
Learning-Based Resource Allocation in Cloud Data
Center Using Advantage Actor-Critic

Zheyi Chen, Jia Hu, Geyong Min
Department of Computer Science, College of Engineering, Mathematics and Physical Sciences

University of Exeter
Exeter, United Kingdom

{zc300, j.hu, g.min}@exeter.ac.uk

Abstract—Due to the ever-changing system states and various
user demands, resource allocation in cloud data center is faced
with great challenges in dynamics and complexity. Although
there are solutions that focus on this problem, they cannot
effectively respond to the dynamic changes of system states and
user demands since they depend on the prior knowledge of
the system. Therefore, it is still an open challenge to realize
automatic and adaptive resource allocation in order to satisfy
diverse system requirements in cloud data center. To cope
with this challenge, we propose an advantage actor-critic based
reinforcement learning (RL) framework for resource allocation
in cloud data center. First, the actor parameterizes the policy
(allocating resources) and chooses continuous actions (scheduling
jobs) based on the scores (evaluating actions) from the critic.
Next, the policy is updated by gradient ascent and the variance
of policy gradient can be significantly reduced with the advantage
function. Simulations using Google cluster-usage traces show the
effectiveness of the proposed method in cloud resource allocation.
Moreover, the proposed method outperforms classic resource
allocation algorithms in terms of job latency and achieves faster
convergence speed than the traditional policy gradient method.

Index Terms—Resource allocation, reinforcement learning,
cloud computing, actor-critic

I. INTRODUCTION

Cloud computing has rapidly developed as one of the most
prevailing computing paradigms in recent years. In cloud
computing, resource allocation can be regarded as a process
for allocating computing, storage and networking resources
in order to meet the collective performance objective from
both users and cloud service providers (CSPs). Therefore, it
is crucial to develop effective and efficient resource allocation
solutions for cloud data center, which are highly challenging
due to the dynamic nature of system states and requirements
in cloud computing, described as follows.
• The complexity of cloud data center: There are various

types of infrastructures in cloud data center (e.g., physical
servers, virtual machines (VMs) and containers). They
own different central processing units (CPUs), memories
and disks, which bring huge challenges to cloud resource
allocation.

• The diversity of demands from users: Jobs coming from
heterogeneous users have different characteristics, such
as requests for various types of resources (e.g., VM,
CPU and memory) and requests for different job du-

rations (e.g., minutes, hours and days). Such diversity
of demands escalates the difficulty in cloud resource
allocation.

Moreover, due to the time-variance of system states and
workloads, resource allocation in cloud data center must be on-
line and adaptive. However, most of the traditional solutions
depend on the prior knowledge of the system, which results
in low efficiency and cannot fit in the real-world environment
with complex and dynamic system states and user demands.
As it is impossible to build an accurate system model under
the ever-changing cloud environment, reinforcement learning
(RL) [1] has emerged as an automatic decision-making method
to solve the complicated yet crucial problem of resource
allocation in cloud data center.

Although the existing RL-based methods can partially solve
the resource allocation problem, they discretize continuous
values (e.g., job latency and energy consumption) by using
the value-based RL algorithms (e.g., Q-learning [1] and DQN
[2]). Therefore, not only the integrity of continuous state and
action spaces is destroyed but also noises are introduced,
which makes it impossible to learn the exact optimal policy.
By contrast, the policy-based RL (e.g., policy gradient [1])
can more effectively address the above problem of continuous
spaces. However, the traditional policy methods are updated by
round and generate high variance while estimating the gradi-
ent, which seriously reduces the training efficiency. Therefore,
the actor-critic based RL algorithm [1] was proposed to make
up for the defects of both value-based and policy-based RL
methods. However, the traditional actor-critic is based on
action-value critic that uses linear value function to approxi-
mate action-value function, which results in high variance and
inaccurate policy gradient. To tackle this issue, an advantage
actor-critic was designed in [3]. The actor selects actions based
on the stochastic probability and the critic evaluates actions,
and then the actor changes the probability for selecting actions
based on the scores from the critic, which means that the
critic guides the actor to the ‘right direction’. Meanwhile, the
variance of policy gradient can be significantly reduced with
the help of advantage function. As the optimization goal (job
latency) and the state (resource usage) have continuous space
as well as for fast decision-making in cloud computing, we
adopt an advantage actor-critic based RL method to explore

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Exeter

https://core.ac.uk/display/188185299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the optimal policy with low job latency and high learning
efficiency for dynamic resource allocation in cloud data center.
The main contributions are summarized as follows.
• An on-line adaptive resource allocation strategy based

on RL is proposed to minimize the job latency in cloud
data center with dynamic states and heterogeneous user
demands.

