
The energetics of fish growth and how it constrains food-web trophic structure1

Diego R. Barneche1,*, Andrew P. Allen22

1Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton Vic 3800, Australia3
2Department of Biological Sciences, Macquarie University, Sydney NSW 2109, Australia4
*Present address: School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW5
2006, Australia6

Statement of authorship: D.R.B. compiled the data, D.R.B. and A.P.A. conceived the study,7

analyzed the data, and wrote the manuscript.8

Data accessibility statement: All data and R code (data manipulation, analyses, figures and9

tables) can be downloaded from a GitHub repository (https://github.com/dbarneche/FishGrowth),10

which will be made publicly available upon publication.11

Running title: Energetics from individuals to ecosystems12

Keywords: physiology, climate change, fisheries, efficiency, biomass, productivity, trophic13

pyramids14

Type of article: Letters15

Word Count: 4,910 (main text), 147 (Abstract)16

Number of references: 4817

Number of figures: 418

Number of tables: 119

Correspondence should be sent to: Diego R. Barneche, Centre for Geometric Biology /20

School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia (Tel: +6121

(3) 9905 5100; Email: barnechedr@gmail.com).22

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Exeter

https://core.ac.uk/display/188185358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT23

The allocation of metabolic energy to growth fundamentally influences all levels of biologi-24

cal organization. Here we use a first-principles theoretical model to characterize the energet-25

ics of fish growth at distinct ontogenetic stages and in distinct thermal regimes. Empirically,26

we show that the mass scaling of growth rates follows that of metabolic rate, and is some-27

what steeper at earlier ontogenetic stages. We also demonstrate that the cost of growth, Em,28

varies substantially among fishes, and that it may increase with temperature, trophic level, and29

level of activity. Theoretically, we show that Em is a primary determinant of the efficiency of30

energy transfer across trophic levels, and that energy is transferred more efficiently between31

trophic levels if the prey are young and sedentary. Overall, our study demonstrates the impor-32

tance of characterizing the energetics of individual growth in order to understand constraints33

on the structure of food webs and ecosystems.34

INTRODUCTION35

Organisms must expend energy to gather, consume, and transform the resources necessary to36

produce biomass, so the rate of biomass production is fundamental at multiple biological lev-37

els (Lindeman 1942). At the individual level, it influences fitness by constraining how quickly38

an organism reaches maturity and subsequently produces offspring (Brown et al. 1993). At39

the population level, it constrains the intrinsic rate of population increase (Savage et al. 2004).40

At the community level, it constrains how much energy and materials can flow to the next41

trophic level in a food web (Andersen et al. 2009; Irigoien et al. 2013). And, at the ecosystem42

level, the fraction of assimilated energy lost in producing that biomass (through respiration)43

limits the total heterotrophic metabolism, and hence the number of trophic levels, that can be44

supported in a food web (Lindeman 1942; Pauly & Christensen 1995).45

We still lack a comprehensive theoretical understanding of the energetics of growth, de-46

spite recent progress (e.g. West et al. 2001; Hou et al. 2008; Kooijman 2009). Fish are ex-47

cellent model organisms for evaluating such a theory because they encompass the highest48

global species richness among vertebrates (> 33,000 species), they range in body mass by49

over > 8 orders of magnitude (~0.1 g – 1 × 107 g), and they occupy diverse freshwater and50

marine habitats that vary substantially in thermal regime (~0 – 40˚C; Froese & Pauly 2017).51
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Understanding the energetics of growth is of immense practical importance. For example, in52

fisheries management, knowing how long wild fish stocks take to achieve maturity, and how53

much food they need to do so, is crucial for establishing sustainable yields in fisheries man-54

agement (Szuwalski et al. 2017). Moreover, sustainable yields at ocean-basin scales may in55

the future be affected by changes in environmental variables such as temperature through their56

effects on the growth energetics of individual fish (e.g. van Rijn et al. 2017). Extensive em-57

pirical work has documented determinants of fish growth (e.g. Houde 1989); however, these58

studies have typically focused on how one or few species at a particular life stage respond to59

a particular set of environmental conditions. With few notable exceptions (see, for example,60

Pauly & Pullin 1988; Houde 1989; Charnov & Gillooly 2004; Sibly et al. 2015), there has61

been little attempt to generalize determinants of individual-level biomass production across62

multiple fish species within a theoretical framework.63

Theoretical work on the mechanisms underlying growth dynamics has focused primarily64

on understanding why individuals tend to follow a sigmoid growth trajectory over ontogeny65

such that mass-specific growth rate is rapid during early life stages, but slows down as indi-66

viduals approach an asymptotic adult size. More than half a century ago, Ludwig von Berta-67

lanffy (1938) proposed that these sigmoid growth trajectories arise because the overall rate68

of catabolism increases more rapidly with size than the rate of anabolism. While the mecha-69

nistic basis of this model (hereafter BGM) has been questioned by many, including fisheries70

scientists (e.g. Enberg et al. 2008), the BGM is frequently employed for fish because it of-71

ten provides a reasonable statistical fit to ontogenetic growth data. Importantly, however, the72

