

Inhibitory Robo trans interactions are documented in both Drosophila and mammalian 

systems. In Drosophila, dRobo2 expressed in midline cells acts to inhibit dRobo1-mediated 

repulsion of commissural axons (Evans et al., 2015). Rat Robo1 and Robo2 interact in trans 

to promote axon outgrowth of retinal neurons (Hivert et al., 2002), and mouse Robo2 is 

engaged in homotypic interactions to control repulsive responses in dendritic self-avoidance 

of cerebellar Purkinje cells (Gibson et al., 2014).  
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Crystal contacts in the hRobo2D1-8 lattice provide molecular details on how Robo receptors 

might interact in trans when presented on neighboring cells or cell processes (Fig. 5A-C, Fig. 

S6). The trans interactions are made between two opposing layers of Robo molecules, where 

the membrane proximal side (the carboxy-terminal end of D8) of Robos point in opposite 

directions, resulting in a distance of 186 Å from each other, consistent with a role in mediating 

cell-cell contacts. The trans interactions are not restricted to a 1-on-1 stoichiometry, but rather 

form a continuous array, where each Robo molecule from one layer simultaneously binds two 

Robo molecules from the opposing layer (Fig. S6). The interactions involve direct contacts 

between D5 and a D5-linked glycan branch from the first Robo molecule presented on one 

layer, to D1 and D2 of an opposing Robo. While the D1 and D2 of the first Robo interact with 

D5 and a D5-linked glycan branch of another opposing Robo molecule, and so on. The 

contact surface of trans interacting Robo molecules is mostly water mediated, with few direct 

amino acid side chain and backbone contacts. The most significant interacting surfaces are 

the A-B and E-F loops (and to a lesser extent the carboxy-terminal residues of strands C and 

G) of D5, with the E-F and C-D loops (and to a lesser extent the A-B loop) of D1 (Fig. S1, S2). 

The N-linked glycan branch on the sequence conserved Asn426 of D5’s mediates a secondary 

interaction with the highly conserved Arg99 and Arg132 of D1 and D2 respectively.  

To validate the role of D5 in mediating Robo trans interactions between neighboring cells, we 

performed a cell aggregation assay, an approach widely used to study various cell adhesion 

molecules (e.g. Protocadherin (Goodman et al., 2017)) (Fig. 5D). Based on previous data that 

hRobo1 and hRobo2 mediate hetero trans interactions, measurable in a bead aggregation 

assay (Hivert et al., 2002), we replaced the intracellular portion of hRobo1 and hRobo2 with 

mCherry and CFP fluorescent proteins, respectively. hRobo1D1-8-mCherryIC and hRobo2D1-8-

CFPIC were individually expressed for 4 hours in two separate HEK293F suspension cultures. 

The two cultures were then mixed and left to grow in suspension for 44 hours. The same 

procedure was undertaken with hRobo2 truncated in D5 (hRobo2∆D5-CFPIC), an unrelated 

control Ig-like receptor cKITEC-CFPIC (there is no indication, or record, for Robo-cKIT 

interactions), and NotchEC-Citrine DeltaEC-mCherryIC as a positive control, a well-characterized 

cell aggregation trans-interaction system (e.g. Pandey and Jafar-Nejad, 2018). Our first 

observation was that, unlike classical cell adhesion molecules (CAMs), no large aggregates 

were formed in individual or mixed Robo cultures. However, small aggregates of 2-5 cells were 

present in all cultures, which we sorted and recorded using an imaging flow-cytometer device. 

We found that on average, 12.1% of aggregates in the hRobo1-hRobo2 mixed cultures 

included both hRobo1 and hRobo2 expressing-cells, while only 3.2% and 5.1% were observed 

in the hRobo1-hRobo2∆D5 and hRobo1-cKIT mixtures, respectively (Fig. 5E). The positive 

control had 22.4% mixed-cell aggregates, demonstrating stronger Notch-Delta trans 

interactions relative to Robo. We than plated the sorted aggregates and inspected these 
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cultures under a high magnification microscope after an overnight incubation and fixation 

(HEK293F cells settle and grow on lysine-coated slides when not stirred). In contrast to the 

smooth cell-cell interfaces observed in the hRobo1-hRobo2∆D5 and hRobo1-cKIT mixtures, the 

hRobo1-hRobo2 (and Delta-Notch) mixed cultures featured large contact area membrane 

extensions, indicative of tight heterotypic interactions between hRobo1 and hRobo2 that 

depends on the presence of D5 in hRobo2 (Fig. 5E).  

 

Slit-independent activity in a Robo gain-of-function mutant  

Our results implicate D5 as a potential Robo trans inhibitory interaction domain. We therefore 

investigated the consequence of D5 truncation on Robo biological activity. For this, we followed 

two experimental approaches: the AVM in vivo model of C. elegans (Fig. 4); and a neurite 

outgrowth assay of mouse spinal cord dissociated neuronal cultures infected with Robo-

expressing lentiviruses (Fig. 6, Fig S7). In C. elegans, we introduced a rescue transgene with 

a D5 deletion Pmec-7::sax-3∆D5 to the sax-3 (ky123) mutant carrying Pmec-4::gfp. Of the total 

animals (n=80), 54% had the “turn” AVM phenotype, 24% were “straight”, and 22% “other”. 

Compared with the sax-3w.t rescue, sax-3∆D5 exhibits a similar percentage of the “straight” 

anterior phenotype (24%), indicating that D5 deletion does not involve a loss of function. 

We next considered that, if indeed sax-3∆D5 brings about a release of auto-inhibitory 

constraints, its activity would be independent of SLT-1. In order to test this hypothesis, we 

silenced SLT-1 expression using slt-1 RNAi (Fig. 4B, C). Treatment with slt-1 RNAi did not 

have a substantial impact on w.t Pmec-4::gfp animals, reducing the “turn” phenotype by 8%, 

and elevating the “straight” phenotype by 11%. However, the sax-3(-/-) (ky123) mutant that is 

rescued by the sax-3w.t transgene proved to be much more sensitive to the RNAi treatment, 

showing a dramatic 33% reduction in the ventral AVM “turn” phenotype, from 69% (in the 

untreated experiment) to 36%, with a matching increase in the “straight” phenotype, from 24% 

to 55%. Control RNAi treatment with pAD12 (Dillin et al., 2002) did not have significant 

consequences on the sax-3w.t transgene, with 54% of the animals (n=82) showing the “turn” 

phenotype, 26% were “straight”, and 20% “other”. Not surprisingly, it seems that the sax-3w.t 

rescue strain is more sensitive to SLT-1 silencing than the w.t animals. 

Contrary to the sax-3w.t transgene, the sax-3∆D5 rescued animals have maintained a similar 

AVM phenotype distribution, with- and without slt-1 RNAi (54% and 53% “turn”; 24% and 30% 

“straight”) respectively. From these C. elegans experiments we conclude that SAX-3∆D5 has, 

at least in the context of AVM ventral guidance, a constitutive, SLT-1 independent activity. 