• An advantage actor-critic method is proposed to achieve
the optimal policy of resource allocation by interacting
with the cloud environment, which is able to handle the
problem of continuous state and action spaces with high
learning efficiency.

• Simulations using Google cluster datasets validate the
effectiveness of the proposed method on achieving lower
job latency and faster convergence compared to the
classic resource allocation algorithms and the traditional
policy gradient method.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III describes the system
model and the resource allocation problem. In Section IV, the
proposed actor-critic based RL method is discussed in detail.
In section V, we evaluate the proposed method with real-world
datasets. The last section concludes our work.

II. RELATED WORK

Resource allocation problems are omnipresent in cloud
computing and there are many contributions for promoting
resource utilization by reasonable resource allocation and
cost control. The job scheduling was formulated as a non-
linear mixed integer programming problem and a relaxation
with an equivalent linear programming problem was pre-
sented in [4]. Based on an imperfect information stackelberg
game (CSAM-IISG), Wei et al. solved the problem of cloud
resource allocation through using a hidden Markov model
[5]. A α-approximation based method was proposed in [6]
to initiate a random combinatory auction for dynamic re-
source provisioning in cloud computing. The authors offered a
skewness-avoidance method for heterogeneous resource allo-
cation (SAMR) in [7] to meet the diversified requirements on
different types of resources. In general, most of the traditional
solutions for resource allocation in cloud computing focus on
game theory or heuristic algorithms. Meanwhile, these meth-
ods mainly depend on the manual configuration and the prior
knowledge or experience, which results in low efficiency and
cannot adapt to the real-time requirements of cloud computing
due to the time-varying characteristic and the uncertainty.

Reinforcement learning (RL) [1] emphasizes how to take
actions based on the environment to maximize the expected
benefits. In the past few years, RL has been applied to solve
the problem of cloud resource allocation. Kontarinis et al.
adopted a Q-learning based approach to implement the adap-
tive resource control from the perspective of users in cloud
environment [8]. A hierarchical framework was designed in
[9] for adaptive resource allocation by using DQN algorithm,
which reduced the power consumption in cloud system. A
deep Q-learning based system for resource provisioning and

task scheduling was designed in [10] to minimize the energy
cost of cloud service providers. Different from the above
work, Mao et al. leveraged policy gradient to handle the
resource management problem [11]. However, current related
work mostly focuses on the valued-based RL (e.g., Q-learning
[1] and deep Q-networks [2]), which not only discretizes the
continuous values (e.g., job latency) in cloud environment but
also introduces noises. Therefore, these methods cannot learn
the accurate optimal policy under the problem of continuous
state and action spaces. Different from the existing work, we
first propose an actor-critic based RL method to achieve the
optimal strategy for cloud resource allocation, which takes the
advantages of both valued-based and policy-based RL methods
for higher adaptiveness and learning efficiency.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We design a unified model of resource allocation to mini-
mize job latency while considering both user demands and dy-
namic status of cloud data center. Therefore, we regard a cloud
data center with a set of servers V = {v1, v2, ..., vn} and each
server provides multiple types of resource R = {r1, r2, ..., rn}
(e.g., CPU and memory), as shown in Fig. 1. The scheduler
is responsible for assigning jobs from the job sequence to
servers according to resource requests of different jobs and
current resource usage of cloud data center. More specifically,
each job consists of a specific job duration (i.e., the duration
of job under ideal conditions) and the request for different
types of resources. Meanwhile, each server records the usage
of different resources at each timestep. The major notations
involved in the proposed model are listed in Table I.

time

Resource
usage

…

Cloud Data Center

Scheduler

Server

Assigning jobs

… Resource
request

Job sequence

time

Job 1Job 2Job 3Job n

Fig. 1. The model of resource allocation in cloud data center.