BGM is usually fitted using widely-available data on fish length, rather than less-available73

data on mass, which is unfortunate given that growth is fundamentally an energetic process,74

and that the energetic costs of growth are related to changes in mass (West et al. 2001; Hou et75

al. 2008; Moses et al. 2008).76

West et al. (2001) proposed an ontogenetic growth model (see also Gillooly et al. 2002;77

Moses et al. 2008) that is based on principles of allometry and mass and energy balance. Hou78

et al. (2008) subsequently expanded this model (hereafter OGM) by explicitly partitioning79

the total metabolic rate into active, growth, and maintenance components. Consequently,80

the OGM predicts that growth rates are inextricably linked to the size- and temperature-81
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dependencies of metabolic rate, consistent with empirical data (Pauly & Pullin 1988; Houde82

1989; Atkinson 1994; Gillooly et al. 2002; Brown et al. 2004). Although the OGM can be83

mathematically similar in functional form to the BGM (Makarieva et al. 2004), its conceptual84

foundations are fundamentally different. In particular, while growth is an anabolic process,85

maintenance in the OGM involves both anabolism and catabolism because, for example,86

protein turnover is fueled by respiration.87

Of particular relevance, the OGM reveals the importance of a particular parameter, Em,88

which is the amount of energy that must be expended in respiration to produce a fixed quan-89

tity of biomass (West et al. 2001; Hou et al. 2008; Moses et al. 2008). This quantity has90

been shown to vary substantially within and among different clades of animals (Wieser 1994;91

Moses et al. 2008; Sears et al. 2012). However, to our knowledge, is still unknown to what92

extent this variation reflects differences in physiology versus environmental and/or ecological93

factors. Understanding how and why Em varies is fundamental because, as we will demon-94

strate later, this quantity constrains food-web structure via its effects on the efficiency of en-95

ergy transfer between trophic levels.96

In this study, we use the OGM as a framework to characterize the mass and temperature97

dependence of growth rates for marine and freshwater fishes. In so doing, we first quantify98

the fraction of total metabolic energy allocated to biomass production across different species99

at differing life stages and temperature regimes. Using these data, we then test three hypothe-100

ses: H1: Growth rates exhibit the same mass scaling exponent as metabolic rate at different101

ontogenetic stages; H2: Em is temperature independent; and H3: Em is independent of eco-102

logical variables such as trophic level and level of activity. Finally, we combine our empirical103

estimates of Em with novel theory to explore how it constrains food-web structure through its104

effects on the efficiency of energy transfer between trophic levels.105

MATERIALS AND METHODS106

1. Theory and hypotheses107

Hypothesis H1108

The OGM (West et al. 2001; Hou et al. 2008) is derived based on energy balance for an or-109
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ganism with a wet mass of m (in g), a resting metabolic rate of Br (i.e. J d-1), and a growth rate110

per unit time, t (d), of dm/dt (g d-1),111

dm
dt

=
Br

Em

[
1−

(m
M

)1−α
]
=

Bo(T )
Em

mα
[

1−
(m

M

)1−α
]
, (1)

where Br = Bo(T )mα , Bo(T ) is a metabolic normalization constant independent of body mass112

(J g−α d-1) that varies among fish taxa and with absolute body temperature (Barneche et al.113

2014), T (K), α is a dimensionless mass-scaling exponent that is theoretically predicted to take114

a value of 3/4 in the fractal-like distribution model of West et al. (1997), and Em is the en-115

ergy expended to produce one unit of biomass (J g-1). The expression [1− (m/M)1−α ] is the116

fraction of resting metabolic energy that is allocated to growth. This fraction approaches 0 as117

the organism approaches its asymptotic adult mass, M, at which point all resting metabolic118

energy is allocated to maintenance, which is assumed to remain constant on a mass-specific119

basis over ontogeny.120

Hypothesis H1: Growth rates exhibit the same mass scaling exponent as metabolic rate at121

different ontogenetic stages. The OGM states that the mass scaling of growth rates are gov-122

erned by the effects of body mass on resting metabolic rates, Br. Empirically, it has been ob-123

served that early in ontogeny, the scaling of metabolic rates in fish can be substantially steeper124

(Bochdansky & Leggett 2001) than the canonical 3/4 value observed for adult fish (Barneche125

et al. 2014). Whether these shifts in metabolic mass scaling over ontogeny are also observed126

for growth rates remains poorly explored. However, this phenomenon can be empirically127

assessed by fitting growth-rate data at different ontogenetic stages to a function of the same128

form as that commonly fitted to metabolic rates (eqns S1–S3),129

dm
dt

= gomγe
Eg
k (

1
Ts −

1
T )I(T )−1, (2)

where go is a normalized growth rate that is independent of mass and temperature (g130