Similarly, in sax-3∆D7 rescued animals, removal of D7, which directly blocks D4 in cis, as seen 

in the hRobo2D1-8 crystal structure (Fig. 2), and as demonstrated in the Robo-cKIT chimera 

phosphorylation assay (Fig. 3D), has a SLT-1 independent activity effect, with a low 

percentage of “straight” (36%) phenotype, which is kept under slt-1 RNAi (28%) treatment.  
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Next, to investigate the impact of D5 truncation in mammalian Robos, we infected dissociated 

mouse spinal cord neurons with lentiviruses expressing either intact or D5-truncated hRobo1 

and 2 compared to a GFP control (Fig. 6, Fig. S7). Normally, cultured neurons in this assay 

project neurites that connect neighboring cells. The well documented repulsive effects of 

Robo1/2 in axon guidance and dendritic avoidance (Blockus and Chedotal, 2016), led us to 

hypothesize that Robo 1/2 activity would reduce the number, and/or length of neurites in this 

assay. Indeed, hRobo1∆D5 had a dramatic effect, eliminating most neurite extensions after five 

days, while hRobo1FL and hRobo1∆D4 had no significant response, thereby demonstrating the 

activating effect of a D5 truncation, and consistent with the C. elegans sax-3∆D5 transgene 

phenotype. hRobo2∆D5 also had a significant response, which was similar to that of hRobo2FL. 

Unlike hRobo1FL, hRobo2FL has some basal activity, which may be due to a difference in auto-

inhibition levels. Interestingly, when compared with hRobo2FL, hRobo2∆D4 is not active, 

providing further evidence for the importance of D4 in Robo signaling, and concordant with the 

C. elegans sax-3∆D4 transgene phenotype.  
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Discussion 

 

D4-mediated dimerization is important for Robo signaling 

Dimerization of cell surface receptors drives the activation of many cytokine and growth-factor 

signaling systems (Atanasova and Whitty, 2012). Although it’s not known how dimerization 

might affect Robo, it was for many years considered important for activation and signaling 

(Blockus and Chedotal, 2016; Seiradake et al., 2016). 

The identification of D4 as a dimerization domain of hRobo2 in vitro and cell-size assays (Yom-

Tov et al., 2017), together with identical D4 dimerization interfaces observed in hRobo2D4-5 

(PDB 5NOI) and hRobo1D1-4 (PDB 5OPE/5O5G) (Fig. 2, S3), have further focused attention 

on Robo D4-mediated dimerization. A high level of evolutionary sequence conservation is 

observed in the D4 dimerization interface (Yom-Tov et al., 2017), including those of hRobo3 

and the C. elegans SAX-3 (Fig. S1). Here, we further demonstrate homo-dimerization of 

hRobo1, 2, 3 and SAX-3 using a Robo-cKIT chimera assay (Fig. 3). After confirming that Robo 

dimerization is conserved in C. elegans, we utilized the well-established role of sax-3 in 

guiding the navigation of the AVM neuron to investigate the functionality of D4-mediated 

dimerization in vivo (Fig. 4). Our results show that removal of D4 eliminates most SAX-3 

activity, and furthermore that substitution of a single critical residue in the dimerization 

interface (F360R) significantly reduces activity. Under slt-1 RNAi silencing conditions, the loss 

of function in D4 mutants’ phenotype is not aggravated, indicating that their residual SAX-3 

activity is slt-1 independent. The importance of D4 in mediating Robo activity is further 

supported by our experiments on dissociated spinal cord neurons infected with Robo-

expressing lentivirus constructs, where unlike the intact hRobo2FL that reduces neurite 

outgrowth, hRobo2∆D4 showed no significant response (Fig. 6).  

Taken together, several lines of evidence establish D4 dimerization as a critical and conserved 

component in Robo function. But are additional dimerization interfaces present? We think this 

is quite likely. Previously, Evans and Bashaw have demonstrated an important functional role 

for D3 in Drosophila Robo receptors (Evans and Bashaw, 2010), and here, in the hRobo2D1-

3-cKITIC chimera, a dimerization signal stronger than background is also observed (Fig. 3B). 

Dimerization through the membrane proximal domains is also conceivable, however our 

experiments show no evidence for this so far. Purified hRobo2D5-8 appears as a strict monomer 

in AUC (Fig. S4), and no crystal contacts in the previously determined hRobo1D7-8 crystal 

structure (PDB 4HLJ) are indicative of homotypic dimers (Barak et al., 2014). Still, very weak 

interactions can evade detection by AUC and crystallography. Another open question is 

whether D4 is restricted to homo-dimerization, as we have demonstrated throughout our 

investigations, or to additionally mediate functional cis-hetero interactions.  
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Auto-regulation of Robo signaling by D4-dimerization interface sequestering 

After establishing a critical role for D4-mediated dimerization in the activation of Robo 

receptors, it became obvious from the hRobo2D1-8 crystal structure that auto-inhibition of the 

D4 dimerization interface restriction could occur (Fig. 2E), which was confirmed using Robo-

cKIT chimera assays (Fig. 3). This form of auto-regulation is found in other signaling systems, 

and was intensively investigated in members of the epidermal growth factor receptor 

(EGFR/ErbB) family, where ligand binding promotes (or rather stabilizes) dramatic 

conformational changes in the receptor’s ectodomain to reveal hitherto buried dimerization 

interfaces (Lemmon and Schlessinger, 2010). In the hRobo2D1-8 crystal structure, the D4 

dimerization interface is occluded by D7 and the D6-7 linker from the same molecule (auto-

inhibition in cis). This inhibitory conformation can be further fastened by an opposing Robo 

molecule presented on a neighboring cell, or cell process, (auto-inhibition in trans) (Figs. 5, 

S6).  

How tight are these two levels of auto-inhibition? There are several indications that cis 

inhibition, by itself, is insufficient. FRET measurements (Zakrys et al., 2014) of recombinant 

mouse Robo1 expressed in adherent HEK293 cells identified the presence of both monomeric 

and oligomeric species, and showed that domains D1-5 are critical for oligomerization. This 

study is consistent with our Robo-cKIT chimera results, also conducted in adherent cell 

culture, where a basal level of dimerization is observed (Fig. 3). Under these experimental 

conditions, surface presented Robo receptors are exposed to extracellular space, and most 

do not interact with reciprocal Robo receptors on neighboring cells. However, when trans 

interactions do occur, the auto-inhibited conformation is less likely to open and expose D4 for 

dimerization.  

