
 i 

 

 

 

 

Evaluation of Nanoparticle (NP) Toxicity in Respect to NP Physicochemistry 

and Reactivity in the Aquatic Environment  

 

 

Danae Patsiou 

 

Submitted for the degree of Doctor of Philosophy 

 

 

 

 

 

 

Heriot-Watt University 

 

School of Energy, Geoscience, Infrastructure and Society 

 

Institute of Life and Earth Sciences 

 

May 2018 

  



 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any 

of the information contained in it must acknowledge this thesis as the source of the quotation 

or information. 

 

 

  



 iii 

ABSTRACT 

The increasing application of nanoparticles (NPs) has led to increased occurrence of engineered 

NPs in the aquatic environment. Understanding the toxicity of NPs in the aquatic environment 

is dependent on linking NP physicochemistry with toxicological responses and while research 

has been moving towards this direction, the link has not been fully understood yet. The present 

study critically reviewed adsorption and desorption processes of organic environmental 

contaminants on TiO2 NPs and evaluated interactions of NPs with compounds of different 

physicochemistry already existing in the aquatic environment as contaminants. Aquatic 

toxicity of the new generation lead-halide perovskite NPs was evaluated relative to lead ion 

dissolution. Finally, the sedimentation of NP agglomerates during a traditional fish early-life 

stage toxicity test, a major limitation of assessing NP toxicity in the aqueous phase, was 

addressed by development of an exposure chamber designed to keep NP agglomerates in 

homogeneous dispersion. The model organisms used in the present study to evaluate NP 

toxicity were larvae and adult zebrafish Danio rerio and the unicellular green fresh water alga 

Chlorella vulgaris. The main findings were: 1) sorption of environmental contaminants on NPs 

can change the bioavailability of the contaminant in the aqueous phase. Specifically, sorption 

of copper and benzo(a)pyrene (under fluorescent light) on NPs reduced the adsorbent 

bioavailability. On the contrary, benzo(a)pyrene and anthracene, when adsorbed on TiO2 or Si 

NPs, were photo-catalysed under UVA and in the case of benzo(a)pyrene, highly toxic photo-

by-products showed increased bioavailability in larval zebrafish; 2) lead-halide perovskite 

acute toxicity was attributed to lead ion dissolution based on induction of metallothionein 2 

gene expression through aqueous and dietary exposure, and 3) the perovskite-spiked diets did 

not disrupt zebrafish gut microbiome after a 14-d exposure while disruption of gut microbiota 

by equivalent Pb(NO3)2 diets was observed; finally, 4) higher toxicity was found when NPs 

were tested using an exposure chamber that allowed continuous NP dispersion, indicating 

toxicity is depended on the dispersion state of NPs. This study has expanded our knowledge 

on NP surface physicochemistry and interactions with surrounding compounds in the aqueous 

phase; has confirmed metal ion dissolution out of metallic NPs and linked perovskite NP 

toxicity to lead ion dissolution as well as linked NP toxicity to NP dispersion in the aqueous 

phase contributing to a better understanding of NP properties and reactivity relation to toxicity 

in the aquatic environment.   
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Chapter 1- Introduction to Nanoparticle Physicochemistry and Toxicity in 

the Aqueous Phase, and Toxicant Sorption/Desorption onto TiO2 

Nanoparticles 

1.1 Abstract 

The increasing applications and use of nanoparticles (NPs) has led to higher production and 

subsequent release of these particles into the aquatic environment. Substances in surface waters 

will likely sorb to NPs and sorption has implications on the fate, transport, and environmental 

consequences of both the substance and the NPs. The aim of this chapter is to review the 

sorption of organic substances with TiO2 NPs, the most abundant NP in surface waters, in the 

aqueous phase, how sorption changes TiO2 NPs physicochemistry, and how sorption can affect 

substance transport, decomposition, and bioavailability in aquatic organisms. After having 

critically reviewed studies that have investigated sorption of organic substances with TiO2 NPs, 

it is concluded that constituents of the aquatic environment, such as ionic compounds and 

natural organic matter, can change surface physicochemistry of TiO2 NPs, promote 

agglomeration of NPs, and influence the sorption capacity of TiO2 NPs to organic substances. 

UV radiation can enhance the degradation of some organic substances sorbed on the surface 

area of TiO2 NPs. The bioavailability of some organic substances can be influenced by the 

presence or absence of TiO2 NPs and measurement of bioavailability has been used as a 

sensitive method to inform on sorption of organic substances onto TiO2 NPs and their transport 

in the aqueous phase. The sorption of a photo-labile organic compound, anthracene, onto 

anatase TiO2 NPs under UVA light conditions was investigated by anthracene bioavailability 

in larval zebrafish. The reduction of bioavailable photo-excited anthracene in the presence of 

TiO2 NPs indicates sorption of anthracene or photo-by-products onto TiO2 NPs. Investigation 

of environmental factors that can influence sorption of organic contaminants onto TiO2 NPs 

and their transport in the aqueous phase is important for understanding environmental fate and 

the implications of TiO2 NPs presence in the aquatic environment. The present thesis, 

consequently, aimed to investigate: 1) sorption of polycyclic aromatic compounds onto TiO2 

and SI NPs under the effect of UVA radiation; 2) sorption of copper ions onto a wider range 

of NPs with different physicochemistry to associate sorption properties to NP 

physicochemistry; 3) toxicity of a new generation photovoltaic NP, perovskites, in the aquatic 
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environment; and 4) toxicity of NPs using enhanced exposure methods that minimise NP 

sedimentation throughout exposure duration.  

 

1.2 Introduction 

Nanomaterials (NMs) are materials with at least one dimension in the nanoscale while 

nanoparticles (NPs) have all three dimensions in the nanoscale (between 1 and 100 nm) (ISO, 

2008). NMs can occur naturally in the environment in soil, volcanic ash, ocean spray, etc. 

Engineered NMs, are materials with tailored properties and unique physicochemistry that can 

be attributed to their nanoscale size. The nanoscale size of the NMs increases the surface area 

compared to bulk and their high surface-to-volume ratio increases reactivity when compared 

to larger particles. Thus, NM technology and development of NM applications involve a broad 

range of industry and research. For example, carbon nanotubes (CNT) are being used to reduce 

weight in spaceships (Gohardani et al., 2014), Ag NPs are widely used in food and fabric 

industry to minimise health risks from bacteria and to produce odour-free clothing (Haider and 

Kang, 2015; Kołodziejczak-Radzimska and Jesionowski, 2014), ZnO NPs can block ultraviolet 

(UV) rays and are widely used in sunscreens (Kołodziejczak-Radzimska and Jesionowski, 

2014), and SiO2 (Thomas and Stephen, 2010) and C60 NPs (Dai, 2006) are used in sporting 

goods to increase strength and stability. While NMs can occur naturally [i.e. C60 and C70 

fullerenes have been found as films on carbonaceous rocks (Buseck et al., 1992)], the 

increasing nanotechnology applications and uses in many aspects of everyday life, call for 

urgent investigation of engineered NMs environmental fate and toxicity upon release in the 

aquatic environment. 

Due to NM broad applications and the spreading of NP products in the market, the likelihood 

of uncontrolled release of NPs in aquatic environment during manufacturing, in waste during 

or after application, or by accident is increasing. Sun et al., (2014) have estimated the most 

current environmental concentration according to production volumes and the distribution of 

products. Specifically, nano-TiO2 are the NM mostly produced in EU and the most abundant 

NMs in the surface waters with estimated concentrations in the µg range (Sun et al., 2014). The 

production of ZnO NPs and CNTs are second and third highest. In the aquatic environment 

NMs are likely to interact with constituents within the media and form agglomerates that are 

held together by relatively weak forces of attraction such as van der Waals forces. Within the 
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aqueous phase, the characteristics and physicochemistry of NMs and NM agglomerates are 

important because they influence the environmental fate, bioavailability, and toxicology of 

NMs. 

Although the aquatic toxicology of engineered NM has been increasingly studied for the last 

13 years, a conclusive relationship between toxicity and aqueous-phase NM physicochemistry 

is not yet established. Numerous cases of indirect toxicity of NMs have been reported during 

NM toxicity assays that can lead to uncertainty, and misinterpretation and inaccurate 

conclusions (Petersen et al., 2014; Selck et al., 2016). For instance, in the aqueous phase, NMs 

can agglomerate, dissolve and release ions, and/or sediment to the bottom of the container; and 

changes in NM physicochemistry can occur throughout exposure (reviewed in Petersen et al., 

2014). When the toxicity of metal NMs is reported, it is not clear if effects are related directly 

to the NMs or the ions released from the particles (Jang et al., 2014). Studies have reported that 

aqueous-phase NMs can associate with substances (e.g., environmental contaminants) and 

these associations can modify bioavailability of the substance and specific toxicological 

response in zebrafish (Boran et al., 2014; Henry et al., 2013; Park et al., 2011). Use of 

bioavailability measurements to investigate sorption of substances to NPs can provide a unique 

and highly relevant analytical tool that enables interrogation directly within the aqueous phase 

(i.e., without need for filtration or procedures that can disrupt sorption phenomenon). 

The objective of this chapter is to review the aqueous-phase behaviour of TiO2 NPs with a 

focus on sorption/desorption processes with organic contaminants. The chapter reviews the 

physicochemistry of the TiO2 NPs in the aqueous phase, factors that affect sorption of organic 

contaminants onto TiO2 NPs, the influence of UV photo-activation of TiO2 NPs and other 

chemical substances, and the use of chemical bioavailability as a tool for the evaluation of 

sorption/desorption processes. A pilot study on the sorption of anthracene onto anatase TiO2 

NPs under UVA irradiation illustrates utility of detection methods based on bioavailability of 

decomposition products of organic contaminants in zebrafish larvae. Additionally, this chapter 

presents the areas the present thesis aims to investigate. 
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1.3.1 Changes in Toxicant Sorption/Desorption Physicochemistry with TiO2 

NPs in the Aqueous Phase 

As described earlier, TiO2 NMs are the most widely produced engineered NMs worldwide with 

an estimated current production of more than 200,000 tons per year (Robichaud et al., 2009; 

Sun et al., 2014). More than 60% of TiO2 NMs are used in cosmetics and sunscreens, and, due 

their white colour, TiO2 NMs are widely used as a pigment in paints, plastics as well as in the 

food industry (Sun et al., 2014). The most frequently used TiO2 NMs are the Aeroxide P25 

NPs (Evonik Degussa), and numerous studies on P25 have been conducted since this NP was 

first mentioned in the literature in 1985 (Cãrdoba and Luque, 1985). Specifically, a search 

“TiO2” and “P25” in Scopus produces 4,425 document results (from 1980 till March 2017), 

40% in the field of chemistry and 21.3% in the field of environmental sciences. 

Their low cost and high chemical stability have made TiO2 NMs attractive to support 

remediation of contaminated environments, and TiO2 NMs have been used in decontamination 

of air, water and soil (Choi et al., 2006). TiO2 is a common semiconductor and an excellent 

photo-catalyst and with potential for application to the photo-degradation of organic 

compounds in the aqueous phase (Linsebigler et al., 1995). The photocatalytic reaction starts 

with photo-excitation of a valence electron and the subsequent generation of an electron-hole 

pair that leads to creation of hydrogen peroxide and consequent photo-degradation of organic 

compounds in the presence of water (Gaya and Abdullah, 2008). Anatase and rutile, the two 

most common crystalline structures of TiO2, can be photo-excited in the ultraviolet A (UVA) 

and visible light spectrum, respectively (Hurum et al., 2003). The nanoscale properties of TiO2 

NPs increase the catalytic functionalities of the material and the efficiency of photo-

degradation of unwanted substances (e.g. contaminants). 

Release of TiO2 NPs in the aquatic environment can be natural from the terrestrial environment; 

accidental, during industrial processes and fabrication of engineered NPs; or intentional, during 

and after use of products containing TiO2 NPs. Studies based on the large amount of 

information available for production of economically important engineered NMs have been 

used to model and predict nano-TiO2 concentrations in the aquatic environment (Gottschalk et 

al., 2009; Gottschalk et al., 2013). Taken under consideration the production volumes, the 

importance of product allocation and life cycle, the predicted environmental concentrations of 

nano-TiO2 were the highest in sewage effluent, surface waters, sediments and soils, and 
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calculated to be less than 1 µg/L on surface waters while TiO2 pigment was estimated to be in 

only one order of magnitude higher concentrations (Sun et al., 2014). 

Once in the aquatic environment, TiO2 NPs can undergo transformations that can alter their 

physicochemistry compared to the pristine state. After TiO2 NP release into the environment, 

ozone, UV light and humidity alter the NP surfaces and can affect surface coatings (Labille et 

al., 2010; Mitrano et al., 2015). The process of oxidation is affected by environmental 

conditions and the duration in the environment. The oxidation that occurs on the surface of the 

particle after the release and weathering of commercial coated TiO2 NPs in the aquatic 

environment, can erode the coating and expose the core TiO2 NPs (Kaegi et al., 2008). The 

ionic strength and changes in ionic strength of surface waters (e.g., transitions between 

freshwater and marine waters, different ionic content) can induce changes in physicochemistry 

of NPs including alterations in surface properties that can lead to larger masses of NPs. High 

calcium levels can neutralize the negative surface charge of TiO2 NPs in fresh water, and the 

presence of divalent ions tends to promote agglomeration of NPs (Shih et al., 2012). Changes 

of the surface charge and surface area can in turn lead to alteration of surface physicochemistry 

of the particles and complicate the interactions and sorption of other compounds present in the 

aquatic environment (i.e. natural organic matter, organic contaminants, metals). For instance, 

thorium sorption onto TiO2 NPs is independent of the presence of NaCl or KCl in aqueous 

solution (Tan et al., 2007; Zhijun et al., 2005), but the presence of K+, Li+ or Na+ can alter the 

surface of TiO2 NPs and compete with thorium ions for sorption sites onto TiO2 NPs, therefore 

changing the sorption capacity of TiO2 NPs (Tan et al., 2007). 

The interactions between TiO2 NPs and organic contaminants present in the aquatic 

environment can have implications on the environmental fate and transport of the compounds 

involved. Numerous studies have investigated the complicated processes of adsorption of 

organic compounds on the surface of TiO2 NPs. Sorption refers to the collective processes of 

adsorption, the process of adhesion of a molecule to a surface due to surface forces (Calvert, 

1990); and absorption, the process of molecules crossing the surface and retained by the 

material (Calvert, 1990).  The physicochemical properties of both adsorbent and adsorbate (e.g. 

size and the charge of the TiO2 NPs and the organic compound) can influence sorption of 

substances to NPs. The chemistry of the sorption of organic contaminants onto TiO2 NPs has 

been investigated in the context of photo degradation of organic contaminants in the aquatic 

environment (Lee et al., 2015; Li et al., 2010; Okupnik et al., 2015; Peterson et al., 2012), but 
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these studies have not been critically reviewed. Further, sorption of contaminants onto TiO2 

NPs and effects on bioavailability and toxicity in aquatic organisms have been researched, 

(Fang et al., 2015; Farkas et al., 2015; Qiang et al., 2015), and these studies must be critically 

evaluated to advance the collective understanding of the environmental implications of toxicant 

sorption onto TiO2 NPs. 

