
Page | 1 
 

Concordant spatio-temporal patterns of brain activation in zebrafish exposed to 

compounds with similar pharmacodynamics or with similar seizurogenic 

potential. 

 

 

Submitted by Joseph Pinion to the University of Exeter 

As a thesis for the degree of 

Masters by Research in Biological Sciences 

In September 2018 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

I certify that all material in this thesis which is not my own work has been 

identified and that no material has previously been submitted and approved for 

the award of a degree by this or any other University. 

 

 

 

 

 

 

 

Signature: …………………………………………………………... 

 

  



Page | 2 
 

Abstract 

Drug development is a highly resource intensive process that uses large 

numbers of animals for assessing the safety and efficacy of drugs prior to 

clinical testing. Improving the efficiency of drug development in terms of 

financial expenditure and number of animals used is therefore of utmost 

concern, not only to industry, but also to animal welfare organisations such as 

the NC3Rs. Poor efficiency in drug development largely stems from drug 

attrition, particularly attrition in the latter stages of the testing due to the large 

amount of resources expended at the point of failure. It is therefore imperative 

that deleterious off-target effects are identified as early as possible. However, 

typically, identification of seizure as a side-effect of drugs is performed in the 

later stages of development due to the highly intensive and low-throughput 

nature of seizure assays. At which point, if a compound fails, a large amount of 

resources have been squandered. There therefore exists a need for high-

throughput and relatively inexpensive seizure liability assays that can be used 

early in drug development to prevent compounds destined for failure 

undergoing unnecessary resource intensive testing.    

In this thesis we propose a refined approach using non-invasive imaging 

techniques in non-protected life stage zebrafish as a method for the detection of 

seizurogenic compounds early in drug development. In addition, we highlight its 

utility for elucidating the pharmacodynamics of compounds. In this study, a 

transgenic zebrafish line containing a GCaMP6s calcium sensor under the 

control of the pan-neuronal promoter elavl3 was used for functional profiling of 

compounds with varied pharmacologies. Light sheet microscopy was used to 

record fluorescent activity in three spatial dimensions over time (4-dimensions) 

from the zebrafish brain after exposure to forty-three different compounds with 

varied pharmacodynamics and seizure liability profiles. Hierarchical clustering 

was employed in order to assess if compounds with seizurogenic activity or 

similar pharmacodynamics elicited specific functional brain activity. It was found 

that compounds with dopaminergic and serotonergic mechanisms of action 

elicited highly specific and similar brain activity patterns and that non-

seizurogenic drugs also clustered separately from seizurogenic ones. 

Subsequent analyses, focussed on the utilisation of machine learning 

techniques, developing a model that could be used to discriminate between 
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compounds with and without potentially seizurogenic effects. It is clear, from the 

analyses presented here, that drugs do in fact elicit specific brain patterns in 

zebrafish and that these brain patterns are effectively detected using light sheet 

microscopy. This system is highly applicable for use within the drug industry 

and even in its relatively preliminary stages provided an accurate method of 

discriminating between compounds based on their physiological effects in 

zebrafish. 
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Chapter One: Introduction 

The drug industry currently relies heavily on mammalian models for neurotropic 

drug profiling. Drug profiling is used to better understand drug effects as well as 

for assessing safety. The main approaches used for assessing the effects of 

compounds on the brain in vivo are pharmaco-EEG studies in mammals, which 

tend to have poor coverage of the brain and involve stressful and invasive 

procedures on rodents (1). In this thesis I outline the utility of zebrafish larvae as 

an alternative approach for profiling compounds for both assessing drug effects, 

in terms of pharmacodynamics, and also for safety testing. Zebrafish larvae 

have a number of advantages over mammalians models, including high 

reproductive rate and a transparent epidermis making them uniquely suited for 

high throughput imaging assays (2). Zebrafish are a quick and easy organism to 

cultivate and relatively easy to genetically engineer, compared with to their 

mammalian counterparts (3). Moreover, due to their small brain volume, 

zebrafish larvae are particularly suited to whole brain functional imaging making 

them an ideal model organism for studying functional connectivity, as the entire 

brain can imaged in a relatively short timeframe (~1.8 seconds using light sheet 

microscopy (4).  

In terms of safety assessment, this thesis focuses on identifying compounds 

with potentially seizurogenic effects, a highly dangerous side effect of a number 

of neurotropic drugs. Currently seizure liability is performed late in drug 

development because seizure liability assays are highly resource intensive. As 

such, if compounds fail seizure liability testing, a large amount of resources are 

wasted, as said compound has already undergone a large battery of tests. It is 

therefore imperative that a relatively quick and inexpensive assay is developed 

so that seizurogenic compounds can be identified earlier on in drug 

development. The advantages conferred by using larval zebrafish make them 

an ideal candidates for just such a low resources and high throughput assay.   

 It should be noted, however, that the techniques described could be applied in 

a variety of drug profiling scenarios and are not necessarily solely applicable to 

the seizurogenic potential of compounds. 
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In order to understand the potential contribution of zebrafish as a model 

organism, to the area of neurotropic drug screening, it is necessary to start by 

giving an appraisal of the use of mammalian systems for drug profiling and 

discovery. 

 

Mammalian models for classifying the effects of pharmacological agents on 

human neurophysiology. 

 

Traditional approaches to assessing the effects of drugs on human brain 

function are based, to a large extent, around performing pharmaco-

electroencephalography (p-EEG) on mammals. It is clear from the numerous 

studies that have used this approach, that drugs can elicit specific and 

measurable changes in the electrical activity of the brain. As such, it is possible 

to use EEG data to elucidate the properties of drugs (5). In addition to the 

classification of drugs, p-EEG has been used to better understand the 

relationship between pharmacokinetics and pharmacodynamics. For example, 

by looking at the effect of a range of benzodiazepines on EEG power spectra it 

was observed that there is a strong correlation between GABAA receptor affinity 

(as measured in vitro) and changes in the amplitude of β frequency bands in 

vivo (6).  
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Multi-electrode EEGs are a commonly used tool and allow recording from 

multiple brain areas simultaneously (7). The information provided using these 

techniques can be used to assess the effect of drugs on brain activity extracted 

from different brain 

regions. For example, 

multi-electrode 

epicranial EEG 

recordings taken from 

freely behaving mice 

have demonstrated that 

cognition enhancing 

compounds, with varied 

pharmacologies, have 

distinctive effects on 

brain activity. When 

cognition enhancing 

compounds were 

clustered alongside a 

plethora of 

pharmacologically 

diverse compounds, 

cognition enhancing 

drugs were shown to cluster very tightly with one another relative to other 

compounds (see figure 1) (8).   

In addition to multi-electrode EEGs, there are number of other useful tools 

available. Transgenic mouse models are highly useful for the discovery and 

development of therapeutic drugs (9). In fact, phenotypic drug discovery, such 

as the use of transgenic mouse models of disease, was responsible for 

development of 56% of first in class molecules (molecules with novel 

mechanisms of action) between 1999 and 2008 (10).  

The combination of EEG and transgenic mouse models provides a powerful tool 

for assessing the therapeutic potential of drugs for brain disorders. For 

example, Levetiracetam, a drug traditionally used to treat epilepsy sufferers, 

Figure 1: Hierarchical clustering of compounds using EEG 
parameters taken from rats instrumented with epidural 
electrodes in different cortical areas (5). 
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has been shown to have additional therapeutic potential after partially restoring 

cognitive deficits in a mouse model of Alzheimer’s disease (11).  

Due to the success of mammalian research in elucidating the mechanisms of 

action of compounds and relative lack of viable alternatives, the number of 

animals used in pharmaceutical research, is extremely high. Over two hundred 

thousand mammals were used, for a variety of purposes, in pharmaceutical 

research and development in 2013, eight and a half thousand of which were 

used for surveying drug pharmacodynamics and pharmacokinetics (12).  

However, although the use of mammals in pharmacological research is very 

popular, there is a high financial cost. This is partially due to the high standards 

of care and regulatory requirements for housing and working with animals. 

Animal units must be temperature controlled, have air filtered ventilation, and be 

highly secure among a host of other specific requirements. In addition, mice 

take between forty and sixty days to reach sexual maturity with a gestation 

period of a further three weeks (13). These limitations make breeding mice for 

animal experiments a relatively time consuming and expensive process.  

Moreover, in the case of EEG brain recordings, the experiments themselves are 

highly invasive and stressful procedures. Even epicranial EEG insertion 

requires surgery under general anaesthetic and runs the risk of infection. 

Moreover, due to tissue injury, related to the invasiveness of electrode 

implantation, inflammation is likely to occur (14). Inflammation is problematic 

because it has been implicated in epileptogenesis, thus furthering the suffering 

experienced by the animal while making them unsuitable for research (15). In 

addition, multi-electrode EEG recordings have relatively poor spatial resolution 

as the number of possible electrodes is limited. 

All of these factors suggest there is a strong need for alternative models for 

assessing CNS effects of drugs. One such alterative gaining traction is the 

zebrafish (16).  

 

Zebrafish EEG models for screening pharmacological compounds and the utility 

of zebrafish as tools for assessing neuropharmacological agents. 
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The zebrafish has a number of advantages that make it an attractive animal 

model. Zebrafish females take around three months to mature, spawn around a 

hundred eggs at a time and spawn every few days (17). Extremely high rate of 

reproduction and the fact that zebrafish embryos are not a protected species 

until four days post fertilisation makes them an ideal candidate for high-

throughput pharmacological testing (18).   

The utility of zebrafish for observing drug effects is already well established. 

Zebrafish have been used in high throughput behaviour based screens in 

attempts to identify CNS active compounds with novel structures, targets and 

functions (2,16,19–21). However, behavioural readouts, while a useful marker 

of brain activity, often diminish complex and varied brain function into basic 

metrics that do not fully represent the underlying brain mechanisms. Direct 

recordings of brain activity patterns have been utilised in order to better assess 

drug activity and side effects. Local field potential recordings have high 

temporal resolution and provide a good summation of fast brain electrical 

activity but only of a relatively small area of brain tissue (22). The relative ease 

with which genetic modification can be undertaken on zebrafish means they are 

ideal organisms on which to perform phenotype based screening. One such 

study, utilised a snc1lab mutation, to produce a transgenic zebrafish with photo-

sensitive seizure-genesis. Using a seizure modelling algorithm, the ability of a 

wide variety of compounds to prevent or reduce seizure perpetuation could be 

realised. A measure of local field potential (LFP) complexity was found to 

negatively correlate with the presence of the snc1lab mutation. Interestingly the 

drug clemizole did not improve LFP complexity scores and was therefore not 

considered significantly efficacious in the LFP screening, despite being shown 

to reduce the number of spontaneous seizures (23). Conversely, clemizole has 

been identified as efficacious in a number of different screens using similar 

model organisms but with different approaches in terms of analysis and 

methodology (24). It is possible these discrepancies in results, with regard to 

clemizole, occur as a result of the poor coverage allowed of local field potential 

recordings; seizures may not be properly identified due to recordings only being 

taken from a very specific area.  

Furthermore, zebrafish have been used in combination with multi-channel EEG 

recordings to study Pentylenetetrazole (PTZ) induced seizures. It was found 
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that seizures were largely propagated through the telencephalon. However as 

the electrode array only recorded from the midbrain and telencephalon, 

propagation through other regions cannot be excluded (25). This highlights the 

limitations of electrophysiological experiments, as even multi-electrode arrays 

have relatively poor coverage of all brain areas. 

A similar study demonstrated the viability of machine learning approaches for 

automatic detection of seizures in zebrafish (26). The study in question utilised 

multiple models of seizures including pharmacologically induced seizures via 

PTZ and seizures in genetically modified models. Local field potential 

recordings and inducible seizures in combination with automated seizure 

detection could provide a powerful screening model of anti-epileptic drugs (26). 

Moreover, hyperthermia induced seizures have been shown to be dependent on 

TRPV4 channels as demonstrated by utilising TRPV4 antagonist RN-1734. In 

further analyses it was shown that seizures could also be attenuated by 

exposing fish to post-synaptic glutamate antagonists, thus supporting the theory 

that hypothermia induced seizures are partly mediated by NMDA receptor 

dependent glutamate transmission (27).  

It’s clear that EEGs can be used in conjunction with zebrafish to great effect and 

have already demonstrated their power in pharmacological research, 

particularly, in the field of epilepsy. However, there are limitations with regard to 

EEGs. In particular, EEGs and LFPs merely provide a summation of brain 

activity and even with the use of multi electrode arrays it is difficult to localise 

brain activity to specific areas. Being able to identify multiple specific areas of 

activity would allow for a better understanding of network connectivity and 

whole brain dynamics. In contrast with EEG, brain imaging techniques have 

been shown to be well adapted for these purposes and zebrafish, with their 

transparent epidermis, are perfectly suited for use in conjunction with imaging 

techniques (28). 

 

Calcium imaging of neuronal activity. 
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The ability to record activity from multiple brain regions simultaneously and 

specifically is imperative in order to better understand the functioning of 

neuronal networks. Calcium imaging is one approach that can be used for 

imaging large populations of neurons and is a useful tool for assessing 

functional networks (29). Calcium transients are excellent markers of neuronal 

activity due to the strong relationship between intracellular Ca2+ ions in the 

presynaptic terminal and neurotransmitter release (see figure 2). The extent of 

action potentials controls the amount of Ca2+ that enters the presynaptic 

terminal which in turn effects the amount of neurotransmitter released. 

Moreover, action potentials usually produce a very brief rise in Ca2+ ions. This is 

due to a combination of Ca2+ channels being open a very short amount of time 

and Ca2+ ions being 

rapidly buffered by 

calcium binding proteins 

(30). These properties 

make Ca2+ an ideal 

marker of neural activity 

because it can represent 

neurotransmitter release 

at high spatial resolution. 

Due to the effectiveness 

of using Ca2+ ions as a 

measure of brain activity a 

number of genetically 

encoded calcium indicators have been developed; prominent among which is 

the GCaMP family of sensors. GCaMPs have been a popular approach for 

measuring calcium activity and have been continually updated and improved 

over the course of the last two decades (31–33). One of the more recent 

members of this family, GCaMP6, has been shown to reliably detect single 

action potentials in the mouse visual cortex when comparing fluorescent activity 

to simultaneous in vivo electrophysiology.  Indeed, it was evident that GCaMP6 

detected three-fold more neuronal responses than its predecessor, GCaMP5G, 

and could even detect calcium transients in dendritic spines. Moreover, 

Figure 2: The relationship between intracellular Ca2+ and 
neurotransmitter release rate (27). 
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because GCaMPs are genetically encoded, it is possible to express them in 

specific cell subpopulations (34).  

In zebrafish, GCaMPs can be genetically encoded under the pan-neuronal 

elavl3 promotor, 

allowing constitutive 

expression 

throughout the brain. 

Larval zebrafish 

provide an ideal 

framework for 

calcium imaging of 

this type due to the 

relative ease with 

which genetic 

modification can be 

done and their largely 

transparent epidermis (16).  

The combination of advanced microscopy techniques, GCAMP calcium sensors 

and larval zebrafish provides a powerful approach for brain network analysis 

due to the exceptionally high spatial resolution available. Xudong Lin at al 

utilised GCaMP sensors to record brain wide activity in zebrafish larva at single 

cell resolution using confocal microscopy. Zebrafish were exposed to a variety 

of different neurotoxins and their brain wide activity was recorded. This 

experimental technique allowed for the detection of the distinct spatio-temporal 

patterns of activation induced by different neurotoxins, as illustrated in figure 3 

(35). 

A similar experiment setup, combining transgenic GCaMP6s zebrafish and 

wide-field fluorescence microscopy has been used for mapping of neuronal 

activity during pentyltetrazole (PTZ) induced seizures. This study demonstrated 

the concentration-dependent effect of PTZ on zebrafish brain dynamics in terms 

of signal amplitude and frequency. Moreover, a PTZ concentration-dependent 

increase in functional connectivity was also shown to be present (36). The use 

of a wide-field fluorescent microscope, in this study, meant that image data will 

only be of super-imposed fluorescent activity across the zebrafish brain. This is 

Figure 3: Neural activity density map of a representative 
elavl3:GCaMP5 zebrafish larva under treatment of different 
neurotoxin peptides (33). 
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because wide field fluorescent microscopes can only image in 3-dimensions (2 

spatial dimensions over time). As such, region of interest selection can only be 

of the most rudimentary nature and thus cannot provide a comprehensive 

perspective whole brain activity.  

Alternative approaches to widefield fluorescence microscopy include imaging 

techniques such as two photon (37), confocal (38) and light-sheet microscopy 

(LSM) (39). However, while these techniques allow three-dimensional imaging 

of tissue at very high spatial resolution, temporal resolution is sacrificed relative 

to widefield fluorescence microscopy. Two photon and confocal microscopy are 

particularly slow when performing volumetric imaging because both techniques 

are based on scanning and therefore only image a small area at a time. In 

addition, confocal microscopy is limited to a depth of around 50µm and two 

photon microscopy, due to its use of longer wave length light, comes with the 

risk of localised heating and the resultant damage (39). As such neither 

approach is ideal for imaging the whole zebrafish brain. Conversely LSM 

illuminates a single optical plane at a time, collecting fluorescence from all 

excited molecules within the field of view. LSM, therefore, can image 10 optical 

sections, enough to encompass an entire zebrafish larvae, within 1.9 seconds 

(4). Light sheet microscopy, therefore, provides respectable temporal resolution, 

while still offering excellent volumetric coverage. It is for this reason that it is the 

imaging approach of choice for this study. 

 

Analytical approaches to 4-dimensional brain activity data and how it has been 

used in the past to model brain function. 

 

The combination of LSM, GCaMP calcium sensors and zebrafish allows for 

imaging of four-dimensional brain activity (three spatial dimensions over time). 