 

Releasing auto-inhibition: proposed mechanisms for Slit-induced Robo activation  

Following the realization that active Robo has an “open” conformation, and that auto-inhibited 

Robo is “closed”, we consider that Slit ligand stimulation would invoke a shift in favor of the 

“open” conformation (Fig 7). We further suggest that Slit achieves this differently, depending 

on how Robo is presented on the cell surface. There are two basic scenarios for Robo 

presentation i) exposed to extracellular space and free from trans interactions; or ii) interacting 

in trans with reciprocal Robo molecules presented on neighboring cells or cell processes.  

In the first scenario, as discussed previously, we conclude that auto-inhibition is not stringent. 

We base this on our Robo-cKIT chimera phosphorylation assays, showing higher 

phosphorylation levels of hRobo 1,2,3 and SAX-3 compared to non-liganded cKIT (Fig. 3), 

and previous FRET measurements of mouse Robo1 (Zakrys et al., 2014) reporting a 

monomer-oligomer mixed population. In both assays, Robo was recombinantly over-

expressed in a cell culture monolayer, and therefore unlikely to be engaged in trans 
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interactions. If indeed Robo receptors are presented in this way in vivo (that is, without being 

engaged in trans interactions), how might Slit induce Robo activation? In this scenario, we 

suggest that Slit affects Robo conformation and clustering. In a previous structural study of 

the juxtamembrane hRobo1 D7-8 domains (Barak et al., 2014) we proposed that binding of 

Robo to Slit, which is conjugated by several extracellular matrix components to cells lining the 

path of Robo-exhibiting migrating cells or cell processes, inflicts a mechanical tension that 

extends Robo’s ectodomain to expose a juxtamembrane proteolytic site. The same concept 

is relevant with the conformational change required to release Robo cis auto-inhibition and 

expose D4 for dimerization. Slit binding might also promote Robo clustering, because Slit 

LRR4 domains can form dimers (Howitt et al., 2004; Seiradake et al., 2009), through which 

Robo can also dimerize. But it was also reported that a larger Slit segment was monomeric 

(Hohenester, 2008), so further structural studies of Slit are clearly warranted.  

The second scenario, where Robo receptors are interacting in trans with neighboring Robo 

molecules, is substantiated in several previous studies (Evans et al., 2015; Gibson et al., 2014; 

Hivert et al., 2002). Our results support these reports, and highlight the critical role of D5 in 

mediating trans interactions. Consistent with the notion that Robo trans interactions are 

functionally inhibitory, the crystal packing of hRobo2D1-8 displays how tight auto-inhibition on 

individual Robo molecules (Fig. 5) can prevent the disengagement of D4 from D7, and 

subsequent exposure of D4 for cis dimerization and signaling. Based on this analysis, and on 

prior structural knowledge, we propose how Slit binding might activate Robo in the context of 

trans interacting receptors.  

Superimposing the Slit LRR2 domain on the hRobo2D1-8 structure using the hRobo1D1-

hSlit2LRR2 complex structure (PDB 2V9T) (Morlot et al., 2007) results in a clash with the trans 

interacting Robo’s D5 (Fig 7B, C). Specifically, Slit LRR2 overlaps with the C-D loop and D 

strand of D5. In this way, the tight binding of Slit to D1 of one Robo molecule would displace 

D5 of the reciprocal Robo molecule, thereby relaxing the imposed trans confinement. 

Interestingly, to achieve this, even the minimal Robo-interacting domain of Slit (LRR2 domain) 

suffices, consistent with previous functional reports in dendritic self-avoidance mediated by 

Slit2/Robo2 (Gibson et al., 2014), and growth cone collapse assays (Hussain et al., 2006; 

Seiradake et al., 2009).  

 

In summary, our analyses show that auto-inhibition and receptor dimerization are key 

elements in Robo signaling at cell surfaces, following three principles: i) Robo activity requires 

D4-mediated dimerization; ii) Pre-stimulated Robo is auto-inhibited by adopting a 

conformation in which D4 is sequestered from mediating dimerization and; iii) How stimulation 

by Slit can release Robo auto-inhibition. This work further highlights some fundamental 

differences between Robo receptors on the cell surface, when either presented and exposed 
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to extracellular space (as in most monolayer cell cultures), or interacting with reciprocal Robos 

on neighboring cells, or cell processes.  
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Figure legends 

 

Figure 1. Crystal structure of hRobo2 full-length ectodomain. A) Color-coded organization and 

nomenclature of Robo extracellular Ig and FnIII domains and intracellular conserved motifs. 

Novel and previously established domain functionalities are indicated. Domain organization of 

Slit is shown in gray, with the Robo-binding LRR2 domain, darkened. B) Crystal structure of 

hRobo2D1-8 in surface representation. The juxtamembrane, transmembrane, and intracellular 

portions appear, for orientation purposes, as schematic representation. C) Simplified 

representation of the hRobo2D1-8 structure. D) 2Fo-Fc electron density map (blue mesh) 

contoured at 1.8 σ level showing a close-up view of the D5 core region. Anomalous difference 

map (red) contoured at 4 σ level marks the selenium substructure locations at methionine 

residues 594 and 609 (marked). The backbone and side chains are represented as sticks. 

 

Supplementary figure S1. Structure-based sequence alignment of D1-8 to the human Robo1, 

2 and 3, and the C. elegans homolog SAX-3. Color coded symbols and Uniprot protein 

accession numbers are listed below. 

 

Supplementary figure S2. Crystal structure of hRobo2 extracellular domains. Domains are 

individually displayed in cartoon representation, with secondary structure elements labeled, 

according to the same color scheme as in Fig. 1. Oligosaccharide (Glycan) molecules bound 

to D1 and D5 are represented as sticks. 

 

Figure 2. D4-mediated dimerization is inaccessible in the hRobo2D1-8 structure.  

A) Finding the same needle in two different haystacks. In the crystal lattice packings of 

hRobo1D1-4 (PDB 5OPE) and hRobo2D4-5 (PDB 5NOI), two protomers are highlighted – 

following the same domains color code as in Fig. 1. The domains of one protomer are labeled, 

and those of the second protomer are labeled and underscored. In both cases, the two 

highlighted protomers dimerize through D4. B) Superimposition of the D4 dimers from the 

hRobo1 (pale yellow) and hRobo2 (dark yellow) lattices reveal an identical D4-mediated 

dimerization interface (area boxed in A). C) A zoom-in view of the D4 dimerization interface in 

the hRobo2D1-8 crystal structure. D4 is presented as surface, while the rest of the molecule – 

as cartoon. The D4 dimerization interface is colored in white, and is blocked by D7.  

 

Supplementary figure S3. Related to figure 2. Robo D4 dimerization in two independent crystal 

lattices.  