To achieve as low job latency as possible by legitimately
assigning jobs based on the current resource usage, we con-
sider a job sequence as a set of jobs J = {job1, job2, ..., jobn}
,and measure the actual completion time of each job j during
resource allocation, T jfinish − T

j
enter, which includes the job

waiting time. As numerical discrepancy among different char-
acteristics may cause excessive time consuming and tortuous
process of gradient descent, the normalization is used to
improve the training speed and convergence. Therefore, we

define L as the normalized mean job latency, which normalizes
the job latency and then takes their average.

L =

∑
j∈J

((
T jfinish − T

j
enter

)
/Dj

)
Number of jobs in J

, (1)

where Dj is the duration of job j.
To reduce the normalized job latency L, we adopt RL-based

methods to address resource allocation and job scheduling
in cloud data center. Firstly, we regard the scheduler as an
RL agent and cloud data center as the environment. At each
timestep, the RL agent chooses an action by interacting with
the environment. Then, we define the state space, action space
and reward function for the proposed RL model as follows.
State space: The state of cloud data center st consists

of two parts at timestep t, which are the resource usage of
cloud data center sVt and resource requests of job sjt . More
specifically, we define sVt as the usage for different types of
resources URt = [ur1t , u

r2
t , ..., u

rn
t], and define sjt as the union

of occupancy requests of jobs for different types of resources
O
j|R|
t = [o

j|r1|
t , o

j|r2|
t , ..., o

j|rn|
t] and job duration Dj . Thus,

the state of cloud data center st can be denoted as follows:

st = [sVt , s
j
t] = [URt , O

j|R|
t , Dj]

= [ur1t , u
r2
t , ..., u

rn
t , o

j|r1|
t , o

j|r2|
t , ..., o

j|rn|
t , Dj].

(2)

Action space: The action at adopted by scheduler at
timestep t is to select jobs from job sequence according to
the current resource usage of cloud data center and resource
requests from different jobs. And the scheduler then assigns
jobs to servers V = {v1, v2, ..., vn} in cloud data center. Thus,
we define action at as follows:

A = {aj|V
′|

t |V ′ ∈ {∅, v1, v2, ..., vn}}, (3)

where ∅ means that the scheduler does not assign jobs at
timestep t and jobs still need to wait in job sequence.
Reward function: The reward function rt is used to guide

RL agent to learn the optimized policy with higher rewards
for job scheduling at each timestep t, whose objective is
to minimize the normalized job latency L and meet the re-
source requests from jobs simultaneously. We consider reward
function consisting of three aspects of penalty, which are
−T jwait/Dj , −T jwork/Dj and −T jdismiss/Dj , as described in
Table I. Therefore, the reward function rt is defined as follows:

rt = −
∑
j∈J

(
w1 · T j|t|wait

Dj
+
w2 · T j|t|work

Dj
+
w3 · T j|t|dismiss

Dj

)
,

(4)
where w1, w2 and w3 are used to weight the penalty.

During the learning process of optimizing policy for re-
source allocation, the RL agent (scheduler) chooses an action
at (resource allocation and job scheduling) under current state
st (resource usage and requests) of environment (cloud data
center), and then it receives reward rt (penalty of job latency)
and goes to the next state st+1. This process can be formulated
as a Markov Decision Process (MDP):

s0, a0 → r0, s1, a1 → ...→ rt, st+1. (5)

Due to the uncertainty of states in cloud data center, we for-
mulate the problem of resource allocation and job scheduling
with model-free RL. Meanwhile, as the above problem is a
discrete-time based MDP with continuous spaces, we propose
an actor-critic based RL method for better adaptiveness and
achieving the accurate optimal policy more efficiently.