1− γ d-1) at some arbitrary standardized temperature, Ts (K), k is the Boltzmann con-131

stant (8.62 × 10-5 eV K-1), γ is a dimensionless mass-scaling exponent, and Eg (eV)132

is an activation energy (Barneche et al. 2014). With respect to size, eqn 1 predicts that133
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go ∝ [1 − (m/M)1−α ], implying a decline in normalized rates with increasing ontogenetic134

stage, m/M. With respect to temperature, e
Eg
k ( 1

Ts −
1
T ) is the Boltzmann relationship that char-135

acterizes temperature-induced enhancement of growth rates below the temperature optimum,136

Topt (K), using an activation energy, Eg (eV) (Gillooly et al. 2002). The inactivation term,137

I(T ) =
(

1+
(

Eg
Ei−Eg

)
e

Ei
k

(
1

Topt
− 1

T

))
, characterizes declines in rates at temperature T above138

Topt using an inactivation parameter, Ei (Schoolfield et al. 1981; Barneche et al. 2014).139

Hypotheses H2–H3140

The respiratory energy expended in producing a unit of biomass, Em, can be calculated by141

rearranging eqn 1:142

Em = Br
dt
dm

[1− (m/M)1−α ]. (3)

In practice, calculating Em using eqn 3 requires ontogenetic growth data in order to estimate143

[1 − (m/M)1−α ]. In the absence of such data, an upper bound estimate for Em, E∗
m, can be144

calculated using estimates of growth rate taken early in ontogeny145

E∗
m ≈ Br

dt
dm

, (4)

when the mass of an individual is negligible compared to the asymptotic adult mass, m << M146

(Moses et al. 2008).147

The quantity Em reflects energy allocated to growth via both direct and indirect paths (Hou148

et al. 2008). Thus, its magnitude does not correspond to the combustion energy (i.e. chemical-149

energy content) of assimilated biomass (Makarieva et al. 2004). Rather, it corresponds to150

the sum of all direct and indirect energy costs that an individual must expend in producing151

biomass. The direct costs of synthesizing biomass may, in fact, be lower than the combustion152

energy because, for example, proteins may be constructed from pre-formed amino acids as-153

similated from food. The indirect costs include other processes that are not directly related to154

biomass production, but that are nevertheless essential for this production to occur (e.g. diges-155

tion). While disentangling and quantifying the processes contributing to Em are challenging,156

the overall magnitude of Em can nevertheless be quantified based on eqns 3 and 4.157
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Hypothesis H2: Em is temperature independent. In the OGM, the temperature dependence158

of growth rates is assumed to be governed by the effects of temperature on the resting159

metabolic rate normalization, Bo(T ) (eqn 1; Gillooly et al. 2002). A corollary of this assump-160

tion is that Em is invariant with respect to environmental temperature. This hypothesis can be161

readily assessed by investigating the relationship between empirically-estimated values of Em162

(eqns 3 and 4) and the environmental temperature at which organisms grow.163

Hypothesis H3: Em is independent of ecological variables such as trophic level and level164

of activity. While the OGM assumes invariance of Em over ontogeny, it currently makes no165

predictions regarding variation in Em among species. In fact, it is known empirically that Em166

varies across multiple clades of animals (Wieser 1994; Moses et al. 2008; Sears et al. 2012).167

For fish, the possible causes for this variation are still unknown, but may be related to ecologi-168

cal variables. For instance, fishes at higher trophic levels may have generally higher Em values169

at least in part because trophic level is positively associated with muscle protein (Killen et al.170

2016), which may be expensive to generate. For similar reasons, caudal aspect ratio (= h2/s,171

where h is the height of the caudal fin and s its surface area), a proxy for activity level (Froese172

& Pauly 2017), may also be positively correlated with Em. Here we explore these ideas using173

Hypothesis H3, invariance of Em, as a null expectation.174

The role of Em in constraining trophic efficiency and food-web structure175

Understanding how and why Em varies is of fundamental importance to predicting constraints176

on the efficiency of energy transfer between trophic levels (Economo et al. 2005; Andersen177

et al. 2009). In fact, Em is a primary determinant of the fraction of assimilated food that is178

transferable to the next trophic level, as we will now show. The rate of energy assimilation by179

an individual of size m, A(m), is (Hou et al. 2008)180

A(m) = Btot +Ec
dm
dt

= f Br +Ec
Br

Em

[
1−

(m
M

)1−α
]
=

Bo(T )mα
[

f +
Ec

Em

[
1−

(m
M

)1−α
]]

,

(5)

where Ec is the combustion energy of biomass (~24 kJ g-1 dry mass; Hou et al. 2008), and181
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Btot is the total (i.e. field) metabolic rate, which is defined as the sum of the resting metabolic182

rate, Br, and the active rate that sustains locomotion, feeding, and other activities. Following183