Crystallographically related dimers of hRobo1D1-4 (A) and hRobo2D4-5 (B) are presented, with 

one protomer displayed as a cartoon and the second with surface representation. Below, an 
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open-book representation of the D4 dimerization interface (white) highlights the conserved 

and critical hRobo1 Phe394 / hRobo2 Phe357 residue, for which the homologous residue in 

SAX-3 is Phe360. Note that we have used the hRobo1 isoform 5 in this work, in which the 

critical phenylalanine position is Phe358 (Fig. S1).   

 

Figure 3. Robo-cKIT chimera trans-phosphorylation dimerization assay. 

As Robo receptors lack intrinsic catalytic activity, the intracellular (IC) portion of the receptor 

tyrosine kinase cKIT (in green) was fused to Robo/SAX3 ectodomain constructs and 

dimerization monitored through anti phospho-tyrosine immunoblotting in HEK293 cells.  

(A) Schematic representations of Robo and cKIT. SCF (magenta) brings about cKIT 

dimerization and trans-phosphorylation, and was used for control.  

B) Strongest hRobo2 dimerization are seen in the hRobo2D1-4-cKITIC construct, and weaker 

dimerization levels (yet stronger than non-stimulated cKIT) for the hRobo2D1-8-cKITIC and 

hRobo2D1-3-cKITIC. Quantification is based on cross-referenced w.b. intensity densitometry 

from three repeats’ mean ± SEM.  

C) In the same way, strong and weak dimerization levels are also demonstrated for the 

chimera constructs D1-4 and D1-8 of hRobo1 and SAX-3, and a moderate difference in the 

case of hRobo3.  

D) Consistent with the hRobo2D1-8 crystal structure, in which D7 directly blocks the D4 

dimerization interface (Fig. 2), removal of D7 (but less so D5 or D6) elevates dimerization of 

hRobo2.  

E) Surface expression on COS-7 cells is confirmed by adherence of secondary FITC-labeled 

antibodies to the N-terminal FLAG-tags of the various protein constructs, visualized in 

fluorescence microscopy (scale bar - 10 µm).  

 

F) We conclude that removal of D5-8 exposes D4 and drives Robo to dimerization, while a 

smaller fraction of the intact Robo ectodomain allows dimerization.     

 

Supplementary figure S4. Sedimentation equilibrium analytical ultracentrifugation (SE-AUC) 

of soluble hRobo2 constructs. SE-AUC data shows much weaker dimerization of hRobo2D1-8 

than hRobo2D4-5, consistent with the data presented in Fig. 3. Under these experimental 

conditions, hRobo2D5-8 does not show any dimerization. The hRobo2D4-5 measurement was 

reported previously in (Yom-Tov et al., 2017). Data fitting was performed with 

Sedphat (Gabrielson et al., 2007) yielding clear results with small random residuals. 

 

Figure 4. SAX-3/SLT-1 in C. elegans. A) Schematic diagram of the AVM axon guidance 

system in C. elegans. Middle panel: Dorsal muscles express the repellent SLT-1/Slit (red). 
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The attractant UNC-6/netrin (blue) is expressed ventrally. In sax-3 (-/-) mutants, the AVM axon 

fails to grow ventrally and instead directly extends anteriorly. Lower panel: confocal images of 

w.t (left) and sax-3(ky123) (-/-) mutant, where the AVM is visualized by a Pmec-4::gfp and 

arrowheads point at the extending AVM axon. B, C) Graphical and numerical representation 

of AVM axon guidance in sax3 rescue lines and under slt-1 RNAi silencing. AVM guidance 

phenotypes were classified into three categories: “turn” (blue), which appears in most w.t and 

w.t-rescued animals; “straight” (red), which appears in most sax3 knockout animals, and is 

associated with sax3 and/or slt1 loss-of-function; “other” (green), which includes several other 

AVM axon trajectories (Fig. S5). n - total number of animals that were scored. C) Each cell 

includes the values for w.oRNAi / wRNAi. D) Representative images of sax-3(ky123) (-/-) 

animals, rescued with mCherry-fused sax3 w.t and mutant transgenes. Arrowheads point at 

the AVM’s cell body. 

In the statistical analysis, phenotype proportions in different experiments were compared 

using the Chi-squared test of independence. Biological replicates (two lines, three replicate 

groups for each) were merged after initial Chi-squared tests were performed to ensure there 

were no significant difference (P>0.05) between them. A post-hoc analysis was performed to 

compare the proportion of the straight phenotype. Finally, all p-values were corrected for 

multiple comparisons with the FDR procedure, ***P<0.005, ns: no significance.    

 

 

Supplementary figure S5. AVM “other” morphologies in C. elegans. A) Schematic diagrams of 

the AVM axon “turn” morphology - associated with normal sax-3 and slt-1 function, and of the 

“straight” morphology - associated with sax-3 and slt-1 loss of function. B-F) Representative 

images and diagrams of aberrant AVM tracks. These phenotypes that collectively referred to 

as “other”, are unusual to find in w.t and sax-3(-/-) animals, but are more common in rescue 

mutant strains. 

 

Figure 5. Asymmetric trans-interactions between D5 and D1 from opposing Robo molecules. 

A) Crystal contacts in the hRobo2D1-8 lattice reveal trans interactions between two opposing 

arrays of Robo molecules, with only one pair presented here. The analogous continuous array 

is shown in Fig. S6. The trans-interactions involve direct contacts between D5 and a D5-linked 

glycan branch from the upper Robo molecule, with D1 and D2 of the opposing Robo. B) Back 

view of (A). C) Close-up view of the N-linked glycan branch extending from N426 of D5, with 

conserved arginine sidechains (in blue) on D2 from an opposing Robo molecule (see details 

in figure S1). D) D5 trans interactions in cell aggregation assay. Robo1mCherry and Robo2CFP 

were separately expressed in HEK293F suspension cells, mixed together and then sorted 

through a FACS imaging device. A positive cell aggregation control NotchCitrine - DeltamCherry 
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were treated similarly. E) Sorted mixed-population cell aggregates were plated and cultured 

for confocal high-resolution microscopy. Robo1-Robo2 interacting cells have large contact 

area with lamellipodia extensions (marked by white arrows), unlike the non-specific 

interactions seen in Robo1-cKIT expressing cells. Scale bars: 10 µm. F) Quantification of co-

aggregation FACS sorting shows that cell mixtures of Robo1mCherry and Robo2CFP expressing 

cells have higher percentage of mixed population aggregates, compared to Robo1mCherry mixed 

with control cKITCFP, or hRobo2ΔD5-CFP truncation mutant (mean of three repeats ± SEM). 

 

Supplementary figure S6. hRobo2D1-8 trans interactions are not restricted to a 1-on-1 

stoichiometry, but are rather continuous, forming an array, where each Robo molecule from 

one layer binds two Robo molecules from the opposing layer simultaneously. A) Crystal lattice 

packing. B) Two-dimensional cartoon of the trans-interacting lattice. 