TABLE I
MAJOR NOTATIONS OF MODEL

Notation Description

V Set of servers in cloud data center

R Types of resources in cloud data center

J Set of jobs in the job sequence

T j
finish The timestep when job j is completed

T j
enter The timestep when job j enters job sequence

Dj The duration of job j under ideal conditions

L Normalized job latency

st State of cloud data center at timestep t

UR
t Usage of resource R at timestep t

O
j|R|
t Occupancy request of job j for resource R at timestep t

at Action adopted by scheduler at timestep t

rt Reward received at timestep t

T
j|t|
wait Waiting time of job j in job sequence at timestep t

T
j|t|
work Execution time of job j at timestep t

T
j|t|
dismiss Waiting time until job j is dismissed at timestep t

IV. ACTOR-CRITIC BASED RL ALGORITHM WITH
ADVANTAGE FUNCTION

Actor-critic is a hybrid of RL algorithms, which incorpo-
rates the value-based (e.g., Q-learning) and the policy-based
(e.g., policy gradient) RL algorithms. On the one hand, the
value-based methods use Temporal-Difference (TD) learning
to evaluate TD error generated during the learning process.
Usually, they first use function approximators to determine
the value function and then use ε-greedy method to balance
exploration and exploitation, which allows the RL agent both
exploring new actions and utilizing existing experiences to
choose the optimal action. On the other hand, the policy-based
methods parameterize the policy and directly output actions
during the learning process without storing the value function,
so it can choose actions under the continuous state and action
spaces. As RL methods, the optimization goal of actor-critic is
getting as much reward as possible. Thus, an objective function
is to measure the learning quality. For continuous state and
action spaces, we use the following formula to accumulate
the instant reward obtained from actions adopted at each state
based on a probability distribution.

J(θ) =
∑
s∈S

dπθ (s)
∑
a∈A

πθ(s, a)Rs,a, (6)

where dπθ (s) is a stationary distribution of Markov chain (as
shown in Eq. 5) under the current policy πθ.

When the objective function is determined, the next step is
to optimize the parameters of policy so that the value of objec-
tive function can be maximized. Policy gradient algorithm can

make a move of J(θ) along the direction of gradient ascend
to the local maximum and achieve the optimal parameter θ
when maximum value is obtained:

∆(θ) = α∇θJ(θ) = α(∂J(θ)/∂θ1, ..., ∂J(θ)/∂θn)T , (7)

where α is learning rate and ∇θJ(θ) is policy gradient.
Here, we combine the objective function J(θ) with policy

gradient. We firstly consider one-step MDP, which starts at
state s ∼ d(s) and finishes after one timestep with instant
reward r = Rs,a. Then, we can get the objective function and
the corresponding gradient as follows:

J(θ) = Eπθ [r] =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Rs,a, (8)

∇θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∇θlogπθ(s, a)Rs,a

= Eπθ [∇θlogπθ (s, a)r].

(9)

It can be noticed that the gradient of objective function is
equal to the product expectation of logarithmic gradient of
policy function πθ and instant reward r. When it comes to
multi-step MDPs, we replace the instant reward r with long-
term value Qπ(s, a) and get the following theorem.
Theorem 1. Policy Gradient Theorem [1]: For any differ-
entiable policy πθ(s, a) and any policy objective functions, the
policy gradient is

∇θJ(θ) = Eπθ [∇θlogπθ(s, a)Qπθ (s, a)]. (10)

Based on Eq. 10, Monte Carlo (MC) and Temporal-
Difference (TD) learning can be applied into practical prob-
lems. We firstly consider MC learning, which uses return vt
as an unbiased sample of Qπθ (st, at) to update parameter θ.
Although MC learning is unbiased, the noise is relatively large,
which means that variance of MC is high. If the value of state
can be estimated relatively accurately and be used to guide the
update of policy, better learning results can be achieved, which
is also the basic idea of actor-critic algorithm. Fig. 2 illustrates
the framework of actor-critic. Similar to the policy-based RL
methods, actor-critic can handle the problem of continuous
state and action spaces, and variance can also be effectively
reduced by adding critic into this framework.

Actor

Critic

RL Agent

Environment TD error
state

action

reward

Fig. 2. The framework of actor-critic algorithm.