 

1.3.2 Properties of TiO2 NPs in the aqueous phase  

1.3.2.1 Agglomeration 

Titanium dioxide NPs agglomerate, and agglomeration is influenced by NP surface charge, 

size, and presence of other substances in the aqueous phase. The term “agglomerate” (Figure 

1.1) is defined as a cluster of NPs and other substances that is loosely held (i.e., a cluster of 

NPs that readily return to original nanoscale size by high frequency sonication), whereas, the 

term aggregate is used to refer to a cluster of strongly held NPs that are not returned to original 

nanoscale dispersion by high frequency sonication (Jiang et al., 2009b). It has been documented 

that surface charge of oxide NPs is an important property responsible for the agglomeration of 

the particles (Bian et al., 2011; Keller et al., 2010). At the nanoscale, attractive forces between 

particles (van der Waals forces) can cause NPs to agglomerate. The isoelectric point of anatase 

TiO2 NPs in the aqueous phase is at pH 6 (Jiang et al., 2009b) and the NPs acquire a negative 

surface charge in waters of higher pH (down to approximately -40 mV) (Allouni et al., 2009; 

Jiang et al., 2009a; Lee et al., 2015; Loosli et al., 2015; Okupnik et al., 2015; Salih et al., 2015). 

A pH closer to the isoelectric point of the NPs enhances NP agglomeration, while at higher pH 

values the absolute value of the surface charge can increase repulsive forces between NPs and 

reduce agglomeration (Jiang et al., 2009b). 
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Figure 1.1: Different conditions and formations of particles in dry and aqueous phase as 
found in Jiang et al., 2009b.  
 

The physicochemical properties of NP are likely to affect agglomeration in the aqueous phase. 

Specifically, the NP surface area available for interactions with the surrounding environment 

and the chemical structure of the surface are additional factors that influence NP 

agglomeration. The crystalline structure of TiO2 NPs likely affects agglomeration and potential 

sedimentation of the NPs in the aqueous phase. More rapid sedimentation has been observed 

for rutile TiO2 NPs compared to anatase TiO2 NPs in the water column (Qiang et al., 2015). 

Specifically, for rutile TiO2 NPs (20 - 80 nm primary size) 48 h after being introduced to a 

fresh water medium, more than 80% of the TiO2 concentration was decreased in the upper 

water layer and in turn large agglomerates of 800 nm size were found in the bottom layer based 

on measurements by dynamic light scattering (DLS) (Qiang et al., 2015). On the contrary, the 

same study observed that the concentration of anatase TiO2 NPs of a primary size 20 - 50 nm 

reduced by 52% in the upper water layer within 48 h (Qiang et al., 2015). The particle size and 
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surface area have been reported to be more important than the crystalline structure in the 

agglomeration of the TiO2 NPs (Okupnik et al., 2015; Suttiponparnit et al., 2010). 

The ionic strength of the medium can induce the formation of TiO2 NP agglomerates in the 

aqueous phase. Divalent cations adsorb to specific sites on the surface of TiO2 NPs and 

neutralize the negative charges on the surface and thereby prevent repellent forces between 

NPs and facilitating agglomeration (Romanello and de Cortalezzi, 2013). Calcium ions of a 

fresh water medium neutralize the surface charge of NPs and leading to agglomeration. The 

presence of natural organic matter (NOM) can stabilize aqueous dispersions of NPs when 

concentrations of divalent cations are relatively low (e.g., 0.3 mM of CaCl2) (Romanello and 

de Cortalezzi, 2013), and this is likely because calcium ions bind to the NOM and are then less 

available to sorb to TiO2 NPs. The TiO2 NP agglomerates tend to sediment rapidly in fresh 

water and sea water media. Specifically, 80% of the TiO2 NPs were removed from the water 

column in less than 100 minutes and formed larger agglomerates in seawater compared to fresh 

water (Keller et al., 2010). The hydrodynamic diameter (i.e., the average size) of TiO2 NPs in 

suspension, increased from 793 to 2833 nm as the concentration of TiO2 NPs increased from 5 

to 50 mg/L, after 3 h in Roswell Park Memorial Institute (RPMI) cell and tissue culture medium 

(Allouni et al., 2009). 

 

1.3.2.2 Oxidation of TiO2 NPs by UV radiation 

Ultraviolet illumination can cause changes in the surface chemistry of TiO2 NPs and other 

metal oxide NPs such as ZnO and CeO2. TiO2 NPs under UV light produce electron-hole pairs 

(e--h+) and the oxidation of H2O or OH- generates hydroxyl radicals (OH•) (Li et al., 2002). 

Additionally, the presence of O2 acts as an electron trap that leads to generation of superoxide 

(O2-•) (Li et al., 2002; Gaya and Abdullah, 2008). The above observations indicate that UV 

light can induce the production of reactive oxygen species (ROS) by TiO2 NPs. Pigeot-Remy 

et al., (2017) observed high levels of hydroxyl radicals at the surface of TiO2 P25 NPs by spin 

trapping after 15 sec of UVA irradiation. Anatase band gap energy of 3.2 eV corresponds to 

385 nm UVA wavelength while rutile TiO2 has a smaller band gap energy (3.0 eV) with 

excitation at 410 nm wavelength (Hurum et al., 2003), Band gap energy of a semi-conductor 

material corresponds to the electron flow from valence to conduction and can depend on 

external source of energy (e.g. solar radiation) (Yablonovitch, 1993). Therefore, oxidation of 

TiO2 NPs by UV light can potentially occur after their release to the aquatic environment and 
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exposure to sunlight. No free radicals were observed with P25 TiO2 NPs under 4 h of visible 

light exposure; however, the intensity of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH• was 

significantly increased after the incorporation of boron and nickel in TiO2 NPs indicating that 

chemical composition of TiO2 NPs can influence production of free radicals (Zhao et al., 

2004). Brame et al. (2013) indirectly demonstrated the presence of ROS during degradation of 

4-chlorophenol in the presence of sunlight and food-grade TiO2 NPs, when upon addition of 

the hydroxyl radical (•OH) scavenger, isopropanol, the degradation ended. Weathering of TiO2 

NPs, used in cosmetic products, by artificial daylight degraded the polydimethylsiloxane 

coating of the TiO2 NPs (Auffan et al., 2010). Silicon as part of the coating of the TiO2 NPs, 

leached in solution (up to 90% of the initial weight) and the remaining coating layer was 

oxidized (Auffan et al., 2010).  This alteration process of the surface of TiO2 NPs after release 

in the aquatic environment can alter the physicochemical properties and reactivity of the NPs. 

Photo-degradation of organic compounds by metal oxide NPs is a promising method for the 

elimination of organic contaminants from the water. In particular, TiO2 P25 NPs under UV 

light facilitated photo-degradation and led to a reduction in half of the amount of paracetamol 

present within 300 min (Yang et al., 2008).  Further, Peterson et al., (2012) observed total 

degradation of ampicillin after 500 min in the presence of anatase TiO2 NPs under 254 nm UV 

light. For the TiO2 materials, the NPs provide larger surface area, compared to larger particles, 

and this can lead to higher photocatalytic activity compared to bulk material (Belessi et al., 

2007). Specifically, a TiO2 NP of 30 nm diameter achieved total degradation of methylene blue 

in 10 min under 300 nm UV light in aqueous solution, while TiO2 particles of 49 µm diameter 

needed 60 min to facilitate the same amount of degradation (Xu et al., 1999). Estrone (E1) and 

17β-estradiol (E2) (ng/L range) were totally degraded under light (238-579 nm) in the presence 

of TiO2 P25 (1 g/L) within 4 h, and, when the light was fixed at 253 nm, the degradation time 

reduced to less than 1 h (Zhang et al., 2007). Investigation of ofloxacin degradation by TiO2 

NPs in dark conditions showed that sorption onto TiO2 NPs led to breakage of organic 

compounds and degradation of ofloxacin after 100 h (Peterson et al., 2015) compared to UV 

photo degradation of the same compound in the range of minutes to 1 h (Paul et al. 2007; An 

et al., 2010).  
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1.3.3 Sorption of Organic Substances to TiO2 NPs 

1.3.3.1 Influence of Natural Organic Matter on sorption 

NOM can associate with TiO2 NPs and influence the NP physicochemistry and environmental 

fate.  NOM is a mixture of organic compounds naturally occurring in the aquatic environment 

(Sillanpää, 2014); and NOM includes carboxylic and amino acids, proteins, and substances that 

include molecules of high molecular weight such as humic and fulvic acids (Belin et al., 1993). 

The amount and the properties of NOM may differ according to area (geology, soil 

composition) and season. As mentioned above, NOM can sorb onto the surface of TiO2 NPs in 

the aqueous phase and stabilize the NPs in dispersion. Therefore, in the presence of NOM the 

agglomeration of particles tends to be inhibited. High concentrations of Ca ions (>1.5 mM of 

CaCl2), however, can promote neutralization of the surface charge and increase of the 

hydrodynamic diameter (Zhang et al., 2009).  

The presence of NOM in aquatic environments can influence sorption of organic contaminants 

onto TiO2 NPs. Fries et al., (2016) investigated sorption of the antibiotic ciprofloxacin (CIP) 

onto TiO2 NPs, in the presence of NOM, and concluded that NOM and CIP competed for 

sorption sites on TiO2 NPs, and, in the presence of NOM, CIP sorption on TiO2 NPs was 

reduced. The study used 500 mg/L TiO2 NPs and achieved sorption of 50 % of the primary CIP 

concentration. Wang et al., (2014) found that the presence of dissolved organic matter (DOM, 

specifically tannic acid) as a coating on TiO2 NPs, enhanced the sorption of phenanthrene on 

TiO2 NPs. The DOM coating of TiO2 NPs promoted agglomeration of NPs reducing the surface 

area available for sorption therefore, the sorption of phenanthrene onto NPs compared to bulk 

TiO2 was not different. Zhang et al. (2007) observed that in the presence of humic acid, the 

photo-degradation of E1 and E2 by TiO2 P25 was enhanced and that was attributed to the 

additional photosensitivity of NOM itself. 

 

1.3.3.2 Influence of TiO2 NP Surface Area on Sorption 

The surface area of TiO2 NPs available is important for sorption, and total surface area in a 

preparation is influenced by the number of particles and the surface-to-volume ratio of the 

particles present. More perfluorooctanesulfonic acid (PFOS) was sorbed to small anatase 

particles of the same mass compared to larger rutile TiO2 NPs as detected by measurement of 

the PFOS concentration in the top layer of the water column after centrifugation of PFOS-TiO2 
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NPs and analysis by ultra-performance liquid chromatography - tandem mass spectrometry 

(Qiang et al., 2015). The conclusion that the size of the particles is more important than the 

crystalline structure was supported by another study that investigated sorption of algal toxin, 

microcystin LR, onto TiO2 NPs (Okupnik et al. 2015). In particular, TiO2 P25 (80% anatase, 

20% rutile) displayed the highest capacity for microcystin adsorption measured in supernatant 

by liquid chromatography - mass spectrometry (LC-MS), followed by pure anatase NPs and 

pure rutile NPs; however, P25 NPs did have the smallest hydrodynamic diameter. All TiO2 

NPs displayed higher capacity for adsorption of the cyanobacterial toxin compared to bulk 

TiO2 (Okupnik et al., 2015).  

Larger surface area can potentially be achieved with higher concentrations of NPs, but greater 

numbers of particles can increase the potential for agglomeration and thereby reduce surface 

area available for sorption. Farkas et al. (2015) observed reduced concentration of 

benzo(a)pyrene (BaP) in the aqueous phase to 61% of the starting concentration in the presence 

of 0.2 mg/L TiO2 NPs after sorption on the surface of the particles.  Sedimentation of the TiO2 

NPs with sorbed BaP decreased further (37% of the starting BaP concentration) when more 

NPs were added in the preparations (2 mg/L) (Farkas et al., 2015). At higher TiO2 NP 

concentrations (>150 mg/L), the effectiveness of the particle as a photo-catalyst was decreased 

due to agglomeration of the particles (Li et al., 2010). At higher concentrations, the 

agglomeration rate was faster due to increased probability of contact between particles. 

Increasing pH of medium from 2.29 to 6.15 led to the formation of larger agglomerates and the 

observed sorption/degradation of orange II dye was decreased (Li et al., 2010). Studies that 

have assessed sorption of organic compounds onto TiO2 NPs are presented in Table 1.1.
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Table 1.1: Evaluation of sorption of organic contaminants on TiO2 NPs, based on analytical chemistry. 

TiO2 NPs 
specifics 

Adsorbate Factors assessed Results References 
 

P25 Orange II Agglomeration and photocatalytic 
performance 

Less agglomeration of NPs, efficient photo-degradation of orange II Li et al., 2010 

P25 Trichloroethylene Activated carbon and humic acid Humic acid reduced sorption of Trichloroethylene on TiO2 NPs Salih et al.., 2015 
Anatase, rutile, 
rutile 
hydrophilic, 
rutile 
hydrophobic 

phenanthrene Organic matter- different types of TiO2 
NPs 

Sorption enhancement due to organic matter  Wang et al., 2014 

P25, 
anatase (<25 nm) 
and rutile (10-30 
nm) NPs 

Microcystin LR Different crystalline phase of TiO2 NPs- 
NPs compared to bulk 

Sorption of MLR enhanced with smaller size of TiO2 NPs Okupnik et al., 2015 

Anatase NPs (32 
nm) 

CIP Natural organic matter NOM competitive against CIP for sorption on TiO2 NPs Fries et al., 2016 

Rutile NPs 10 x 
40 nm average 
particle size 

17β-estradiol Effect of 17β-estradiol on aggregation 
and NP characteristics 

Quick sorption 
Changes in NPs size after sorption 

Lee et al., 2015 

P25 Dissolved organic 
matter 

Photo degradation of DOM with TiO2 
and UVA 

Removal of 73-90% DOM Phong and Hur, 2015 

25 nm diam. 
anatase 

ofloxacin Adsorption vs degradation TiO2 NPs remove oflaxacin by adsorption and degradation Van Wieren et al., 2012 

25 nm diam. 
anatase 

Ampicillin  Effect of pH TiO2 NPs remove penicillin by adsorption and degradation Peterson et al., 2012 

25 nm diam. 
anatase 

ofloxacin Dark conditions Ofloxacin sorption to TiO2, degradation occurred in dark conditions Peterson et al., 2015 
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1.4 Use of Bioavailability to Inform on Sorption of Organic Compounds onto 

TiO2 NPs 

Aquatic toxicology of TiO2 NPs has demonstrated that aqueous-phase agglomerates of TiO2 

NPs are of minimal toxicity at environmentally relevant concentrations. Aqueous 

concentrations of 0.1-1 mg/L (2-3 orders of magnitude above estimated TiO2 NPs 

concentration on surface waters (Sun et al., 2014)) can interfere with respiratory surfaces in 

fish (Boyle et al., 2013b; Federici et al., 2007) and subsequent effects of TiO2 NPs observed, 

such as on fish behaviour (Boyle et al., 2013b), reproduction (Ramsden et al., 2013), and tissues 

biochemistry (Boyle et al., 2013b). A critical comparison among studies conducted with 

identical TiO2 NPs in rainbow trout Oncorhynchus mykiss exposed via diet, aqueous phase, 

and injection into cardiovascular system, demonstrated that Ti did not accumulate in internal 

tissues of rainbow trout after waterborne or dietary exposure. Minor sub-lethal toxicity 

indications (e.g. elevated TBARS and glutathione) were attributed to physical disruption of 

fish respiration (accumulation of TiO2 NPs in gills; production of mucus in gills) after 

waterborne exposure (Boyle et al., 2013a). Although also at concentrations that are orders of 

magnitude higher than environmental relevance, TiO2 NPs under simulated solar radiation with 

environmentally relevant UVA intensity of 1,700 µW/cm2, enhanced mortality of smaller 

organisms than rainbow trout after daily renewal of exposure solutions. Specifically, zebrafish 

free swimming larvae 96-h LC50 was observed at 134.6 mg/L TiO2 NPs P25 (Ma and Diamond, 

2013), in Japanese medaka larvae 96-h LC50 was observed at 2.2 mg/L and 48-h LC50 of 29.8 

µg/L was found in Daphnia magna (Ma et al., 2012) and no investigation of ROS has been 

conducted.  