Hou et al. (2008), we assume that Btot = f Br in the expression above, where f is a dimen-184

sionless parameter referred to as ‘activity scope’, which is constrained to be greater than 1 and185

less than the ratio of maximum metabolic rate to resting metabolic rate (i.e. “factorial aero-186

bic scope” sensu Killen et al. 2016). Using eqns 1, 3 and 5, we can calculate the fraction of187

energy assimilated by a prey individual, ε , that is transferred to the next trophic level through188

consumption of prey biomass by a predator. This fraction is calculated by taking the ratio of189

the amount of energy contained in a prey item consumed at size m, Ecm, and the total lifetime-190

integrated amount of energy that the prey item has assimilated from birth to its age at con-191

sumption, t∗,192

ε =
Ecm∫ t∗

t=0 A(m(t))dt
, (6)

where m(t) is mass at age t (eqns S4–S6), and t∗ = −Emln
[
1−

(m
M

)1−α
]
/(Bo(T )M1−α(1−193

α)) is an approximation to the age at which the prey was consumed, assuming that the prey’s194

mass at birth m0, is negligible relative to its asymptotic size (m0/M ≈ 0 in eqn S6). Eqn 6195

quantitatively predicts that if a prey individual is consumed by a predator at an earlier life his-196

tory stage, m/M ≈ 0, a larger fraction of the prey’s assimilated energy, ε , will be transferable197

to its predator. It is important to note that these efficiencies represent upper-bound estimates198

because they only incorporate energy losses attributable to the respiration of the prey, and thus199

exclude other factors affecting the energy transfer (e.g. food assimilation efficiency by preda-200

tors). Eqn 6 can be readily integrated numerically to calculate how maximum transfer effi-201

ciency, ε , changes with Em, relative ontogenetic stage, m/M, and activity scope, f .202

We can also use eqn 6 to expand theoretical predictions obtained from a static size-203

spectrum model (Brown & Gillooly 2003). This model predicts a specific relationship204

between total biomass,W , and individual body mass, m,205

W ∝ m1+ ln(ε)
ln(PPMR)−α

, (7)
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based on the size-scaling of metabolic rate (α) and the assumptions that the predator-prey206

body-mass ratio, PPMR, and the efficiency of energy transfer between trophic levels, ε , are207

held constant moving between trophic levels (Brown & Gillooly 2003).208

2. Data compilation209

We use two independent datasets to test hypotheses H1–H3. Dataset I comprises 179 exper-210

imentally measured paired estimates of growth rate (g wet mass d-1) and metabolic rate (J211

d-1) taken early in ontogeny (25 measurements for embryos and 154 measurements for lar-212

vae), meaning that m/M ≈ 0, and hence that [1− (m/M)1−α ] ≈ 1. These data encompass 18213

species of marine and freshwater fishes with body masses of 9 µg – 0.5 g and temperatures of214

3 – 28˚C (Supplementary Information).215

Dataset II was obtained from FishBase (Froese & Pauly 2017). It contains 2,849 sets of pa-216

rameter estimates, corresponding to 2,849 ontogenetic growth curves, that were obtained by217

fitting the von Bertalanffy growth model (BGM) (von Bertalanffy 1957) to age and size data218

collected from 503 species of marine and freshwater fish species. As is the tradition in fish-219

eries science, these growth curves were characterized using length rather than mass. To ob-220

tain standardized mass-based estimates of growth rate, we calculate optimum (i.e. maximum)221

growth rates, gopt , at mass mopt , by combining these length-based data with species-specific222

estimates of the mass-length conversion parameters. These gopt estimates encompass 62 fam-223

ilies and a temperature range of -0.9–30˚C. In the Supplementary Information, we derive an224

analytical approximation (eqns S4–S16) that justifies using BGM-estimated optimum growth225

rates to assess hypotheses derived from the OGM.226

3. Testing hypotheses H1–H3227

H1. The size and temperature dependence of growth rates from Dataset I were estimated by228

fitting eqn 2 to log-transformed data,229

ln
[

dm
dt

]
= lngo + γlnm+

Eg

k

(
1
Ts

− 1
T

)
− lnI(T ). (8)
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We fit eqn 8 using a Bayesian procedure implemented in the R package brms version 2.1.0230

(Bürkner 2017) in order to derive posterior distributions and associated 95% credible intervals231

(CIs) for the fitted parameters (Table 1). A hierarchical modeling approach was adopted for232

this analysis with species-level random effects on the intercept (Supplementary Information).233

For the analysis of Dataset II, the size and temperature dependencies of optimum growth rates,234

gopt , at size mopt were estimated by fitting a simplified version of eqn 2, without the inactiva-235

tion term for the temperature dependence to log-transformed data236

lngopt = lngo + γlnmopt +
Eg

k

(
1
Ts

− 1
T

)
, (9)

which is equivalent to the simple Boltzmann relationship commonly used in the early237