More specifically, critic updates parameters w by estimating
action-value function Qw(s, a) ≈ Qπθ (s, a), and actor guides
the update of policy parameter θ based on the value evaluated
by critic. Thus, it follows an approximate policy gradient.

∇θJ(θ) = Eπθ [∇θlogπθ(s, a)Qw(s, a)]. (11)

The original actor-critic is based on action-value critic that
uses linear value function to approximate action-value function

Qw(s, a) = φ(s, a)Tw, which results in high variance. To
avoid this problem and achieve the exact policy gradient, the
value function is selected based on the following theorem.
Theorem 2. Compatible Function Approximation [1]: The
policy gradient in Eq. 11 would be exact if the following two
conditions are satisfied.

1) Value function approximator is compatible to policy.

∇wQw(s, a) = ∇θlogπθ(s, a). (12)

2) Optimal parameter w minimizes the mean-squared error.

ε = Eπθ [(Q
πθ (s, a)−Qw(s, a))2]. (13)

Algorithm 1: Advantage Actor-Critic RL Algorithm

1 Initialize actor network V πθ (s) and critic network
Qπθ (s, a) with weights and biases

2 Initialize actors and critics learning rate γa and γc, and
TD error discount factor β

3 for each training epoch n = 1, 2, ..., N do
4 Receive initial state s1, where s1 = env.observe()
5 for each episode t = 1, 2, ..., T do
6 Select action at according to st, where

at = actor.choose action(st)
7 Execute action at, receive reward rt and next

state st+1, where rt, st+1 = env.step(at)
8 Calculate TD error in critic, where

δπθ = r + βV πθ (st+1)− V πθ (st)
9 Calculate policy gradient in actor using advantage

function, where
∇θJ(θ) = Eπθ [∇θlogπθ(st, a)δπθ]

10 update state st = st+1

11 end
12 end

Based on Theorem 2, we improve the original actor-critic
algorithm by using a baseline to reduce variance. The basic
idea is to subtract a baseline function B(s) from the policy
gradient. B(s) is only related to state but has nothing to
do with action, so it does not change the gradient. The
characteristic of B(s) is reducing variance while not changing
the expectation of action values. When B(s) matches this
characteristic, the following inference is established:

Eπθ [∇θlogπθ(s, a)B(s)] =
∑
s∈S

dπθ (s)
∑
a∈A
∇θπθ(s, a)B(s)

=
∑
s∈S

dπθB(s)∇θ
∑
a∈A

πθ(s, a)

= 0.
(14)

In principle, any functions that are not related to action can
be used as B(s). But a good B(s) is a state-value function
based on the current state, which is B(s) = V πθ (s). Therefore,
the policy gradient can be rewritten as follows:

∇θJ(θ) = Eπθ [∇θlogπθ(s, a)Aπθ (s, a)], (15)

where Aπθ = Qπθ (s, a) − V πθ (s) is called the advantage
function and V πθ (s) is the state-value function.

The variance of policy gradient thus can be significantly
reduced by the advantage function. Besides, both V πθ (s) and
Qπθ (s, a) can be updated by TD learning, and TD error can
be calculated based on the state-value function V πθ (s).

δπθ = r + βV πθ (s′)− V πθ (s). (16)

Finally, the exact policy gradient is achieved as follows:

∇θJ(θ) = Eπθ [∇θlogπθ(s, a)δπθ]. (17)

The key steps of advantage actor-critic RL algorithm are as
shown in Algorithm 1. For each episode, an action is generated
based on the current state and instant reward, the critic then
estimates V πθ (s) and Qπθ (s, a) with Theorem 2 and calculates
TD error δπθ . Based on the evaluation from the critic, the actor
calculates policy gradient by using the advantage function.

V. EXPERIMENTS

In this section, we first describe the simulation settings and
datasets. Then, we evaluate the performance of the proposed
model in terms of job latency. Finally, we compare the
proposed method with other classic methods.