 

Figure 6. hRobo1&2 and truncation mutants’ effects on mouse SC neurons (A) Upper panel - 

Representative Images of E12.5 primary SC neurons culture. The cells were infected with 

Robo LV's 6 hr after plating, as indicated. Neurite length was measured using the incuCyte 

imaging system after 5 DIV. Lower Panel - Representative images with incuCyte mask output 

for neurite length analysis. Scale bar: 50 µm (B) Neurite length quantification revels a 

significant decrease in the Robo1ΔD5, Robo2FL and Robo2ΔD5 in compare to GFP control and 

Robo2ΔD4, demonstrating gain-of-function of ΔD5 and loss-of-function of ΔD4 Robo truncation 

mutants on the SC neurons (3 biological repeats, 45 fields per each repeat, Student t.test; 

***p<0.001, **P<0.01, *P<0.05). (C) High magnification representative image of SC neuron 

expressing GFP after LV infection demonstrating its expression. Lower Panel – Inset shows 

SC neuron axon demonstrating GFP expression also in this compartment. Scale bar: 10 µm 

 

Supplementary figure S7. Expression of different LV's constructs in dissociated SC neurons 

culture. High magnification representative images of SC neuron expressing GFP after LV's 

infection demonstrating expression in all the different constructs, as indicated. Blue indicates 

DAPI staining, Gray indicates alpha tubulin staining and green indicate GFP expression. Scale 

bar: 10 µm.  

 

Figure 7. A model for Slit-induced Robo activation by dissociation of Robo trans-inhibition A) 

In trans interacting Robos, D1 (in pink) of one molecule interacts with D5 (in green) of a 

reciprocal Robo. B, C) Crystallographic analysis of Slit LRR2 binding vis-à-vis trans-interacting 

Robo shows that Slit binding and Robo trans interactions are mutually exclusive, due to a 

clash between Slit LRR2 and the reciprocal Robo D5. D) According to this model, trans-

interacting Robo molecules are tightly auto-inhibited. Slit binding inflicts Robo trans 
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dissociation, reducing Robo auto-inhibition to allow an “open” active conformation, which 

facilitates the formation of D4-mediated Robo dimers. Dimer formation, presumably, activates 

the intracellular portion of the receptors (by an unknown mechanism), allowing the recruitment 

of intracellular effectors and signaling.    
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Experimental procedures 
 

Protein expression and purification – Constructs of hRobo2 used for crystallography 

and analytical ultracentrifugation were prepared by PCR amplification from the complete 

cDNA clone (ImaGenes) of human Robo2 (Acc. no. BC146772.1/Q9HCK4). Robo2D2-3 

(spanning residues 129-311), Robo2D5-8 (spanning residues 415-859), and Robo2D1-8 

(spanning residues 24-859) were amplified and ligated into a modified pFastBac (pK503-9) 

insect cell expression vector containing an N-terminal FLAG tag and a C-terminal 

hexahistidine tag, followed by a stop codon. To produce baculoviruses expressing hRobo2 

D2-3, D5-8, and D1-8, recombinant bacmids were extracted and transfected into Sf9 cells 

using Cellfectin® II Reagent (ThermoFisher) and according to procedures described in the 

Bac-to-Bac instruction manual (Invitrogen). Insect Sf9 cells were grown at 27°c in 4 L culture 

of protein-free ESF 921 insect cell culture medium (Expression Systems) in spinner flasks, 

and incubated for 5 days post-infection. For selenomethionine (SeMet) incorporation in 

hRobo2D1-8, cells were transferred to roller-bottles at a cell density of 0.5x106/ml for 24 h. 

Medium was than exchanged to Methionine-deficient ESF 921 Delta Series media 

(Expression Systems) for 30 h following BaculoVirus infection and further 15 h culture. We 

next added 50 mg/L of L-(+)-Selenomethionine, Anagrade (ANATRACE) to the medium. After 

an additional five days incubation, the medium was collected for purification. Growth media 

with secreted proteins were concentrated and buffer-exchanged to 50 mM phosphate buffer, 

pH 7.6, 0.3 M NaCl and 10% glycerol using the QuixStand benchtop system. The concentrated 

and buffer-exchanged medium was then loaded onto a metal-chelate column (HisTrap, GE 

Healthcare) pre-equilibrated with buffer A (50 mM phosphate buffer, pH 7.4, 0.3 M NaCl, 10% 

glycerol) at a flow rate of 3 ml/min. The column was washed with buffer A until a stable baseline 

was achieved. After applying a 70–200 mM imidazole gradient elution, protein-containing 

fractions were selected for further purification.  

hRobo2D1-8 and SeMet-hRobo2D1-8 fractions were pooled and diluted 1:10 (v:v) with 20 mM 

Bis-Tris pH 5.8 and 5% glycerol for cation exchange chromatography using pre-equilibrated 

Mono S (GE Healthcare). Proteins were than eluted with gradient of 20 mM Bis-Tris pH 5.8, 

5% glycerol and 1M NaCl. Protein containing fractions (hRobo2D1-8 and SeMet-hRobo2D1-8 

from the MonoS elution, and hRobo2D2-3 and hRobo2D5-8 from the metal-chelate elution) were 

pooled and loaded onto pre-equilibrated Superdex 200 HiLoad 26/60 (GE Healthcare) for size 

exclusion chromatography and elution was performed with 20 mM HEPES pH 7.4 and 150 

mM NaCl. Protein-containing fractions were pooled and concentrated using a spin 

concentrator: hRobo2D2-3 to 19.5 mg/ml, hRobo2D1-8 and SeMet-hRobo2D1-8 to 13.5 mg/ml, and 

hRobo2D5-8 to 4 mg/ml. The concentrated proteins were split into aliquots and flash-frozen in 

liquid N2.  
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Crystallization, data collection, and structure determination - Samples of hRobo2D2-3, 

hRobo2D1-8 and SeMet-hRobo2D1-8 were screened for crystal growth conditions with the 

commercial crystallization screens Crystal screen, PegRX, PEG/Ion, and SaltRX (Hampton 

Research) at 277K and 293K in 96-well hanging-drop clear polystyrene microplates (TTP 

LabTech) using the mosquito robot for crystallography (TTP LabTech) as in (Sporny et al., 

2016). A 1:1 sample:reservoir ratio was used with a drops size of 0.2 µl.  

In the case of hRobo2D2-3, a single crystal that was formed under PEG/Ion screen condition 

G4 (consisting 0.2M Sodium format pH 7 and 20% PEG 3350 at 277K) was harvested directly 

from the screen plate and flash-frozen in liquid N2 four days after appearance using 7.5% 

glycerol, 30% PEG 3350 and 0.2M sodium format as a cryo- protectant solution. Diffraction 

data was measured at 100K on beamline ID14.2 (Gerlach, 2016) at Berliner 

Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY) II (Berlin, Germany) 

using MAR-225 detector, and was processed and scaled using the XDSAPP software 

package (Krug, 2012). The crystal belonging to the P212121 space group, with unit cell 

dimensions of a=62.224 b=70.524 c=97.274 α=γ=β=90, has two molecules in the asymmetric 

unit, and diffracted to a maximal resolution of 2.46 Å. The structure was solved by molecular 

replacement using the online BALBES molecular replacement server (Long et al., 2008). 