Sorption/desorption of substances with TiO2 NPs has been investigated within the aqueous 

phase by evaluation of changes in substance bioavailability in organisms. Bioavailability of a 

substance can be defined as the amount of a substance that has entered the body and interacted 

with organs/tissues to generate a measurable response in the organism (Semple et al., 2004; 

Tian et al., 2014). The interpretation of a biomarker relies on the concentration-response 

principle, assuming a relationship between the response of the biomarker and the concentration 

of the chemical compound. For some organic substances, bioavailability can be influenced by 

the presence or absence of TiO2 NPs, and, presumably, the change in substance bioavailability 

occurs because of sorption to TiO2 NPs. The investigated organic substance should cause a 

well-defined concentration-response pattern, thus any changes in the biomarker response could 
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be attributed to the presence of TiO2 NPs. 

Organisms such as fish and bivalves have been used to evaluate the sorption of organic 

contaminants onto TiO2 NPs in the aqueous phase (Table 1.2). The sorption of the organic 

compound onto TiO2 NPs is shown as changes in the response (e.g., toxicity) of the organism 

to the compound. Sorption depends on the nature of the organic compound, the characteristics 

of TiO2 NPs (size and crystal phase) as it has been mentioned earlier, and additionally can 

depend on the organism used for the assessment of bioavailability and the route of exposure 

(e.g. waterborne or dietary exposure). Direct comparison between studies is difficult because 

of differences in methods that include types of TiO2 NPs, the organic compounds tested, and 

the organisms and end points used for measurement of bioavailability. Several different 

biomarkers and aquatic organisms have been used to assess bioavailability.  

TiO2 NP agglomerates with sorbed contaminants can be ingested by aquatic organisms and the 

bioavailability of the sorbed contaminant can increase after ingestion. Marine bivalves such as 

ark shell Scapharca subcrenata have been used to assess sorption of phenanthrene (Tian et al., 

2014) and polybrominated diphenyl ether (BDE) (Tian et al., 2015), Mytilus galloprovencialis 

to evaluate sorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Canesi et al., 2014) and 

Haliotis diversicolor to assess sorption of tributyltin on TiO2 NPs (Zhu et al., 2011). The above-

mentioned studies observed enhanced bioavailability of organic compounds in the presence of 

TiO2 NPs suggesting that TiO2 NPs facilitated transport of sorbed organic compounds into the 

studied organisms. One study observed reduced uptake (in µg/L) of benzo(a)pyrene in the 

presence of TiO2 NPs in Mytillus edulis. No changes were observed in the activity of 

glutathione peroxidase and superoxide dismutase proteins; however, the catalase protein 

activity of the digestive glands was increased significantly in the presence of TiO2 NPs 

indicating the presence of hydrogen peroxide and increased frequency of micronucleus in M. 

edulis haemocytes was also observed (Farkas et al., 2015). As bivalves are organisms of low 

mobility and feed by drawing large quantities of water via the inhalant siphon and filtering the 

water through the gill, waterborne TiO2 NP agglomerates and potential sorbents can end up 

inside the organisms.  

The bioavailability of a sorbed organic toxicant on TiO2 NP agglomerates may differ when 

investigated in different developmental stages of the same organism. TiO2 NPs facilitated 

bioaccumulation of PFOS in adult zebrafish and bioaccumulation of PCP was reduced in 
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zebrafish embryos (Qiang et al. 2015; Fang et al., 2015). Qiang et al., (2015) observed 

increased bioavailability of PFOS, as mass of PFOS in adult zebrafish wet weight, in the 

presence of TiO2 NPs. Differences were found between two crystalline phases tested, 

specifically, anatase TiO2 NPs increased PFOS bioavailability by 55.9% and rutile TiO2 NPs 

increased PFOS by 25.4%. Zebrafish ingested TiO2 agglomerates with sorbed PFOS and the 

TiO2 NPs acted as a carrier increasing the concentration of hydrophobic PFOS in the whole 

fish body, although no information is provided on whether PFOS was accumulated or present 

on fish skin or in the lumen of the gut. Fang et al., (2015) investigated bioavailability of 

pentachlorophenol (PCP) in larval zebrafish to assess sorption of PCP onto TiO2 NPs and 

observed that the mass of PCP accumulated by the organism was reduced in the presence of 

TiO2 NPs by 33.7%. Further experimentation showed that the presence of TiO2 NPs in the PCP 

exposure increased ROS measured by florescence, increased superoxide dismutase gene 

expression, suggesting increased bioavailability of PCP (Fang et al., 2015).  

The bioavailability of the organic compound sorbed onto TiO2 NPs can be different when 

assessed by different biomarkers and tissues of the same organism. The presence of TiO2 P25 

NPs had no effect on TCDD bioavailability in European sea bass (Della Torre et al., 2015; 

Vannuccini et al., 2015). The presence of TiO2 NPs did not change the bioavailability of TCDD 

as assessed by measurement of upregulation of cytochrome P4501A (cyp1A) and glutathione 

s-transferase gene expression or EROD enzyme activity (Della Torre et al., 2015; Vannuccini 

et al., 2015), however the presence of TiO2 NPs and adsorbate suppressed significantly the 

expression of ATP-binding cassette genes, abcb1 and abcc1 (Vannuccini et al., 2015). Further 

analysis of expression of gene related to immunomodulation showed upregulation in gills and 

spleen of fish exposed in TiO2 NPs or TCDD alone, but the presence of NPs reduced the 

induction caused by TCDD when fish were exposed to the mixture (Della Torre et al., 2015). 

This response in combination with the reduced body burden of TCDD in the presence of TiO2 

NPs, suggest that the sorption of TCDD onto TiO2 NPs can cause alteration of physicochemical 

characteristics of agglomerates and sorbent and result in lower TCDD bioavailability. One 

explanation for the reduction of the concentration of primary substance can be the 

decomposition of the substance after sorption on the surface of TiO2 NPs. Sorption onto TiO2 

NPs leads to photo-induced degradation or slower degradation of organic compounds in the 

dark conditions. TiO2 NPs may induce decomposition of sorbed parent substances to by-

products that can have biomarker response. For instance, as it is shown in this work (Figure 
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1.2), parent polycyclic aromatic hydrocarbons (PAHs) and degradation by-products may not 

have the same bioactivity, thus cause different biomarker response in the organism and inform 

on sorption of compound onto TiO2 NPs differently.  

Qiang et al. (2016) conducted a comparative study to assess sorption of PFOS on TiO2 NPs in 

three species of fish that naturally occupy different levels of the water column. Zebrafish 

resided in the top layer of the exposure chamber, grass carp Ctenopharyngodon idella occupied 

the middle layer, and a benthic fish species, Hypostomus plecostomus, was in the bottom layer 

of the exposure chamber. The PFOS whole body burden was increased in the presence of TiO2 

NPs, 59 % in zebrafish, 67.6 % in C. idella and 16.4% in H. plecostomus. The highest 

concentration of PFOS was found in the intestines, gills and skin of all three fish species after 

exposure to TiO2-PFOS (Qiang et al., 2016). The results showed differences in the 

bioavailability of PFOS among species that can be attributed to the eating behaviour, natural 

habitat and physiology of each species. The PFOS-TiO2 NPs combination increased PFOS 

concentration in zebrafish more than H. plecostomus.  
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Table 1.2: Evaluation of sorption of organic contaminants on TiO2 NPs by assessment of bioavailability in aquatic organisms. 

 

TiO2 NPs 
specifics 

Adsorbate  Factors assessed Target organism Results References 

P25  2,3,7,8-
tetrachlorodibenz
o-p-dioxin 
(TCDD) 

sorption European sea bass TiO2 NPs showed no effect in TCDD biotransformation gene 
expression  

Vanuccini et al., 2015 

25 nm d.  Pentachloropheno
l (PCP) 

PCP range of concentrations 
sorption 

Zebrafish larvae TiO2 reduced uptake of PCP Fang et al., 2015 

62 nm d. Benzo-a-Pyrene 
(BaP) 

Sorption on TiO2 range of 
conc. 

Mytillus edulis TiO2 reduced uptake of BaP  Farkas et al., 2015 

<10 nm d. 
anatase NPs 

Phenanthrene sorption Ark shell Scapharca 
subcrenata 

TiO2 enhanced uptake Tian et al., 2014 

20-50 nm d. 
anatase NPs, 
20-80 nm d. 
rutile NPs 

Perfluorooctanesu
lfonate (PFOS) 

TiO2 anatase and TiO2 rutile 
NPs sorption 

Zebrafish adults TiO2 NPs enhanced uptake Qiang et al., 2015 

P25 TCDD sorption European sea bass TiO2 NPs did not affect biotransformation or bio-concentration 
of TCDD 

Della Torre et al., 
2015 

P25 TCDD In vitro and in vivo exposure Mytillus galloprovencialis TiO2 NPs enhanced bioavailability of TCDD 
 

Canesi et al., 2014 

7nm d. polybrominated 
diphenyl ether 
(BDE) 
 

Range of BDE conc. 
Range of TiO2 NPs conc. 

Zebrafish larvae TiO2 enhanced uptake Wang et al., 2014 

<10 nm d. 
anatase 

Tributyltin (TBT) Range of conc. of TBT Haliotis diversicolor 
embryos 

TiO2 enhanced TBT toxicity Zhu et al., 2011 

<10 nm d. BDE Range of conc. of BDE Scapharca subcrenata TiO2 enhanced uptake of BDE Tian et al., 2015 
20-30 nm d. 
anatase  

PFOS Different fish species Zebrafish, 
Ctenopharyngodon idella, 
Hypostomus plecostomus 
 

TiO2 NPs increased bioaccumulation of PFOS in all three 
species 

Qiang et al., 2016 

P25 Ciprofloxacin 
(CIP) 

UVA Vibrio fisheri Initial decrease in toxicity after sorption of CIP to TiO2 NPs, 
high toxicity of CIP by products 

Silva et al., 2016 
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1.5 Pilot study 

The present experiment was a small preliminary study designed to investigate sorption of 

anthracene onto TiO2 NPs under UVA radiation (the main study is presented in Chapter 2). 

Other than this research, there A been no other studies that have used changes in substance 

bioavailability to investigate sorption of photo-labile aromatic compound on potentially photo-

active NPs. Sorption of anthracene under UVA onto TiO2 NPs was investigated assessing the 

bioavailability of photo-excited anthracene in zebrafish larvae (72-96 hpf). Zebrafish larvae 

(20 larvae per beaker) were exposed to 15 µg/L anthracene (dissolved in dimethyl sulfoxide, 

with final concentration of dimethyl sulfoxide <0.01% in the exposure preparations) and each 

treatment was repeated thrice. The control exposure is synthesized fresh water medium and 

DMSO (<0.01%) (79, 38, 12, 17 and 2 mg/L of Ca2+, Mg2+, Na+ and K+, respectively). 

Zebrafish were exposed to anthracene for 24 h and at the end of the exposure a UVA exposure 

followed (5 W/m2). Samples were collected 3 h after the end of UVA exposure for molecular 

analysis. The bioavailability of the aromatic hydrocarbon was assessed through changes in 

cytochrome P4501A (cyp1A) gene expression in zebrafish embryos conducted following the 

procedure presented by Sleight et al. (2017) after 24-h exposure to anthracene and anthracene 

and TiO2 NPs mixtures (see chapter 2 section 3 for extensive information on zebrafish 

husbandry and breading and gene expression methodology).  

The results showed that anthracene exposure in zebrafish larvae did not induce cyp1A 

expression, however, anthracene exposed under UVA can induce cyp1A (6-fold induction). In 

the presence of TiO2 NPs cyp1A remained at low levels, reducing the effect of photo-excited 

anthracene on cyp1A expression (Figure 1.2). The results indicate that anthracene under UVA 

irradiation altered chemical structure and metabolism of photo-excited anthracene induced 

cyp1A gene expression. The presence of TiO2 NPs reduced the bioavailable anthracene by 

either providing enhanced surface area for anthracene to sorb leaving less/no amount of 

anthracene available to larvae or by degrading anthracene into by products that do not involve 

aryl hydrocarbon pathway biodegradation. 
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Figure 1.2: Relative expression of cyp1A in zebrafish larvae (72 hpf), after normalization to β-

actin. When larvae (20 per sample) were exposed to 15 µg/L of anthracene (anth) (n=3) no 

induction of cyp1A was observed. On the contrary, larvae exposed to anthracene under UVA 

illumination (5 W/m2) (n=6) led to a 6.3-fold induction of cyp1A, suggesting that anthracene 

after UVA exposure creates photo-activated compound that is biodegraded by cyp1A enzyme. 

Exposure of TiO2 NPs (2 mg/L) under UVA (n=3), do not induce cyp1A expression. The 

mixture of anthracene and TiO2 NPs under UVA do not induce cyp1A expression, indicating 

that photo-activated anthracene is not bioavailable to the larvae (main study presented in 

Chapter 2). MEAN ± SE, ANOVA, p<0.05. 
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1.6 Thesis Objectives 

To summarize, the present review indicates the urgent need to investigate NP environmental 

fate and the several implications of the sorption of organic contaminants onto a most abundant 

NP in the aquatic environment (i.e. TiO2 NPs and agglomerates). It has been evident that the 

identification of the relationship of NP physicochemistry and NP toxicity in the aqueous phase 

is a fundamental issue to allow proper risk assessment. The indirect toxicity of NPs in the 

aquatic environment (e.g. ion release, sorption of existing environmental contaminants, etc) is 

a TiO2 NPs are likely to interact with organic contaminants present in the aquatic environment 

during and after NP release. After manufacturing and during use and release in the aquatic 

environment, TiO2 NPs can go through changes in their physicochemistry. Interactions 

between NPs or with ionic compounds, and solar irradiation can change the properties of the 

NP surface, making laboratory-based experiments more complicated to assess and interpret. 

Sorption of organic contaminants onto TiO2 NPs can occur and promote transport of sorbent 

to aquatic organisms but can be influenced by changes in the physicochemistry of the surface 

of NPs and sorbent in the aqueous phase. TiO2 NPs can facilitate photo-degradation of organic 

compounds with potential for use in environmental remediation; however, there is also 

potential that biologically active decomposition products are generated after interaction with 

UV light and organic substances adsorbed onto TiO2 NPs. Evaluation of adsorbed substance 

bioavailability to investigate the sorption/desorption processes onto NPs is an environmentally 

relevant and sensitive approach that contributes important new information towards 

understanding sorption phenomena.   

The experiments conducted in the present thesis were designed to investigate the 

aforementioned issues that occur with the presence of NP in the aquatic environment. All 

starting materials had all three dimensions in the nanoscale and have been referred to as NPs 

and NP agglomerates. While bioavailability measurements can change with changes of 

environmental factors, the bioavailability assessment of a model organism with well 

characterised and known responses (i.e. zebrafish) can be a very useful analytical tool. 

Zebrafish, Danio rerio, and the green microalga, Chlorella vulgaris were used as model 

organisms in the present study. Zebrafish is a fish with widely studied responses, standardised 

guidelines for conducting toxicity tests and completely sequenced genome. It is also an 

organism that develops fast and is easy to breed and keep in aquaria. Chlorella vulgaris has 

been chosen as second model organism with different biology compared to zebrafish, affected 
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potentially differently after exposure to the same toxicants, thus informing on and completing 

the knowledge acquired from zebrafish on NP behaviour and toxicity in the aqueous phase. 

Specifically, the thesis objectives included the following:  

1) Investigation of PAHs sorption on TiO2 and Si NPs under UVA radiation by examining the 

PAH and by-products bioavailability in zebrafish larvae. The sorption of two representative, 

with distinct differences, photo-labile PAH compounds [anthracene and benzo(a)pyrene] was 

studied under laboratory and UVA light to identify effects of UVA radiation on sorption 

processes. Sorption was indicated by assessing bioavailability of PAHs and photo-by-products 

using expression of PAH metabolism genes. The study on sorption of PAHs onto NPs is 

presented in Chapter 2. 