Imaging over time, which is known as functional imaging, generates large data 

sets. Consequently, it is often necessary to condense some of this data, either 

to make it more understandable or less computationally intensive. A common 

way of doing this is by combining individual voxels from the 3d images into 

regions of interest (ROIs). 
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ROIs can be assigned to regions based on established cytoarchitecture or 

some other defined anatomical architecture. Atlases for cytoarchitecture exist 

for a number of species including the mouse (40) and macaque (41). Brain 

atlases have also been developed for use in zebrafish. One such atlas uses a 

variety of techniques to identify regions related to specific behaviours and 

stimuli in larval zebrafish between 5 and 7 days post fertilisation (DPF) (42).  

Mapping ROIs to an atlas is advantageous as it allows inferences to be made 

about why specific regions behave in a certain way as ROIs are delineated 

based, to a certain degree, on the current understanding of their functional 

capacity.  However, this approach is not without issues: for example it does not 

account for significant amounts of variability between individuals but rather 

assumes a certain degree of uniformity. This downside could be particularly 

relevant in the case of larval zebrafish because small differences in the number 

of DPF could have significant effects on brain anatomical architecture (43).  

Moreover, it is possible that larger anatomical regions could contain functionally 

discrete populations of neurons, meaning the true properties of the network are 

distorted due to mixing distinct signals of activity (44).  

A viable alternative to defining ROIs according to predefined anatomical areas, 

is to randomly aggregate voxels into ROIs of equal size (45). This approach 

allows for a certain degree of choice in terms of node size and number. In the 

case of zebrafish this is useful because, with such high spatial resolution, the 

size of selected ROIs can be chosen based on the smallest possible 

functionally distinct region. In this case it is often necessary to repeat analyses 

with a different random parcellation for each, in order to ensure consistent 

findings.   

In addition to random parcellation ROIs can be selected in a data driven manner 

using clustering algorithms. One such algorithm combined clustering of voxels 

based on their functional similarity with a spatial constraint function. This 

allowed the creation of similar sized ROIs, each containing functionally similar 

voxels. However, it has been demonstrated that while this approach was an 

improvement over selecting ROIs using an anatomical atlas it was not a 

significant improvement over random parcellation approaches (46).  
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Once ROIs have been selected there are plethora of analytical approaches that 

can be utilised to make sense of the generated data, the starting point for a 

number of analytical approaches is calculating the functional connectivity. 

Functional connectivity is an approach whereby the correlation co-efficient or 

another method of time dependent similarity is calculated between all pairs of 

ROIs in a brain network. This quantifies the level of similarity over time between 

all the different brain regions. How brain regions relate to one another is directly 

related to brain function. Functional connectivity has been used to identify 

differences in resting state fMRI between healthy controls and people with 

internet addiction tendency (47), schizophrenia (48) and borderline personality 

disorder (49) as well as being used a predictor of treatment response to 

antipsychotic medication (50).  

Functional connectivity is therefore a very well-studied marker of brain function. 

How functional connectivity is optimally compared between experimental groups 

is dependent on the amount of available data, number of experimental groups 

and aims of individual researchers. A commonly used approach is network 

based statistics (NBS). NBS utilises permutation testing to statistically test the 

overall differences in the functional connectivity networks of two different 

groups. NBS is a useful tool as it provides a statistical significance cut-off for 

comparisons of experimental groups, however it cannot be used to make 

statistical inference about specific region-region functional connectivity values 

(49). Moreover, it is not useful for comparing large numbers of experimental 

groups to one another as it is both computationally intensive and would need to 

be corrected for multiple comparisons. 

Instead of attempting to make elucidations about whole networks, many 

experimenters prefer to focus on specific region to region changes in functional 

connectivity. For example, linear regression analyses have been used to 

identify relationships between functional connectivity in specific cortical areas 

and the progression of Parkinson’s disease (51). Making inferences about 

functional connectivity between specific brain regions is easier to put into the 

context of wider literature and opens up discussion about specific neuro-

anatomical mechanisms that may be driving findings.  

Functional connectivity analyses, however, do not provide a full picture of brain 

activity. Functional connectivity is an analysis method focused largely on 
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assessing the similarity between regions of interest and overlooks information 

pertaining to variability in localised temporal brain dynamics. Temporal 

information is manifest in individual time series. One such study, utilising 

GCaMP6s zebrafish used characteristics of temporal dynamics, in the form of 

parameters such as peak amplitude and frequency, to assess the effect of PTZ 

on brain activity (36). While in this particular case the imaging data were 3-

dimensional (two spatial dimensions and time) this approach easily translates to 

4-dimensions. Simple peak-based measures provide variables relating to 

temporal dynamics that are not measured explicitly in functional connectivity 

analyses. Peak parameters extracted from 4-dimensional brain activity data  

have already been utilised in the context of convulsant-treated larval zebrafish 

to highlight differences in temporal dynamics between pharmacologically 

distinct pro-convulsant compounds (4).  Similar approaches have been used in 

the study described here, however, in this context they are paired with 

multivariate clustering approaches similar to those utilised during clustering of 

spectral indices extracted from EEG data in mice (8).  

 

The overall aim of this thesis was to highlight the utility of 4-dimensional 

functional imaging of elavl3:GCaMP6s zebrafish for the assessment of drug 

function and the identification of unwanted side effects. 

Objectives 

To address the overall aim, this thesis addressed the following main objectives: 

1. The first objective was to identify if compounds with specific 

pharmacologies or potentially seizurogenic properties induce common 

spatio-temporal patterns of activation in the zebrafish brain (chapter 2). 

This was achieved by exposing zebrafish, with genetically encoded 

calcium sensors, to a variety of compounds with varying pharmacologies 

and seizurogenic profiles. Four-dimensional activity data were extracted, 

from which parameters were calculated that reflected the spatio-temporal 

patterns of activation induced by the different compounds. Clustering was 

then performed on these parameters to identify if similar compounds with 

similar pharmacological or seizurogenic profiles cluster together based on 

these parameters. 
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2. Moreover, I wished to identify whether classification algorithms were able 

to discriminate between drugs, with and without seizurogenic properties, 

based on their spatio-temporal dynamics in the zebrafish brain (chapter 

3). A variety of classification learning algorithms were generated and 

tested using the same parameters used for the clustering analyses. 

 

3. In addition, I sought to train and test classifiers using hold out data (data 

not used during the generation of the algorithm), in order to obtain 

information about generalisability (chapter 3).  

 

Chapter Two: Data acquisition and Clustering 

Introduction 

All analyses in this thesis were performed using 4-dimensional brain activity 

imaged from zebrafish larvae. As described in chapter one zebrafish larvae 

have a plethora of advantages over their mammalian counterparts, not least, 

being a more ethical and cost effective alternative. Also highlighted was the 

utility of a combination of light-sheet microscopy, GCaMP calcium sensors and 

transgenic zebrafish for providing a real-time model of whole brain activity. The 

work described in this thesis uses such an experimental model for the 

generation of 4-dimensional brain activity data. 

This chapter of the thesis will discuss the methods used to generate the 4-

dimensional brain activity data in addition to a number of analyses performed. 

These analyses are concerned with identifying whether compounds with 

specific pharmacological mechanisms or seizurogenic profiles induce specific 

patterns of activity in the brain. This question is of the utmost importance with 

regards to demonstrating the utility of zebrafish, as a viable alternative to 

mammals, in the area of drug safety screening and pharmacological profiling.  

The ability to effectively determine if drugs are potentially seizurogenic is 

paramount to assessing the safety of neurotropic drugs (52). This can be a 

complex task, because drugs have varying degrees of seizurogenicity and there 

is a large variety of mechanism through which compounds can elicit a 

seizurogenic effect (53–55). As such, approaches used to assess such 
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compounds must be able to consider a spectra of drug effects. The main 

advantage of the experimental approach used in this thesis is the ability to 

record activity from the whole brain, meaning activity indicative of 

seizurogenesis occurring in specific brain regions will likely be detected. If 

known seizurogenic compounds elucidate a similar and specific pattern of 

activation in the zebrafish brain it validates this experimental setup as an 

effective screening approach.  

In addition to identifying potentially seizurogenic compounds, I wished to see if 

there were patterns of activation indicative of specific pharmacologies. Being 

able to make inferences about the pharmacology of compounds based on 

zebrafish brain activity data would provide information about the applications of 

compounds before clinical trials are conducted. Moreover, it has the potential to 

provide insight into new applications of compounds currently used for different 

therapeutic purposes. Ketamine for example has come to the forefront in recent 

years as a highly effective antidepressant, despite not traditionally being used 

for such purposes (56). In addition, it is imperative that novel ways of assessing 

neurotropic drugs are developed, as current approaches have failed to produce 

effective therapies for large proportions of both epilepsy sufferers (57) and 

people with depression (58).  

In this thesis, a number of parameters were measured that quantify the spatio-

temporal properties of the 4-dimensional zebrafish brain activity. These 

parameters were analysed using univariate and multivariate approaches in 

order to assess whether common spatio-temporal patterns of activation exist 

between drugs with similar seizurogenic or pharmacological properties.  

Methods 

Methods Section 1: Data acquisition  

The experimental approach and data acquisition, including the extraction of 

timeseries from the 4-dimensional image data and the extraction of the peak 

parameters was performed as previously (4). Below is a brief outline of the 

process, more detail is available in the original paper (See (4) appendix A).  

Model organism 
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Transgenic elavl3:GCaMP6s zebrafish with an unpigmented epidermis. Fish 

were used four days post fertilisation (4dpf). These fish express GCaMP6s in the 

cytoplasm under control of the pan-neuronal elavl3 promotor meaning that the 

Ca2+ sensor is expressed in virtually every neuron of the CNS (59). This model 

allows us to visualise neural activity, as changes in fluorescence intensity, across 

the whole CNS in response to treatment with neuroactive drugs.   

 

Figure 4: Confocal maximum intensity projection image of a 4dpf elavl3:GCaMP6s larva (10x 
magnification). Scale bar: 100µM. 
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Test Compounds 

Forty-three compounds were selected for study which included multiple 

representatives of GABAA receptor antagonists, antidepressants, muscarinic 

agonists, acetylcholine esterase inhibitors, δ-opioid agonists and glutamate 

subtype agonists (details on drug names, uptakes and specific mechanisms of 

action are included in table 1). Appropriate exposure times and exposure 

concentrations were determined based on previous data, literature information 

and pilot work. 

In addition, information on the bioavailability of the compounds tested 

(percentage uptake into the body) were based on previously conducted studies 

with zebrafish embryo-larvae (publication in progress). 

Compound Exposure and LSM 

Drug exposure and LSM was performed as described previously in (4). Briefly, 

larvae were exposed to each drug in a single well of a twenty-four well plate. 

Following exposure, larvae were subsequently exposed to the neuromuscular 

blocker tubocurarine (4mM) until cessation of movement. Each drug was tested 

at three concentrations (outlined in Table 1) alongside an unexposed control 

group. Eight larvae were used per concentration, although in some cases this 

number varied due to loss of animals, failure of data sets to correctly process 

experimental error with regard to the registration of ROIs to the 4-dimensional 

image data. As ROIs are based on an anatomical atlas and there is a degree of 

heterogeneity between larvae there is, consequently, a degree of ROI registration 

error. In addition, eight control experiments were run alongside each compound 

whereby fish were exposed to embryo culture water only. After exposure to the 

test compound, fish were transferred into 1.4% low melting point agarose 

containing the test compound and tubocurarine. Optical sectioning was executed 

in the horizontal plane from the dorsal to the ventral surface of each larva. Optical 

sectioning was repeated for six minutes generating two hundred cycles, each 

comprising ten z-stacks. Each z-stack took approximately 1.875 seconds to 

capture. 

 

Image processing and analysis 
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Image processing was performed using a custom python image processing 

pipeline as previously described (4). Briefly, a labelled reference brain was 

aligned to each image and fifty regions of interest (ROIs) were selected in order 

to provide representatives of all the major brain regions (see table 2) (60). The 

mean fluorescent intensity across all the voxels within each ROI was calculated 

generating a time series of neural activity for each ROI (see figure 4). Peak 

analysis was then performed on each timeseries, producing nine peak 

parameters for each ROI within each animal:  mean peak height, peak width, 

peak separation in frames, area under the curve and number of peaks. For this 

all the time series were filtered using Gaussian filtering (sigma = 1.5) to remove 

high frequency noise. The baseline of the smoothed signal was subtracted and a 

threshold of two times the standard deviation was used to identify peaks.  

 

Figure 5: Example timeseries from larvae exposed to four pharmacologically distinct drugs. Graphs depict 
mean fluorescent intensity for each ROI (represented by distinct lines) on the y-axis and time in number of 
frames on the x-axis. Note the coordinated activity response profiles across multiple ROIs for each drug. 
Each graph is a single representative experiment. All the timeseries have their linear trend removed in order 
to provide a better perspective of the peak heights. 
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    Exposure conditions % uptake 

across 

range 

Compound CAS No. Mode of Action Concentrations   Duration 

Donepezil 884740-09-4 ACh esterase inhibitor (61) 125, 62.5, 31.25μM 30mins 349.65 

Physostigmine  57-64-7 ACh esterase inhibitor (62) 500, 250, 125μM 20mins 43.21 

Tacrine 1684-40-8 ACh esterase inhibitor (61) 1, 0.5, 0.25mM  20mins 16.44 

Clozapine 5786-21-0 Atypical antipsych (polypharm) (63) 100, 50, 25μM 20mins 958.70 

Olanzapine 132539-06-1 Atypical antipsych (polypharm) (64) 250, 125, 62.5μM 20mins 88.43 

Bicuculline 40709-69-1 GABAA antagonist (65) 250, 125, 62.5μM 30mins 1.00 

Pentetrazol (PTZ) 54-95-5 GABAA antagonist (66) 5, 2.5, 1.25mM 20mins 8.00 

Picrotoxin 124-87-8 GABAA antagonist (67) 60, 30, 15μM 20mins 2.00 

Bemegride 64-65-3 GABAA antagonist (68) 1, 0.5, 0.25mM  20mins N/A 

Gabazine 104104-50-9 GABAA antagonist (69) 1, 0.5, 0.25mM  20mins 1.03 

Kainic acid 58002-62-3  Glutamate subtype agonist (Kainate) (70) 1, 0.5, 0.25mM  30mins <LOQ 

Cis-ACPD 477331-06-9 Glutamate subtype agonist (NMDA) (71) 2, 1, 0.5mM  30mins N/A 

NMDA 6384-92-5 Glutamate subtype agonist (NMDA) (72) 2, 1, 0.5mM  30mins N/A 

Strychnine 60-41-3 Glycine antagonist (73) 200, 100, 50μM 20mins 36.00 

4-aminopyridine 504-24-5 Non-selective K+ blocker (74,75) 1, 0.5, 0.25mM  10mins 9.00 

Tetraethylammonium 

Cl 
 56-34-8   Non-selective K+ blocker (76) 1, 0.5, 0.25mM  1 hour N/A 

Bupropion 31677-93-7 Mixed mechanism antidepressant (77) 60, 30, 15μM 30mins 63.00 

Maprotiline 10347-81-6 Mixed mechanism antidepressant (78) 31.25, 15.6, 7.8μM 20mins 9.00 

Amoxapine 14028-44-5 Mixed mechanism antidepressant (79) 62.5, 31.25, 15.6μM 20mins 34.00 

Amitriptyline 549-18-8 Mixed mechanism antidepressant (80) 125, 62.5, 31.25μM 20mins 863.78 

Pilocarpine 54-71-7 Muscarinic agonist (81) 10, 5, 2.5mM 30mins 7.64 

Muscarine  2936-25-6 Muscarinic agonist (82) 1, 0.5, 0.25mM  1 hour 0.93 

Bethanechol 590-63-6 Muscarinic agonist (83) 1, 0.5, 0.25mM  1 hour 0.50 

Aminophylline 317-34-0 Phosphodiesterase and Adenosine (84) 2, 1, 0.5mM 30mins 2.00 

Theophylline 58-55-9 Phosphodiesterase and Adenosine (85,86) 1, 0.5, 0.25mM  20mins N/A 

Caffeine 58-08-2 Phosphodiesterase and Adenosine (87) 1, 0.5, 0.25mM  20mins 19.65 

SNC80 156727-74-1 δ-opioid agonist (88) 100, 50, 25μM 20mins 224.67 

SB205607 

dihydrobromide  

1217628-73-

3  
δ-opioid agonist (89) 500, 250, 125μM 20mins 24.33 

Cocaine 53-21-4 Dopamine transporter inhibitor (90) 250, 125, 62.5μM 20mins 150.55 

Amphetamine 51-63-8  Dopamine, 5-HT and noradrenaline (91) 1, 0.5, 0.25mM  20mins 76.14 

            

4-Aminophenylsulfone 80-08-0 Antibiotic (sulphonamide-like) (92) 1, 0.5, 0.25mM  20mins 7.78 

Clonidine 4205-91-8 a2 agonist (in CNS) (93) 1, 0.5, 0.25mM  20mins 25.50 

Quinine HCl 6119-47-7 Alkaloid antimalarial (94) 1, 0.5, 0.25mM  20mins 11.28 

Yohimbine 65-19-0 Alkaloid a2 antagonist (95) 1, 0.5, 0.25mM  20mins 49.17 

Mizolastine 108612-45-9 H1 antihistamine (96) 100, 50, 25μM 20mins 185.60 

Emetine 316-42-7 Alkaloid (97) 500, 250, 125μM 1hour 33.77 

Apomorphine 41372-20-7 Dopamine agonist, 5HT and a2 antagonist (95) 100, 75, 50, 25μM 1hour 77.77 

Cisplatin 15663-27-1 DNA cross linking chemotherapeutic (98) 500, 250, 125μM 2hours 3.00 

Morphine 52-26-6  μ-opioid receptor activator (99) 1, 0.5, 0.25mM  2hours 2.60 

Rolipram 61413-54-5 Phosphodiesterase-4 inhibitor (100) 300, 150, 75μM 24hours 24.39 

Ketamine  1867-66-9 Glutamate subtype antagonist (NMDA) (101) 62.5, 31.25, 15.6μM 20mins 214.23 

Nomifensine  32795-47-4 Noradrenalin and dopamine uptake inhibitor 

(102,103) 

100, 50, 25μM 20mins 255.51 

Ketoconazole 65277-42-1 CYP17c inhibitor (104) 100, 50, 25μM 20mins 567.05 
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Methods Section 2: Data analysis 

Overview of hierarchical clustering 

Hierarchical clustering was performed using parameters that quantified the effect 

of each compound on spatio-temporal dynamics. I extracted two distinct but 

complementary sets of parameters from the mean fluorescent intensity data that 

are indicative of the spatio-temporal patterns of activity. One set was derived from 

analysis of peaks of time series in each region of interest, and the other was 

derived from functional connectivity analysis. Subsequent analysis, including 

hierarchical clustering, was performed separately on each set of parameters. For 

each set of parameters, I formed a vector representation of each compound and 

the euclidean distances between each of the vectors was calculated and used for 

hierarchical clustering (105–108). The hierarchical clustering, for each of the two 

sets of parameters, produced a dendrogram, which represents each of the 

compounds similarity to one another in terms of either their peak parameters or 

functional connectivity.  