Metabolic Theory of Ecology (MTE) literature (Gillooly et al. 2002; Brown et al. 2004). In238

contrast to Dataset I, the growth-rate data from Dataset II yielded little evidence of tempera-239

ture optima (Supplementary Information), most likely because these data were obtained from240

field-captured individuals, which are not expected to occur above their optimum temperatures241

in nature. While the lack of well-defined optima provides empirical justification for fitting242

the simpler Boltzmann relationship to estimate an overall temperature dependence, this243

approach obscures any changes in temperature dependence over the temperature range. It244

also results in negative bias for estimated activation energy if a temperature optimum exists.245

A hierarchical modeling approach was adopted for this analysis, with family-level random246

effects on the intercept, mass-scaling exponent and temperature-dependence slope (∆γ , ∆Eg,247

∆lngo; Supplementary Information).248

H2 and H3. In Dataset I, we used the paired measurements of metabolic and growth rates to249

obtain upper-bound estimates for the energy expended in growth, E∗
m (eqn 4), on a wet mass250

basis. In Dataset II, estimates of Em (wet mass basis) were calculated using eqn 3 by combin-251

ing a subset of the gopt estimates (n = 582) with estimates of standard metabolic rate, which252

account for the effects of body size and temperature (Barneche et al. 2014), and trophic level253

(Killen et al. 2016) (Supplementary Information). In the fish literature, resting rates are re-254

ferred to as ‘standard rates’ at some specified temperature because the metabolic rate of a rest-255

ing fish will vary with ambient temperature. Calculations of Em were restricted to 13 families256
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with growth rate and standard metabolic rate data. The maintenance-correction term in eqn 3,257

[1− (mopt/M)1−α ], was assumed to be 0.23 for these calculations, which corresponds to the258

overall size-scaling exponent for fish resting metabolic rates, α = 0.77 (Supplementary Infor-259

mation).260

We assessed whether E∗
m (Dataset I) and Em (Dataset II) exhibit temperature dependence261

(hypothesis H2), and whether Em (Dataset II only) varies with aspect ratio and trophic level262

(hypothesis H3) by fitting a linear model of the form263

lnEm = lnβ0 +βT T +βLlnL+βAln(A+1), (10)

where β0, βT , βL, and βA are respectively the fixed-effect model intercept and three slope pa-264

rameters, T is temperature in degrees Celsius, L (ranging from 2 to 4.4) is a continuous vari-265

able for trophic level, and A is the caudal fin aspect ratio (ranging from 0 to 2.99). Species-266

level estimates of the latter two ecological measures were downloaded from FishBase to as-267

sess hypothesis H3 for the Em estimates in Dataset II. When species values were not available,268

congeneric species values were used. The relationships of these ecological measures to E∗
m269

were not investigated for Dataset I because the measures are not representative of trophic level270

or morphology for individuals at early ontogenetic stages. Model parameters were assigned271

vague priors in a Bayesian modelling framework. We also included normally distributed ran-272

dom effects for lnβ0 and βT , thereby allowing them to vary by species (Dataset I) and family273

(Dataset II). The model fitting procedure in brms is similar to that described for eqns 8 and 9274

(Supplementary Information).275

RESULTS AND DISCUSSION276

Hypothesis H1277

The growth rate models (eqns 8 and 9) for both datasets reveal substantial species- (Dataset I)278

and family-level (Dataset II) variation in size- and temperature-corrected growth rates, charac-279

terized by standard deviations σ∆lngo . Particularly, the estimate from Dataset I implies a ~1.6-280

fold change in growth rates among species (≈ e2×0.22, with σ∆lngo = 0.22), while the estimate281
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from Dataset II implies an ~2.2-fold change in growth rates among families (≈ e2×0.39, with282

σ∆lngo = 0.39). After accounting for maintenance costs attributable to age in Dataset II (i.e.283

[1− (m/M)1−α ] = [1− (mopt/M)(1−0.77)] ≈ 0.23), the average estimate of lngo is only about284

3-fold higher for Dataset I than for Dataset II (Table 1). Therefore, the mass dependencies of285

growth rates for Datasets I and II can be reasonably approximated by a single allometric func-286

tion that spans 10 orders of magnitude in body mass (Fig. 1).287

Contrary to hypothesis H1, the analyses of Datasets I and II yield contrasting estimates for288

the mass scaling of growth rates, characterized by the scaling exponent γ (Table 1). The av-289

erage within-species γ is significantly steeper than 0.75 early in ontogeny (Dataset I average:290

0.85; 95% CI: 0.80–0.91), but statistically indistinguishable from 0.75 at the size of optimum291

growth rate (Dataset II average: 0.77; 95% CI: 0.74–0.80). It is possible that the true scaling292

exponent in Dataset I would approach a value of 1 (i.e. isometric mass scaling) if variation293

in energy allocation to maintenance with ontogenetic stage, m/M, were accounted for. One294

would need full ontogenetic growth trajectories for these individuals (as we have for Dataset295