2) Investigation of copper sorption onto a wide range of NPs with different physicochemical 

properties in aqueous phase in the context of attributing co-contaminant sorption to NP 

physicochemistry. The positively charged copper ion sorption onto negatively charged NPs 

was studied by evaluation of copper bioavailability in C. vulgaris (growth inhibition) and 

zebrafish larvae (mortality and biomarker gene expression) in the presence of NPs. The study 

on copper sorption onto NPs is presented in Chapter 3. 

4) Evaluation effects of lead-halide perovskites NPs (a new generation photovoltaic material) 

in the aquatic environment and whether perovskite toxicity can be attributed to Pb release. The 

perovskite toxicity was conducted by assessing perovskite NP toxicity in C. vulgaris and 

zebrafish larvae in the aqueous phase and via dietary exposure on adult zebrafish evaluating 

Pb bioavailability, tissue toxicity, and changes in zebrafish gut microbiota. The metal ion 

dissolution is an indirect effect of metallic NPs and respiration and dietary exposure are the 

major exposure routes of NPs in fish (Jang et al., 2014; Lu et al., 2017). Metal ion dissolution 

from metallic NPs significantly increases with low pH values (Bian et al., 2011), therefore, a 

dietary exposure can enhance metal dissolution after digestion of NP-spiked food and ion 

release in the gastro-intestinal (GI) tract. The exposure of perovskite NPs in algae and zebrafish 

is presented in Chapter 4. 

5) Evaluation of relation between NP physicochemistry and acute toxicity of aqueous phase 

NPs in C. vulgaris and early life stage zebrafish with development of enhanced exposure 

methods. One major limitation of testing toxicity of aqueous-phase NM exposure is the lack of 

homogeneity of NM suspensions and toxicity of NPs has been reported to be related to the 
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dispersion state of NPs in the aqueous phase (Boyle et al., 2015). In Chapter 5 The issue of 

sedimentation of NP agglomerates has been addressed using an exposure chamber that allows 

exposure of zebrafish larvae to continuously dispersed NPs without damaging the larvae.The 

exposure chamber toxicity test has been compared to traditional static exposure methods and 

NP toxicity was also assessed in C. vulgaris, a standardised toxicity test that offers limited 

sedimentation of NPs. 
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Chapter 2 - Toxicity of PAHs in the Presence of NPs Depends on Sorption 

Capacity and Potential Photocatalytic Properties of NPs. 

 

2.1 Abstract 

Engineered NPs have unique physicochemistry that includes high surface area, surface 

reactivity, and photo-activity.  In the aqueous phase, NPs can sorb substances and subsequently 

undergo complex chemical reactions that alter the chemistry of adsorbed substances. The 

present study evaluates sorption of two polycyclic aromatic hydrocarbons (PAHs) onto TiO2 

and Si NPs which have photo-activity and have been shown to sorb various substances in the 

aqueous phase. Sorption was evaluated by investigation of bioavailability of benzo(a)pyrene 

(BaP) and anthracene (ANT) through cytochrome P4501A (cyp1A) gene expression in larval 

zebrafish. The results support sorption of BaP under fluorescent light on both types of NPs 

(TiO2 and Si NPs) as indicated by less bioavailability of BaP in the presence of NPs. Under 

ultraviolet radiation ANT and BaP were photo-lysed to by-products that significantly changed 

the gene expression of cyp1A, superoxide dismutase 1 and DNA damage protein 2. The 

presence of NPs and UVA promoted catalysis of both PAHs and ANT sorption onto NPs under 

UVA led to significantly reduced bioavailability of by-products compared to ANT alone under 

UVA suggesting a protective role of NPs. On the contrary, BaP toxicity under UVA was 

strongly related to sorption onto NPs and the surface are available. Specifically, at low 

concentrations of BaP, sorption and photo-catalysis were efficient that led to higher relative 

concentration and bioavailability of toxic photo-by-products. At high concentrations of BaP, 

the limited surface area of NPs present in the suspensions led to partial photo-catalysis of BaP 

therefore, showing relative lower toxicity when compared to BaP exposures under UVA alone. 

The present study suggested that sorption of PAHs onto NPs is closely related to surface area 

as well as the physicochemistry of the PAH. Finally, the photo-activity of the NPs can change 

the reactivity of the surface area, changing in turn the sorption processes. Understanding NP-

substance sorption is an important consideration for managing the environmental risks of NPs. 
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2.2 Introduction 

The unique physicochemical properties of NPs can have important implications on their 

interactions with other substances including toxicants in the aqueous phase. Both small size 

(high surface to volume ratio) and surface reactivity of NPs influence sorption capacity by 

increasing sorption sites on the surface of the NPs. Although some NPs can be of low toxicity, 

sorption/desorption of toxicants to NPs presents an important factor to consider for 

environmental risk assessments of NPs. Numerous reports of toxic substance 

sorption/desorption to NPs include nC60 (Baun et al., 2008a; Henry et al., 2013; Park et al., 

2011; Wang et al., 2009), carbon nanotubes (CNT) (Glomstad et al., 2016; Li et al., 2014; Pan 

et al., 2008), TiO2 and SiO2 NPs (Boran et al., 2016; Fang et al., 2015; Tian et al., 2014). These 

results suggest that NPs can act as a vehicle for the delivery of toxicants to organisms. 

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic contaminants reported to 

associate with NPs in the aqueous phase (Baun et al., 2008b; Wang et al., 2009; Yang et al., 

2006). Among the issues of toxicological importance regarding sorption/desorption of 

substances onto NPs are enhanced bioavailability of toxicants that are sorbed to NPs, 

interactions between NPs and toxicants that enhance toxicity (e.g., photo-activation of 

toxicants), and effects of toxicant sorption on NP physicochemistry.   

Ultraviolet radiation of engineered NPs can cause photoexcitation and lead to photocatalytic 

decomposition of environmental organic contaminants. Photo-activation of NPs (e.g., TiO2, 

ZnO, NiO NPs) can generate reactive oxygen species (ROS) (i.e. ̇ O2, H2O2, ̇ OH) (Augugliaro 

et al., 2012) that have potential to react with organic substances including PAHs in aerated 

systems, with primary reaction initiated with the presence of the hydroxyl radical (˙OH) 

(Brubaker and Hites, 1998). Due to the different crystalline structures, the two most common 

in industry crystal types of TiO2, anatase and rutile, exhibit functional differences, being 

commercially available in smaller size and having excitation range that corresponds to UVA 

wavelengths (388 nm). Rutile is thermodynamically stable and found commercially in larger 

sizes (200 nm particle diameter) and photo-excitation can occur in visible light wavelength 

(410nm) (Hurum et al., 2003). The outermost conduction band electrons of photo-activated 

TiO2, can get caught by O2 in aerated systems and create superoxide radical ions (O2-) (Chen 

et al., 2004). Specifically, when TiO2 P25 NPs were exposed under UVA, high levels of 

hydroxyl radicals (˙OH) were observed by electron pragmatic resonance spectroscopy (Pigeot-

Remy et al., 2017). Additionally, Brame et al. (Brame et al., 2013) showed degradation of 4-
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chlorophenol by food-grade TiO2 NPs under sunlight, and degradation significantly decreased 

in the presence of the hydroxyl radical scavenger, isopropanol. Yang et al. (Yang et al., 2008) 

observed photo-degradation of half the amount of paracetamol within 300 min when TiO2 P25 

NPs were added in the aqueous solution and preparations were exposed under UVA while 

UVA or TiO2 NPs alone caused minimal degradation of paracetamol.  

PAHs are a group of hydrophobic organic compounds that can absorb energy from UV 

radiation and sorb to NPs in the aqueous phase. PAHs absorb light in the UVA region and 

create activated oxygen species that can pass the energy through the cell membrane and 

potentially lead to lipid peroxidation (Fu et al., 2012; Yu, 2002). Photo-toxicity of anthracene 

under UV radiation in fish was attributed to production of ROS (Oris and Giesy, 1990). 

Fluoranthene exposure under UVA led to developmental abnormalities, due to disorganised 

cell proliferation at the blastula stage and embryonic axis was not clearly visible, in Japanese 

medaka embryos (Diamond et al., 2006). PAHs have high molecular weight and low water 

solubility and have been reported to accumulate in organic material (Oris et al., 1990) and NPs 

in the aqueous phase (Baun et al., 2008). The sorption of phenanthrene to CNT was lower when 

CNTs with smaller number of potential adsorption sites were present, indicating that sorption 

is dependent on physicochemical properties of the NPs, such as surface area and functional 

groups (i.e. hydroxyl or carboxyl) (Glomstad et al., 2016). More phenanthrene molecules 

sorbed to multi-wall CNT compared to naphthalene molecules, a PAH with lower Kow value 

and less hydrophobic than phenanthrene was observed (Wang et al., 2009), indicating the 

importance of the physicochemical properties of the adsorbate in the sorption processes.  

Bioavailability of PAHs to model organisms has been used in the investigation of PAHs 

sorption to NPs. Bioavailability is defined as the amount of a compound that enters the target 

tissue and can have an active effect on a model organism (Semple et al., 2004). The NPs can 

act as a vehicle and transfer sorbed PAHs to exposed organisms, increasing the bioavailability 

or bioaccumulation of the compound after adsorbate desorption as indicated by mortality in 

Daphnia magna after ingestion of nC60 aggregates and adsorbed phenanthrene by the organism 

(Baun et al., 2008), the adsorbate/NPs uptake by ark shell and amount of the desorbed 

compound measured inside the organism’s tissues by analytical chemistry (Tian et al., 2014), 

or activity of well-known biomarkers for bioavailability of the adsorbate (i.e. ROS generation 

and GST activity for PAHs bioavailability) (Ferreira et al., 2014); no effects or direct toxicity 

of the specific NPs when exposed alone were observed, suggesting no bioavailability of NPs 
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(Ferreira et al., 2014; Tian et al., 2014). Hence, bioavailability indicates sorption of adsorbate 

onto NPs directly at the organism level and offers an environmentally relevant evaluation of 

impact of NPs in the aquatic environment. The presence of NPs, such as nC60 agglomerates, 

reduced fluoranthrene photo-toxicity to D. magna after a short-term exposure (Yang et al., 

2010). To our knowledge, although the photo-enhanced toxicity of PAHs is well reported, there 

is no information about how UVA can affect the sorption processes of PAHs on NPs with 

potential photo-activity and in turn the bioavailability of photo-excited PAHs in aquatic 

organisms.  

The objective of this study was to further investigate sorption of PAHs onto commercially 

important engineered NPs adding the potential effect of UVA illumination in the aqueous 

phase. The selected NPs included semi-conductor materials belong to the energy value chain 

with potential photo-activity, specifically, two TiO2 NPs with different properties (anatase : 

rutile ratios, and particle size) and Si NPs. Anthracene and BaP were selected as representative 

PAHs, that possess different physicochemical properties mainly are attributed to the 

differences in the molecular weight. Anthracene is a photo-labile and photo-toxic compound, 

with higher water solubility while BaP is a genotoxic compound and less water-soluble. The 

aim of the study was to investigate whether sorption of ANT and BaP can differ between NPs 

not only due to different physicochemical properties of both PAHs and NPs but also light 

excitation (after UVA illumination) of the tested compounds. The sorption of PAHs to NPs 

was evaluated by studying bioavailability as biomarker activity and specifically, gene 

expression, using well-documented and specific pathways (i.e. PAH metabolism) after PAHs 

exposure in larval zebrafish. 

 

2.3 Materials and Methods 

2.3.1 Chemicals 

The NPs used for the sorption studies were: TiO2 JRCNM01005a previously listed as NM105, 

Aeroxide P25 (Evonik Degussa) with a 25-30 nm particle diameter, anatase:rutile ratio of 85:15 

and -6.45 mV z-potential when 10 mg/L were suspended in Milli-Q water, anatase TiO2 NPs 

with primary particle diameter of 4-8 nm and z-potential of 46.8 mV in Milli-Q water and a Si 

NP provided by the Institute of Energy and Environmental Technology, Duisburg, Germany, 

with 100 nm particle diameter and -17.3 mV z-potential when 100 mg/L were suspended in 
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Milli-Q water. The PAHs used for this study were: anthracene (ANT) (Sigma-Aldrich, 

Lot#MKBN3282V) with 0.044 mg/L water solubility at 25 oC and benzo(a)pyrene (BaP) 

(Sigma-Aldrich, Lot#SLBM2972V) with 0.00162 mg/L water solubility at 25 oC. Dimethyl 

sulfoxide (DMSO) (Sigma Alrdich, Lot#: SHBF7881V) was used as solvent for ANT and BaP. 

 

2.3.2 Experimental Organism 

Zebrafish (Danio rerio) were obtained from the zebrafish research facility, Heriot Watt 

University. Husbandry, spawning and experiments using zebrafish were conducted following 

animal welfare regulations of the UK Home Office. Breeder fish were fed ad libitum, three 

times per day, with newly hatched Artemia salina or dry pellet food (ZM systems, Winchester, 

UK). Tap water was filtered through a reverse osmosis filter and fresh water was synthesised 

for husbandry and experiments in agreement with the OECD guidelines for fish early life-stage 

toxicity tests (OECD 210). The fresh water medium consisted of: 79, 38, 12, 17 and 2 mg/L of 

Ca2+, Mg2+, Na+ and K+, respectively with pH of 7.7. The temperature was maintained between 

28-30 oC, and a 12-h photoperiod was kept in the zebrafish facility. More than 30 one-year-old 

zebrafish were used for each spawning event with a ratio of 3:2 females to males. Hatching 

occurred between 48 and 72 hours post fertilization (hpf) and fish of age 72 hpf were used for 

the experiments. 

 

2.3.3 Experimental Design 

Sorption of ANT and BaP on NPs was assessed by bioavailability assessments. The first 

experiment (experiment 1) investigated the gene expression of three biomarkers (cytochrome 

P450 1A (cyp1A), superoxide dismutase 1 (sod1), DNA damage protein 2 (ddb2)) for the 

evaluation of ANT bioavailability in larval zebrafish with and without UVA exposure. The 

following three experiments (numbers: 2, 3 and 4) were conducted for the investigation of 

sorption of PAHs on NPs under UVA using bioavailability of PAHs in larval zebrafish as the 

analytical tool (Figure 2.1). 
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2.3.4 Experiment 1: Anthracene toxicity under UVA exposure 

Preliminary acute toxicity tests were conducted in zebrafish larvae (72-168 hpf) in a range of 

concentrations of ANT, 0 to 100 µg/L, and up to 45 µg/L to BaP solved in DMSO, with final 

concentrations of DMSO in test solutions being less than 0.01%. Acute toxicity tests were 

conducted in 96-well plates in a total volume of 200 µl to assess mortality caused by exposure 

to ANT after 96-h exposure period. Three genes were investigated as indicators of ANT 

bioavailability in larval zebrafish. Zebrafish larvae 72 hpf were exposed to two parallel ANT 

dilution series (0-30 µg/L). Cytochrome P4501A (cyp1A), superoxide dismutase 1 (sod1) and 

DNA damage binding protein 2 (ddb2) were examined as potential biomarkers for studying 

ANT bioavailability. One dilution series was sampled after 24 h and the second dilution series 

was exposed to UVA (5 W/m2). Preliminary time-point experiment (larvae exposed to 6 µg/L 

ANT and samples selected at 0, 2, 4 and 6 h after the end of UVA exposure) indicated that 

cyp1A induced 3-fold 2 h after the end of the UVA exposure and the expression dropped at 4-

h time-point. The sod1 gene expression increased a 1.6-fold at 2 h after the end of the UVA 

exposure and a 1.9-fold at the 4 h time-point. The 3-h time-point was selected for further 

experimentation as both cyp1A and sod1 were induced 3 h after the end of UVA exposure 

(Appendix A).  