Molecular replacement was followed by electron density modification procedures and cycles 

of model refinement and re-building using COOT (Emsley et al., 2010), PHENIX refine 

(Afonine et al., 2012), and the ReDo server (Joosten RP, 2012). Data collection and model 

statistics are summarized in Table 1. In the case of hRobo2D1-8, hits from several crystallization 

conditions with different morphologies were obtained and reproduced in 24-well hanging drop 

vapor-diffusion plates in 2μl drop size. Diffraction was assessed with a X-ray Bruker X8 

Proteum rotating anode generator operating at 45 kV and 60 mA with PLATINUM135 CCD 

detector at 100K. Only one crystal form (obtained at condition H1 from Crystal Screen HT, 

composed of 8% Ethylene glycol, 10% PEG 8000, 0.1M HEPES pH 7.5, at 293K) showed 

ordered diffraction and was further pursued. Crystallization conditions were refined by 

changing protein concentrations, pH values, PEG concentrations, growth temperatures (277K, 

285K, 293K), and additive supplements. Refined crystallization condition consisted of a 

protein concentrated to 13.5 mg/ml and precipitant mixture containing 10% PEG 8000, 0.1M 

HEPES pH 7 - 7.125, 9.5% Ethylene glycol and 2% MPD at 293K. Crystals appeared three to 

five days after setup, dehydrated by replacing reservoir contents to 15% PEG 8000, 0.1 M 

HEPES pH 7.125 and 10% Ethylene glycol 24 h - three weeks prior to harvesting directly from 

the mother liquor and flash-frozen liquid N2. SeMet-hRobo2D1-8 crystallization conditions 

followed those of native hRobo2D1-8 and were optimized at 293K in 24 wells plate using 

hanging-drop vapor-diffusion with 2μl drop size. Best diffracting crystals grew at 10.5-11.5% 
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PEG 8000, 0.1M HEPES pH 7-7.5, 9.5% Ethylene Glycol. Crystals were dehydrated at least 

24 h before harvesting by replacing the reservoir contents with 15% PEG 8000, 11% Ethylene 

Glycol, and 0.1M HEPES pH 7.25, and were harvested directly from mother liquor four weeks 

after setup.  

Diffraction data for hRobo2D1-8 and SeMet-hRobo2D1-8 crystals were measured at 100K in the 

ESRF (Grenoble, France) on beamlines: ID23-1 with ADSC Q315R detector, ID29 with Pilatus 

6M detector, and at BESSY II (Berlin, Germany) on beamline BL14.1 with Pilatus 6M detector. 

Data were processed and scaled using the XSDSAPP (Kabsch, 2010; Krug, 2012) software 

package in the space group C2 with unit cell parameters a=290.767, b=81.569, c=158.656 Å, 

α=γ=90, β=94.0°. Data were subjected to anisotropic ellipsoidal truncation using the 

STARANISO server (Tickle et al., 2018). Strong non-origin native Patterson function peaks 

(0.3-0.45 of the origin height) at (u,v,w)=(0, 0, 0.32) and (0.01, 0, 0.68) indicated presence of 

three hRobo2D1-8 molecules in similar orientations in the asymmetric unit. Probably, this 

pseudo-translation hindered attempts to get experimental phases. The hRobo2D1-8 structure 

was solved by molecular replacement using single domain search models as detailed in the 

results section. The models of hRobo1D1 and hRobo1D8 were modified to match the hRobo2 

sequence using MOLREP (Vagin and Teplyakov, 2010). hRobo2D1-7 in the three monomers 

were positioned consequently starting with hRobo2D2 using Phaser (McCoy et al., 2007), three 

copies of poorly ordered hRobo2D8 were positioned using phased MR as implemented in 

MOLREP (Vagin and Isupov, 2001). SeMet-hRobo2D1-8 data were chosen for model 

refinement as being the least anisotropic. The model was refined with REFMAC5 (Murshudov 

et al., 2011) using external phases from multi-crystal averaging by DMMULTI (Cowtan, 2010). 

X-ray data from several native and derivative hRobo2D1-8 crystals were used in averaging 

alongside native data from hRobo2D2-3 and hRobo2D4-5 crystals. The model rebuilding was 

performed in COOT (Emsley et al., 2010). CC2/1 is defined in (Karplus and Diederichs, 2012) 

andd Wilson B-factor was estimated by SFCHECK (Vaguine et al., 1999). 

 

 Robo-cKIT chimera tyrosine phosphorylation assay - Cell culture and transfection - 

HEK293 cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS), 2 mM l-glutamine, 100 units/mL penicillin, 

and 100 μg/ml streptomycin, at 37°C, under 5% CO2. For transfection, cells were seeded at 

5×104 cells per well in a 6-well plate, cultured for 24 h, and transiently transfected with 5 µg 

DNA using the calcium phosphate-mediated transfection protocol (Kingston et al., 2003). 

Transfected cells were incubated at 37°C, 5%CO2 for 24 h. 

Cells were then serum-starved for 16 h, washed twice with PBS, solubilized in lysis buffer 

containing 120 mM NaCl, 25 mM Hepes (pH 7.4), 1 mM EGTA, 0.75mM MgCl2, 10% glycerine, 

1% triton, 1 mM NaF, 2 mM sodium orthovanadate, protease inhibitor cocktail (Complete Mini 
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EDTA-free, Roche) and incubated on ice for 10 min. For phosphorylation of intact cKIT, 2.5 

μg/ml of the SCF ligand (produced as in (Langley et al., 1994) using the NEB® 5-alpha E. coli 

strain for plasmid propagation and the T7 Express (NEB) E. coli strain for expression (these 

E. Coli strains were used thoughout the work)) were added for 10 min before wash and lysis. 

Lysates were centrifuged at 15000*g for 10 min at 4°C and then the supernatants were 

incubated with ANTI-FLAG® M2 Affinity Gel (Sigma-Aldrich) for 2h at 4°C. After incubation, 

immunopellets were washed twice with 120 mM NaCl, 25 mM Hepes (pH 7.4), 1 mM EGTA, 

0.75mM MgCl2, 10% glycerol, 0.1% triton, 2 mM sodium orthovanadate and analyzed by 

SDS/PAGE followed by immunoblotting with anti-flag M2 (Sigma-Aldrich) and anti-

phosphotyrosine (Bio-Rad) antibodies.  