A. Settings and Datasets

We implement the proposed model for resource allocation in
cloud data center based on TensorFlow 1.4.0 and use the real-
world datasets from Google cluster-usage traces [12], which
contain the resource usage data of Google cloud data center
in May 2011. More specifically, we firstly randomly extract
1,000 servers from the Google datasets over 29 days, where
each server consists of around 100,000 job traces. And each
job consist of different job arrival time, arrival rates of new
job, job durations and resource occupancy. Based on the job
traces we selected, we initialize some settings of parameter
in the proposed model of cloud data center, which include
the number of servers V = 1000 and types of resources
R = 3. Next, we calculate the average values of the above
metrics of jobs and regard them as the default maximum
thresholds of arrival rate of new job Ct = 50%, job duration
Dj = 10 and resource occupancy Ot = 30%. Based on the the
above settings, the experiments are conducted to evaluate the
performance of the proposed method through the simulation
of real-world cloud data center. To validate the advantages
of our proposed method, we evaluate the performance of
the policy gradient based RL method [11] and the other
classic algorithms, including First Come First Served (FCFS),
Shortest Job First (SJF) and Round Robin (RR), to conduct
comparative experiments.

B. Experimental Results

The aim of our proposed method is to minimize the job
latency while considering both changeable system states and
different resource requests from different jobs, which is spe-
cially formulated as the normalized job latency L. Therefore,
we study the performance of the proposed model in terms of
job latency for dynamic resource allocation and job scheduling
by changing the threshold values of parameter settings, which
includes the maximum thresholds of job duration Dj , resource

occupancy of job at each timestep Ot, types of resource R and
arrival rate of job at each timestep Ct.

Fig. 3 shows the distribution of the normalized job latency
with different job durations Dj and resource occupancy of
job Ot after algorithm converges. We set the maximum job
duration from Dj = 5 to Dj = 15 and the maximum resource
occupancy of job from Ot = 5% to Ot = 50%. Generally,
the normalized job latency rises with the increase of Dj and
Ot. More specifically, there is almost no latency happening
when the proposed method deals with jobs with small resource
demands, as the normalized job latency is almost equal to 1.
When resource demands of jobs go larger, larger number of
resource is consumed with longer job duration, which results
in the growth of the normalized job latency. Even so, our
proposed method can also achieve satisfied results of low
job latency, especially for small and medium-sized jobs (i.e.,
Dj = 5 and Dj = 10). Besides, the normalized job latency
is evaluated with different types of resources R and different
arrival rates of job Ct based on the above setting with large
resource demands from jobs.

Job Duration

6
8

10
12

14 Resource Occupancy

10%
20%

30%
40%

50%

No
rm

al
ize

d
Jo

b
La

te
nc

y

0

2

4

6

8

10

Fig. 3. Latency under different job durations and resource occupancy.

Types of Resource

1

2

3
Job Arrival Rate

20%
40%

60%
80%

No
rm

al
ize

d
Jo

b
La

te
nc

y
0.0
2.5
5.0
7.5
10.0
12.5

15.0

17.5

Fig. 4. Latency under different types of resource and job arrival rates.

As shown in Fig. 4, we set the types of resource R as 1 to
3, and adjust job arrival rate from Ct = 10% to Ct = 90%.
With the increase of R and Ct, cloud data center becomes
more complex with more types of resource and larger amount
of workloads, which results in higher normalized job latency.
Even in such complex condition, our proposed method can also
succeed in handling the dynamic resource allocation problem
adaptively and achieve excellent performance in terms of
relatively low latency. As we can see from Fig. 4, even job
arrival rate Ot rises to 50%, the proposed method can still

control the normalized job latency effectively with different
settings of resource types.

As shown in Fig. 5, all heuristic methods (i.e., FCFS, SJF
and RR) do not have learning process as RL-based methods,
so they can only make decision for resource allocation sim-
ply depends on the current system state and cannot make
any improvements for better adaptiveness to the dynamic
environment in cloud data center. When it comes to the
proposed actor-critic based method, although the normalized
job latency is not much different from the existing methods
under initial low-workload condition, it outperforms heuristic
methods along with the increase of workloads. It can be seen
that the proposed method can substantially reduce job latency
compared to the existing methods by continuous learning
and interacting with the environment. For example, when the
newly-increased workloads rise to 45%, the proposed method
can reduce around 13% job latency compared to RR(SJF),
which performs best in the existing methods. Thus, the pro-
posed method presents strong adaptiveness to the complex and
dynamic environment.