 

Figure 2.1: Experimental design of the present study featuring the experiments 2-4 that were 

designed to assess the effect of PAH sorption onto NPs under UVA illumination. Time (0h) 

starts with PAHs and NPs mixtures stirring (for 24 h) and then zebrafish larvae (72 hpf) are 

added and exposure starts. The sampling occurred at 24 h except experiment 3, where at 24 h 

the UVA exposure started, and sampling occurred 3 h after the end of the exposure.  
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2.3.5 Experiment 2: Sorption of BaP to NPs 

Gene expression was used to assess bioavailability of BaP and indicate sorption of BaP onto 

NPs. For the sorption studies, two parallel dilution series of BaP were set up (0-3 µg/L) and in 

one dilution series 2 mg/L of each of NPs (NM105, TiO2 4-8 nm or Si NPs) were added. The 

BaP and NPs mixtures were prepared in fresh water medium (total volume of 20 ml) and stirred 

for 24 h prior to the start of the exposure. Zebrafish larvae at the developmental stage of 72 hpf 

were added in the preparations and exposed for 24 h. The exposures were conducted in 100-ml 

glass beakers and 15-20 larvae were exposed per beaker. After the end of exposure, the larvae 

were collected and stored at -80 0C until further analyses. ANT was not used as a co-

contaminant in this set of experiments as no induction of any biomarker was observed in 

zebrafish larvae after a 24-h aqueous exposure. 

 

3.3.5 Experiment 3: Sorption of PAHs to NPs under UVA 

Both BaP and ANT were used for the following set of experiments. The concentration range 

used for BaP was 0-30 µg/L and for ANT, 0-27 µg/L. Two different experimental designs were 

followed using BaP as co-contaminant. The first included two BaP serial dilutions up to 1 µg/L 

and the second two serial dilutions up to 30 µg/L. The amount of NPs (NM105, TiO2 4-8 nm 

or Si NPs) added in one dilution series was 2 mg/L. The preparations with both PAH and NPs 

were stirred for 24 h prior the exposure. Zebrafish larvae 72 hpf were exposed to PAH and 

PAH/NPs mixtures. At the end of the 24-h exposure period, the preparations were exposed 

under UVA irradiation. The final volume of solutions was 20 ml and shallow enough for the 

UVA irradiation to be able to penetrate throughout. In the experiments with low BaP 

concentration range and ANT, larvae were collected 3 h after the end of UVA irradiation and 

stored at -80 0C until further gene expression analysis. At the higher BaP concentration range 

(0-30 µg/L), 3 h after the end of the UVA irradiation, the mortality of the larvae was recorded. 

The larvae were collected 3 h after the UVA irradiation for gene expression analyses. During 

the UVA treatment, preparations were placed in UV Crosslinker CL-1000, longwave emission 

of 365 nm. The energy the preparations were exposed to was 5 W/m2. The light intensity inside 

the oven was measured by LI-COR LI-250A light meter and found to be 52.64 ± 2.17 µmol 

(mean ± SE, n=8) in different areas across the interior of the oven and 50.61 ± 1.18 µmol 

underwater.  
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2.3.6 Experiment 4: Sorption of PAHs to photo-excited NPs 

Preparations of 2 mg/L of NM105, TiO2 4-8 nm and Si NPs in fresh water medium were 

exposed under UVA irradiation of 5 W/m2. At the end of exposure, BaP was added in the 

preparations (0-3 µg/L) and which then were stirrer for 24 h. Larvae at 72hpf were exposed for 

24 h, collected, sacrificed and stored at -80 0C for gene expression analyses. The larvae exposed 

to BaP and NP mixtures were compared to the parallel exposure of larvae exposed to BaP 

alone. 

 

2.3.7 Gene expression 

Extraction of RNA was conducted, using RNeasy MiniKit for animal tissue, Qiagen, West 

Crawley, UK as described by (Boran et al., 2016). Zebrafish larvae 96 hpf (15-20 larvae per 

replicate) were homogenized with a pestle, treated with DNase (Qiagen) to prevent sample 

contamination from DNA, and eluted in 30 µL of sterile RNase/DNase free water. The 

concentration of the total RNA was measured using NanoDrop Spectophotometer (ND-2000) 

and all samples with good quality RNA (280/260 ratio between 2.0-2.2) were diluted to a final 

concentration of 100 ng/µL. Reverse transcription was performed using Precision nanoScript2 

Primer design kit with the following conditions: annealing at 65 oC for 5 minutes, extension at 

42 oC for 20 minutes and inactivation of the reaction for 10 minutes at 75 oC. The cDNA was 

stored at -20 oC until gene expression analysis. 

Primers designed for zebrafish from Primer BLAST (NCBI) for the following genes: 

cytochrome P4501A (cyp1A), β-actin, superoxide dismutase 1 (sod1) and DNA damage 

binding protein 2 (ddb2) as shown in Table 2.1.  Precision PLUS Mastermix with SYBRGreen, 

Primer Design, was used for the quantitative PCR. Fluorescence was detected after 40 two-

step cycles (denaturing temperature at 95 oC, primer specific annealing temperature and 

extension step 60 oC) by OneStep Real Time System (Applied Biosystems, Warrington, UK). 

The efficiency of the qPCR was calculated (! = 10(&
'

()*+,) − 1) based on a 4-point standard 

curve. Efficiencies between 0.9 and 1.1 were accepted for further analyses. The relative 

expression was calculated using the ΔΔCt method (Henry et al., 2013). 
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2.3.8 Statistical analyses 

Data followed normal distribution (as tested by the Shapiro Wilks test of normality, p>0.05) 

and homogeneity of variance was assessed by the Bartlett’s test (p>0.05). Analysis of variance 

(ANOVA) was used to assess differences in gene expression with increasing concentration and 

UVA or gene expression (dependent variable) was modelled by general linear model according 

to the independent variables of PAH concentration, treatment (presence or absence of NPs), 

and concentration and treatment interaction (significance was considered at p-value of <0.05). 

Mortality (dependent variable) of zebrafish larvae was modelled by logistic regression 

according to the independent variables PAH concentration, treatment (presence or absence of 

NP), and concentration x treatment interaction. The models were generated by iterative 

maximization of the likelihood function, and independent variables and their interactions were 

included if they significantly improved the model (likelihood ratio test, based on Wald χ2 

distribution). Differences in fish mortality among treatments (i.e., presence or absence of NPs) 

were determined by pair-wise contrast statements with a p-value of <0.05. All statistical 

analyses were conducted using R statistics (version 3.2.1, RStudio, Inc., 2015). 

 

 

Table 2.1: Zebrafish gene specific primers for cytochrome P450 1A (cyp1A), superoxide 

dismutase 1 (sod1), DNA damage binding protein 2 (ddb2) and housekeeping gene (β-actin). 

Reference sequence numbers from NCBI, and product length in base pairs (bp). 

Gene Reference 

Sequence Number 

Forward (5’-3’) Reverse (5’-3’) Product 

Length (bp) 

Annealing 

Temperature 

(oC) 

cyp1A NM_131879.1 AGGACAACATCAGAG

ACATCACCG 

GATAGACAACCGCCCA

GGACAGAG 

174 60 

Ddb2 NM_001083061.1 CATGCCGAATTCAAC

CCTCG 

GCTGTCAGCATTGACT

GGTT 

147 58 

sod1 NM_131294.1 ACCGGCACCGTCTAT

TTCAA 

AGCATGGACGTGGAAA

CCAT 

105 55 

β-actin NM_131031.1 ACACAGCCATGGATG

AGGAAATCG 

TCACTCCCTGATGTCTG

GGTCGT 

138 60 
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2.4 Results and Discussion 

2.4.1 Anthracene toxicity under UVA exposure 

Significant increase in sod1 and ddb2 expression were observed in zebrafish larvae after 

exposure to ANT and UVA radiation. Specifically, after zebrafish larvae were exposed to 15 

µg/L of ANT for 24 h, inductions of 0.8 and 1.2-fold were observed for sod1 and ddb2 

respectively. On the contrary, when ANT exposure was followed by UVA radiation, 1.7 and 

4.1-fold inductions were observed for sod1 and ddb2, respectively (Figure 2.2). Induction of 

sod1 suggests presence of ROS and induction of ddb2 suggests DNA damage caused by 

exposure to ANT photo-by-product. Under UVA, ANT becomes photo-excited and undergoes 

photo-modification with possible main by-product 9,10 anthraquinone (Lee, 2003; Mallakin et 

al., 2000; Perraudin et al., 2007). Specifically, Mallakin et al. (2000) observed anthraquinone 

as the main photo-by-product 2 h after the light stimulation. PAHs quinones are electrophilic 

and they tend to bind to cellular nucleophiles such as proteins and nucleic acids (Kim et al., 

2000). BaP quinones induced oxidative damage of lipid and protein in erythrocytes in rats (Kim 

et al., 2000). The epoxide metabolites of BaP can form DNA adducts with N2 position of 

guanine (Miller and Ramos, 2001) and have been reported to induce ddb2 gene expression 

along with other DNA damage related genes such as xeroderma pigemntosum, 

complementation groups C and F (xpc and xpf) in human cell lines (Christmann et al., 2016).  

Significant changes in cyp1A expression were observed in zebrafish larvae after exposure to 

ANT and UVA. No induction of cyp1A expression was observed in this study after exposure 

to ANT without UVA radiation and a 45-fold induction was observed when preparations were 

exposed under UVA. No significant induction of the genes investigated in the present study 

was observed after exposure to UVA or NPs and UVA alone. The relationship between 3-ring 

PAHs such as ANT and the aryl hydrocarbon receptor pathway is not clear, and ANT has been 

characterised as non-reactive and not an aryl hydrocarbon agonist in fish (Barron et al., 2004). 

No activity of 7-Ethoxyresorufin O-Dealkylase (EROD), the catalytic measurement of cyp1A 

enzyme, was observed after exposure of ANT to rat hepatoma cell lines (Bosveld et al., 2002). 

In the present study, photo-excited ANT induced cyp1A in a bell-shape manner, indicating that 

the metabolism of ANT photo-by-product could involve the aryl hydrocarbon pathway. The 

bell-shape expression with increasing concentration could be explained by increasing cyp1A 
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gene expression and then reduction in expression levels when sufficient levels of cyp1A protein 

are present or the organism is not able to cope with the increasing concentrations of ANT 

photo-by-product that would eventually lead to larvae mortality. Cyp1A was selected for 

further experimentation of ANT exposures as it displayed high induction after the UVA 

radiation. The present study supports the existing literature on the photo-toxicity of ANT and 

provides an insight on gene expression profiles after exposure in vivo to ANT under UVA in 

larval zebrafish.  

 

2.4.2 Sorption of BaP to NPs 

Sorption of BaP onto all NPs tested in the present study, was indicated by reduced cyp1A gene 

expression in zebrafish larvae in the presence of the NPs. Cyp1A was positively induced 

following a linear pattern with increasing BaP concentration under laboratory light, and the 

presence of each NP significantly decreased cyp1A expression. At high concentration range of 

BaP (0-30 µg/L), reduction in gene expression was observed only in the presence of the 

smallest TiO2 NPs (4-8 nm diameter) indicating sorption (Figure 2.3), while no changes in 

cyp1A gene expression in the presence of NM105 or Si NPs suggesting minimal sorption on 

the specific NPs. On the contrary, at low concentration range of BaP (0-2 µg/L), a significant 

decrease in cyp1A expression was observed when each one of the NPs tested were present in 

the exposure, suggesting that low concentration of BaP sorbed to surface area provided and 

consequently became less bioavailable in the presence of all NPs, independently of diameter 

size. Specifically, when zebrafish larvae were exposed to 1 µg/L BaP, cyp1A was induced 5.13-

fold (± 1.44 SE, n=3) and induction was observed up to 2.66, 1.32 and 2.69-fold when 2 mg/L 

of NM105, TiO2 4-8 nm and Si NPs respectively, were present (Figure 2.4). The above support 

that sorption depends on the physicochemical properties of the NPs (i.e. surface area) and on 

the experimental conditions that the sorption processes are tested (i.e. concentration of 

adsorbent and adsorbate). Recent research has confirmed the importance of surface area in 

sorption of metals on the surface area of TiO2 NPs.  Specifically, more Hg2+ was bioavailable 

to zebrafish larvae (mt2 gene expression was used as a biomarker of bioavailability of 

adsorbent) when bulk TiO2 where added in aqueous Hg2+ solution compared to TiO2 NM105 

(Boran et al., 2016). Additionally, less copper was bioavailable to zebrafish larvae when TiO2 

4-8 nm (that is the same NP used in the present study) was added in solution when compared 

to larger TiO2 NPs (such as NM105) (see Chapter 3). Della Torre et al. (Della Torre et al., 
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2017) investigated sorption of BaP to carbon nanotubes (CNT) and although fluorescence of 

accumulated BaP in the zebrafish larvae increased with concentration, the presence of CNTs 

kept BaP concentration in zebrafish larvae to a higher level than the lower BaP concentrations 

tested but lower than the higher BaP concentration alone, indicating that CNTs acted as a 

vehicle increasing the co-contaminant concentration up to the maximum sorption capacity 

according to the surface area available. The present study suggests that sorption of BaP on NPs 

occurs and depends on both physicochemistry of the adsorbent and sorption capacity of the 

NPs. 
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Figure 2.2: Q-PCR analysis of zebrafish stress gene expression after exposure to different 

anthracene concentrations and UVA radiation (5 W/m2). Cyp1A, sod1 and ddb2 gene 

expression was normalised against β-actin. Significant differences in expression of all three 

genes was only observed under combined UVA and anthracene treatment (ANOVA, p<0.001), 

data points show the mean ± SE, n=3. Statistical differences were identified by two-way 

ANOVA, TukeyHSD, ***=p<0.001, **=p<0.01 
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Figure 2.3: Q-PCR analysis of zebrafish cyp1A gene expression after exposure to different BaP 

concentrations alone (black diamonds) or in the presence of NPs (TiO2 4-8 nm, Si or 

NM105). Cyp1A gene expression was normalised against β-actin. Significant differences 

in expression with increasing BaP concentration were identified by general linear model 

(p<0.001). Statistical differences between BaP alone and BaP in the presence of TiO2 4-8 nm 

NPs were identified by pair-wise contrast statements (p<0.001). Data points show one replicate 

and a pool of 20 larvae.  
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Figure 2.4: Q-PCR analysis of zebrafish cyp1A gene expression after exposure to different BaP 

concentrations alone (black diamonds) or in the presence of NPs (TiO2 4-8 nm, Si or 

NM105). Cyp1A gene expression was normalised against β-actin. Significant differences 

in expression with increasing BaP concentration were identified by general linear model 

(p<0.001). Statistical differences between BaP alone and BaP in the presence of NPs were 

identified by pair-wise contrast statements (p<0.001). BaP data points show MEAN ± SE, n=3, 

the rest of data points show one replicate and a pool of 20 larvae. 

 

2.4.3 Sorption of PAHs to NPs under UVA  

The presence of 2 mg/L NM105, TiO2 4-8 nm and Si NPs led to no expression of cyp1A after 

exposure to ANT, UVA and NPs (Figure 2.5). ANT and UVA induced cyp1A with increasing 

concentration and no induction of cyp1A was observed after NPs alone or NPs and UVA 

exposure. The reduction in cyp1A expression in the presence of NPs indicated sorption of ANT 

photo-by-products on the NPs and potential photo-catalysis of ANT that was independent of 

the surface area of the three NPs investigated. When lower concentration of NPs was added in 

ANT dilution series (0.2 mg/L TiO2 4-8 nm or Si NPs that is 1/10 of the original concentration) 

no induction of cyp1A was found suggesting that reducing the surface area available for 

sorption ten times was still enough for the given concentration of ANT and/or photo-by-

products to sorb and be not bioavailable to zebrafish larvae (Appendix A). This outcome 

emphasizes the importance of the physicochemistry of the adsorbate in the sorption processes, 



 

 

50 

the sorption capacity of NPs for low molecular weight ANT (with likely photo-by-product the 

oxygenated PAH, 9,10 anthraquinone, although chemical analysis of the by-products did not 

occur in the present study) when compared to a larger compound such as BaP (without UVA 

exposure).  