Data used in subsequent advanced statistical analysis (input data) 

The experimental unit was considered to be the data obtained, as described in 

‘methods section one’, from one individual larva imaged for approximately 200 

time-cycles, each cycle comprising 1 z-stack of 10 z-slices (to be referred to 

herein as a “frame”). Experiments below one hundred and ninety-eight frames in 

length were removed from analyses. This was done in order to ensure all 

timeseries were equally representative and to make sure parameters were not 

biased by the length of experiment.   

As previously stated, the image processing pipeline generated mean fluorescent 

intensity data for 50 ROIs comprising all major brain regions. It was imperative 

that all experiments used for analyses contained the same number of ROIs, this 

Table 1 (previous page): All compounds used in the current study. Colour coding in the left most column 

represents the seizure generating propensity of the compounds in question. Green represents compounds 

with no known seizure genic properties and red represent compounds with known associations with 

seizure. Column 3 shows the pharmacological class to which each compound belongs. Columns 4 and 5 

show the exposure conditions used for the ‘in life’ component of the experiments, and column 6 the % 

uptake exhibited by each compound based on the whole-body burden versus the external exposure 

concentration as determined by the previously undertaken chemical analysis of compound uptake.  

 

 

 

 

 

 

 

used for the ‘in-life’ component of the experiments  
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was necessary in order to ensure consistency. As a result eight ROIs were 

excluded from all analyses. ROIs included and excluded are outlined in table 2. 

ROIs were excluded if they were missing more than fifteen times across all 

experiments for all compounds. Such ROIs were considered to be frequently 

missing. ROIs were marked as missing if the mean intensity signal was zero 

across all the frames recorded in a single experiment. The reason for the absence 

of such frames was a failure of the image processing pipeline to correctly register 

that region, typically as the region consistently lay at the extreme of the imaging 

range (i.e. at the very top or bottom of the image z-stack such as the pituitary).  

After removing all ROIs deemed to be missing frequently, individual experiments 

were removed from analyses if they had non-frequently missing ROIs. That is to 

say, experiments were removed from analyses if they contained a ROI that was 

missing in less than 14 other experiments. 

As stated above ROIs were excluded if missing more than fifteen times. The 

number fifteen was chosen in order to strike a balance between the number of 

ROIs excluded from analyses and the number of experiments excluded from 

analyses. This is because if a large number of ROIs are excluded then coverage 

of the zebrafish brain is lost and if a large number of experiments are lost n-

numbers for compounds go down.  

There were forty-four different compounds including the control group. The 

number of experiments for each compound, not including control, varied between 

six and twenty-seven, with a mean of twenty-two.  

The total number of control experiments was three hundred and thirty-three. The 

large amount of variation in number of experiments per compound was due to 

some compounds having poor registration for ROIs that were not frequently 

missing across all experiments. This meant a large number of experiments from 

these compounds had to be excluded from analyses.  

In addition to the mean intensity data and peak analysis parameters provided by 

the image processing pipeline, for each experiment a functional connectivity 

matrix (109) was generated by calculating the Pearson correlation coefficient 

between the time series of all possible pairs of ROIs. Several alternative 

measures were considered, including cross correlation and coherence, the merits 
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and disadvantages of which are discussed in later chapters. Pearson correlation 

coefficient was chosen because it is simple to understand and implement while 

considering the amplitude and phase of any underlying oscillatory activity.  

Connectivity matrices are designed to give an indication of the level of functional 

similarity present between different ROIs and thus provide information on how 

functionally connected each ROI is to every other ROI. A schematic providing an 

overview of initial data input generation process is provided in Figure 5. 

The correlation coefficient between two time series was calculated as (eqn 1)  

𝑟𝑥,𝑦 =  
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑(𝑥𝑖 − �̅�)2 ∑(𝑦𝑖 − �̅�)2
, (𝑒𝑞𝑛 1) 

Here, 𝑛 is the number of time points in each time series, 𝑥 and 𝑦 the time series 

vectors of fluorescent intensity over time, 𝑥 ̅ and �̅� are the mean of the 

corresponding timeseries and 𝑟𝑥,𝑦 is the Pearson’s correlation coefficient between 

𝑥 and 𝑦:  

To generate a functional connectivity matrix, each ROI was compared to every 

other ROI, using the correlation coefficient (eqn 1). Each row and column of the 

resulting matrix represents a different ROI and the matrix element positioned at 

the intersection of each row and column is the correlation coefficient between the 

two corresponding ROIs (see Figure 5).  

Here, 𝑋 is a 𝑚 − 𝑏𝑦 − 𝑜 matrix of time series such that 𝑚 is the number of time 

points and 𝑜 is the number of ROIs. Here, 𝑅 is a connectivity matrix of 𝑋 such that 

𝑅 is given by: 

 

𝑅 =  [

𝑟𝑥1,𝑥1 ⋯ 𝑟𝑥𝑜,𝑥1

⋮ ⋱ ⋮
𝑟𝑥1,𝑥𝑜 ⋯ 𝑟𝑥𝑖,𝑥𝑜

] , (𝑒𝑞𝑛 2) 

The connectivity matrix is symmetric along the diagonal, with all the values along 

the diagonal being equal to one. As a result of this, only the values in the upper 

triangle of the connectivity matrix 𝑅, excluding the diagonal, were selected for 

further analyses. This was done to remove repetitions of correlation coefficients 

and comparisons of ROIs to themselves. 
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Table 2: Colour coding represents anatomical categorisation as subdivisions of the 

diencephalon, mesencephalon, rhombencephalon and telencephalon, along with ganglia 

respectively from top to bottom. 

 

 

 

Region of interest used in analyses ROIs excluded from analyses

Diencephalon Pituitary

Dorsal thalamus Torus lateralis

Eminentia thalami

Habenulae

Pineal

Posterior tuberculum

Preoptic area

Pretectum

Ventral thalamus

Mesencephalon

Tectum stratum periventriculare Caudal Hypothalamus

Tectum neurophil Intermediate Hypothalamus

Tegmentum Rostral Hypothalamus

Torus longitudinaris

Torus semicircularis

Rhombencephalon

Area postrema

Cerebellum

Corpus cerebelli

Eminentia granularis

Inferior olive

Interpendnuclar nucleus

Lateral reticular nucleus

Lobus caudalis cerebelli

Locus coeruleus

Mauthner

Medial Vestibular nucleus

Noradrendergic neurons 

Raphe Inferior

Raphe Superior

Tangential vestibular nucleus

Valvula cerebelli

Telencephalon

Anterior commissure Postoptic commissure

Olfactory bulb Optic commissure

Pallium

Subpallium

Eyes

Olfactory epithelium

Vagal ganglia

Spinal Cord

Spinal cord neuropil region
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 C 
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 D 

Figure 5:  A schematic showing the approach used for the advanced analysis applied to the experimental 
datasets A: ROIs outlined in colours over a maximum intensity projection taken from a single 4dpf larval 
zebrafish brain. B: A single ‘experiments’ time series depicting the mean fluorescent intensity of the different 
ROIs over time taken from a single experiment. C: image showing the definition of each of the peak 
parameters extracted from each time series. D: Heat map of connectivity matrix comparing forty-two ROIs. 
Each element represents a correlation coefficient with dark blue elements representing strong correlation and 
light blue representing negative correlation.  
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The selected values of the connectivity matrix were then reshaped into a vector 

𝑟, which consisted of eight hundred and sixty-one unique values henceforth 

referred to as the connectivity vector. A connectivity vector was generated for all 

the experiments (see figure 6). This was done in order to generate parameters 

reflective of how the brain dynamics of regions change in relation to one another 

in response to certain compounds. The correlations were vectorised so that 

experiments could be indexed by row upon data matrix generation, as 

subsequently described. 

Next a data matrix was generated in which each row is a connectivity vector from 

a single experiment. This data matrix 𝐷 is an 𝑚-by-𝑡 matrix where 𝑚 is equal to 

the total number of experiments across all conditions and 𝑡 is equal to the number 

of connectivity parameters. Data were organised as such, so that principal 

component analysis could be performed across all experiments and over all the 

parameters. 

Figure 6: Bar graphs depicting the functional connectivity vectors of the time series in figure 4. The x-axis is each 
element of the functional connectivity vector and the y-axis is the Pearsons correlation coefficient value (measure of 
functional connectivity) for that element. Each element of the connectivity vector represents a comparison between 

two different ROIs 
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In addition, and separately to the connectivity analyses, several peak parameters 

were calculated for each of the ROIs and for each experiment. These parameters 

consisted of the peak height, peak width, peak separation, number of peaks and 

the area under the curve. These were calculated as described previously (4). The 

mean and standard deviations of each peak parameter were calculated for each 

ROI for the time span of the experiment. There were therefore nine peak 

parameters, including peak number, calculated for forty-two ROIs totalling three 

hundred and seventy-eight different values for each experiment. A data matrix 

was generated and organised in the same way as for the connectivity analyses. 

Thus, a second 𝑚 − 𝑏𝑦 − 𝑝 data matrix 𝐷 was generated where 𝑚 was equal to 

the number of experiments and 𝑝 was equal to the number of peak parameters 

for each experiment (p=333). 

Next, each of the three hundred and thirty-three peak parameters were 

normalised such that the maximum for each parameter across all experiments 

was equal to 1, and the minimum equal to -1. If * and / represent pairwise 

multiplication and pairwise division of matrices respectively then the normalised 

peak parameters are calculated using equation 3, where 𝐷𝑖,𝑚𝑎𝑥 denotes the 

largest value in the 𝑖𝑡ℎ column of data matrix 𝐷, 𝐷𝑖,𝑚𝑖𝑛  denotes the smallest value 

in the 𝑖𝑡ℎ column of data matrix 𝐷 and 𝐷𝑖 denotes all the elements of the 

𝑖𝑡ℎ columns of data matrix  𝐷:  

(𝐷𝑖 −  𝐷𝑖,𝑚𝑖𝑛 ) ∗ (
2

𝐷𝑖,𝑚𝑎𝑥 −  𝐷𝑖,𝑚𝑖𝑛 
) , (𝑒𝑞𝑛 3) 

 

Principal Component Analysis 

The data matrices of the peak parameters and connectivity parameters were 

analysed separately but identically, thus in all future descriptions analyses were 

undertaken on both sets of parameters independently of one another. Principal 

component analysis (PCA) was used to reduce the dimensionality of each of the 

two data sets while retaining the majority of the variability present across 

compounds. The principal components were computed as follows: 

First, the covariance was calculated between all possible pairs of parameters 

using equation 4, where: x is a vector of experiments of a single parameter (e.g. 
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peak number for the diencephalon) and y a vector of experiments of a different 

individual parameter (e.g. mean peak height for the diencephalon). Here, 𝑚 is 

equal to the total number of experiments. The covariance between 𝑥 and 𝑦, 𝑐𝑥,𝑦 

was calculated as 

𝑐𝑥,𝑦 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖−1

𝑚 − 1
, (𝑒𝑞𝑛 4)  

Where 𝑝 is the total number of parameters. The covariance was calculated 

between all the different pairs of parameters across all experiments to produce a 

𝑝 − 𝑏𝑦 − 𝑝 covariance matrix 𝐶. Each row and column of the resulting matrix 

represented a different parameter and the matrix element positioned at the 

intersection of each row and column represented the covariance between the two 

corresponding parameters. 𝐶 was therefore a square matrix that was symmetrical 

down the diagonal such that the diagonal was the variance of each of parameter:  

𝐶   =   [

𝑐1,1 ⋯ 𝑐1,𝑝

⋮ ⋱ ⋮
𝑐𝑝,1 ⋯ 𝑐𝑝,𝑝

] , (𝑒𝑞𝑛 5) 

 

Subsequently, the 𝑛 eigenvalues and 𝑛 eigenvectors of the covariance matrix 

were calculated. Mathematically the eigenvalues and eigenvectors satisfy: 

𝐶𝑣𝑖 =  𝜆𝑖𝑣𝑖   (𝑒𝑞𝑛 6) 

The eigenvalues and corresponding eigenvectors were then sorted by 

descending size.  

The eigenvectors of the covariance matrix 𝐶 represent “directions” in the 

coordinate space in which the variability across experiments was organised. The 

amount of variability accounted for by each eigenvector decreased with the size 

of their corresponding eigenvalue. Therefore, to reduce the size of the data, but 

retain variability, the eigenvectors that contained 99% of the variability present in 

the data, were selected.  

This amount of variability accounted for by each eigenvector was directly 

proportional to the size of their corresponding eigenvalue. As such, the 

percentage of variability accounted for by each eigenvector was calculated by 

dividing the eigenvectors corresponding eigenvalue by the sum of all the 
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eigenvalues and multiplying the answer by one hundred. The number of 

eigenvectors that accounted for 99% of the variability was 127 and 211 for the 

connectivity and peak parameters respectively. 

 The original data for each set of parameters was then projected into this principal 

component space by multiplying the vector of values of each experiment by the 

eigenvectors with either the 127 or 211 largest eigenvalues (110). The data 

transformed into the principal component space is hereafter referred to as the 

principal component scores. 

 

Outlier detection 

Outlier detection was performed on all the experiments representing an individual 

compound. Outlier detection was performed by first calculating the euclidean 

distances between the vectors of principal component scores of the experiments 

for each individual compound as follows. The euclidean distance between two 

experiments for which 𝑝 and 𝑞 are their corresponding vectors of principal 

component scores, denoted as 𝑑𝑝,𝑞, is given by: 

𝑑𝑝,𝑞 =  √∑(𝑞𝑖 − 𝑝𝑖)
2

𝑛

𝑖=1

   (𝑒𝑞𝑛 7) 

Here, 𝑛 is the number of principal component scores. Distances were then 

calculated between all the experiments of each compound. The resulting matrix 

of distances between all the experiments of that compound, denoted 𝐷, is given 

by: 

 

𝐷   =   [

𝑑1,1 ⋯ 𝑑1,𝑒

⋮ ⋱ ⋮
𝑑𝑒,1 ⋯ 𝑑𝑒,𝑒

] , (𝑒𝑞𝑛 8) 

 

Here 𝑒 is the number of experiments of a compound. The mean of each of the 

columns of the 𝑒 − 𝑏𝑦 − 𝑒 distance matrix 𝐷 was then calculated to find the mean 

distance each experiment was from every other experiment of the same 
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compound, hereafter referred to as the mean within compound distance. This 

was done to identify experiments that are significantly different from other 

experiments of the same compound.  

The mean within compound distances were then put into size order and the 

interquartile range (IQR) and upper quartile (UQ) were calculated. Experiments 

were excluded from further analyses if their mean within compound distance was 

more than the UQ plus one and half times the IQR of the within compound 

distances (equation 14). Thus, the experiments whose corresponding within class 

distance satisfies 𝑒𝑞𝑛 13 were removed from analyses.  

𝑑𝑖 > (𝐼𝑄𝑅 × 1.5 +  𝑈𝑄), (𝑒𝑞𝑛 9) 

 

Hierarchical Clustering 

To simplify the analysis, I sought to utilise a single representative vector for each 

compound. In order to achieve this the mean principal component scores for all 

the experiments (after exclusion of outliers) representing each compound were 

then calculated, producing a vector mean of principal component scores for each 

compound. Each element of the resulting vectors was the mean of a set of 

principal components scores across all the experiments representing a 

compound. Subsequently the euclidean distance was calculated between the 

representative vectors of all of the possible pairs of compounds. The euclidean 

distance was used to assess the level of similarity between pairs of compounds. 

These similarities can be visualised by a hierarchical clustering dendrogram. 

A hierarchical clustering algorithm was employed to cluster compounds into a 

dendrogram based on their euclidean distances. Hierarchical clustering was 

performed using a simple agglomerative method known as ‘unweighted pair 

group method with arithmetic mean’ (UPGMA) (111). UPGMA works by first 

clustering the two compounds that are the shortest distance apart. Once the first 

cluster is generated it recalculates the distances to find the average distance 

between the newly formed cluster and the remaining compounds. Let 𝑎, 𝑏 and 𝑐 

be vectors representing individual compounds and 𝑑𝑎,𝑏 represent the euclidean 

distance between 𝑎 and 𝑏. Assuming 𝑎 and 𝑏 are clustered together to form the 

cluster 𝑎𝑏, the distance between the cluster 𝑎𝑏 and the compound 𝑐 is given by: 
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𝑑𝑎,𝑐 + 𝑑𝑏,𝑐

2
, (𝑒𝑞𝑛 10) 

Once the distances between the newly formed cluster and the remaining 

compounds have been generated, the smallest distance is again selected. If that 

distance is between the newly formed cluster and another compound, that 

compound is added to the cluster. If this is not the case a new and separate 

cluster is formed between the two compounds that are the shortest distance 

apart. The algorithm repeats itself, finding the smallest distance, and connecting 

the relevant compound or cluster into a new higher order cluster. The distances 

between two clusters are calculated by simply finding the mean of the pairwise 

distances between all the compounds within each cluster.  