 5% 10% 15% 20% 25% 30% 35% 40% 45%
Newly-increased Workloads

0

5

10

15

20

25

30

35

No
rm

al
ize

d
Jo

b
La

te
nc

y

Random
FCFS
SJF
RR(FCFS)
RR(SJF)
Our method

Fig. 5. Performance comparision with heuristic methods.

0 200 400 600 800 1000
Training Epochs

6

8

10

12

14

16

18

No
rm

al
ize

d
Jo

b
La

te
nc

y

Actor-Critic converges

Around 500 epochs

Policy gradient
Our method

Fig. 6. Performance comparision with the policy gradient method.

Fig. 6 shows the comparison of convergence speed between
actor-critic based method and policy gradient method in terms
of the normalized job latency. We can notice that the learning
curve tends to converge after around 500 training epochs by
using the proposed method, while policy gradient is diver-
gent over the whole training epochs. The experimental result
shows that the proposed method can achieve higher learning
efficiency compared to the policy gradient, as it can effectively

avoid large variance and achieve faster convergence through
using the advantage function while estimating the gradient.

VI. CONCLUSION

Dynamic resource allocation in cloud data center has re-
ceived considerable research attention. However, some key
challenges haven’t been addressed, including the adaptability
to the time-varying feature of system states and user demands.
In this paper, we first formulate the resource allocation in cloud
data center as a model-free RL problem with continuous state
and action spaces. Next, we propose an advantage actor-critic
based RL method to dynamically allocate resources and sched-
ule jobs for minimizing the job latency while satisfying user
demands. Simulations using workload datasets from Google
data center demonstrate that the proposed method yields low
job latency and high efficiency. Specifically, the job latency
of our method is the lowest with the growth of workloads
compared to FCFS, SJF and RR, which verifies the strong
adaptability of our method. Our method also outperforms
the policy gradient method in terms of learning efficiency.
The proposed actor-critic based method is of great value for
improving resource utilization and reducing job latency in
cloud computing.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
vol. 1. MIT press Cambridge, 1998.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, and S. Petersen,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, p. 529, 2015.

[3] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
pp. 1928–1937, 2016.

[4] L. Shi, Z. Zhang, and T. Robertazzi, “Energy-aware scheduling of
embarrassingly parallel jobs and resource allocation in cloud,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 6,
pp. 1607–1620, 2017.

[5] W. Wei, X. Fan, H. Song, X. Fan, and J. Yang, “Imperfect informa-
tion dynamic stackelberg game based resource allocation using hidden
markov for cloud computing,” IEEE Transactions on Services Comput-
ing, vol. 11, no. 1, pp. 78–89, 2018.

[6] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in INFOCOM, 2014
Proceedings IEEE, pp. 433–441, IEEE, 2014.

[7] L. Wei, C. H. Foh, B. He, and J. Cai, “Towards efficient resource allo-
cation for heterogeneous workloads in iaas clouds,” IEEE Transactions
on Cloud Computing, vol. 6, no. 1, pp. 264–275, 2018.

[8] A. Kontarinis, V. Kantere, and N. Koziris, “Cloud resource alloca-
tion from the user perspective: A bare-bones reinforcement learning
approach,” in International Conference on Web Information Systems
Engineering, pp. 457–469, Springer, 2016.

[9] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, and Q. Qiu, “A hierarchical frame-
work of cloud resource allocation and power management using deep
reinforcement learning,” in Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on, pp. 372–382, IEEE, 2017.

[10] M. Cheng, J. Li, and S. Nazarian, “Drl-cloud: deep reinforcement
learning-based resource provisioning and task scheduling for cloud
service providers,” in Proceedings of the 23rd Asia and South Pacific
Design Automation Conference, pp. 129–134, IEEE Press, 2018.

[11] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, pp. 50–56, ACM, 2016.

[12] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., White Paper, pp. 1–14, 2011.