The presence of NPs significantly reduced toxicity of BaP under UVA in high concentrations 

and induced bioavailability of BaP photo-by-product(s) in lower BaP concentration range. 

Mortality of zebrafish larvae was observed in high range of BaP concentrations (5-30 µg/L), 3 

h after the end of UVA irradiation in a concentration-response manner, and the presence of 

each NP added in the BaP dilution series significantly lowered BaP photo-toxicity. All larvae 

died when exposed to 5 µg/L BaP or higher under UVA (Figure 2.6) but in the presence of all 

NPs the mortality was reduced significantly (logistic regression, p<0.001) as the concentration-

response curve was shifted to the right. In lower BaP concentration range (0-2 µg/L), no 

mortality was observed, and the larvae were analyzed for cyp1A expression levels. BaP after 

UVA induced cyp1A 3.8-fold at 0.1 µg/L and lower expression was observed at higher 

concentrations (0.5-1 µg/L) following a bell-shape pattern. The presence TiO2 NPs, NM105 

and TiO2 4-8 nm, in the 0.1 µg/L BaP solution, led to a higher expression of cyp1A (8.8-fold 

and 7.6-fold, respectively) than BaP alone, however, high variation was observed. The 

presence of Si NPs in BaP preparations kept the cyp1A expression at the same levels as the 

photo-activated BaP alone at 0.1 µg/L, however, at 0.5 µg/L of BaP, the cyp1A expression was 

induced significantly higher when Si NPs were present in preparations (ANOVA, TukeyHSD, 

p<0.05) (Figure 2.7). In the specific experiment, cyp1A induction can be explained as a 

combination effect of surface area and a critical amount of BaP/BaP photo-by-products 

adsorbed that led to higher bioavailability of the adsorbate. When NPs were exposed alone to 

UVA just before sorption to BaP was initiated, sorption of BaP was observed on the surface 

area of TiO2 and Si NPs previously exposed to UVA as was suggested by the reduction in 

cyp1A expression in the presence of NPs (Figure 2.8).  
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Figure 2.5: Q-PCR analysis of zebrafish cyp1A gene expression after exposure to different 

ANT concentrations alone (black triangles) or in the presence of NPs (TiO2 4-8 nm, Si or 

NM105). Cyp1A gene expression was normalised against β-actin. Significant differences 

in expression with increasing ANT concentration were identified by general linear model 

(p<0.001). Statistical differences between ANT alone and ANT in the presence of NPs were 

identified by pair-wise contrast statements (p<0.001). Data points show one replicate and a 

pool of 20 larvae. 
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Figure 2.6: Zebrafish larvae mortality with BaP increasing concentration (black line) and BaP 

in the presence of NPs: on the left, NM105 (x), and Si NPs (black circles) and on the right TiO2 

4-8 nm (empty circles), under UVA 5 W/m2. Logistic regression was used to model the 

mortality according to concentration and treatment (independent variables), p<0.001. The 

predicted mortality was obtained by the following exponential equation: (e a+βx) (1 + e a+βx)-1. 
Statistical differences between BaP alone and BaP in the presence of NPs were identified by 

pair-wise contrast statements (p<0.001). Data points show one replicate and a pool of 20 larvae. 
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Figure 2.7: Q-PCR analysis of zebrafish stress gene expression after exposure to different BaP 

concentrations and UVA radiation (5 W/m2). Cyp1A gene expression was normalised 

against β-actin. Significant differences in expression of all three genes was only observed 

under combined UVA and anthracene treatment (ANOVA, p<0.001), data points show the 

mean ± SE, n=3 (n=4 for BaP data points). Statistical differences were identified by two-way 

ANOVA, TukeyHSD, *=p<0.05. 

 

* 
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Figure 2.8: Q-PCR analysis of zebrafish cyp1A gene expression after exposure to different BaP 

concentrations alone (black diamonds) or in the presence of NPs (TiO2 4-8 nm, Si or 

NM105). Cyp1A gene expression was normalised against β-actin. Significant differences 

in expression with increasing BaP concentration were identified by general linear model 

(p<0.001). Statistical differences between BaP alone and BaP in the presence of NPs were 

identified by pair-wise contrast statements (p<0.001). Data points show one replicate and a 

pool of 20 larvae. 

 

A number of studies report sorption of organic contaminants on NPs in the aqueous (see 

Chapter 1) and the importance of UVA radiation has been previously studied in analytical 

chemistry studies regarding photo-degradation abilities of TiO2 material, but little is known 

about the effect of UVA in sorption and the impact on the aquatic organisms. The present study 

provided a fine example of the biological effect of the “Sabatier principle” where a volcano 

plot describes the efficiency of photo-catalysis that depends on the concentration of the catalyst 

and the adsorbate (Rothenberg, 2008). In the present study, the concentrations of NPs and BaP 

were not right to initiate efficient photo-catalysis and the differences found between high and 

low BaP concentration ranges can be explained as follows: At low BaP concentration range 

the photo-catalysis is more efficient compared to higher concentration range because of the 

limited sorption capacity of the NPs, therefore, at low concentration range, relatively more BaP 

photo-by-products are bioavailable and in turn, increased cyp1A expression. It can be 

concluded that the BaP photo-by-products are bioavailable, due to the differences in cyp1A 
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expression after zebrafish exposure to BaP or BaP and UVA. On the contrary, at higher BaP 

concentration range, NP sorption sites are all engaged, photo-degradation occurs at the 

adsorbed BaP, the NP concentration is limited and so are the sorption sites, therefore, less BaP 

photo-by-products are bioavailable, and the presence of NPs is reducing photo-toxicity of BaP. 

In the case of ANT, it can be concluded that under UVA irradiation the TiO2 NPs catalyzed 

ANT degradation, however the photo-degraded substances either were sorbed on the surface 

area of the NPs, thus less bioavailable to the larvae, or they did not induce mortality or 

expression of the biomarkers used in the present study.  

According to existing literature, the sorption on TiO2 NPs accelerates photo-degradation of 

BaP under UVA but no investigation of the toxicity of photo-by-products was conducted in the 

study (Zhang et al., 2008). Toxicity of ciprofloxacin (CIP) has been reported to decrease in the 

presence of catalyst NPs (ZnO or TiO2) under UVA, but with the increasing concentration of 

CIP photo-by-products, toxicity was increased again in Vibrio fisheri (Silva et al., 2016). The 

same study found toxicity of the NPs alone in V. fisheri under UVA radiation. On the contrary, 

TiO2 catalyzed photolysis of ibuprofen with ibuprofen photo-by-products showing less toxicity 

in Artemia salina (Silva et al., 2014). UV radiation changes the surface chemistry of NPs such 

as TiO2 with resulting ability for photo-catalysis of adsorbed organic substances. Organic 

environmental contaminants such as methylene blue (Xu et al., 1999), estrone and 17β-

estradiol (Zhang et al., 2007), ofloxacin (Paul et al., 2007) have been reported to degrade in the 

presence of TiO2 NPs under UVA or visible light condition, however, degradation is still 

happening at a very slower rate just in the presence of TiO2 NPs in the dark (Peterson et al., 

2015). This study is the first to investigate the complications of sorption of two different PAHs 

on TiO2 NPs under UVA radiation and analyze sorption by bioavailability of adsorbates in 

zebrafish. Si NPs are semiconductors of lower band gap (1.12 eV) than TiO2 NPs (3.1-3.3 eV) 

(Strümpel et al., 2007), but the relationship between band gap energy and degradation of 

organic compounds is not clear. In the present study, all three NPs tested reduced ANT photo-

by-product bioavailability and high concentrations of BaP photo-by-product mortality in larval 

zebrafish. However, at low BaP concentrations the amount of NP present photo-catalyzed BaP 

inducing bioavailability of photo-by-products and increasing indirectly BaP toxicity to 

zebrafish larvae under UVA.  
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2.4.4 Conclusions 

In conclusion, the present study suggests that sorption of PAHs on NPs occurs and toxicity of 

PAHs and/or photo-by-products depends on the sorption capacity of NPs. Results here obtained 

indicate that sorption capacity depends on the quantity and physicochemistry of both adsorbent 

and adsorbate. The sorption of PAHs under UVA promoted photo-catalysis of PAHs to photo-

by-products and the presence of the semiconductor NPs (TiO2 and Si NPs) play key role as in 

low concentration of BaP, the photo-catalysis is efficient leading to higher bioavailability of 

toxic photo-by-products, while in higher BaP concentrations, photo-catalysis is less efficient 

due to limited sorption sites on the surface of NPs leading to less amount of photo-by-products, 

thus lower photo-toxicity of BaP. The current research used bioavailability to investigate the 

sorption processes of photo-labile compounds on photo-sensitive NPs with high potential of 

occurrence in the aquatic environment and under UVA exposure. As a result, the data presented 

here provide an insight on the broad interactions that can take place in the aquatic environment, 

the complicated sorption processes and the indirect effects of the presence of engineered NPs 

in the aquatic environment. 
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Chapter 3 - Differences in Engineered Nanoparticle (NP) Physicochemistry 

Revealed by Investigation of Changes in Copper Bioavailability during 

Sorption to NPs in the Aqueous Phase. 

 

3.1 Abstract 

The physicochemistry of engineered nanoparticles (NPs) in the aqueous phase influences their 

fate, behaviour, and environmental implications. Investigations of sorption of chemical 

substances to NPs in the aqueous phase can inform on these complex interactions and provide 

insight on environmental fate of NPs. The objective of this study was to use differences in 

sorption of copper (Cu) to investigate aqueous-phase physicochemistry of NPs (Si, perovskite 

and TiO2 NPs). Along with analytical chemistry, sorption of Cu to NPs was evaluated by 

assessment of changes in copper bioavailability in the alga Chlorella vulgaris, and larval 

zebrafish. The presence of TiO2 NPs reduced total Cu in the water column and Cu 

bioavailability (measured by growth inhibition, mortality, and metallothionein 2 (mt2) gene 

expression) suggesting Cu sorption to TiO2 NPs. Less Cu was bioavailable when smaller TiO2 

NPs were present, indicating higher sorption capacity with increasing surface area. This is 

supported by a lower total Cu in the water column, less inhibition of C. vulgaris growth, less 

mortality and lower levels of mt2 gene expression in zebrafish larvae making the surface area 

the most important factor affecting sorption demonstrated in the present study. Copper 

concentration in medium significantly decreased with increased Si NPs concentration 

measured by analytical chemistry, but no significant sorption was indicated on perovskite NPs. 

The results of this study strengthen the relevance of bioavailability as an analytical tool to 

assess the sorption of chemical substances on NPs in the aquatic environment.  

3.2 Introduction 

The low cost and increasing applications of nanotechnology leads to greater production and 

release of engineered nanoparticles (NPs) into the aquatic environment. The term engineered 

NPs is used to identify materials that have all three dimensions in the nanoscale (ISO, 2008), 

which frequently confers unique physicochemical properties that are attributed to their 

nanoscale size. A consequence of the increased use of NPs has been increased release of NPs 

into the environment, and estimated concentrations of NPs (e.g., Ag-NPs) are at part per billion 
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range in some surface waters (Gottschalk et al., 2013; Sun et al., 2014). Within the aqueous 

phase, some of the unique properties of NPs persist and these properties influence NP 

environmental fate, interactions with other substances, and potential toxicity. Changes in NP 

physicochemistry can occur in the aqueous phase, including release of ions, sorption of 

chemical substances to NPs, agglomeration of NPs with other substances and/or particles, 

and/or changes in NP surface chemistry (e.g., oxidation or changes of coating) (Petersen et al., 

2014).  

Chemical substances can adsorb to the surface of NPs or absorb within the NP matrix and 

sorption is dependent on the physicochemistry of both substance and NP. In the aqueous phase, 

sorption [defined as the taking up and holding of one substance by another (Dabrowski, 2001)] 

can be related to NP surface charge, surface area, the NP matrix, and characteristics of NP 

agglomerates, among other factors. Based on chemical analyses of NPs, copper, lead and zinc 

were found to have high affinity for SiO2 NPs, and sorption was strongly affected by the ionic 

strength of the solution (Liang et al., 2011). In the aqueous phase, sorption of copper to TiO2 

NPs reduced the total copper concentration in the water column after centrifugation of mixtures 

(Fan et al., 2016) and the amount of copper adsorbed increased with percentage of anatase 

within TiO2 NPs (Kim et al., 2003). Both anatase and rutile crystalline NP structures adsorbed 

copper, but the sorption of copper to rutile TiO2 was four times lower than to anatase TiO2 NPs 

(Rosenfeldt et al., 2015).  

A challenge for research on NP sorption is that analytical methods applied can disturb the 

processes under investigation and innovative techniques are required to obtain results that are 

useful for interpretation. Upon sorption of toxicants (termed here “co-contaminants”) to NPs, 

bioavailability of the co-contaminants can be enhanced (Henry et al., 2013; Schwab et al., 

2013) or reduced (Li et al., 2016b; Park et al., 2010), and changes in bioavailability can inform 

on NP physicochemistry in the aqueous phase. One definition of bioavailability is the 

proportion of a substance that enters an organism to react with biological molecules (Semple 

et al., 2004), and the molecular response of the organism can indicate changes in substance 

bioavailability that occur upon sorption with NPs. Aqueous-phase sorption to (C60)n 

agglomerates decreased 17 α-ethinyl estradiol (EE2) bioavailability in zebrafish larvae, which 

was detected by reduction in vitellogenin gene (an EE2 responsive gene) expression (Park et 

al., 2010). On the contrary, sorption of Hg2+ to (C60)n agglomerates led to increased 

bioavailability of Hg2+ in zebrafish larvae (Henry et al., 2013). The EE2 was presumed to be 
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absorbed within the (C60)n agglomerate matrix, whereas more labile sorption of Hg2+ to (C60)n 

agglomerate surfaces was postulated based on the different co-contaminant 

physicochemistries. The presence of TiO2 NPs and sorbed As (V) enhanced the As (V) uptake 

in Daphnia magna compared to exposure to As (V) alone. Specifically, double the amount of 

As (V) was measured by mass spectrometry mainly in D. magna gut in the presence of 2 mg 

Ti /L (equivalent to 3.35 mg/L TiO2 NPs) and five-times the amount of As was measured in 

the presence of increased TiO2 NPs concentration (20 mg Ti /L or 33.5 mg/L TiO2) (Li et al., 

2016a). Rosenfeldt et al., (Rosenfeldt et al., 2014) observed a 2-fold increase in Ag body 

burden and 6-fold increase in As body burden in D. magna in the presence of 2 mg/L TiO2 

NPs, when compared to exposures to each heavy metal alone. These results with Daphnia 

suggest that TiO2 NPs acted as a vehicle and increased bioavailability of Ag and As; however, 

in the same study, the presence of TiO2 NPs reduced Cu body burden in Daphnia, indicating 

differences in sorption among adsorbates.  