The UPGMA algorithm was applied to the principal components scores of each 

the compounds to group compounds together based on how similar their 

functional connectivity or peak parameters were. The UPGMA algorithm was 

chosen because all the distances between compounds contribute equally to the 

separation of each cluster.    

Mean functional connectivity 

In addition to the hierarchical clustering algorithm, the mean functional 

connectivity was calculated across all ROIs for all the connectivity values of each 

compound. This was achieved by selecting all the connectivity vectors 

representing each experiment of a compound, excluding outliers. An average 

functional connectivity vector was then calculated as the element-wise mean 

across all the experiments of a compound. Subsequently the mean of all the 

elements in the resulting vectors was calculated to generate a single mean 

connectivity ,  an approach that has been applied to evaluating the progressions 

of Parkinson’s disease (112). This was repeated for all the different compounds 

(see table 3). 

Mean peak parameters 

In addition to the hierarchical clustering algorithm, the mean of each of the peak 

parameters was calculated across all ROIs for all the input data of each 

compound. This was achieved by selecting all the peak parameters representing 

each experiment of a compound, excluding outliers. The mean peak parameters 

were then calculated by calculating the mean across all the experiments. 
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Subsequently the mean of all the peak parameters across all the ROIs was 

calculated. This was repeated for all compounds (see table 6). 

Functional connectivity between areas connected by established neurochemical 

pathways 

Established neurochemical pathways connecting ROIs were identified from the 

literature. Pathways between the relevant ROIs were listed alongside the 

neurotransmitter present in each pathway (see table 4). Subsequently, the 

elements of the connectivity matrices that represented the connectivity between 

the two ROIs connected by an identified neurochemical pathway were extracted 

from each experiment. These values were then separated into their 

corresponding compounds. 

For each compound the connectivity values representing each identified 

neurochemical pathway were compared with the corresponding connectivity 

values for water using a Kruskal and Wallis one-way analysis of variance test. 

Compounds with a significantly lower or significantly higher (p<0.05) mean 

connectivity values are included in table 4.  

Results 

Mean functional connectivity 

The mean functional connectivity across all ROIs was generated in order to 

assess if generalised functional connectivity information provides insight into 

pharmacology or seizurogenic potential. This was done in an effort to identify if 

spatial information is an important indicator of either pharmacology or 

seizurogenesis. When the mean functional connectivity scores were generated, 

and put in order of magnitude, non-seizurogenic compounds were randomly 

distributed throughout table 4 and there were no obvious similarities relating to 

their pharmacology.  

As such it seems that non-spatially specific functional connectivity information 

does not provide much insight into pharmacology or seizurogenesis. It therefore 

seems that spatially specific information is a necessary component of the 

analysis, with regards to functional connectivity.  



Page | 34 
 

With this in mind, specific functional connectivity scores between ROIs with 

known neurochemical connections, were assessed for viability as biomarkers of 

drug action.   

 

 

Functional connectivity between areas connected by established neurochemical 

pathways 

This approach identified neurochemical pathways containing specific 

neurotransmitters from the literature. Subsequently the functional connectivity 

between the two ROIs connected by the identified pathways was calculated. 

Statistical analyses was performed to identify if compounds caused increased 

functional connectivity between the two selected ROIs, relative to control.  

As an intuitive example of the reasoning behind this process, one would expect 

that the functional connectivity between ROIs connected by neurotransmitters 

Compound Mean Functional connectivity Compound Mean Functional connectivity

(≥ Control) (< Control)

Amitriptyline 0.891 Bupropion 0.744

Muscarine 0.827 Nomifensine 0.743

NMDA 0.812 Olanzapine 0.741

Bethanechol 0.805 Clozapine 0.740

Amphetamine 0.802 Morphine 0.732

Tetraethylammonium 0.799 Cocaine 0.731

Yohimbine 0.794 Bemegride 0.731

CisACPD 0.792 SB205607 0.729

Donepezil 0.792 Apomorphine 0.728

Cisplatin 0.786 Clonidine 0.725

Ketamine 0.769 Caffeine 0.720

Physostigmine 0.761 Pilocarpine 0.720

Ketoconozole 0.759 Rolipram 0.716

Kainic 0.757 Quinine 0.711

Tacrine 0.756 Aminophylline 0.711

4-Aminopyridine 0.752 Amoxipine 0.711

Emetine 0.751 Maprotiline 0.708

Water - (Control) 0.744 SNC80 0.708

Theophylline 0.697

4-Aminophenylsulfone 0.692

Strychnine 0.684

Mizolastine 0.682

Pentylenetetrazole 0.677

Picrotoxin 0.649

Bicuculine 0.646

Gabazine 0.644

Table3: Mean functional connectivity data across all ROI pairs. Left two columns contain compounds whose 
mean functional connectivity is equal to or greater than the mean functional connectivity of water. Right two 

columns are the compounds whose mean functional connectivity is less than water. 
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such as serotonin would be increased by a serotonin reuptake inhibitor. Generally 

speaking this proved not to be the case. 

 

Ref Neurotransmitter Pathways 
Drugs with increased functional 
connectivity  

Drugs with decreased functional 
connectivity 

 
(113) 

Serotonin 
Raphe Inferior - 
Telencephalon 

 Cocaine, Muscarine, Physostigmine, 
SB205607, NMDA, Amitriptyline, 
Amphetamine, Bethanechol 

Mizolastine, Picrotoxin, SNC80, 
Amoxipine, Strychnine, Bemegride, 
Clonidine, Gabazine 

 
(113) 

Serotonin 
Telencephalon - 
Pallium 

Ketamine, Ketoconazole, Muscarine, 
Physostigmine, Tacrine, Donepezil, 
NMDA, Amitriptyline, Amphetamine, 
Bethanechol, Cis-ACPD 

Morphine, Amoxipine, Strychnine, 
Gabazine, Maprotiline 

 
 
(113) 

Serotonin 
Raphe Inferior - 
Diencephalon 

 Rolipram, Amitriptyline, 
Bethanechol, SB205607, 

PTZ, Apomorphine, Amoxipine, Cocaine, 
Ketamine, Ketoconazole, Tacrine, NMDA, 
Pilocarpine, Strychnine, Aminophylline, 
Bupropion, Donepezil, 4-
Aminophenylsulfone, Bicuculine, 
Clonidine, Gabazine, Mizolastine, 
Picrotoxin, SNC80, Bemegride 

(113) Serotonin 
Raphe Superior - 
Diencephalon 

 Kainic, Rolipram, Amitriptyline, 
Muscarine, Nomifensine, 

 PTZ, Pilocarpine, Strychnine, 
Bemegride, Bicuculine, Gabazine, 
Picrotoxin, Amoxipine, 

 
(113) 

Serotonin 
Raphe Inferior - 
Preoptic Area 

 Amitriptyline, Bethanechol, 

Bicuculine, Clonidine, Gabazine, 
Picrotoxin, Quinine, SNC80, 
Theophylline, Strychnine, Aminophylline, 
Donepezil, Bemegride,  

 
(113) 

Serotonin 
Raphe Superior - 
Preoptic Area 

Bethanechol, Cocaine, Ketamine, 
Muscarine, NMDA, Cisplatin, 
Amitriptyline, Amphetamine 

 Strychnine, Bicuculine, Gabazine, 
Picrotoxin, 

 
(113) 

Serotonin 
Raphe Inferior - 
Ventral Thalamus 

 Bethanechol, Muscarine, SB205607, 
Tetraethylammonium, Apomorphine, 
Morphine, Amitriptyline, 
Amphetamine 

Gabazine, Picrotoxin, SNC80, 
Theophylline, Emetine, Rolipram, 
Aminophylline, 4-Aminophenysulfone, 
Bemegride, Bicuculine, Clonidine 

 
(113) 

Serotonin 
Raphe Superior - 
Ventral Thalamus 

 Amitriptyline, Amphetamine, 
Bethanechol, Cocaine, Muscarine, 
Tetraethylammonium, 

 Strychnine, Aminophylline, Bicuculine, 
Picrotoxin, Quinine, SNC80, 
Theophylline, 

 
(113) 

Serotonin 
Raphe Inferior - 
Posterior 
Tuberculum 

 Amitriptyline, Amphetamine, 
Bethanechol, Cis-ACPD, Muscarine, 
Tetraethylammonium 

Bicuculine, Clonidine, Gabazine, 
Picrotoxin, Quinine, SNC80, 
Theophylline, Apomorphine, PTZ, 
Pilocarpine, Strychnine, Aminophylline, 
Donepezil, 4-Aminophenylsulfone, 
Bemegride  

 
(113) 

Serotonin 
Raphe Superior - 
Posterior 
Tuberculum 

 NMDA, Kainic, Cis-ACPD, 
Muscarine 

 Amoxipine 

 
(113) 

Serotonin 
Raphe Inferior - 
Habenulae 

Clonidine, Kainic, Apomorphine, 
Rolipram, Aminophylline, Donepezil, 
NMDA 

 SB205607 

(113) Serotonin 
Raphe Superior - 
Habenulae 

 Donepezil, NMDA, Kainic, 
Amitriptyline, Nomifensine, 

 PTZ, Bicuculine, Gabazine, Picrotoxin, 
Quinine, Caffeine, Cis-ACPD, 

 
(113) 

Serotonin 
Raphe Inferior - 
Mesencephalon 

Bethanechol, Cis-ACPD, Muscarine, 
Physostigmine, SB205607, Tacrine, 
NMDA, Clozapine, Yohimbine, 
Amitriptyline, Amphetamine 

 4-Aminophenylsulfone, Gabazine, 
SNC80, Theophylline, Apomorphine, 
Rolipram, 

 
(113) 

Serotonin 
Raphe Superior - 
Mesencephalon 

 Cis-ACPD, Muscarine, 
Physostigmine, SB205607, Tacrine, 
NMDA, Amitriptyline, Amoxipine, 
Amphetamine, Bethanechol 

Theophylline, Apomorphine, Emetine, 
Morphine, Rolipram, 4-
Aminophenylsulfone, Bicuculine, 
Clonidine, Gabazine, Quinine, SNC80 

 
(113) 

Serotonin 
Raphe Inferior - 
Torus 
semicircularis 

Bethanechol, Cocaine, Muscarine, 
Tetraethylammonium, Bupropion, 
NMDA, Yohimbine, Amitriptyline, 
Amoxipine 

 Bicuculine, Picrotoxin, Rolipram, 
Caffeine, 

 
(113) 

Serotonin 
Raphe Superior - 
Torus 
semicircularis 

Bethanechol, Cocaine, Muscarine, 
Tetraethylammonium, Bupropion, 
NMDA, Yohimbine, Amitriptyline 

 Bicuculine, Picrotoxin, Caffeine, 

 
(114) 

Serotonin 
Raphe Inferior - 
Spinal Cord 

Physostigmine, SB205607, Tacrine, 
Tetraethylammonium, NMDA, 
Amitriptyline, Bethanechol, 
Muscarine 

Gabazine, Picrotoxin, SNC80, 
Theophylline, Strychnine, Bemegride, 
Bicuculine, Clonidine 

(114) Serotonin 
Raphe Superior - 
Spinal Cord 

Cis-ACPD, Cocaine, Ketamine, 
Ketoconazole, Tetraethylammonium, 
Muscarine, Nomifensine, 
Olanzapine, SB205607, Tacrine, 
Caffeine, Amitriptyline, Amoxipine, 
Amphetamine, Bethanechol, 
Physostigmine 

Clozapine, Gabazine, Kainic, 
Apomorphine, Cisplatin, Emetine, 
Morphine, Rolipram, 4AP, PTZ, 
Pilocarpine, Strychnine, Aminophylline, 
Bupropion, 4-Aminophenylsulfone, 
Bemegride, Bicuculine, Maprotiline, 
Mizolastine, Picrotoxin, Quinine, SNC80, 
Theophylline, Yohimbine, Clonidine 

(114) Serotonin 
Raphe Inferior - 
Olfactory bulb 

 Rolipram, Amitriptyline, 
Bethanechol, Muscarine, 

 Mizolastine, Picrotoxin, Quinine, SNC80, 
Theophylline, Apomorphine, Amoxipine, 
Cocaine, Nomifensine, Physostigmine, 
Tacrine, 
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 PTZ, Pilocarpine, Strychnine, 
Aminophylline, Donepezil, 4-
Aminophenylsulfone, Bemegride, 
Bicuculine, Clonidine, Clozapine, 
Gabazine, Maprotiline, 

(114) Serotonin 
Raphe Superior - 
Olfactory bulb 

 Amitriptyline, 

Cocaine, Ketamine, Ketoconazole, 
Nomifensine, Olanzapine, 
Physostigmine, Tacrine, Strychnine, 
Bupropion, 4-Aminophenylsulfone, 
Bicuculine, Mizolastine, Quinine, SNC80, 
Caffeine 

(115) Dopamine 
Diencephalon - 
Telencephalon 

 Rolipram, Amitriptyline, 

 PTZ, Pilocarpine, Strychnine, 
Aminophylline, Bicuculine, Caffeine, Cis-
ACPD, Olanzapine, Physostigmine, 
SB205607, Tacrine, 
Tetraethylammonium 

(115) Dopamine 
Diencephalon - 
Pretectum 

 Bicuculine, Clozapine, Kainic, 
Apomorphine, Cisplatin, Emetine, 
Amitriptyline, Muscarine, 

Amoxipine, Caffeine, Ketoconazole, 
Nomifensine, Olanzapine, 
Tetraethylammonium, Strychnine, 
Bemegride, Gabazine, Maprotiline, 
Quinine, Rolipram 

(115) Dopamine 
Diencephalon - 
Subpallium 

 Clozapine, Kainic, Yohimbine, 
Apomorphine, Cisplatin, Emetine, 
Rolipram, Amitriptyline, Muscarine, 

 PTZ, Strychnine, Bemegride, 
Maprotiline, Quinine, Amoxipine, 
Caffeine, Nomifensine, 
Tetraethylammonium, 

(115) Dopamine 
Ventral Thalamus - 
Subpallium 

 Amitriptyline, Amphetamine, 
Bethanechol, Caffeine, Cis-ACPD, 
Ketoconazole, Muscarine, 
SB205607, 

 PTZ, Strychnine, 4-Aminophenylsulfone, 
Clonidine, Gabazine, Kainic, Maprotiline, 
Mizolastine, Quinine, SNC80, 
Apomorphine, Cisplatin, Emetine, 
Morphine, 

(115) Dopamine 
Posterior 
Tuberculum - 
Subpallium 

 Donepezil, Cis-ACPD, Cocaine, 
Muscarine, Olanzapine, 
Physostigmine, 
Tetraethylammonium, 

 Aminophylline, Theophylline, 
Ketoconazole, 

(116) Dopamine 
Pretectum - Dorsal 
Thalamus 

 Kainic, Cisplatin, Emetine, Rolipram, 
 PTZ, Pilocarpine, Strychnine, Bupropion, 
Bicuculine, Cocaine, 

(116) 
Dopamine/ 
Serotonin 

Posterior 
Tuberculum - 
Dorsal Thalamus 

 Amitriptyline, 

NMDA, Bicuculine, Maprotiline, 
Amoxipine, Caffeine, Cis-ACPD, 
Cocaine, Olanzapine, Tacrine, 4AP, PTZ, 
Pilocarpine, Strychnine, Aminophylline, 
Donepezil 

(117) Acetylcholine 
Habenulae - 
Interpendnuclar 
nucleus 

 Aminophylline, NMDA, Kainic, 
Apomorphine, Emetine, Rolipram, 
Amitriptyline, Muscarine, 

 Strychnine, Bicuculine, Picrotoxin, 
Quinine, Amoxipine, Caffeine, Cis-ACPD, 
Nomifensine, SB205607, 

(118) Acetylcholine 
Tegmentum - 
Diencephalon 

 Aminophylline, NMDA, Kainic, 
Apomorphine, Rolipram, 
Amitriptyline, 

 PTZ, Strychnine, Bicuculine, Picrotoxin, 
Amoxipine, Bethanechol, Caffeine, Cis-
ACPD, Olanzapine, Physostigmine, 
SB205607, 

(118) Acetylcholine 
Torus 
semicircularis - 
Pretectum 

 Amitriptyline, Amphetamine, 
Bethanechol, 

 Strychnine, Bicuculine, Quinine, 
Theophylline, Caffeine, Muscarine, 
Tacrine, 

(118) Acetylcholine 
Diencephalon - 
Rhombencephalon 

 Kainic, Rolipram, Amitriptyline, 

 Strychnine, Bupropion, Donepezil, 
Bemegride, Bicuculine, Picrotoxin, 
Amoxipine, Caffeine, Ketoconazole, 
Muscarine, 

(116) Noradrenaline 
Cerebellum - 
Locus coeruleus 

, Bethanechol, Caffeine, Cis-ACPD, 
Cocaine, Ketamine, Ketoconazole, 
Muscarine, Nomifensine, 
Physostigmine, Donepezil, NMDA, 
Bemegride, Clozapine, Picrotoxin, 
Amitriptyline, Amoxipine, 
Amphetamine 

 Kainic, Theophylline, Apomorphine, 
Morphine, 

(116) 
Noradrenaline/ 
Dopamine 

Area postrema - 
Spinal Cord 

Yohimbine, Apomorphine, Cisplatin, 
Emetine, Morphine, Rolipram, 
Amitriptyline, Amphetamine, 
Bethanechol, Cocaine, Muscarine, 
Physostigmine, 4AP, Aminophylline, 
Bupropion, Donepezil, NMDA, 
Bemegride, Clozapine, Kainic, 
Theophylline,  

  

 

Table 4: from left to right: Column 2: The neurotransmitter present in the identified neurochemical pathway. 

Column 3: The two ROIs the neurochemical pathway connects. Column 4: Compounds that have a 

signficantly higher mean connectivity value between the two corresponding ROIs than control. Column 5: 

Compounds that have a signifcantly lower mean connectivity value between the two corresponding ROIs 

than water. 