II) – including asymptotic adult mass, which can vary with temperature and other factors – in296

order to estimate their maintenance costs.297

Overall, our results are consistent with previous observations that metabolic scaling is298

steeper early in ontogeny for fish (e.g. Bochdansky & Leggett 2001). They also highlight the299

importance of correction for ontogeny in order to properly evaluate mass scaling of growth300

rates among species (Moses et al. 2008), and reinforce the idea that the scaling of biological301

rates early in ontogeny may be steeper than the canonical value of 3/4 that is generally as-302

sumed by MTE (West et al. 1997), perhaps due to changes in the circulatory system during303

larval-post larval transition. The model of West et al. (1997), in fact, predicts positive de-304

viations from 3/4-power scaling if size range encompasses very small organisms that have305

vascular distribution networks with only a few levels of branching. Evaluating more detailed306

predictions would require data on aorta and capillary diameters, and the numbers of branching307

generations from aorta to capillary (West et al. 1997, 2001; Brummer et al. 2017).308

Hypotheses H2–H3309

The average temperature dependence of growth rates differ between Datasets I and II. While310
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it is statistically indistinguishable from the predicted 0.6–0.7 eV range for Dataset I (average311

for Eg: 0.65 eV; 95% CI: 0.48–0.93 eV), consistent with previous estimates of temperature312

dependence of developmental times in fishes (Pauly & Pullin 1988; Gillooly et al. 2002), it is313

significantly shallower than this value for Dataset II (average for Eg: 0.26 eV; 95% CI: 0.19–314

0.34 eV). This unexpected low temperature dependence might be due in part to errors in age315

estimation in seasonally-growing species (Campana 2001), statistical artifact of errors intro-316

duced by estimating masses from length-weight functions, and/or negative bias for the esti-317

mated activation energy due to our inability to account for temperature optima. It might also318

reflect differences in how laboratory-grown (Dataset I) versus field-grown (Dataset II) fish re-319

spond to temperature, perhaps owing to (i) differences in resource availability, or (ii) changes320

over ontogeny.321

Estimates of E∗
m and Em cover a similar range of values, and vary by ~3 orders of magni-322

tude (Fig. 2). While these estimates highlight substantial variation in the calculated amount of323

energy an organism must expend in producing biomass, we note that they are comparable in324

magnitude to values reported for other groups of animals including insects, bivalves, anurans,325

birds and mammals (Wieser 1994; Moses et al. 2008; Sears et al. 2012).326

Consistent with hypothesis H2, the estimated upper-bound E∗
m was independent of tem-327

perature in 78% of the 18 species in Dataset I (i.e. 95% credible intervals overlapped 0; βT328

= -0.04, 95% CI: -0.08–0.01; Fig. 2). In contrast, we observed a significant temperature de-329

pendence of Em in 92% of the 13 families for which we could calculate Em in Dataset II, with330

an average 22-fold increase in Em moving from 0˚C to 30˚C (βT = 0.1032, 95% CI: 0.0701–331

0.1411; Fig. 2). Thus, these results suggest that a fish in the tropics requires substantially332

more assimilated energy to produce a unit of biomass than a fish in the polar regions. The dis-333

crepancy we observe with regard to temperature dependence for Em between Datasets I and II334

warrants further investigation and careful scrutiny. Given this important caveat, our results for335

Dataset II are consistent with earlier accounts of decreasing growth efficiency with increasing336

temperature in fishes (e.g. Houde 1989; Jobling 1997; McCarthy et al. 1998) and microbes337

(Apple et al. 2006).338

After accounting for the effects of temperature, contrary to hypothesis H3, we found sub-339

stantial evidence (i.e. 95% posterior credible intervals did not overlap 0) of systematic in-340
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creases in Em with fish trophic level (βL = 0.73, 95% CI: 0.34–1.12), and aspect ratio (βA =341

0.41, 95% CI: 0.10–0.71). Therefore, our results are consistent with the fact that species with342

higher muscle protein content might exhibit higher metabolic costs to build biomass. How-343

ever, top predators may have higher assimilation efficiencies (Sanders et al. 2016). Thus, our344

findings may reveal some important physiological trade-offs (i.e. assimilation efficiency ver-345

sus cost of growth) that might occur across trophic levels, which will have fundamental effects346

on the trophic structure of food webs (see below).347

The role of Em in constraining trophic efficiency and food-web structure348

We integrated the assimilation rate numerically in eqn 6 to calculate the curves for Fig. 3.349

Results of these calculations demonstrate that the efficiency of energy transfer varies consider-350

ably with Em over the range of values that were empirically observed in Fig. 2. In fact, the ef-351

fects of Em are of comparable magnitude to those of ontogenetic stage, highlighting the quan-352

titative importance of this variable for understanding energy transfers between trophic levels.353