The potential of organism-based bioavailability tests to contribute to understanding of NP 

sorption processes in the aqueous phase should be applied to comparative studies with different 

NPs to clarify differences in NP physicochemistry. The objective of the present study was to 

use differences in copper sorption, detected by changes in copper bioavailability, to inform on 

differences in NP physicochemistry in the aqueous phase. Nanoparticles selected were TiO2 

NPs (4-30 nm diameter), spherical silicon (Si) NPs, and organo-metal perovskite cell NPs. Two 

organisms with different exposure conditions, (i.e. direct exposure of green alga Chlorella 

vulgaris to constantly agitated NP solution compared to indirect static exposure of larval 

zebrafish to NPs) were used to identify changes in copper bioavailability. Copper 

bioavailability was based on examination of the effect of copper on C. vulgaris growth and on 

survival and metallothionein 2 (mt2) gene expression in larval zebrafish. 

 

3.3 Materials and Methods 

3.3.1 Chemicals 

The TiO2 particles were used for the following experiments: TiO2 bulk (NM100) of a primary 

size 200-220 nm and anatase crystal structure, TiO2 NM105 (JRCNM01005a) with a 

manufactured size of 30 nm diameter and an anatase : rutile ratio of 85:15; TiO2 NPs with 

manufactured size of 18 nm anatase and TiO2 NPs with manufactured size of 4-8 nm anatase 



 

 

60 

provided by PlasmaChem, Germany (Table 3.1). The silicon (Si) NPs were synthesised 

composed of monosilane (SiH4) with different percentages of diborane (1, 1.5, 2 or 2.5 %) and 

a primary size of 100 nm; they were provided by the Institute of Energy and Environmental 

Technology, Duisburg, Germany.  Lead iodide perovskite NPs (CH3NH3PbI3) were provided 

by the École Polytechnique Federal de Lausanne, Switzerland.  Aqueous stock suspensions of 

powdered NPs were prepared in Milli-Q water (grade 18.2 MΩ cm; Millipore, Livingstone, 

UK) at concentrations of 1-5 g/L. Stock preparations of TiO2 NPs were sonicated twice for 8 

minutes (Jacobsen et al., 2010) and the Si and perovskite NPs were sonicated for 1 min 

according to recommendations provided by the manufacturers. Determination of average size 

(hydrodynamic diameter) and surface-related charge (ζ-potential) of NPs in suspension (milli-

Q water) was conducted by Dynamic Light Scattering (DLS) at a concentration of 100 mg/L. 

The co-contaminant used was CuSO4·5H2O and purchased from Sigma-Aldrich (lot#: 

SLB4752V) with purity >98.0%.  

 

Table 3.1: The list of nanoparticles (silicon, boron doped silicon, Perovskites, TiO2) that have 

been employed for Cu sorption to NPs experiments. The average size and charge (ζ-potential) 

of the NPs suspended in Milli-Q H2O, measured by Dynamic Light Scattering (DLS). 

Sample 
Label 

Material Shape Size (d. nm) ± 
SD 

ζ -potential (mV) 

SiB2.5% B (2.5%) 
doped Si 

Nano-sphere 303±125.8 -28.8 

SiB2% B (2%) doped 
Si 

Nano-sphere 337.9±141 -28.7 

SiB1.5% B (1.5%) 
doped Si 

Nano-sphere 384±197.4 -30.3 

SiB1% B (1%) doped 
Si 

Nano-sphere 388±174.1 -27.3 

Si Si Nano-sphere 447±155.6 -17.3 
Perovskite    CH3NH3PbI3 Nano-cube  141.6±30.85 -13.1 
TiO2 bulk anatase  404.2 ± 11.9 -51 
TiO2  JRCNM01005a 

anatase/rutile 

Nano-sphere 267.3 -6.45 

TiO2 anatase Nano-sphere 514 -20 
TiO2 anatase Nano-rods 467.05 ± 221 17.73 
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3.3.2 Analytical chemistry  

Aqueous phase copper concentrations were determined by inductively coupled plasma mass 

spectrometry (ICP-MS, Agilent 7500ce, School of Chemistry, University of Edinburgh) to 

investigate sorption of Cu to NPs and the effect of NP surface area. A single nominal 

concentration of Cu salt (250 µg/L) was added to different concentrations (0, 2, 4, 8 and 16 

mg/L) of Si NPs, NM105, TiO2 (18 nm) or TiO2 (4-8 nm) NPs. The preparations (20 ml) were 

stirred with a magnetic bar for 24 h for the sorption equilibrium to occur and then centrifuged 

at 24,000 rpm for 1 h. The supernatant (10 ml) was collected and acidified with 15% nitric acid 

(trace metal grade) for measurement of total Cu in the water column. From the remaining 

portion (10 ml) of each preparation, 9 ml were carefully removed and the remainder (1 ml, 

containing the pellet) was mixed by pipetting, allowed to dry, and used to investigate presence 

of Cu on the surface of NPs. Analyses on the pellet samples was conducted by X-ray 

photoelectron spectroscopy (XPS), Nexus, Newcastle University. 

 

3.3.3 Test organisms 

Chlorella vulgaris (Culture Collection of Algae and Protozoa 211/12, originally obtained from 

Scottish Marine Institute, Oban, UK) culture was grown in OECD TG 201 medium (and and 

Development), 1981) in 250-mL Erlenmeyer flasks (Scientific Laboratory Supplies, 

Coatbridge, UK) under constant rotary agitation (225 rpm), illumination (120 µmol /m2 s) and 

temperature (23 °C) based on our established methods (Kalman et al., 2015). When the cell 

density reached ~106 cells /mL, the stock culture was maintained under static conditions 

(illumination of 50 µmol /m2 s) in a 16:8 h light : dark photoperiod at 20 °C. Cultures were 

maintained by transferring a small aliquot into fresh sterile medium and were checked every 

two months for bacterial contamination by plating on nutrient agar (Oxoid Ltd, Basingstoke, 

UK). 

Zebrafish (Danio rerio) were obtained from the zebrafish research facility (Heriot-Watt 

University), and husbandry, spawning and experimentation were conducted with complete 

approval and according to animal welfare regulations of the UK Home Office. Water for 

experiments was synthesised fresh water with characteristics consistent with the OECD 

guidelines for fish embryo toxicity tests (OECD, 2013).  Characteristics of water chemistry 

were 79, 38, 12, 17 and 2 mg/L of Ca2+, Mg2+, Na+ and K+, respectively; pH of 7.7; temperature 
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was maintained between 28-30oC, and a 12-h photoperiod. Hatching occurred between 48 and 

72 hpf, and fish of age 72-168 hpf were used for the experiments. 

3.3.4 Concentration-response assays 

Preliminary experiments were performed to establish dose-response (growth inhibition) 

relationships for C. vulgaris to aqueous Cu (as CuSO4). The toxicities of Si NPs, perovskite 

NPs and TiO2 NPs, and bulk TiO2 to algae were individually tested up to concentration of 100 

mg/L (no toxic effects observed). The NPs selected for the following study were dispersed in 

milli-Q water (as described in section 3.3.1), bath sonicated and the solutions were vortexed 

before the preparation of each treatment to ensure homogeneous solutions.  

Algal growth inhibition assays were performed in 250-ml Erlenmeyer flasks (Pyrex) according 

to the OECD test guideline (OECD 201) or in plastic 24-well plates using C. vulgaris in the 

exponential growth phase. Temperature and light conditions for toxicity tests were identical to 

those used for culture growth. Experiments were carried out in triplicate using five 

concentrations (0 to 40 µg/L) of Cu or (0 to 100 mg/L) of NPs. The initial concentration of the 

inoculum was 104 cells per ml, which was required to ensure that cultures were at exponential 

growth. Cell density was determined after 24, 48 and 72 hours of exposure by measuring in 

vitro fluorescence of acetone-extracted chlorophyll a (Kalman et al., 2015) in experiments 

carried out in Erlenmeyer flasks (Cu, nano and bulk TiO2). In the case of Si and perovskite NPs 

acute toxicity tests, 1.5 ml of each test solution was added in triplicate to wells of 24-well plates 

due to limited amount of Si and perovskite NPs available. Plates were sealed with parafilm to 

avoid evaporation. In vivo chlorophyll α was measured by fluorescent plate reader (Molecular 

Devices SpectraMax M5) using excitation wavelength at 435 nm and emission wavelength at 

685 nm at the same time points. The NP exposure concentrations ranged between 1 and 100 

mg/L for Si and perovskite NPs, and the TiO2 NPs and bulk TiO2. 

Copper sorption on NPs was assessed by investigating changes in Cu bioavailability by 

exposing the test organisms to various concentrations of Cu in absence and presence of NPs. 

Two parallel Cu concentrations in a range of 0 to 60 µg/L were prepared in Erlenmeyer flasks. 

In one Cu dilution series, 2 mg/L of NPs were added.  The parallel dilutions experiment was 

conducted once for each NP type. Algal growth inhibition, as chlorophyll florescence, was 

determined after 72 h of exposure.  
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Zebrafish larvae age 72-hours post fertilization (hpf) were exposed to Cu to establish the LC50 

and sub-lethal concentrations over 96-h exposure period. Two parallel Cu dilution series (0-

360 µg/L) were prepared in glass beakers containing 50 ml of exposure solution, and 20-30 

larvae were exposed in each beaker. In one dilution series, 2 mg/L of NPs were added, and the 

two concentration-response curves were compared. For each experiment, control beakers were 

included (one of fish water and one of fish water and NPs). Two Cu dilution curves were 

prepared for each NP type. Acute (96 h) toxicity tests were conducted to determine lethal 

effects of NPs in larvae aged 72-168 hpf. Larvae were exposed to NP concentrations between 

0 and 200 mg/L, and 10 larvae were individually exposed to each concentration in 96-well 

plates with an exposure volume of 200 µL. 

For the zebrafish co-contaminant experiments, two parallel dilutions of Cu were prepared (0-

360 µg/L) and 2 mg/L of NPs were added to one dilution series. The Cu dilution series with 

added NPs were stirred with a magnetic stir bar at medium speed for 24 h prior to fish exposure. 

Every experiment had 20-30 larvae per preparation with a final volume of 50 ml in glass 

beakers. The parallel dilutions experiment was conducted once for each NP type and four times 

for NM105 using four different NP concentrations added in copper dilution series (1, 2, 3 and 

4 mg/L). The mortality of the larvae was recorded daily and the dead larvae were removed 

from the preparations.  

 

3.3.5 mt2 gene expression 

To evaluate the concentration-response relationship between Cu concentration and mt2 gene 

expression, fish were exposed (24 h) to Cu (0, 120, 240 and 360 µg/L) or Cu and 2 mg/L of 

NPs (Si NPs, TiO2 18 nm or TiO2 4-8 nm). Three replicates were investigated for each 

condition. Larvae of 96hpf were sampled and stored at -80 oC until further analysis. Total RNA 

was extracted from larvae 96 hpf (30 larvae per replicate) after a 24-h exposure period, using 

RNeasy MiniKit for animal tissue, Qiagen, West Crawley, UK as previously described (Boran 

et al., 2016). Briefly, zebrafish larvae were homogenized with a pestle, a DNase treatment 

(Qiagen) was included as a step during the extraction to prevent sample contamination from 

DNA, and the RNA was eluted in 30 µL of sterile RNase/DNase free water. The concentration 

of the total RNA was measured using NanoDrop Spectophotometer (ND-2000). All samples 

with 280/260 ratio between 2.0-2.2 were used for further analysis and diluted to a final 

concentration of 100 ng/µL.  cDNA was synthesised using Precision nanoScript2 Primer design 
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kit with the following conditions: annealing at 65 oC for 5 minutes, extension at 42 oC for 20 

minutes and inactivation of the reaction for 10 minutes at 75 oC. The cDNA was stored at -20 
oC until gene expression analysis. 

Primers designed for zebrafish from Primer BLAST (NCBI) for the following genes: mt2 

(NCBI Reference Sequence: NM_001131053.2, Forward (5’-3’): 

TGTTCTCAATCTTGTCTGTTTAATG, Reverse (5’-3’): 

TGTAGAGCACTATCAGAATAAACG, with product length of 108 bp and annealing 

temperature at 60oC) and β-actin (NCBI Reference Sequence: NM_131031.1, Forward (5’-3’): 

ACACAGCCATGGATGAGGAAATCG, Reverse (5’-3’): 

TCACTCCCTGATGTCTGGGTCGT, with product length of 138 bp and annealing 

temperature at 60oC) (Boran et al., 2016). Precision PLUS Mastermix with SYBRGreen, 

PrimerDesign, Eastleigh, UK, was used for the quantitative PCR. Fluorescence was detected 

after 40 two-step cycles (denaturing temperature at 95 oC, primer specific annealing 

temperature and extension step 60 oC) by StepOne Real Time System (Applied Biosystems, 

Warrington, UK). The efficiency of the qPCR was calculated (! = 10(&
'

()*+,) − 1) based on a 

4-point standard curve, and an efficiency of between 0.9 and 1.1 was required for further 

analyses. The threshold cycle CT measured by the RT qPCR determined the expression levels 

of the housekeeping gene (β-actin) and mt2. The mt2 levels were then normalised after the β-

actin levels (∆CT) and the differences between the experimental control group and the exposed 

larvae were obtained by the ∆∆CT method. The fold changes (2^∆∆CT) of mt2 levels in exposed 

samples were compared to the average ∆∆CT of the control larvae (Henry et al., 2013). 

 

3.3.6 Statistical analyses 

All statistical analyses were conducted using R statistics (Team, 2015). The algal growth 

inhibition and Cu concentration relationship, in absence or presence of NPs, were modelled 

using the four-parameter log-logistic function and compared using anova in ‘drc’ package in 

R. Zebrafish mortality was modelled by logistic regression with the independent variables 

copper concentration, treatment (presence or absence of NP), and concentration and treatment 

interaction. The logistic regression models were generated by iterative maximization of the 

likelihood function, and independent variables and their interaction were included if they 

significantly improved the model (likelihood ratio test, based on Wald χ2 distribution). The 



 

 

65 

median lethal concentration (LC50) was calculated by the logistic regression model and the 

95% confidence interval (CI) was calculated using the logit model in R statistics. For the gene 

expression analyses, the relative fold change was modelled by general linear model according 

to the independent variable of Cu concentration (p-value of <0.05). Differences in fish 

mortality among treatments (i.e., presence or absence of NPs) were determined by pair-wise 

contrast statements with a p-value of <0.05. 