Amitriptyline features heavily as amitriptyline causes a large increase in 

functional connectivity generally (see table 3). Moreover, dopamine agonists 



Page | 37 
 

such as cocaine and amphetamine do not appear to increase functional 

connectivity between the identified ROIs for dopamine. The only exception being 

between the posterior tuberculum and the Subpallium. Similarly, acetylcholine 

upregulators such as donepezil, tacrine, and physostigmine noticeably do not 

increase functional connectivity between ROIs connected by alleged 

acetylcholine pathways. 

Connections between the raphe superior and the spinal cord appear to have 

some sensitivity for serotonergic compounds. Cocaine, ketamine, nomifensine, 

amoxipine and amphetamine all increase functional connectivity between the 

regions and all are agonists of serotonin. However, the functional connectivity of 

this area was increased for a number of other compounds also. 

Drugs with effects on noradrenaline seemed to consistently increase functional 

connectivity in both the noradrenaline pathways with compounds such as 

bupropion, amphetamine and amoxipine. However, again relevant compounds 

appear beside a wide array of other compounds.  

Generally speaking this particular approach did not show that there were any 

specific functional connectivity values that were indicative of specific 

pharmacologies. It is on this basis that multivariate techniques were used, in to 

take into account all the parameters simultaneously, as opposed to the univariate 

approaches described above.  

 

Hierarchical clustering of Principal component scores 

PCA product 

I used a hierarchical clustering algorithm to produce a dendrogram, clustering 

together drugs with similar functional connectivity values or peak profile 

parameters in the zebrafish brain, based on their respective principal component 

scores (figure 8). To demonstrate that the principal component scores were 

accurately represented by the dendrogram and to highlight the way in which 

principal component scores represent compounds, the principal component 

scores of drugs that were closely linked in the dendrogram are shown in figure 7.  

As an example, CisACPD and bethanechol on the left-hand side of figure 7 are 

closely associated with one another in the dendrogram, (see figure 8). Similarly, 
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4-aminophenylsulfone and SNC80, on the right hand-side of figure 7 are closely 

associated, but the pair on the left and the pair on the right hand-sides are distinct 

from one another. These similarities and distinctions in figure 8 are mirrored in 

figure 7. 

 

  

Hierarchical Clustering of Functional Connectivity: Relation to Known 

Pharmacology 

4-Aminophenylsulfone and SNC80 were the two compounds deemed most 

similar in functional connectivity by the clustering algorithm (see figure 7). 4-

Aminophenylsulfone is an antibiotic with no known effect on brain function, 

conversely SNC80 is a delta opioid agonist. However, there is evidence to 

suggest that SNC80 has poor affinity to zebrafish delta opioid receptors and it 

seems in this case to have little effect in the zebrafish brain (119), thus explaining 

its close proximity to 4-aminophenylsulfone in this dendrogram. The 

antihistamine mizolastine is also clustered closely to both SNC80 and 4-

aminophenylsulfone. This is unsurprising as mizolastine has been shown to be 

free of the sedative effects often associated with H-1-recepter antagonists (120). 

Figure 7: Line graphs of the mean principal component scores. Grey outline is standard error of the mean of 
the principal component scores across all experiments of the respective class. The two compounds on the left-
hand side cluster together strongly and have highly similar mean principal component scores, as do the two 
drugs on the right. Comparatively comparing the left and right-hand sides there is relatively little similarity as 
evidenced by the difference in profiles exhibited. 
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The next two closely associated compounds were apomorphine and emetine, 

both drugs have emetic properties which may explain their close proximity 

(121,122). Cisplatin and kainic acid form a close-knit cluster with emetine and 

apomorphine. Cisplatin is also a powerful emetic which strengthens the 

suggestion that emetic drugs induce distinct functional connectivity patterns. 

(123). Conversely kainic acid is a glutamate agonist (124), however in the larval 

cultures for exposure via the medium it does not appear to be bioavailable and 

so is unlikely to elicit any pharmacological effect (see table 1).  

The medications amoxipine and olanzapine also have very similar functional 

connectivity patterns to one another. Amoxipine and olanzapine are used for 

treating depression and schizophrenia, respectively, and both compounds have 

effects on dopamine, serotonin and noradrenaline. Interestingly, while amoxipine 

is a serotonin and noradrenaline reuptake inhibitor (79), olanzapine is a serotonin 

and noradrenaline antagonist (64). In this context, it is counter intuitive that these 

two seemingly contradictory compounds associate so closely. However, 

amoxipine does also have some antagonistic effects on serotonin and 

noradrenaline receptors and it may be the case that these effects are accentuated 

in zebrafish (79).  

The illicit drug cocaine is the next most similar compound, in terms of functional 

connectivity, to amoxipine and olanzapine. Cocaine prevents reuptake of 

serotonin, noradrenaline and dopamine by inhibiting their associated transporters 

(125). Cocaine therefore shares some of its primary pharmacological actions with 

amoxipine which may explain the similar functional connectivity patterns. The 

cluster most closely associated with amoxipine olanzapine and cocaine includes 

the three compounds nomifensine, ketamine and ketoconazole. Much like 

cocaine, nomifensine is a dopamine reuptake inhibitor (102). Nomifensine is most 

closely associated with ketamine in the dendrogram. Ketamine is a drug with a 

large repertoire of pharmacological effects including N-methyl D-aspartate 

(NMDA) receptor inhibition (101), dopamine receptor agonism (126) and 

serotonin receptor agonism (127). The latter two effects may explain ketamine’s 

similarity in functional connectivity with drugs such as amoxipine, nomifensine 

and cocaine. Ketoconazole is the compound most closely linked to nomifensine 

and ketamine, despite being an antifungal with no recorded effects on dopamine, 

serotonin or noradrenaline (104).   
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Higher up in the dendrogram from the aforementioned clusters, is the pairing of 

cis-ACPD and bethanechol. Bethanechol is a parasympathomimetic which is 

pharmacologically and structurally related to acetylcholine (83). In contrast, cis-

ACPD is a potent NMDA receptor agonist (71). Both compounds induce a 

generalised increase in functional connectivity across the zebrafish brain (see 

table 3) but do so using different mechanisms of action. The next most closely 

associated drug to this pair is physostigmine, an acetylcholinesterase inhibitor. 

Much like bethanechol, physostigmine is a parasympathomimetic, and is 

Hierarchical Clustering of Functional Connectivity 
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Figure 8: Cluster dendrogram output of hierarchical clustering algorithm performed on functional connectivity 
data. Colours indicate broader pharmacological classes. 
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responsible for the stimulation of muscarinic acetylcholine receptors (62).  The 

cluster most closely associated to physostigmine, bethanechol and cis-ACPD 

also contains a muscarinic agonist, muscarine, suggesting there is some 

clustering of parasympathomimetic compounds (82). Muscarine is partnered 

most closely with tetraethylammonium, a compound that increases the length of 

action potentials by blocking potassium channels (128). Tetraethylammonium 

may have other properties that explain its similarity to muscarine, as 

tetraethylammonium is not a well understood compound. Directly adjacent to this 

pair is the illicit drug amphetamine. Amphetamine has a wide range of 

pharmacological effects including dopamine reuptake inhibition (129). 

Amphetamines dopaminergic activity may explain its similarity to muscarine, as 

stimulation of muscarinic receptors can initiate dopamine release (130).  

Interestingly, tacrine and NMDA for a cluster. This cluster is markedly distinct 

from all other clusters however this pair is mirrored in the cis-ACPD and 

bethanechol pairing. NMDA, like cis-ACPD, is a NMDA receptor agonist (131) 

and tacrine, like bethanechol, is an acetylcholine agonist (132). The pairing of 

acetylcholine agonists and NMDA receptor agonists is unexpected as they are 

two distinct pharmacological mechanisms however it may be explained as a 

reflection of the seizurogenic properties of the compounds. Drugs that increase 

acetylcholine activity have been implicated in seizurogenesis in rats (133), 

similarly NMDA agonism is known to be effective in generating seizures (134). 

Peak parameter clustering: relation to known pharmacology 

When clustering the peak parameters, the two most closely associated 

compounds were the water and cisplatin (see figure 9). This suggests cisplatin 

has little effect on zebrafish brain dynamics. Given that cisplatin is not typically 

considered a neurotropic drug it’s similarity to water conforms is what would be 

expected pharmacologically (135). The next two most closely associated drugs 

with cisplatin and water are kainic acid and emetine. Kainic acid, as mentioned 

above, does not appear in detectable quantities in the zebrafish brain (see table 

1), using the culture approach adopted, thus, its similarity with water is 

unsurprising. Emetine is closely paired with kainic acid and like cisplatin isn’t 

typically associated with any cognitive effects (97). The next most closely 

associated compound with the aforementioned four compounds is 4-

aminophenylsulfone, another drug without established effects on the central 
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nervous system (92). The next most closely allied pair contains the compounds 

ketoconazole and clonidine. Ketoconazole is an anti-fungal drug with no known 

brain effects, as such it would not be expected to induce changes in the zebrafish 

brain, thus explaining its relatively close localisation with water (14). Conversely, 

clonidine is an alpha-adrenergic agent that has well established effects on the 

brain and is known to localise in the CNS. By binding to a variety of alpha-

adrenergic receptors it has a plethora of effects including pain relief and reduced 

Figure 9: Cluster dendrogram output of hierarchical clustering algorithm performed on peak parameters. 
Colours indicate broader pharmacological classes. 

Hierarchical Clustering of Peak Parameters

Amitryptyline

NMDA

Aminophylline 

4-Aminopyridine

Physostigmine

Tacrine

Bemegride  

Donepezil

Bicuculline

Pilocarpine

Strychnine  (Gly but not brain)

PTZ

Muscarine

Caffeine

SB205607

CisACPD

Tetraethylammonium 

Olanzapine

Bethanechol

Rolipram

Morphine 

Apomorphine 

Yohimbine 

Picrotoxin

Theophylline 

Quinine 

Maprotiline

Gabazine

SNC80

Mizolastine

Clozapine 

Nomifensine

Cocaine

Amphetamine 

Amoxipine 

Ketamine

Bupropion 

Ketoconazole

Clonidine 

4-Aminophenylsulfone 

Emetine

Kainic acid 

Water

Cisplatin 

1 1.5 2 2.5 3 3.5 4 4.5 5

Mean Euclidean Distance 



Page | 43 
 

blood pressure (93). Clonidine may represent the boundary after which brain 

active drugs start to be present in the dendrogram.  

The next cluster positioned higher up the dendrogram from water and contains 

an assortment of serotonergic and dopaminergic active compounds. Of these, 

the pair of compounds with most similar peak parameters are ketamine and 

bupropion. Ketamine, among a range of other effects enhances descending 

inhibiting serotonergic pathways and inhibits reuptake of serotonin, noradrenaline 

and dopamine (136). Similarly, bupropion has inhibiting effects on serotonin, 

noradrenaline and dopamine reuptake (77). The next most similar compound is 

Table 3: from left to tight: compounds used in experiment, mean area under the curve, mean peak number, 
mean peak height, mean peak width, and mean peak seperation. All veargaes were calculated across all 
ROIs and all experiments of each class.  
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amoxipine, a tricyclic antidepressant that induces noradrenaline and serotonin 

reuptake inhibition (137). 

Adjacent to this cluster is a trio of drugs including: nomifensine, amphetamine 

and cocaine. All three of these compounds are involved in either dopamine 

reuptake inhibition and or direct dopamine agonism (103,138,139). 

Amphetamine and cocaine both also increase synaptic neurotransmission of 

serotonin and noradrenaline (138,139). Notably, nomifensine and apomorphine 

occupy different parts of the dendrogram, despite their similar chemical 

structure. However, this is perhaps not unexpected as while both compounds 

upregulate dopaminergic neurotransmission, they have contrasting effects on 

the adrenergic system. Nomifensine is a noradrenaline reuptake inhibitor (140) 

and thus is responsible for increasing adrenergic synaptic transmission while 

apomorphine is thought to have antagonistic effects on adrenergic receptors 

(141). 

Of the five-remaining serotonergic, dopaminergic or noradrenergic compounds 

apomorphine, clozapine and olanzapine all have some form of serotonergic, 

adrenergic or dopaminergic antagonism and thus their absence, from the 

aforementioned cluster of six mood enhancing compounds, makes 

pharmacological sense (95,142–144).  

 Moreover, maprotiline, which is also absent, has only weak dopaminergic and 

serotonergic activity (78). Amitriptyline is the only remaining drug that should 

potentially cohabit this cluster due to its serotonin and noradrenaline reuptake 

inhibition (80). Given that amitriptyline is not remotely similar, in terms of its 

peak profiles or indeed its functional connectivity values, to any other compound 

it could be argued that it is an anomaly. Adjacent to the cluster of mood 

elevating compounds, described above is another tightly knit group of 

compounds consisting of clozapine, mizolastine, SNC80, gabazine and 

maprotiline. This cluster contains a diverse array of pharmacologies. Clozapine 

is an atypical antipsychotic medication which is an antagonist of dopamine, 

serotonin and adrenergic receptors (143). SNC80 and mizolastine, clozapine’s 

closest allies, are a μ–δ opioid receptor agonist and antihistamine respectively 

(96,145). Maprotiline and gabazine also form a tight pairing and are an 

adrenergic reuptake inhibitor with weak action on serotonin and dopamine 

transporters and a GABAA antagonist respectively (78,146). While they do have 
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discordant pharmacologies gabazine and maprotiline both have relatively poor 

bioavailability in embryo-larval cultures (see table 1) and thus in the zebrafish 

brain which may explain their pairing.  

 

Peak parameter clustering results in relation to seizurogenic properties 

Moving up the dendrogram from maprotiline, the following 14 compounds have 

little pharmacologically validatable clustering. At the point of PTZ, however, there 

again appears to be some clustering of acetylcholine modulating compounds. 

Strychnine, PTZ and pilocarpine form a cluster however a reasonably well spread 

one. PTZ and strychnine are both seizure inducing compounds however via 

different modes of action. PTZ inhibits GABAA to reduce inhibitory 

Figure 10: Cluster dendrogram output of hierarchical clustering algorithm performed on peak parameters. 

 

Seizure Generating Potential

Potentially Seizure Generating

Not Potentially Seizure Generating
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neurotransmission and initiate seizures (147). Conversely strychnine induces 

seizure via glycine inhibition in the spinal cord (148). Pilocarpine, in contrast to 

strychnine, is a muscarinic agonist (81), rather than a acetylcholine antagonist 

(149).  Sitting above pilocarpine in the dendrogram is a quartet of compounds: 

donepezil, bemegride, tacrine and physostigmine forming a cluster, however 

each member of the cluster is relatively far away in euclidean space. Of these 

four compounds, all except bemegride are acetylcholinesterase inhibitors (150–

152).  

At the very top of the dendrogram a single cluster of three compounds reside: 

NMDA, aminophylline and 4-Aminopyridine. All three of these compounds have 

distinct pharmacologies and indeed the dendrogram places them reasonably 

separate from each other in euclidean space. While they are not similar 

pharmacologically they all have well established seizurogenic properties 

(84,153–155). 

Using the peak hierarchical clustering approach, drugs with seizure generating 

potential were highlighted to assess if seizurogenic compounds showed some 

clustering. Upon observation it seemed that they were, at least to some extent. 

All the non-seizurogenic drugs occupied a single large cluster at the bottom of 

the dendrogram (figure 10). All the sub-clusters within this large cluster were less 

than two units in euclidean space away from each other (see figure 10). However, 

there are several seizurogenic compounds within this cluster. Of these some 

have low uptake into the zebrafish CNS including picrotoxin, maprotiline, 

gabazine and kainic acid (Table 1). Additionally as SNC80 has poor affinity for 

zebrafish delta opioid receptors (119) it is unlikely to demonstrate its seizurogenic 

potential (156). Moreover, there are no uptake data for theophylline and thus it is 

also possible that low bioavailability is an issue. Aside from theophylline, all the 

remaining seizurogenic drugs that reside within this cluster are serotonin, 

dopamine and noradrenaline inhibitors. These mood elevating compounds 

cluster together regardless of seizurogenic potential and seem to elicit spatially 

specific peak profiles.  

Functional connectivity clustering results in relation to seizurogenic properties 

Clustering of seizurogenic compounds was less specific when clustering was 

performed on the connectivity parameters. There was some clustering of 
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seizurogenic drugs at the top of the dendrogram (figure 11), including 

amphetamine and Picrotoxin, two compounds that clustered with non-

seizurogenic compounds in the peak profile dendrogram. However, generally 

speaking, non-seizurogenic drugs were spaced fairly evenly throughout. It is clear 

that while functional connectivity shows some clustering of seizurogenic 

compounds it is, generally speaking, an inferior method for assessing the 

seizurogenic properties of compounds relative to assessing the peak profiles. 

 

Differences between peak and functional connectivity analyses 

Hierarchical Clustering of Functional Connectivity 
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Figure 11: Cluster dendrogram output of hierarchical clustering algorithm performed on connectivity parameters. 
The colours of compounds indicate seizurogenic potential, with compounds in red being potentially seizurogenic, 
and those in green being non-seizurogenic 
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Water and 4-Aminopyridine cluster tightly together when analysed based on their 

respective functional connectivity values. However, when clustered based on 

their peak profiles the two compounds were distinct from one another (see figure 

10 and 11). Similarly, water and cisplatin clustered closely based on their peak 

parameters but were distinct from one another when compared using their 

functional connectivity values (see figure 10 and 11). Figure 12 (top of next page) 

highlights the distinction between utilising peak parameters extracted from the 

time series and functional connectivity. While some compounds may have closely 

related functional connectivity this does not necessarily translate to closely 

related functional connectivity and vice versa. These significant distinctions 

between the two sets of parameters underlies the motivation for analysing them 

separately.   
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Discussion 

Of the analytical techniques used the most effective was the clustering approach. 