Moreover, eqn 6 also predicts that higher values of activity scope ( f ) will have substantial354

negative effects on the efficiency of energy transfer, highlighting the ecological importance355

that this variable has to food-web trophic structure (Killen et al. 2016).356

The calculated range of efficiencies depicted in Fig. 3 were combined with parameters357

from eqn 7 in order to predict how ecosystem-level size structure may change in relation to358

prey growth energetics, Em, and ontogenetic stage, m/M (Fig. 4). For instance, our model359

indicates that the existence of real closed-system top-heavy pyramids may be energetically360

and ecologically unlikely (e.g. Trebilco et al. 2016) – red area in Fig. 4 – because individu-361

als would need to be characterized by low values of Em, and would have to prey exclusively362

on very young offspring (i.e. high-efficiency prey resource). Moreover, compared to aquatic363

food-webs where the youngest prey available are comprised of eggs and larvae (i.e. m/M ≈364

0), communities of viviparous animals (e.g. mammals with large offspring relative to adult365

size), might be constrained to have a bottom-heavy trophic pyramid at least in part because the366

youngest prey items available (e.g. newborn cubs) are relatively large relative to their asymp-367

totic size and thus relatively inefficient at accruing biomass after birth. Future refinement and368

tests of these predictions will require an assessment of ontogenetic stage of prey items in diets369
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of different species at the community level.370

Our approach builds on a simple static size spectrum model (Brown & Gillooly 2003), but371

could inform more sophisticated contemporary dynamic size spectrum models that explicitly372

connect ontogenetic growth to population and ecosystem dynamics (e.g. Andersen et al. 2016;373

Blanchard et al. 2017). For example, these models incorporate ontogenetic growth in a man-374

ner that is more closely related to the BGM. Recognizing that the efficiency of energy transfer375

changes with the relative ontogenetic stage of the prey, and that this efficiency might change376

with temperature, trophic and activity levels through their effects on Em (but see Barange et al.377

2014 for recent integration of temperature effects) may therefore represent a fundamental step378

forward.379

Finally, our findings might also yield important insights in terms of fisheries management.380

For example, in oligotrophic coastal marine communities such as coral reefs, mass-spawning381

events are very frequent (e.g. Harrison et al. 1984), and high-efficiency recycling of energy382

and nutrients might be imperative. Thus, preserving large individuals that produce more (and383

larger) eggs in aquatic communities (Birkeland & Dayton 2005) may be key to the mainte-384

nance of high-efficiency energy transfers between trophic levels. Understanding the energetics385

of growth across different trophic levels (and/or functional groups) might therefore help estab-386

lish baselines of recovery potential in coastal fisheries (MacNeil et al. 2015).387

FUTURE DIRECTIONS388

Overall, our study demonstrates how growth rate and metabolic rate data can be synthesized389

within a theoretical framework to obtain a deeper understanding of the energetics of growth390

(Fig. 1). Particularly, our results reveal fundamental constraints (Fig. 2) on ecosystem dynam-391

ics that arise from individual-level metabolism (Figs. 3 and 4). Our analysis highlight general392

trends, but also important differences among datasets, as well as among species, particularly393

with regards to the temperature dependence of Em. New methods are needed to quantify and394

predict Em – across a broad range of taxa in both terrestrial and aquatic systems – based on the395

underlying energetics of the biochemical processes involved in the construction of biomass.396

Uncovering the drivers of variation in this single quantity (e.g. temperature, mode of activity,397

habitat, phylum) is a fruitful avenue forward: it offers an opportunity to bridge multiple dis-398
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ciplines – from physiology to phylogenetics to ecosystem ecology – across space and time.399

Such an interdisciplinary approach is needed if we are to predict how rising temperatures are400

going to affect life-history evolution, ecosystem dynamics, the rehabilitation of economically401

important fisheries stocks, and the global carbon cycle.402
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TABLES526

Table 1. Point estimates and 95% credible intervals (as determined using Bayesian meth-527

ods) for fitted parameters in the growth rate models. Fixed-effect parameters include: γ , the528

average for the mass-dependence of growth rate; Eg, the average for the temperature depen-529

dence of growth rate; lngo, the average for the mass-corrected growth rate at temperature Ts530

= 15˚C; Topt (Dataset I only), the temperature optimum of fish growth rates and Ei (Dataset I531

only), the inactivation parameter describing the rate of decline in growth rate at temperatures532

> Topt . Random-effects include the standard deviations for species- (Dataset I) and family-533

level (Dataset II) variation in size- and temperature-corrected rates at Ts (∆lngo) as well as534

standard deviation for family-level size dependence (∆γ) and temperature dependence ∆Eg535

(Dataset II only).536

I II
Parameter Mean 2.5% 97.5% Mean 2.5% 97.5%
Fixed Effects
Mass, γ 0.85 0.80 0.91 0.77 0.74 0.80
Activation energy, Eg (eV) 0.65 0.48 0.93 0.26 0.19 0.34
Inactivation parameter, Ei (eV) 2.67 1.18 4.74
Optimum temperature, Topt (K) 302.47 296.91 309.69
Normalization, lngo (g g-γ d-1) -3.04 -3.38 -2.57 -5.52 -5.67 -5.34