Protein visualization by chemiluminescence and quantification were performed using an 

ImageQuant LAS 4000 imager (GE Healthcare). 

cKIT and Robo-cKIT chimeras DNA subcloning - All constructs were prepared by PCR 

amplification from human cDNA or assembled sax-3 cDNA. The human cDNAs include Robo1 

(Acc. no. Q9Y6N7-5), Robo2 (Acc. no. Q9HCK4), Robo3 (Acc. no.  Q96MS0) and cKIT (Acc. 

no. X06182). The sax-3 cDNA  (Acc. no. G5EBF1) was generated by assembly PCR reactions 

for intron deletions from the Pmec-7::sax-3 transgene (Zallen et al., 1998).  

First, the PCR product of the full cKIT (residues 33-976) and the intracellular cKIT (KITIC, 

residues 514-976, including the transmembrane segment) were cloned into p3XFLAG-

CMV™-25 Expression Vector (Sigma-Aldrich). For the Robo-cKIT chimeras, hRobo1D1-4 

(residues 20-416), hRobo1D1-8 (residues 20-845), hRobo2D1-3 (residues 22-312), hRobo2D1-4 

(residues 22-413), hRobo2D1-8 (residues 22-838), hRobo3D1-4 (residues 55-448), hRobo3D1-8 

(residues 55-866), SAX-3D1-4 (residues 24-412), SAX-3D1-8 (residues 24-849) were amplified. 

The PCR amplifications were then cloned into cKITIC -p3XFLAG-CMV™-25. Domain deletions 

on hRobo2D1-8-cKITIC chimeras were performed by assembly PCR reactions as described: 

hRobo2D1-8∆D5 (del aa417-507), hRobo2D1-8∆D6 (del aa520-617), hRobo2D1-8∆D7 (del aa627-

732). 

For surface expression validation, Immuno-Staining was applied. COS7 cells were maintained 

in Dulbecco's Modified Eagles Medium (DMEM) supplemented with 10% fetal bovine serum 

(FBS), 2 mM l-glutamine, 100 units/mL penicillin and 100 μg/ml streptomycin, at 37°C under 

5% CO2. Cells were seeded at 5 × 104 cells in a 24-well plate with a bottom coverslip, cultured 

for 24 h and transiently transfected with 500 ng DNA using TurboFect Transfection ReagentTM 

(Thermo Fisher Scientific). Transfected cells were incubated at 37°C for 20 h, washed twice 

with phosphate-buffered saline (DPBS), fixed with 4% PFA (Paraformaldehyde solution 4% in 

PBS) and blocked with 1% BSA in PBS. Cells were probed with primary antibody to the N-

terminal 3xFLAG (Genscript) and conjugated secondary anti-mouse FITC antibody 

(Genscript) was then applied for detection. For Nuclei staining, cells were stained with Hoechst 
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33258 (Sigma-Aldrich). Coverslips were mounted on glass slides using HIGHDEF IHC 

fluoromount (Enzo Life Sciences). Confocal images were recorded using Leica SP8 Confocal 

live microscope. 

 

Analytical ultracentrifugation - All the sedimentation equilibrium experiments with 

hRobo2 constructs were performed using an XL-I analytical ultracentrifuge (Beckman-Coulter 

Inc.), with a UV-visible optics detection system, using an An60Ti rotor and 12-mm double 

sector centerpieces. Sedimentation curves were recorded and analyzed at 280 nm while 

spinning at 20°C in 10, 12, 14, and 20 h time points, to assure that equilibrium was reached. 

Proteins were each measured and analyzed in 20 µM. The proteins include an N' terminal 

FLAG and C' terminal 6XHis tags. Taking into account the glycosylation component, we have 

set the partial specific volume (ν#) of the glycoprotein to 0.722, as suggested in (Lewis and 

Junghans, 2000). The sedimentation coefficient distributions were calculated using SEDFIT 

and SEDPHAT (Gabrielson et al., 2007; Schuck et al., 2014).  

 

C. elegans - All constructs were made by PCR amplification from the complete clone 

of C. elegans Pmec-7::sax-3 (Zallen et al., 1998). The Pmec-7::sax-3 transgene contains 

~850bp of the mec-7 promoter and a  partial sax-3 cDNA (nucleotides 1-1343) followed by the 

remaining sax-3 genomic region containing the rest of the sax-3 open reading frame 

(altogether encoding for residues 1-1273 of the SAX-3 protein, Acc. G5EBF1). The entire 

Pmec-7::sax-3 fragment was amplified and ligated into pCFJ104 mCherry-N1 plasmid, giving 

rise to a SAX-3::mCherry fusion protein. The mec-7 promoter drives expression in AVM and 

13 other neurons (ALML, ALMR, ALNL, ALNR, BDUL, BDUR, FLPL, FLPR, PLML, PLMR, 

PVDL, PVDR, PVM). For preparation of the F360R point mutant, and truncation mutants, we 

used “round-the-horn” PCR procedure (based on https://openwetware.org). The domain 

truncation boundaries are as follows: ∆D4 (residues ∆313- 413); ∆D5 (residues ∆423-514); 

∆D7 (residues ∆642-750). The C. elegans Bristol strain N2 was used as wild-type animals. 

Worms were grown at 20°c and maintained using standard methods (Brenner, 1974). Strains 

used in this study include CX3198 [sax-3(ky123) X] (in which the signal sequence and the first 

exon of sax-3 are deleted), CX5067 [zdIs5 (Pmec-4::GFP)] (which was used for the 

visualization of the AVM neuron). CX3198 [sax-3(ky123) X] was crossed with CX5067 [zdIs5 

(Pmec-4::GFP)] to create SHK524 zdIs5(Pmec-4::GFP); sax-3(ky123).  

Transgenic strains expressing sax-3 and sax-3 mutants were established by injecting the 

respective pCFJ104 mCherry-N1-based plasmids (10 ng/µl) along with the pRF4 rol-

6(su1006) plasmid (70 ng/µl) as a co-injection marker into N2 worms (service of KNUDRA 
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Transgenics, UT. USA). Then, animals expressing the transient array were crossed 

into zdIs5(Pmec-4::GFP); sax-3(ky123).  

Day-1 of adulthood animals were mounted on 2% agarose pads containing 2 mM levamisol. 

Images were taken with a CCD digital camera using a Nikon 90i fluorescence microscope. 

Exposure time was kept constant through the experiments. The axon guidance defect was 

scored as failure of the AVM axon to extend ventrally from the cell body. We further 

distinguished between defective axons that directly extended anteriorly (“straight” phenotype) 

and other aberrant phenotypes, which included indirect ventral-anterior routes, and improper 

positioning of the AVM cell body (“other” phenotype).  