Similar multivariate clustering approaches have been used previously to 

successfully cluster cognition enhancing compounds based on parameters 

extracted from cortical EEG oscillations (8). The evidence from EEGs in mice 

suggests certain drugs elicit distinct temporal activation patterns and that analysis 

of brain dynamics over time could provide useful biomarkers for specific 

pharmacodynamics. The study describe here utilises calcium imaging techniques 

Figure 12: On the left-hand side: Representative time-series of all 42 ROIs. ON the right-hand side: Mean functional 
connectivity values across experiments of individual classes (with outliers removed). The x-axis here represents every 
possible pair of ROIs.   
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for detection of brain activity and thus has a far greater emphasis on spatial 

information than temporal. Comparison of the spatially specific parameter 

clustering with the mean parameter values suggest that spatially specific 

temporal information is highly informative for profiling drugs and that spatial 

element is of particular importance. 

Of the two sets of parameters, peak profiles and functional connectivity data, 

peak profiles seemed to provide the most useful data, both in terms of identifying 

seizurogenic compounds and identifying pharmacology. In terms of the functional 

connectivity data, it may be that for some compounds the pharmacological 

signatures were overridden due to hyperexcitation, induced by the high 

concentrations used for some compounds. Despite this the functional 

connectivity data were not totally unsuccessful; there was some clustering of both 

antidepressant and seizurogenic compounds.  

During analysis of the peak profiles, five of the six drugs most closely associated 

with water would be considered unlikely to induce any significant cognitive effect 

based on their respective pharmacologies, suggesting that non-neurologically 

active compounds could be consistently identified using this approach. Moreover, 

the entire upper half of the dendrogram, contained a cluster exclusively populated 

with seizurogenic drugs. 

Aside from an aptitude for identifying non-seizurogenic compounds, the peak 

profiles displayed an efficacy for clustering compounds based on their 

pharmacologies. An interesting example of this is the clustering of bupropion and 

ketamine. Bupropion is a well-established antidepressant drug and ketamine has 

come to the forefront in more recent years as an alternative antidepressant that 

is effective in treating patients with major depressive disorder, including those 

resistant to other medications (56). Including this pair, there is a cluster of six 

drugs that have a mixture of dopaminergic, noradrenergic and serotonergic 

agonistic effects, all of which could be classified as mood elevating compounds. 

The functional connectivity analyses contained a similar cluster containing a 

number of the same compounds, however it was not as extensive nor as tightly 

knit as in the case of the peak profiles.  

It seems, therefore, that mood elevating compounds, such as recreational and 

antidepressant drugs, elicit very specific and similar spatio-temporal patterns in 
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the zebrafish CNS. The approaches detailed here could therefore have some 

implication in the categorisation and identification of drugs for treating 

depression, a disease for which current therapeutics have a number of concerns 

in terms of efficacy and toxicity (157). 

Peak profile parameters, unlike functional connectivity, provide a measure of the 

magnitude of activity. This is of particular relevance in the case of identifying 

seizurogenic compounds, as seizures very much derive from hyperexcitation 

(158), thus a measure of magnitude should confer greater differentiation between 

seizurogenic and non-seizurogenic compounds. Moreover, differences in 

magnitude are translated well in the analyses as euclidean distance is sensitive 

to these differences. In terms of pharmacology magnitude is also relevant as 

some pharmacologies will likely increase the number of action potentials in 

specific areas, therefore spatially specific increases in magnitude likely confer 

useful information for modelling of pharmacodynamics.  

While the lack of information, in terms of magnitude, conferred by functional 

connectivity could be perceived as a flaw, it does allow for analyses to be 

performed without concerns that slight variations present in the model organism 

may have a detrimental effect on the results. This is of particular relevance, in 

this case, due to the lack of a within experiment control that could account for 

variation between animals or indeed batches of animals. As such, variations in 

terms of baseline fluorescent intensity are more difficult to account for as 

removing the mean linear trend doesn’t fully mitigate the heterogeneity between 

animals. As functional connectivity analyses compare different ROIs from the 

same animal to one another, differences in overall magnitude between animals 

is mitigated.  

In addition, there are distinction in terms of the spatial information provided by 

the two sets of parameters. The peak parameters consider the spatial element of 

the data but using summarised representations of the time series. Conversely 

functional connectivity considers the whole timeseries point by point and 

consequently provides a more complete representation of the spatio-temporal 

patterns, however does not provide direct information about the precise temporal 

dynamics, for example the size and amplitude of spikes. 
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Moreover, it is possible that functional connectivity could perform better in terms 

of representing pharmacology were hyperactivity not an issue and concentrations 

were kept at effective but non-hyperactive levels. It should be noted that for this 

animal model within experiment controls are not always possible, as drug 

exposure times can be long, and fish may not stay alive and healthy in agar for 

long enough for experiments to be performed. In this respect functional 

connectivity is advantageous and while it performed poorly in this study it should 

not be written off on this basis. 

Chapter Three: Classification learners. 

Introduction 

In the previous chapter it was identified that potentially seizurogenic compounds 

cluster towards each other when compared based on their peak profiles. 

Therefore, in this chapter I set out to identify if a classification model could be 

trained that recognises seizurogenic compounds based on their peak profiles, 

and thus build a framework that could be used to separate seizurogenic from 

non-seizurogenic compounds. The overall aim is to create a model that can 

accurately identify seizurogenic compounds based on the peak profiles of 

unseen data. That is to say, were identical experiments performed on an 

unknown or novel compound and identical parameters extracted from said 

experiments, the data could be fed into the model and the model would provide 

a reliable assessment of whether that compound has the potential to be 

seizurogenic or not.  

In order to do this, I utilised the MATLAB built in classification learner tool box 

(159) to generate and test a number of different machine learning algorithms. 

Machine learning algorithms vary greatly in terms of the kind of data they are 

adept at classifying, because different approaches depend on different 

assumptions of the data (160) (see below for more detail). Given the lack of 

information on the problem at hand I decided to test multiple classifiers to see 

how they performed against each other. Three different discriminative models 

were chosen for this task: a shallow neural network (NN), a support vector 

machine (SVM) and a logistic regression. The models were chosen because 

they are three models widely used in science and because they each have very 

different ways of addressing the classification problem. 
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Classification algorithms can be highly accurate predictive models. In past 

studies, utilising data generated from structural MRI scans, SVMs have been 

able predict the clinical response of patients to antidepressant drugs with up to 

89% accuracy, prior to the initiation of treatment (161). Similarly, EEG data in 

conjunction with machine learning techniques, has been used to predict 

responses to clozapine therapy with up to 85% accuracy in an independent test 

group (162). 

In addition to drug response prediction, machine learning approaches have also 

been used in the area of drug discovery. Novel compounds can be compared to 

known compounds and biological targets, based on their structural similarity, 

using parameters such as molecular properties, topological descriptors and 

pharmacophore fingerprints. Using machine learning techniques in conjunction 

with these measures can provide valuable insight into the applications of novel 

compounds (163). Such approaches provide information about compounds very 

early on in the drug creation process and are therefore an invaluable tool. 

Later on, in the drug development process, machine learning can provide 

insight into the effects of drugs in vivo. Machine learning based analysis of brain 

networks has proved effective in differentiating drugs based on their in vivo 

effects. In one such study, fMRI scans were performed on healthy volunteers 

exposed to two compounds with distinct pharmacologies. The image data 

obtained was analysed using machine learning approaches and the resulting 

model could sensitively differentiate between the two compounds and a placebo 

(164). Machine learning algorithms have also been applied to behavioural 

assays in zebrafish as a predictor of drugs pharmacological profiles (165). 

Given the efficacy of machine learning approaches on similar kinds of data sets, 

in the area of drug discovery, and the ease with which such tools can be applied 

to new data, machine learning algorithms were applied to differentiate between 

the seizurogenic and non-seizurogenic compounds in our data set.  

The following sections give an overview of the principals necessary to 

understand machine learning. In addition, I describe intuitively how each of the 

algorithms used in this thesis function. This is not only to provide the reader with 

understanding but also to highlight how varied machine learning algorithms are 

and in what contexts particular types of algorithm flourish. 
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Training and test data 

Classification learners are trained using training data. Training data is given to a 

classification learner in conjunction with information regarding how the data 

should be classified (i.e. the ground truth). Unseen test data, with known 

classes, is subsequently used to test the classifier to see how often the 

classifier classifies correctly (166). 

For example, to generate a model that predicts whether or not a student was 

going to pass an exam a previous cohort of students that sat the exam could be 

analysed, with variables such as number of hours studied, previous test scores 

in other subjects, numbers of hours of sleep a night etc. extracted. A parameter, 

in this context, is any information that can be extracted from a data set that is 

potentially predictive of the outcome. The cohort could then be split into training 

and test sets, with half the students that passed the exam and half the students 

that failed the exam contained in each set. 

The extracted parameters would be run through a training algorithm for the 

model in conjunction with the known output: whether or not that student passed 

the exam.  This is what is known as supervised learning. That is to say, a 

classification learner is provided with the data to be classified and provided with 

the correct classification for each piece of input data.    

Once the classifier has been ‘trained’ it is necessary to ‘test’ the classifier to see 

if it can effectively classify new data. This simply means providing a classifier 

with the test set. The classifier is then used to predict the classification of each 

student in the test set: whether or not they pass or fail the exam. Because the 

exam scores of the students are known the accuracy of the classification 

learner can be calculated. 

 

 

Support Vector Machine 

Extending upon the exam pass example in the context of SVM, for this 

example, I envisage two parameters: the test scores from two previous exams. 

First the data would be split into test and training sets. Then each of the 

individuals, from the training data, are mapped onto data points in a feature 
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space in this case points on a two-dimensional plot (one dimension for each 

parameter). Subsequently, a dividing line is drawn, in two dimensions, between 

individuals that fall into the different classifications; in this case individuals that 

pass an exam and individuals that fail. 

The position of this dividing line is decided as follows: lines are drawn along the 

data points from each classification that are closest to the data points from the 

opposing class, these are known as the support vectors. A line is then drawn 

that is equidistant from each support vector and that maximally separates the 

classifications. Considering the application of this algorithm to higher 

dimensional problem, the line is called a hyperplane (167). 

 

 

Figure 63: The blue circles represent students who pass the test. The red circles represent students who 

fail the test. The x and y axes are the parameters, in this case previous test scores. The line separating 

them is the hyperplane. When a new student’s test scores are input into this model and are above the 

hyperplane they will be classified as a student who passes the exam. 

 

When the test data is input into the constructed support vector machine it too is 

mapped into the feature space and the side of the line it falls on dictates its 

classification.  

For the example above, two parameters were used for ease of visualisation. 

However this approach can be applied to data sets with a huge number of 
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parameters. The number of dimensions in the feature space is simply increased 

to be equal to (or higher than – in the case of kernel functions) the number of 

parameters. The parameters then act as co-ordinates for each of the data 

points in the multidimensional feature space.  

The advantage of SVMs is they can be applied to very high dimensional data 

and don’t necessarily require a large number of data points. In fact, the only 

data points that influence the outcome in an SVM are those that influence the 

positions of the support vectors.  

Now the hyperplane is easy to draw in the case of linearly separable data such 

as in figure 13, because the data are completely separated in their feature 

space. Thus, the position of the hyperplane is easily dictated. However, if this is 

not the case, such as in figure 14, then generating the hyperplane becomes 

more complex.  

 

Figure 14: The blue circles represent students who pass the test. The red circles represent students who 

fail the test. The x and y axes are the parameters, in this case previous test scores. There is overlap 

between the blue and red circles, thus these data are not linearly separable. 

Given that I don’t expect most real-world data to be perfectly linearly separable 

it is necessary to employ kernel functions. Kernel functions represent the 

distance between data points in higher dimensional space. They essentially 

take the parameters used to map the data points and combine them to form 

additional parameters. The goal of this process is to take the data points that 

aren’t linearly separable and map them into a higher dimensional space where 
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they are (167). This allows the computation of a hyperplane in data sets that are 

not linearly separable. 

Neural Networks 

Neural networks come in many shapes and sizes, the one used in this study is 

a simple single layer feed forward neural network (168). Neural networks have 

input, hidden and output layers. In each layer there are a number of ‘neurons’ 

each of these neurons has a connection to every single one of the neurons in 

the subsequent and previous layer. The number of neurons in the input layer is 

equal to the number of parameters in the data, the hidden layer has as many 

neurons as the experimenter chooses, and the output layer has as many 

neurons as there are classifications. In the test pass example, this would mean 

that both the input layer and output layer would have 2 neurons, due to there 

being two parameters (two past test results) and two classifications (pass or 

fail).  

The strength of each of the connections between neurons are decided by the 

‘weights’ and ‘biases’. Essentially, the weights and biases are just co-efficients 

in a regression equation. The weights and bias initially are randomly selected, 

but as training data is fed into the neural network the weight and biases are 

changed as more information is made available and the network learns. This is 

achieved using an algorithm called back-propagation. Back-propagation works 

by changing the weights and bias in response to how correctly the neural 

network classifies the training data. The training data is fed into the neural 

network multiple times and on each iteration the weights and biases are 

modified by back propagation to increase the accuracy of the output (169). 

Unlike SVMs, NNs use all of the data provided to inform the weights and biases. 

NNs function best when the n-number is significantly higher than the number of 

parameters. In the test pass example this would mean a significantly higher 

number of students relative to past test results. Conversely SVMs work equally 

well, regardless of this ratio, for this reason SVMs can perform significantly 

better in some contexts. 

When test data is fed into the network, the size of the output of each of the input 

neurons is influenced by the size of each of the parameters of the test data. The 

output of each of the input neurons is fed forward into every neuron in the 



Page | 58 
 

hidden layer, which subsequently is fed forward into the output layer. The output 

provided by the output layer is calculated based on the input received from the 

hidden layer. The input received by the output layer is therefore influenced by 

the weights and biases, in the hidden layer, calculated by the training algorithm 

and the parameters of the test data. 

The output layer provides a number between 1 and 0 for each classification, 

and the sum of all the outputs is equal to one. The values provided by the 

output neurons give the relative probability that each output is the correct 

classification based on the training data provided. In the test pass scenario, it 

would provide two numbers, one giving the probability of a pass, and one giving 

the probability of a fail. The sum of these two numbers would be equal to one. 

Binary Logistic regression 

The binary logistic regression provides probabilistic prediction of categories. It 

does this by generating an s-shaped graph for each individual parameter. 

Training data for each of the parameters are placed on a graph based on the 

category they represent and the value they have for the corresponding 

parameter. Their position on the graph dictates the shape of the s-shaped curve 

which is subsequently used to confer the probability of the unknown test data 

belonging to one of two output categories. 

The probabilistic outputs for each individual parameter are combined to 

generate an overall probability of the outcome for each test example. Logistic 

regressions are often inaccurate in situations where there is a large ratio of 

predictor parameters to observations and if parameters are highly correlated 

(170). 
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Figure 15: An example of what a logistic regression curve for an individual parameter looks like. Each of 

the points represent a different observation. Observations of students who passed the exam are placed at 

the top and observations of students who did not pass are placed at the bottom. Their position along the x-

axis is relative to their value for the corresponding parameter. Test data have a probabilistic output given 

by the y-axis dependent on their parameter value. In this example 3 hours of studying would relate to an 

approximately 59% pass probability (171). 

 

Methods 

Data input 

Data acquisition, image processing and peak parameter extraction were 

performed as detailed in chapter two. Again, input data were limited to 

experiments of more than one hundred and ninety-seven frames in length. 

Kainic acid was excluded from analyses due to not being present in measurable 

quantities within the animals (see table 1). For these analyses PCA was not 

performed in order to keep the number of parameters identical in both the 

training and test sets. Outlier removal was performed in an identical manner to 

that describe in chapter two with the exception that it was performed directly on 

the vectors of peak parameters as opposed to the principal component scores. 

The input data were therefore a vector of peak parameters for all the 

experiments remaining after outlier detection was performed. Each experiment 

is therefore a vector of three hundred and seventy-eight peak parameter 
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parameters consisting of the standard deviation and mean of each peak 

parameter for each ROI.  

 

Training and test data – For informing model selection. 

Initially, training and test data input was selected in a leave one out training and 

testing algorithm (see figure 16). Each model was trained on all of the data 

except one compound and then subsequently each of the trained models was 

tested using the compound that was left out of the original training data set. This 

was done in order to assess how well each trained model performs on each 

compound, when the model has been trained entirely independently of that 

All Classes — 42 

compounds + control 

Training set — 41 compounds + 

control 

Test set — 1 

compound 

Quadratic 

SVM 

Shallow 

Neural 

Network 

Logistic 

Regression 

Extract performance data for 

each model on test set: 

accuracy false positive rate, 

false negative rate. 

Train 

Models 

Restart process, 

selecting a 

different test 

compound 

Test Models 

Figure 16: Schematic outlining the leave one out approach used for testing each model’s 
performance. Allows all of the classes to be tested on each type of model.  
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compound. Once a model has been trained and tested using the ‘left out’ 

compound, the model is discarded. A new model is then trained using a setup in 

which a different compound is left out and subsequently used to test the trained 

model. The performance information generated for each model, in the form of 

its sensitivity, specificity and accuracy was used to gain a preliminary 

understanding of which model would be the most appropriate choice for the 

data. Sensitivity was calculated as the percentage of seizurogenic compounds 

classified as seizurogenic, specificity was the percentage of non-seizurogenic 

compounds classified as non-seizurogenic and accuracy was the overall 

proportion of compounds correctly classified. 

Given the large number of classification models available, this approach was 

utilised to inform the choice of model to use on randomised training and test 

sets. Moreover, the ‘leave one out’ approach allowed machine learning 

algorithms to be tested in the situation where a maximum amount of training 

data is available. Note that I expect to significantly expand on the amount of 

data available in the future.  

Training and test data - For model generation. 

After using the leave one out approach, to compare the efficacy of the different 

models for categorising the data, a randomised approach was utilised in order 

to provide an indication of the possible generalisability of the selected model. In 

this stage, the same data were split in two. Non-seizurogenic compounds were 

split: half into a training set and half into a test set. Seizurogenic compounds 

were also split: half into a training set and half into a test set.  