Random effects
Std. Deviation of ∆lngo 0.22 0.04 0.47 0.39 0.20 0.61
Std. Deviation of ∆γ 0.07 0.04 0.11
Std. Deviation of ∆Eg 0.24 0.17 0.32
Correlation of ∆lngo and ∆γ -0.70 -0.90 -0.28
Correlation of ∆lngo and Eg 0.04 -0.43 0.53
Correlation of ∆γ and ∆Eg 0.08 -0.34 0.49

537
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FIGURE LEGENDS538

Figure 1. Scaling of growth rates of fish with respect to (left) body mass and (right) and tem-539

perature in Datasets I (white squares) and II (grey circles). Parameter estimates (listed in Table540

1) were obtained using Bayesian methods. The effect of temperature on growth rate was con-541

trolled for by standardizing the temperature measures, T (in K), to Ts = 288.15 K (= 15˚C)542

based on temperature scaling relationships, where k is the Boltzmann constant (8.62 × 10-5543

eV K-1). The effect of body mass was controlled for by standardizing measures to 1 gram544

based on the mass scaling relationships. The mass-corrected rates at temperature Ts, lngo,545

for Dataset I (-3.04 g1− γ d-1) and Dataset II (-5.52 g1− γ d-1), correspond to averages across546

species and families, respectively. Dataset I was fitted to a model that allowed lngo to vary547

among species, whereas Dataset II was fitted to a model that allowed lngo, γ , and Er to vary548

among families. Growth rates from Dataset II are optimum growth rates (gopt) and mass is549

mass at optimum growth rates (mopt). Thus, the ontogenetic stage was controlled for (eqn 1)550

by expressing growth rates as (dm/dt)[1− (m/M)1−α ], assuming [1− (m/M)1−α ] = 0.23 for551

Dataset II. For Dataset I, it was assumed that [1− (m/M)1−α ] = 1 because growth rates were552

measured at an early ontogenetic stage.553

Figure 2. Distributions of values for Em (in J g-1 wet mass), the amount of energy necessary554

to produce a unit of biomass at both embryo/larval growth rate (white squares, Dataset I), and555

maximum growth rate (grey circles, Dataset II). Values from Dataset I are upper-bound es-556

timates of E∗
m obtained from 179 direct measurements of growth rates and metabolic rates557

(assuming [1− (m/M)1−α ] = 1, eqn 4). Values from Dataset II are Em estimates (eqn 3) cal-558

culated for 582 growth-rate measurements, which encompass 13 families that overlap with the559

standard metabolic-rate data from FishBase (Barneche et al. 2014). Equations in the top-left560

represent the fixed-effect estimates of the temperature dependence of E∗
m and Em for Datasets I561

and II, respectively.562

Figure 3. Upper-bound estimates for the efficiency of energy transfer given different values563

for ontogenetic stages, m/M, and Em (J g-1) (eqns 1, 3, 4, 5 and 6). Efficiencies only incorpo-564

rate energy losses due to respiration, and thus exclude losses attributable to other processes.565

Polygons were calculated for different values of Em (wet mass basis) which encompass the566
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range of values estimated in Fig. 2, assuming that mo = 0 g, α = 0.77, Bo = 18.67 J g-0.77 d-1567

for fish at 15˚C (Table S1), and Ec = (24 kJ g-1 dry mass) (0.15 g dry mass g-1 wet mass) =568

3,600 J g-1 wet mass (Hou et al. 2008). Polygon upper and lower bounds represent the effi-569

ciencies of individuals either at permanent resting ( f = 1) or active ( f = 4) state. An average f570

= 4 is consistent with evidence reported for fishes (Killen et al. 2016). The values for m (size571

at the time of consumption) and M (asymptotic adult size of the prey individual) are arbitrary572

because ε depends only on their ratio.573

Figure 4. Relationship between ontogenetic stage of prey at time of predation and energy nec-574

essary to produce a unit of biomass Em, and the resulting effects on the size structuring of bi-575

ological communities and the energy transfer efficiency between trophic levels (ε , eqns 5, 6576

and 7). Different colors indicate different resulting community biomass (W ) – individual body577

mass (m) scaling relationships, with blue areas depicting bottom-heavy pyramids and red areas578

depicting top-heavy pyramids. The black solid line represents an area whereW ∝ m0, i.e. a579

biomass stack, which corresponds to an average energy transfer efficiency of 0.14. The values580

in the figure were calculated assuming PPMR = 2327:1 (following Al-Habsi et al. 2008), α =581

0.77, and f = 2.4 in eqn 5.582

23


	The energetics of fish growth and how it constrains food-web trophic structure
	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	RESULTS AND DISCUSSION
	FUTURE DIRECTIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	TABLES
	FIGURE LEGENDS