For slt-1 silencing, we used the slt-1 RNAi clone (F40E10.4) from the Vidal library (Rual et al., 

2004) after it was verified by sequencing. Bacteria expressing the slt-1 dsRNA were cultured 

overnight in LB supplemented with tetracycline and ampicillin. Prior to seeding, 10mM IPTG 

was added to the liquid culture, which was then seeded on NGM plates containing 2mM IPTG 

and 0.05mg/ml carbenicillin. Eggs were placed on the NGM plates, and synchronized worms 

were analyzed at Day-1 of adulthood. 

 

HEK293F cell aggregation assay - For the Notch-Delta experiment, we used previously 

described protein expression constructs. In human Notch1, Citrine ectodomain is inserted 

between two EGF-like repeats (between G1435 and A1436) and the intracellular domain was 

replaced with a transcriptional activator Gal4 (to avoid activation of endogenous Notch targets) 

(Shaya et al., 2017). In human Delta (Dll1), the intracellular segment was replaced with 

mCherry fusion, as described in (Sprinzak et al., 2010). All the other constructs were made by 

PCR amplification from complete cDNA clones as used for “Robo-cKIT chimera tyrosine 

phosphorylation assay”. The intracellular segments of hRobo1 and hRobo2 were removed 

(designated hereafter “ΔIC” constructs) and replaced by a RTLEVLFQGP linker. Robo2ΔIC 

(residues 1-882) was cloned into a pECFP-N1 plasmid (Clontech). Robo1ΔIC (residues 1-902) 

was cloned into mCherry-N1 plasmid (Clontech). cKITΔIC (residues 32-555) was cloned into a 

pECFP-N1 modified plasmid that includes the leader sequence and FLAG tag cassette as in 

the commercial p3XFLAG-CMV™-25 Expression Vector (Sigma-Aldrich). hRobo2D1-8∆D5 CFP 

(deletion of aa417-507) was generated by assembly PCR from the hRobo2D1-8 CFP clone. Cell 

culture and transfection - HEK293F cells (Thermo Fisher Scientific) were maintained in 

FreeStyleTM 293 expression medium in an orbital shaker incubator at 37°C, 120 rpm, 8% CO2 

according to the manufacturer guidelines. For transfection, cells were seeded at 0.2×106 

cells/ml in a 30 ml culture. After 24 h, individual plasmids were transfected using linear 

polyethylenimine (PEI) (3 ug PEI for 1 ug plasmid DNA for 0.4x106 cells). Individual cultures 

were grown for 4 hours post transfection, and then mixed in a 1:1 volume ratio with reciprocal 

cultures, for 44 h, before analyzed for cellular cross-interactions. 
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Imaging flow cytometry analysis: To remove large cells aggregates, 1ml of each culture 

mixture was filtered through a 35 µm nylon mesh strainer (FALCON) before analyzed using a 

multispectral imaging flow cytometry (ImageStreamX mark II imaging flow-cytometer; Amnis 

Corp, Seattle, WA, Part of EMD Millipore). Images of cells were collected in the following 

channels: channel 1 (bright filed), channel 4 (mCherry) and channel 7 (CFP). A minimum of 

1×104 cells were collected from each sample, and the data was analyzed using the image 

analysis software (IDEAS 6.2; Amnis Corp). The serial gating strategy to identify CFP-

mCherry small aggregates in the mix culture was as follow: All cells were first gated for small 

aggregates, using the area and aspect ratio features on the bright-field image (aspect ratio is 

the minor axis divided by the major axis, and describes how round or elongated an object is). 

This first gate helped us to select only the small aggregates population (2-5 cells), eliminating 

single cells and larger aggregates. Next, we eliminated the Cropped cells by plotting the cell 

area of the bright field image against the Centroid-X feature (the number of pixels in the 

horizontal axis from the upper left corner of the image to the center of the cell mask). Focused 

cells were gated using the Gradient RMS (root mean square for image sharpness) histogram, 

when cells with better focus have higher gradient RMS values. For the final step, we gated the 

cells population with high intensity of both channel 4 (mCherry) and channel 7 (CFP) in order 

to identify CFP-mCherry small aggregates. 

 

Spinal cord neuron culture - Primary spinal cord (SC) neurons of E12.5 mouse 

embryos of either sex was cultured. Briefly, SCs were excised, trypsinized, and triturated. 

Supernatant was collected and centrifuged through a 4% BSA cushion. The pellet was 

resuspended and centrifuged through an OptiPrep gradient (10.4% OptiPrep, Sigma-Aldrich; 

10 mM Tricine, 4% glucose) for 20 min at 760xg with the brake turned off. Cells were collected 

from the interface, washed once in complete medium, and then plated in coated growth 

chambers. Cells were maintained in Complete Neurobasal Medium (Invitrogen) containing 

B27 (Invitrogen), 10% (v/v) horse serum (Biological Industries), 25nM b-mercaptoethanol, 1% 

penicillin-streptomycin (PS; Biological Industries), and 1% GlutaMAX (Invitrogen) 

supplemented with 1 ng/ml GDNF, 0.5 ng/ml CNTF, and 1 ng/ml BDNF (Alomone Labs). 

Before plating, the growth plates were coated with 1.5 g/ml poly-DL-ornithine (Sigma-Aldrich) 

overnight at 37°C and 3 g/ml laminin (Sigma-Aldrich) for 2 h at 37 c. Neurons were treated 

with lentiviruses (LV's) 6 hr after plating. Neurite lengths were examined and recorded using 

the incuCyte imaging system at 5 DIV.  

Lentiviral constructs for expression of human hRobo1 and hRobo2 were prepared by PCR 

amplification from the complete cDNA clone as used for “Robo-cKIT chimera tyrosine 

phosphorylation assay”. hRobo1 (residues 22–1606, LRQE-ETES, supplemented with an N-

terminal FLAG tag and a C-terminal c-Myc tag, followed by a stop codon) and hRobo2 
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(residues 22–1378, SRLR-TGEL, supplemented with an N-terminal FLAG tag and a C-

terminal hexahistidine tag, followed by a stop codon) were ligated into a pHAGE IRES GFP 

vector (addgene). Assembly PCR mutagenesis was used (based on https://openwetware.org)  

to generate each one of the Robo's deletion constructs. hRobo1; DD4 (deletion of 314-416, 

PPHF-IADR), DD5 (deletion of 417-510, PPPV-QEFG). hRobo2; DD4 (deletion of 310-410, 

VRAP-EVTD), DD5 (deletion of 418-507, PPII-DVTE).  

The lentiviral plasmids were mixed with the packaging plasmid (PsPax) and the envelope 

plasmid (pMD2.G) in a ratio of 2:1:1. HEK293T cells were used as the packaging cell line and 

were seeded 1 day before transfection. Cells were kept for 3 days after transfection without 

changing medium. The conditioned medium, containing virus particles, was briefly centrifuged 

to remove cell debris and was then filtered through a 0.45 μm pore size.  
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