Training model support vector machines 

One of the models trained and tested was a support vector machine. This 

model was built using the default settings in MATLABs inbuilt classification 

learner toolbox. A quadratic support vector machine was trained by first 

mapping the experiments into multidimensional feature space based on their 

parameter values. A line, or ‘hyperplane’ was then placed between the 

experiments, in the multidimensional space, that fell in the space that 

maximised the distance between the two classifications: seizurogenic and non-

seizurogenic. Hyperplane generation was achieved using a second polynomial 

kernel function. As mentioned previously kernel functions are used to help find 
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the hyperplane in data that isn’t easily separable. In the internal model building 

algorithm, the SVM was tested for overfitting using a k-fold cross-validation 

algorithm with its own, internal hold out group. During the cross validation 

process data was randomly partitioned into five equal sized sub samples, each 

of which was used as the validation set for each iteration of the cross-validation 

process. This allowed the hyperplane to be optimised, ensuring that the SVM 

will perform accurately on new data sets. 

Training model neural network  

A two-layer feed-forward neural network was trained, with sigmoid hidden and 

softmax output neurons. The sigmoid function in the hidden layer neurons takes 

the weight and bias produced when training a neural network and coverts their 

output into a continuous spectrum between 1 and 0. The sigmoid function 

therefore provides a continuous measure of output for each of the hidden layer 

neurons. Moreover, the sigmoid function has an easily calculable derivative that 

can be used by the back-propagation algorithm to inform the changes in the 

weights and biases of the neural network that ultimately dictates its outputs. 

The softmax function receives outputs from all the neurons in the hidden layer. 

It then takes the output of the hidden layer of the neural network and puts it into 

a vector of values between zero and one, the sum of which add up to one.  The 

idea behind this is that each element of the vector represents a corresponding 

output and the size of the number is relative to the probability that the output is 

true. The softmax output neurons are therefore used to represent a categorical 

distribution of the output of the neural network. 

The model was trained with scaled conjugate backpropagation in a supervised 

learning process. There were five hundred neurons in the hidden layer. 

Although this large number of neurons could potentially lead to overfitting, the 

cross-validation steps in the training algorithm are designed to counter this. As 

such some neurons will have little to no input on the output the model but as 

this classification procedure is not computationally heavy it will have little impact 

on the overall procedure. 

Overfitting was prevented in the training algorithm by randomly splitting the 

training data into training, test and validation sets. The training algorithm used 

the validation set to test the performance of the model against unseen data to 
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ensure the models generalisability to new data. When the validation set error 

begins to rise, indicating overfitting, the weights and biases of the model were 

saved for when the validation set error is at its minimum. The test set error was 

not used during training however it was used to scrutinize varied models. The 

training, test and validation sets were selected by randomly splitting the training 

data in a ratio of 0.7:0.15:0.15 respectively. The performance of the network 

was tested using cross-entropy.   

Training Logistic regression model 

A generalised linear model was fitted to all of the training data. A ‘logit’ link 

function was used in order to generate probabilities for each of the 

classifications. Similar to the support vector machine the training algorithm 

involved k-fold cross validation, partitioning the training data into five equally 

sized random ‘k-folds’ which were used to help prevent the model from being 

subject to overfitting.  

Calculating performance of models on independent test sets 

Once each model was trained, the test data were run through each model. The 

following applies to both the leave one out training/test data and the randomly 

selected training/test data.  

Once constructed, the models provided an output for each experiment or 

‘observation’ provided in the test data. For the SVM the output was binary, i.e. 

for each experiment there was either an output of ‘yes this experiment is 

seizurogenic’ or ‘no this experiment is not seizurogenic’. In the case of the NNs 

and logistic regression the output was probabilistic. The NN gives two values 

between zero and one for how likely each experiment is from each class – 

seizurogenic or non-seizurogenic. In the case of logistic regression, it provides 

a single value for how likely the test data were seizurogenic. For both sets of 

outputs, in order to quantify the performance of the classifier a threshold of a 

half was applied to decide which output the classifier had chosen. That is to 

say, if the probability output for an experiment to be seizurogenic was more 

than a half then that experiment was considered seizurogenic. 

The performance of the models was calculated with respect to how effectively 

they could detect seizurogenic compounds. Compounds which had more than 
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half of their corresponding experiments classified as seizurogenic were 

considered to have been classified as seizurogenic overall. Compounds which 

had more than half of their corresponding experiments classified as non-

seizurogenic were considered to have been classified as non-seizurogenic. 

Compounds which had exactly half of the corresponding experiments classified 

as (non)seizurogenic were considered to be undecided, and therefore were 

considered misclassified overall. 

Seizurogenic compounds were considered ‘positive’ test results, thus true 

positives were seizurogenic compounds that were classified as seizurogenic. 

The sensitivity was calculated as the true positive rate and the specificity was 

calculated as the true negative rate. Accuracy was calculated as the percentage 

of compounds correctly classified overall. 

Leave one out vs random selection  

It is worth noting that the sensitivity, specificity and accuracy figures attained 

during the leave one out testing protocol are not for any specific model but 

rather an assessment of the utility of the algorithm. As previously mentioned, 

during the leave one out testing protocol multiple models are trained for each 

machine learning algorithm, this was done in order to assess how machine 

learning algorithms performed when provided with the maximum amount of 

training data. However, this protocol can give no information on the 

generalisability of each of the models as the amount of test data used on each 

model is insufficient. 

In order to generate and better interrogate a usable model it was necessary to 

randomly split data in half. The specificity, sensitivity and accuracy figures 

generated using this approach were specific to a single model for each of the 

algorithms used.   
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Results 

SVM performance 

Using the leave-one out testing protocol the trained SVM classified most non-

seizurogenic compounds reasonably well with 85% of the compounds that are 

non-seizurogenic having the majority of their experiments classified as non-

seizurogenic (see table 6). There were two non-seizurogenic compounds that 

were misclassified as seizurogenic: nomifensine and ketoconazole.  

Of the seizurogenic compounds used as test data approximately 30% were 

misclassified as non-seizurogenic. Of these picrotoxin, bicuculline and gabazine 

had poor uptake into the zebrafish CNS – with 1, 2 and 1.03% uptake 

respectively. Clozapine, maprotiline, SNC80, theophylline, amoxipine, cocaine 

and tetraethylammonium were also misclassified by their corresponding SVMs. 

Of those with good or unknown uptake into the zebrafish larvae: theophylline, 

maprotiline, SNC80, clozapine, cocaine, and amoxipine also clustered with non 

seizurogenic compounds during hierarchical clustering (see figure 10). Of the 

seizurogenic compounds that clustered with non-seizurogenic compounds 

during hierarchical clustering of peak profiles, amphetamine and bupropion are 

the only two that have been correctly classified as seizurogenic by their 

corresponding SVMs. There is a noticeable similarity between the hierarchical 

clustering outputs and the outputs of the SVMs which suggests the SVMs are 

effectively classifying the data and that perhaps it is the data driving the 

misclassification, due to issues with things like bioavailability and receptor 

Table 6: Each of the classes named were used to test an SVM that was trained on all the 
remaining classes. From left to right column one: Seizurogenic compounds classified as 
seizurogenic. Column two: Non-seizurogenic compounds that were classified as non-
seizurogenic. Column three: seizurogenic compounds that were classified as non-seizurogenic. 
Column four: non-seizurogenic compounds classified as seizurogenic. Column five: the sensitivity 
of this modelling approach for seizurogenic compounds. Column six: the specificity. Column 
seven: the overall accuracy.  



Page | 66 
 

affinity, as opposed to the choice of machine learning algorithm. It is worth 

noting that misclassifications are based on if compounds are considered 

seizurogenic based on the literature from humans and mammalian models as 

opposed to what is known in fish. In this sense misclassifications rates are 

effected to some extent by limitations relating to the experimental model, as well 

as the algorithm in question. 

Neural network performance 

The trained NN classified most non-seizurogenic compounds reasonably well 

with 85% of the compounds that are non-seizurogenic having the majority of 

their experiments classified as such (see table 7). The two compounds that 

were misclassified were nomifensine and mizolastine. Nomifensine was also 

misclassified by the SVM classifier.  

Of the seizurogenic compounds used as test data approximately 66% were 

classified correctly by their corresponding NN. NNs were therefore marginally 

less sensitive for detecting seizurogenic compounds, than SVMs, when tested 

using the leave one out approach. Of the compounds misclassified by the NNs, 

strychnine, muscarine, bupropion and bemegride were correctly classified by 

SVMs. However, the NN approach correctly classified tetraethylammonium, 

clozapine and amoxipine where the SVM did not. Both sets of models 

misclassified gabazine, maprotiline, picrotoxin, SNC80 and theophylline. 

Table 7: Each of the classes named were used to test an NN that was trained on all the remaining 
classes. From left to right column one: Seizurogenic compounds classified as seizurogenic. Column two: 
Non-seizurogenic compounds that were classified as non-seizurogenic. Column three: seizurogenic 
compounds that were classified as non-seizurogenic. Column four: non-seizurogenic compounds 
classified as seizurogenic. Column five: the sensitivity of this modelling approach for seizurogenic 
compounds. Column six: the specificity. Column seven: the overall accuracy.  
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The NNs had a classification accuracy of 71% when using the leave one out 

approach to test the efficacy of the model, marginally less than the SVM 

classifier at 74%. 

Logistic regression performance 

The logistic regression classifier was the poorest performing classifier on non-

seizurogenic compounds, classifying 77% of non-seizurogenic compounds 

correctly (see table 8). This equates to one additional misclassification relative 

to the SVM and NN approaches. Again, nomifensine is misclassified, as is 

mizolastine. 4-aminophenylsulfone is also misclassified despite being correctly 

classified by the other two approaches.  

Of the seizurogenic compounds approximately 55% were classified as 

seizurogenic by their corresponding logistic regression. This is a significant 

decrease in the classification rate of seizurogenic compounds compared to the 

other two approaches. Of the compounds misclassified pilocarpine, bicuculline, 

amitriptyline and bethanechol were only misclassified by logistic regression and 

were correctly classified by the other classifiers.   

Correctly classified 

Seizurogenic Compounds

Correctly classified Non-

seizurogenic compounds

Incorrectly classified 

Seizurogenic compounds

Incorrectly classified Non-

seizurogenic compounds
Sensitivity Specificity Accuracy

4-Aminopyridine,   

Pentylenetetrazol,   

Strychnine,  Aminophylline,  

Donepezil,  NMDA,  

Amoxipine,  Amphetamine,  

Caffeine,  CisACPD,  

Muscarine,  Olanzapine, 

Physostigmine  

SB205607,  Tacrine,  

Tetraethylammonium,

 Clonidine,  Quinine,  

Yohimbine,  Apomorphine,  

Cisplatin,  Emetine,  

Morphine,  Rolipram,  

Ketamine,  Ketoconozole,

 Pilocarpine,   Bupropion,  

Bemegride,  Bicuculine,  

Clozapine,  Gabazine,  

Maprotiline,  Picrotoxin,  

SNC80,  Theophylline,  

Amitriptyline,  Bethanechol,  

Cocaine, 

 4-Aminophenylsulfone,  

Mizolastine,  Nomifensine,
55% 77% 62%

Logistic Regression - Leave one out testing algorithm

Table 8: Each of the classes named were used to test a logistic regression that was trained on all the 
remaining classes. From left to right column one: Seizurogenic compounds classified as seizurogenic. Column 
two: Non-seizurogenic compounds that were classified as non-seizurogenic. Column three: seizurogenic 
compounds that were classified as non-seizurogenic. Column four: non-seizurogenic compounds classified as 
seizurogenic. Column five: the sensitivity of this modelling approach for seizurogenic compounds. Column six: 
the specificity. Column seven: the overall accuracy.  
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The overall accuracy of the logistic regressions was significantly worse than the 

other two classifiers at 62%, a 9% drop in accuracy compared to NNs and 11% 

relative to SVMs. 

 

SVM and NN performance – Using Randomly selected test and training sets 

SVMs and NNs had similar performance when tested using the leave one out 

approach. As such both were subsequently tested using randomly assigned test 

and training sets. Both algorithms performed well overall with the SVM and NN 

achieving 75% and 85% accuracy respectively.  

The NN appeared to be the most sensitive approach, correctly classifying all 

seizurogenic compounds correctly. However, it performed poorly on non-

seizurogenic compounds achieving only 50% specificity. This means the model 

could be expected to classify non-seizurogenic compounds as seizurogenic 

50% of the time. It is worth noting that although it achieved a very high accuracy 

of 85% this is not truly reflective of the model’s performance as there is a 

Table 9: Top: Classifications of randomly selected test compounds by SVM. Bottom: Classification of randomly selected 

test compounds by NN. From left to right column one: Seizurogenic compounds classified as seizurogenic. Column two: 
Non-seizurogenic compounds that were classified as non-seizurogenic. Column three: seizurogenic compounds that 
were classified as non-seizurogenic. Column four: non-seizurogenic compounds classified as seizurogenic. Column 
five: the sensitivity of this modelling approach for seizurogenic compounds. Column six: the specificity. Column seven: 
the overall accuracy. 
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greater number of seizurogenic compounds than non-seizurogenic compounds. 

Were there as many non-seizurogenic compounds in the test set as 

seizurogenic compounds, and the sensitivity and specificity remained the same, 

the accuracy would drop due to its poor specificity. 

The SVM achieved a sensitivity of 67% and a specificity of 83%, and thus had 

much higher specificity than the neural network while sacrificing a significant 

amount of sensitivity.  

Discussion 

Nomifensine was consistently misclassified across all classifiers tested, when 

using the leave one out approach. Nomifensine misclassification was 

unsurprising given that Nomifensine is similar in pharmacology to a host of 

compounds, such as cocaine, amphetamine and bupropion that are classified 

as ‘seizurogenic’ in the training data. Moreover, Nomifensines peak profile 

clusters well with these compounds during hierarchical clustering (see figure 

10). Interestingly, when training and testing the SVM with randomly selected 

compounds, nomifensine was correctly classified, despite being incorrectly 

classified during leave one out. One possible explanation for this, is that 

cocaine wasn’t used in the training set, as it was randomly selected for the test 

set. Given Nomifensines, close association with cocaine during hierarchical 

clustering (see figure 10) it is possible cocaine’s presence in the training data 

was driving Nomifensines misclassification. This highlights the importance of 

having representative training data, as even a small amount of data can change 

how the model classifies. This is of particular relevance in the case of SVMs, 

because even a single data point can change the position of a hyperplane. 

Comparatively, NNs should be more resilient to small changes in training data. 

Seizurogenic compounds that were misclassified across all the models, during 

the leave one out testing algorithm, included cocaine, gabazine, maprotiline, 

picrotoxin, SNC80 and theophylline. Of these gabazine and picrotoxin have 

extremely low uptake with both averaging less than 2.1% uptake (see table 1).  

It is therefore likely that these compounds don’t reach the concentrations 

required to have substantive seizurogenic effects. Similarly, maprotilines uptake 

is low, especially in the context of the other mixed mechanism antidepressants 

and thus it is possible that maprotiline doesn’t reach adequate concentrations to 
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induce seizure. In the case of SNC80, as previously discussed, it has been 

establish that SNC80 has poor affinity for zebrafish delta opioid receptors (119). 

As such its seizurogenic mechanism is unlikely to be reflected in the animal 

model these analyses are based on. 

All of the compounds consistently misclassified, across the different models 

tested, clustered with non-seizurogenic compounds in the hierarchical clustering 

analyses (see figure 10). It seems that a number of the compounds understood 

to be seizurogenic in the literature are not representative of seizurogenesis in 

this model. This could be due to either: not being present in high enough 

concentrations in zebrafish to elicit a seizurogenic profile or having poor ligand 

receptor affinity. Better training data selection could therefore improve the 

specificity of this approach, but all testing must be used in conjunction with 

compound uptake data which appears to be a specific issue in this experimental 

method. Experimental, modifications could be made such as injecting 

compounds directly into the zebrafish, a subject discussed in greater detail in 

the subsequent chapter.  

Notably, the experimental approach used to generate the data used a variety of 

different concentrations of compounds. It is therefore possible that one or two of 

the concentrations used were not high enough to induce seizure. For example, 

some compounds may be seizurogenic only at the highest concentration and, 

despite correct classification of individual experiments, be considered 

misclassified overall. 

For the classification purposes described, SVMs and NNs perform almost 

identically but both performed better on these data than a logistic regression. 

Logistic regression is ill-suited to the data because a lot of the parameters are 

likely to be highly correlated as some regions of interest can behave very 

similarly in terms of their peak dynamics. In addition, it is suggested that logistic 

regression is only effective when there is a high ratio of experiments to 

parameters and in this case there is not (170).  

During the leave one out test protocol, the SVM and NN algorithms correctly 

classified seizurogenic compounds 70% of the time. Moreover, both algorithms 

correctly classified non-seizurogenic compounds 85% of the time. Given that 
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both algorithms were similarly effective both were selected for further testing 

using randomly selected data sets. 

When trained and tested using the random selection protocol the SVM 

accurately identified 83% of the non-seizurogenic compounds it was tested with, 

however managed just over 67% sensitivity for seizurogenic compounds.  

Despite the relatively poor performance of the SVM in terms of accurately 

identifying seizurogenic compounds it did achieve very high specificity. Given 

that the specificity was high, the final model could to some extent detect 

seizurogenic compounds based on their peak parameters albeit with a relatively 

high false negative rate.  

The NN achieved significantly higher overall accuracy than the SVM due to its 

very high sensitivity. However, it had low specificity which must be taken to 

account if using this model for identification of seizurogenic compounds. The 

low specificity and very high sensitivity are likely symptoms of overfitting 

possibly occurring due to the relatively small amount of training data. Neural 

networks can suffer from overfitting when used on lower sample size, higher 

dimensional data (172).  

Moreover, because there was a smaller amount of non-seizurogenic 

compounds available the high overall accuracy is perhaps not reflective of the 

true efficacy of the models. The imbalance in the test data causes the accuracy 

to be weighted toward the sensitivity of the model and less affected by the 

specificity. Were these analyses to be repeated it would be important to have an 

equal number of seizurogenic and non-seizurogenic compounds in order for the 

models to learn features of both seizurogenic and non-seizurogenic 

compounds. 

Given that the experimental and analytical approaches used here are still very 

preliminary stages there is a huge amount of progress that could still be made. 

It is clear, based on these analyses, that machine learning approaches could 

play a key role in its future development.  

Improvements could made on a number of fronts, including data acquisition, 

training data selection and fine tuning of modelling algorithms. Here I have used 

the inbuilt matlab classification learner tools box to highlight the potential 
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efficacy of these kind of approaches. However, purpose built, and custom 

designed algorithms could yield far superior results. Techniques such as 

unsupervised pre-training of neural networks have been shown to significantly 

improve neural network performance (173). Techniques, such as unsupervised 

learning of deep belief networks, can be used as feature detectors. Feature 

detectors can be used to initialise the weights and biases of neural networks, 

prior to supervised training, to provide powerful classification algorithms. This 

approach has already been utilised in the area of drug discovery to greatly 

improve compound selectivity prediction (174). 

Moreover, machine learning techniques have been utilised in the clinic for 

epilepsy surgery outcome prediction (175) in addition to seizure prediction and 

identification (176). Efforts to create seizure prediction models based on using 

electroencephalography combined with PCA and SVMs resulted in an algorithm 

with 100% sensitivity and over 80% specificity (176). A similar study using PCA 

and SVM achieved similarly impressive results (177). In these cases, EEGs 

were recorded in human subjects and all signals were either from patients 

known to be suffering a seizure or from healthy controls (176,177). By 

comparison the study described here could not guarantee seizure phenotypes 

were present in the fish representing the ‘seizurogenic’ training and test groups. 

Moreover, EEGs have the advantage of extremely high temporal resolution, 

future work on detection of seizurogenic compounds using zebrafish could 

benefit from a comparison of local field potential and calcium imaging peak 

analyses as input data for machine learning algorithms.   

Previous studies have utilised local field potentials recorded in transgenic 

zebrafish with seizure phenotypes to identify anti-epileptic drugs with high 

accuracy (23). Similar analyses could be repeated in zebrafish in addition to 

calcium imaging and both data sets could be combined with the aim of 

identifying potentially seizurogenic compounds. 

 

Chapter 4: Overall discussion and conclusion 

The overall aim of this thesis was to highlight the utility of 4-dimensional 

functional profiling of drugs in zebrafish. It is clear from the analyses performed 

that drugs elicit spatio-temporal patterns of activation in zebrafish specific to 
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their pharmacological properties. It is also clear that these specific spatio-

temporal patterns can be exploited to make elucidations about the properties of 

drugs and that machine learning approaches are well suited for such purposes. 

The clustering analyses showed clear congregations of compounds with similar 

pharmacodynamics, in particular with regards to dopamine and serotonin active 

compounds. This is of particular relevance to anti-depressant drug discovery, 

an area in which novel therapeutics are desperately needed (58). On this basis, 

it seems that compounds with specific pharmacodynamics do seem to elicit 

specific patterns of activation in the zebrafish brain. However, not all 

compounds clustered in a pharmacologically meaningful way, either due to 

bioavailability issues, lack of receptor affinity, or perhaps simply because their 

particular pharmacodynamics did not elicit distinctive patterns. Moreover, it 

should be noted that the cluster analyses do not provide a metric that states 

whether certain compounds are significantly different or not, due to not using 

any form of statistical hypothesis testing. This is due in part to the fact that 

statistical hypothesis testing on data with a large number of experimental 

groups, such as the data in this thesis, encounters problems related to multiple 

comparisons (178). 

As a result it could be argued that it is difficult to draw firm conclusions from the 

clustering dendrogram with regards to the significance of the similarities and 

differences between compounds. Moreover, as clustering was performed on the 

average principal components across the experiments of a compound, the 

clustering doesn’t account for variability between experiments of the same 

compound, which was at times significant.  

Despite the limitations related to clustering, this approach allows users to gain 

an understanding of the data set and illustrates how the different experimental 

groups relate to one another. This is highly useful for step and in this case 

showed that there were some strong similarities between compounds with 

similar pharmacologies, relative to other pharmacologically distinct compounds. 

And it is this concept that underpinned the rationale behind the application of 

machine learning to the data set.   

It is clear that machine learning techniques can be applied effectively to 4-

dimensional zebrafish brain activity data for the identification of potentially 
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seizurogenic compounds. The tests showed fairly high accuracy, sensitivity and 

specificity in the classifiers chosen for testing. The analyses showed that either 

SVMs or NNs could prove useful for compound classification purposes, 

however neural networks could benefit from a larger data set. Classifiers, such 

as the machine learning techniques described here, have a huge amount of 

potential utility in the pharmaceutical industry due to their ease of application to 

new data sets and new classification problems. It is clear from the analyses 

presented here, that machine learning tools provide a powerful and replicable 

approach for making elucidations about drug properties. 

However, in the context of this study, there are a number of limitations with 

regards to the machine learning approaches that should be reiterated. SVMs 

are sensitive to anomalous data, so if one compound classified as seizurogenic 

in the training data is actually non-seizurogenic, due to experimental 

constraints, this is likely to have a significant effect on the how the algorithm 

classifies test data. Moreover, neural networks are likely to perform poorly if not 

enough data is available because the ratio of the number of experiments 

relative to the number of parameters needs to be reasonably high (179).  

When designing the analytical approaches used during this project there were a 

number of decisions to make. These different analytical choices all have 

different advantages and disadvantages worth noting. As discussed, the spatial 

resolution of light sheet microscopy is very high, to reduce the computational 

intensity of the analyses and to put analyses into a more biologically relevant 

context, ROIs were defined using a standardised 3D anatomical map of the 

larval zebrafish brain (4,42). The atlas in question utilised 6dpf zebrafish larvae 

to generate the three-dimensional anatomical atlas utilised for ROI selection. 

The zebrafish larva used for this study were 4dpf and as such could have a 

considerably different anatomical make up to the zebrafish used to generate 

this map. This could cause voxels from distinct functional areas to be averaged 

together with the results being an output of time series that misses large chunks 

of informative data. 

Alternatives, such as spatially constrained spectral clustering, an algorithm 

developed for use in functional MRI, utilises the functional similarities of voxels 

to generate ROIs, thus generating ROIs based on the functional make up of 

individual fish (46). However, such data driven ROI selection approaches also 
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have problems, such as lack of consistency in ROI selection making between 

subject valid comparisons of ROIs difficult.  

Another alternative could simply be to use individual voxels however the varying 

sizes of fish may cause the number of voxels present within the animal itself to 

vary, again making between subject comparisons difficult. This is therefore an 

ongoing challenge. 

An additional important analytical decision worth noting was the choice to use 

Pearson’s correlation coefficient for pairwise comparisons of ROIs during 

functional connectivity analysis. As mentioned Pearsons correlation coefficient 

was chosen because it is simple to understand and implement while 

considering the amplitude and phase of any underlying oscillatory activity. 

However other approaches, such as cross correlation, coherence and grangers 

causality, may be more suitable in future if experimental approaches or 

analytical approaches are modified.  

Coherence is a measure of the level of similarity in frequency content and has 

been utilised in electrophysiology and magnetoencephalography due to its 

capability to deal with very high temporal frequency data (180). This particular 

approach is not applicable to this study as the temporal resolution was simply 

not high enough. Were there a change in experiment approaches that caused a 

significant increase in temporal resolution coherence would be a potentially 

useful tool.  

Lagged cross correlation is also a useful measure of similarity as it can be 

utilised to take into the ‘lag’ between signals. This measure is useful in 

situations where there is a slight time delay between signals as it can be used 

to account for this lag when performing analyses. This approach was tested 

during the analyses conducted however it was deemed that the measurements 

of calcium transients in this study were too slow for lag correction to have be of 

any real utility. As such Pearson’s correlation coefficient was deemed a 

preferable option. Were a different transgenic fish line used, with faster 

measures of calcium transients, cross correlation may provide a superior 

measure of functional connectivity. The calcium transient utilised for this study, 

GCaMP6s is considered the most sensitive for changes in calcium levels 

however GCaMP6f has a considerably higher rise and decay time allowing for 
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the detection of calcium transients with higher temporal resolution (34). Given 

that the temporal resolution of LSM is low it made sense in this context to utilise 

the slower more sensitive sensor GCaMP6s. 

The combination of LSM and zebrafish with genetically encoded calcium 

indicators is relatively new experimental approach. The advantages this method 

allows experimenters, wishing to study whole brain network dynamics, are 

significant. LSM allows imaging of the entire zebrafish brain at sub-single cell 

resolution and with significantly improved temporal resolution over equivalent 

scanning microscopes (181). However, despite this advantage, there are a 

number of limitations to be considered. Light sheet microscopes still have low 

temporal resolution, relative to electrophysiological recordings, particularly when 

imaging a large number of z-planes, typically taking just under two seconds for 

ten z-stacks (4). This temporal resolution is significantly lower than the potential 

temporal resolution available using GCaMP sensors, which are capable of 

temporal resolution in the millisecond range (182). However the calcium sensor 

for this study (GCaMP6s) is a slower acting calcium sensor due to the slow rise 

and fall rate of the dye (183), which means LSM has more than adequate 

temporal resolution. 

Therefore, a potential alteration to the experimental setup, worth investigating is 

the temporal resolution of LSM. As mentioned, when utilising LSM it is a trade-

off between the volumetric coverage achieved and the temporal resolution. In 

future, studies could focus on more specific brain regions at significantly higher 

temporal resolution, utilising GCaMP6f sensors and measuring functional 

connectivity with cross correlation to provide more complete temporal coverage 

of specific regions.  

While the temporal resolution of LSM is relatively low, it has extremely high 

spatial resolution and can been used for imaging at cellular resolution (181). 

High spatial resolution has the potential to be particularly useful when 

attempting to classify neuroactive compounds based on brain activity because 

often specific neurotransmitters are found in specific brain areas 

(113,116,184,185). This seems to be particularly true of the serotonergic and 

dopaminergic systems and may explain why serotonergic (113,116) and 

dopaminergic compounds (116) clustered in close proximity during analyses 

(see figures 8 and 9).   
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In this study there were a number of issues pertaining to bioavailability. This is 

because, fish were exposed to compounds dissolved in water and in order for 

compounds to make it into the zebrafish CNS they need to be absorbed through 

external tissues which may be impossible or difficult in the case of certain 

compounds. This meant a number of compounds being absorbed only in small 

quantities (see table 1).  In addition to absorption issues, it is clear drugs that 

are insoluble are going to be very difficult to test using this approach. It is 

therefore necessary, if using this approach as an assay, to perform 

bioavailability assays to ensure compound performance is related to its 

pharmacological properties, as opposed to its absorption into the zebrafish 

CNS. Alternatively, it is possible to inject compounds into the cardinal vein of 

zebrafish embryos which guarantees uptake into the zebrafish body and thus 

maybe be a preferable technique for this assay in future.  

Among the considerable advantages, of using zebrafish, is that they have a 

blood brain barrier homologous with higher invertebrates (186). This poses a 

significant benefit over in vitro models and in vivo models where drugs are 

injected though a cannula directly into brain tissue, because it provides a model 

that gives insight into the relevant pharmacokinetics of compounds in addition to 

the pharmacodynamics. While worth mentioning, this is not hugely relevant to 

this study as the zebrafish blood brain barrier isn’t fully developed at 4dpf and 

therefore isn’t likely to provide useful insight into pharmacokinetics at this 

developmental stage (187). It is possible future studies could use zebrafish at 

later developmental stages that do take advantage of this useful aspect of 

zebrafish physiology. However there are a number of problems associated with 

using zebrafish at latter stages chief among which are the ethical considerations 

of using neuromuscular blocker in protected life stage fish. There are number of 

alternative methods for ‘trapping’ zebrafish for imaging including using 

hydrodynamic force to hold zebrafish in specifically designed microfluidic 

channels (35). This approach confers a number of other advantages including 

the ability to keep zebrafish in water (as opposed to agarose) and the ability to 

perform ‘wash on wash off’ compound exposure.  

Another potential problem associated with using later stage zebrafish is the 

increased brain volume may cause issues with brain coverage. The obvious 

solution is to reduce magnification resulting in reduced resolution. This would be 
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of little consequence, in the x and y planes set up described here, as the brain 

is divided into anatomically defined regions during image analysis, as such the 

full resolution isn’t utilised. However as the brain gets larger it requires more z-

stacks (that is to say images taken in different z-planes) to provide adequate 

coverage and this reduces temporal resolution. Loss of temporal resolution 

would potentially cause recordings to miss some dynamic brain activity, as such 

it is unlikely that functional full brain coverage would be ideal past 7 day post 

fertilisation. 

A notable issue, relevant to this study, is the poor affinity of SNC80 for zebrafish 

delta opioid receptors (119). This issue is chiefly notable because it provides an 

example of where brain receptors in zebrafish are no longer adequately 

homologous with humans to bind compounds with acute effects on human 

tissues. This would be of particular concern, in this case, as SNC80 is a 

compound with well characterised seizurogenic properties (156). Given that 

SNC80 was among the compounds most consistently misclassified or 

misplaced during analyses, it is plausible other compounds may produce false 

negative results for seizurogenic properties, not due to flaws in the analytical or 

experimental method, but due to the physiology of the zebrafish itself.  

However, it should be acknowledged that SNC80 is in contradiction to the 

broader trend. Zebrafish are generally considered to be excellent models for 

studying the central opioid and endocannabinoid systems and have just over 

60% pairwise alignment homology scores for both the opioid and 

endocannabinoid systems when compared with humans (188). Moreover, 

zebrafish have shown to be highly sensitive to antidepressants (189), a fact 

corroborated by the analyses describe here (see figures 8 and 9). More 

generally speaking, zebrafish have orthologous genes for approximately 70% of 

the human genome; zebrafish also have equivalent genes for 84% of human 

genes associated with disease (190).  

The high level of homology with higher invertebrates and genetic malleability of 

zebrafish means there are many different transgenic zebrafish models of human 

disease including: depression (21), anxiety (191), epilepsy (192) and serotonin 

syndrome (193). Future work could utilise transgenic zebrafish models with 

spontaneous seizure phenotypes to train classification learners to recognise 

seizure and thus identify seizurogenic compounds. A similar approach could be 



Page | 79 
 

utilised using serotonin syndrome mutants to identify antidepressant 

compounds. The zebrafish as a model organism provides a huge number of 

potential future directions for this project. 

Among the more prominent experimental limitations present in this study is the 

lack of a within experiment control. The zebrafish analysed here are relatively 

heterogeneous and the lack of drug free baseline period for each fish makes 

normalisation of experiments difficult. Lack of an adequate normalisation 

process makes between subject comparisons in heterogeneous data unreliable. 

This is of particular relevance with regards to differences in overall brain activity 

induced by compounds. Because control fish can vary significantly in their 

overall fluorescent intensity, identifying if compounds are increasing overall 

fluorescent intensity and thus brain activity is very difficult as there is no drug 

free baseline period for each fish with which to generate a relative measure of 

fluorescent intensity (and thus brain activity). The introduction of a drug free 

baseline period for each experiment would therefore allow better 

characterisation of the changes in overall brain activity induced by particular 

drug classes and would therefore add a whole new dimension of informative 

data into the analytical process. This could prove to be of particular relevance to 

the seizurogenic potential of compounds as PTZ, a well categorised 

seizurogenic compound (194), has been demonstrated to rapidly and 

significantly increase baseline activity (36). 

Introducing a drug free baseline period has potential downsides. Some 

compounds utilised for these analyse require long exposure times. Long 

exposure times would require fish to be imaged for a very long time, extended 

period in agar tend to cause the health of fish to deteriorate which would 

introduce an unwanted confound into the analyses. As such it would be 

logistically difficult to perform analyses on compounds with long exposure times 

such as Rolipram, which requires a 24-hour exposure regimen (see table 1). 

Despite the limitations, it is clear from the analyses that the experimental and 

analytical approaches described here are highly useful for profiling drugs. As 

discussed previously, there are a plethora of advantages to using zebrafish and 

as such the methodologies described here are highly applicable for use in 

industry. There are also a number of methodological alterations that have the 

potential to improve these approaches, both experimentally and analytically. 
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Overall, it is clear from the works described here, that the future is bright for the 

zebrafish in pharmaceutical research.  

 

Conclusions 

Transgenic zebrafish are a powerful tool for assessing the effects of drugs on 

the central nervous system. When combined with genetically encoded calcium 

sensors and light sheet microscopy, zebrafish provide a 4-dimensional model of 

brain networks with extremely high spatial resolution and modest temporal 

resolution.  

Clustering analysis revealed that spatial patterns of activity as reflected by their 

spatially specific peak parameters and functional connectivity values are 

specific to the pharmacodynamics of certain compounds. It is clear that 

dopamine and serotonin active compounds in particular elicit specific spatio-

temporal patterns of activity. Further analysis also showed strong clustering of 

seizurogenic compounds, in particular when clustered based ion their peak 

parameters. Further analysis showed that peak parameters can be used to train 

classification learners such as SVMs and NNs to produce models that can 

accurately discriminate between seizurogenic and non-seizurogenic 

compounds.  

A number of experimental modifications could be utilised in future work, such as 

using GCaMP sensors with faster activing dyes (e.g. GCaMP6f), introducing 

within experiment controls and reducing the number of z-slices to increase 

temporal resolution (at the expense of brain coverage).  

Future directions, in terms of analysis, could focus on utilising different ROI 

selection approaches, such as spatially constrained spectral clustering and 

using unsupervised learning algorithms, such as deep belief networks, for 

feature selection prior to neural network modelling. In addition, when choosing 

compounds for the training and testing of classification learners stringent 

thresholds for bioavailability and receptor affinity could be implemented that 

improve the performance of models. 
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