 

3.4 Results and Discussion 

All NPs tested tended to agglomerate in milli-Q water with average agglomerate diameter 

between 314 and 637 nm (NP concentrations 2mg/L), which was a higher average size than 

reported by manufacturers (Table 3.1). The average agglomerate size of Si NPs ranged between 

324 and 627 nm diameter, with higher average agglomerate size observed in Si NPs with B 

coating of 1.5% and the size decreased in Si NPs with B 2% and B 2.5% coating, indicating 

that the differences observed among hydrodynamic diameters of agglomerates of Si NPs can 

be attributed to the boron coating percentage. In the present study, no measurements of the 

hydrodynamic diameter were conducted in fresh water media; however, all NPs tested formed 

visible agglomerates that settled on the bottom of the static exposure beakers within 24 h of 

the start of zebrafish larvae exposures. Agglomeration of TiO2 NPs, with average 

hydrodynamic diameter between 1024 to 1792 nm, has been reported previously to occur 

within 10 minutes after the introduction of NPs in fresh water media such as algae medium 

(OECD, 2011), hard-water medium and Lumbriculcus variegatus medium (OECD, 2007) (Nur 

et al., 2015). For all TiO2 NPs measured in the present study, ζ-potentials were between -30 

and 30 mV, a measurement that is consistent with other studies and has been attributed to the 

lack of sufficient repulsive forces between NPs to keep them in suspension in the aqueous 

phase (Honary and Zahir, 2013; Nur et al., 2015). The smallest TiO2 NPs (4-8 nm) showed ζ-

potential very close to zero (-2 mV), which is in agreement with the higher agglomerate sizes 

observed among TiO2 NPs and indicates higher reactivity of the smaller NP (greater relative 

surface area) in the present study. A negative ζ-potential and high agglomeration was observed 

in perovskite NPs and the Si NPs were found more stable with higher absolute value of ζ-

potential.  
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Sorption of copper to NPs was indicated by changes aqueous copper concentration and 

detection of copper in pelleted NPs. Specifically, copper decreased by 4.7 %, 1 % and 59 % 

when 2 mg/L of Si NPs, NM105 and TiO2 4-8 nm NPs were present, respectively. Total copper 

reduced further with increasing concentration of all NPs (Figure 3.1A); however, at the same 

NP concentration, more copper was removed by the smallest TiO2 NPs (4-8 nm) likely because 

of greater surface area available for copper sorption. Copper was detected in the NP pellets in 

all preparations after XPS analyses (Appendix B). If the 2 mg/L TiO2 4-8 nm NPs with aqueous 

copper is at equilibrium regarding copper sorption to the NPs, then we can hypothesize that a 

doubling of the NP concentration would lead to double amount of copper adsorbed on NPs 

provided that agglomeration of NPs did not occur (e.g., as a consequence of the increased NP 

concentration). The results show that adsorption capacity of the NPs did not increase with 

higher NP concentrations and subsequent increased surface area as we would expect (Figure 

3.1B). If the assumption of copper sorption equilibrium onto 2 mg/L NPs having been achieved 

after 24-h mechanical stirring is correct, then the observed reduction in copper sorption with 

increased concentration of NPs can be attributed to agglomeration of NPs that could affect their 

sorption capacity. The DLS analyses reported agglomeration of all NPs in the aqueous phase, 

however, the average agglomerate size (Table 3.1) cannot inform on the most abundant particle 

size in solution. Therefore, surface area in Figure 3.1 B was calculated by the reported 

manufactured particles dimensions. Agglomeration has been reported to affect the sorption 

capacity of TiO2 NPs at high concentrations, such as 150 mg/L (Li et al., 2010), but no effect 

was observed in concentrations of lower range (0.2-2 mg/L) (Farkas et al., 2015). The results 

of the present study further support that sorption capacity of NPs depends on the different 

physicochemical properties of the NPs (i.e. different material or surface area), while 

agglomeration of NPs can decrease sorption capacity of NPs.  

There was no effect of NP exposure (without copper) on C. vulgaris growth or zebrafish 

survival. No larval zebrafish died after exposure to 2 mg/L of TiO2 NPs or bulk TiO2, which is 

consistent with previous studies of TiO2 NPs toxicology (Boran et al., 2016; Boyle et al., 2015). 

Exposure to TiO2 NPs or bulk TiO2 at tested concentrations (2 mg/L) did not affect growth of 

algae compared to unexposed controls, which is consistent with previous research (Hartmann 

et al., 2010). No larval mortality was observed after 2 mg/L exposures of perovskite, Si and Si-

boron NPs and no growth inhibition was found in C. vulgaris after exposure to Si and Si-boron 

NPs (data not shown). It has been observed that the organo-metal halide cells in the aqueous 
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phase can release the metal halide (e.g. PbI2) and the latter can cause mortality in zebrafish 

larvae at high concentrations (Babayigit et al., 2016; Benmessaoud et al., 2016), however, the 

low perovskite concentrations tested in the present study did not cause toxicity to C. vulgaris 

or zebrafish larvae. This is the first study to assess sorption of aqueous copper to Si and 

perovskite NPs as well as evaluate toxicities of Si, boron coated Si NPs and lead iodide 

perovskite NPs to C. vulgaris and zebrafish larvae. 

No differences in the inhibition of C. vulgaris growth or in larval zebrafish mortality were 

observed after copper exposure in the presence of Si or perovskite NPs. Both growth inhibition 

of C. vulgaris after 72 h and zebrafish mortality (96-h exposure) increased significantly with 

copper concentration (p<0.001) as expected. The presence of Si NPs or Perovskite NPs did not 

significantly affect copper toxicity in algae or zebrafish larvae (Appendix B), suggesting no 

observable interactions between copper and Si or perovskite NPs that did not alter copper 

bioavailability (and therefore toxicity) in algae or zebrafish. The 96-h zebrafish concentration-

response curves suggest that not enough copper was adsorbed on Si NPs to reduce copper 

bioavailability, while the actual measurement of copper in the presence of NPs suggests that 

sorption of copper does occur on the surface of 2 mg/L Si NPs after 24 h of mechanical stirring. 

Si NPs were the largest NPs investigated (100 nm diam. primary size) and the lower amount 

of copper adsorbed onto Si NPs compared to smaller TiO2 NPs used in the present study, can 

be attributed to the limited surface area available, however, the Si NP experiments demonstrate 

the differences in levels of detection of copper sorption among the techniques employed in the 

present study.  



 

 

68 

 

 

Figure 3.1. A) Total Cu concentration (µg/L) measured by ICP-MS in the presence of NM105 

(diamonds), Si NPs (circles) and TiO2 4-8 nm (triangles). Each point in the graph represents a 

single measurement. B) a correlation between copper sorption and surface area of TiO2 (4-8) 

NPs if double sorption occurred when double the amount of the NPs were present in solution 

(dotted predicted line) compared to the actual total copper measured by ICP-MS (black line). 

The reduction of copper sorption can be attributed to agglomeration of the NPs leading to 

smaller surface area for sorption. Surface area was calculated by the reported manufactured 

diameter of sphere-shaped Si NPs and NM105 and the reported manufactured dimensions of 

rod-shaped TiO2 4-8 nm NPs.  
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Sorption of copper on the surface of TiO2 NPs and bulk TiO2 was indicated by the reduced 

bioavailability of copper in both algae and zebrafish larvae in the presence of the TiO2 NPs. 

Significant reduction in algal growth inhibition and larval mortality were observed in the 

presence of TiO2 NPs (p < 0.001) (Figures 3.2 and 3.3). Reduced inhibition of algal growth 

and reduced larval mortality were most evident in the case of TiO2 NPs with smallest particle 

size. Increased sorption occurred with higher concentration of NPs present in the copper 

dilution series. Specifically, NM105 increasing concentration, decreased copper toxicity in 

larval zebrafish, as was indicated by the difference in 96-h LC50 (Δ LC50) between copper alone 

and copper/NM105 mixtures concentration – response curves (Figure 3.4). The smaller 

diameter of TiO2 NPs indicates greater surface area and reactive sites for sorption by the NPs 

(Zhang et al., 1998); however, agglomeration of TiO2 NPs, that can occur at higher 

concentration ranges (i.e. 4-16 mg/L of TiO2 NPs) as demonstrated in Figure 3.1 B or higher 

pH levels (i.e. the fresh water media used in the present study), can strongly change the 

reactivity of the particles by decreasing the capacity of aqueous ion adsorption (Gilbert et al., 

2009; Suttiponparnit et al., 2011).  

The importance of NP surface area on copper sorption was supported by the gene expression 

analysis. Induction of mt2 occurred with increased copper concentration (GLM, p<0.001) in 

zebrafish larvae, and mt2 expression increased up to 8-fold after 24-h exposure to 360 µg/L of 

copper relative to unexposed control fish. The presence of Si and TiO2 18nm NPs did not 

reduce the expression of mt2, however mt2 expression decreased significantly when zebrafish 

larvae were exposed to copper in the presence of the TiO2 4-8 nm, the smallest particle tested 

(GLM, p<0.01, R2=0.79) (Figure 3.5). Exposure of zebrafish to TiO2 for 24 h did not cause 

any induction of mt2, which is in accordance with previous investigation of mt2 gene 

expression in zebrafish after exposure to TiO2 NPs (Boran et al., 2016; Park and Yeo, 2013; 

Tan and Wang, 2014). Boran et al. (2016) indicated the importance of surface area in sorption 

processes when Hg2+ became less bioavailable to zebrafish larvae in the presence of TiO2 

NM105 compared to TiO2 bulk. Mt2 induction in the present study can be indicated as a fast 

and direct measurement of copper bioavailability and effectively demonstrated copper sorption 

on the smallest TiO2 NPs. 
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Figure 3.2: The growth inhibition (%) of the C. vulgaris over the range of Cu concentrations 

(solid lines) in association with 2 mg/L (dashed line) A) TiO2 bulk, B) TiO2 NM105, C) TiO2 

18 nm NP and D) TiO2 4-8 nm NPs for 72 h, compared to the growth inhibition caused by Cu 

alone. Growth inhibition curves were obtained by a four-parameter log-logistic function. There 

was a significant difference in the concentration response curves between Cu and Cu with TiO2 

NP (B, C and D) indicating that the presence of TiO2 NPs reduced the bioavailability of Cu 

(ANOVA, p<0.001). No differences were observed in the presence of TiO2 bulk. 
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Figure 3.3: The mortality (%) of the zebrafish larvae over the range of Cu concentrations (solid 

line) in association with 2 mg/L (dashed line) A) TiO2 bulk, B) TiO2 NM105, C) TiO2 18 nm 

NP and D) TiO2 4-8 nm for 96 h, compared to the larvae mortality caused by Cu alone. The 

predicted mortality was obtained by the following exponential equation: (e a+βx) (1 + e a+βx)-

1.There was a significant difference in the concentration response curves between Cu and Cu 

with TiO2 NPs and bulk (A, B, C and D) indicating that the presence of TiO2 NPs reduced 

mortality caused by Cu2+ (pair-wise contrast statements, p<0.001). 
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Figure 3.4:  A) Copper concentration-response curve (solid line) and copper with 4 mg/L of 

NM105 concentration-response curve after 96-h exposure to zebrafish larvae. The difference 

between LC50 value of copper/NM105 mixture and copper alone is presented as Δ LC50. The 

predicted mortality was obtained by the following exponential equation: (e a+βx) (1 + e a+βx)-1. 

B) Increase in the Δ LC50 with increased NM105 concentration. The NM105 added in the 

copper dilution series ranged between 1 and 4 mg/L. The difference between 96-h LC50 of 

copper alone and 96-h LC50 of copper with NM105 is increasing significantly with 

concentration of NM105 added in the dilution series.  
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Copper sorption to TiO2 NPs reduced concentration of bioavailable copper to a level low 

enough to significantly decrease copper-induced growth inhibition, mortality and mt2 

expression in C. vulgaris and zebrafish larvae, respectively. Several studies have supported 

sorption of aqueous metals such as cadmium (Hartmann et al., 2010; Yang et al., 2012) and 

chromium (IV) (Dalai et al., 2014) on TiO2 NPs. Fan et al (Fan et al., 2012) reported an 

increased activity of superoxide dismutase after sorption of Cu onto TiO2 NPs and a positive 

correlation between the enzyme activity and mortality in D. magna in the presence of 2 mg/L 

TiO2 NPs after Cu sorption onto TiO2 NPs, however, reduced toxicity of copper presumably 

as a consequence of aqueous-phase copper sorption to TiO2 NM105 has been reported using 

the same organism (Rosenfeldt et al., 2014; Rosenfeldt et al., 2015). Specifically, Rosenfeldt 

and colleagues observed that TiO2 NPs agglomerates were actively ingested by D. magna but 

no release of adsorbed copper in the gastrointestinal tract was observed. In the present study, 

although C. vulgaris came in direct contact with NP agglomerates with sorbed copper (constant 

agitation), the free-swimming zebrafish larvae (static test) were less likely to have physical 

contact or actively ingest the settled TiO2 agglomerates with adsorbed Cu at the early 

developmental stage of 96 hpf. The inability of 96-hpf zebrafish larvae to actively ingest micro-

scale NP agglomerates (visible with naked eye at the bottom of glass beakers), may have 

lessened the likelihood of NPs to act as a delivery vehicle for copper to the organism and 

therefore, led to decreased bioavailability of co-contaminant. Although assessing 

bioavailability of an adsorbed co-contaminant does not inform on specific co-contaminant and 

NP surface interaction, it does inform directly on potential implications by the presence of NPs 

in the aquatic environment. 
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Figure 3.5: Induction of mt2 gene in zebrafish larvae after a 24-h exposure to copper (Cu), 

copper and 2 mg/L TiO2 4-8 nm (CuTiO24-8), copper and 2 mg/L TiO2 18 nm diam. 

(CuTiO218), or copper and 2 mg/L Si NM (CuSi). No significant difference was observed 

between Cu and CuTiO2 18nm or CuSi (p>0.05) but Cu mt2 expression was found significantly 

different from CuTiO2 4-8 nm, GLM, p<0.001. Data represent MEAN±SE, n=3. 

 

The present study provided unique insight in the sorption of copper onto a wide range of NPs, 

how sorption indications can vary between experimental methods and how bioavailability can 

inform on environmentally relevant effects of co-contaminant sorption onto NPs. Analytical 

chemistry, algal growth inhibition, zebrafish larvae mortality and zebrafish gene expression 

identified a positive relationship between copper sorption and surface area of NPs, using a wide 

range of NPs of different physicochemical properties. The close similarity of the slopes of the 

sorption (%), as identified by each methodology, in relationship to NP surface area (Figure 3.6) 

suggest increasing sorption with surface area (calculated after the reported manufactured 

particle diameter), that can establish the surface area as the strongest factor affecting sorption 

in the present study. Accepting a linear relationship of sorption with surface area, the highest 

intercept potentially indicates highest copper sorption capacity of the NPs that is identified by 

each methodology or organism used. Therefore, the data provided by Cu bioavailability in the 

presence of NPs using two model organisms with different exposure approaches, the zebrafish 
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larvae mortality and growth inhibition of C. vulgaris, can inform effectively on sorption 

capacity of the NPs compared to sensitive gene expression and ICP-MS analyses after a 24-h 

exposure. Without having investigated the underlying mechanisms of metal ion sorption on 

NPs, taken together the findings of the present study indicate that sorption of copper can differ 

between different materials with the same surface charge (i.e. Si, perovskite and TiO2 NPs) or 

between different physicochemical properties of the same material (e.g. TiO2 NPs of different 

size). This study finally demonstrates the importance of bioavailability as a unique evaluation 

tool of the direct effect of sorption of copper on NPs contributing to an environmentally 

relevant assessment of the impact of NPs in the aquatic environment.  

 

 

Figure 3.6: Representation of Cu sorption (%) as indicated by four independent analyses, 

conducted in the present study, show a positive correlation with the surface area (calculated by 

the reported manufactured particle diameter) of the NPs used in the present study (cm2). The 

differences in the 72-h EC50 (Δ 72-h EC50) of Cu exposure with and without NP using C. 

vulgaris tests, the Δ 96-h LC50 of the zebrafish larvae Cu exposure with and without NPs, the 

differences in mt2 gene expression and the analytical chemistry (ICP-MS) generated curves 

with R2: 0.90, 0.88, 0.81 and 0.99, respectively. 
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Chapter 4 - Investigation of Eco-Toxicity of Perovskite Nanomaterials in 

Aquatic Organisms. 

 

4.1 Abstract 

Lead-halide perovskite nanoparticles (NPs) is a new technology with high potential in 

photovoltaic industry. The investigation of ecotoxicity of lead-halide perovskite NPs is of great 

importance due to the potential of lead (Pb) dissolution in the aquatic environment. Parallel 

exposures of perovskite NPs and Pb ions to Chlorella vulgaris and zebrafish investigated the 

relationship of perovskite NP toxicity and Pb ion dissolution. Specifically, the aqueous 

perovskite NPs concentration – response curves of growth inhibition of C. vulgaris, mortality 

and metallothionein 2 (mt2) gene expression in zebrafish larvae did not differ from Pb ions 

concentration – response curves. Adult zebrafish were fed diets containing perovskite NPs or 

lead nitrate (500 µg Pb ions per gram of food) for 14 days. Induction of mt2 expression in liver 

tissues showed Pb bioavailability after exposure to perovskite-spiked feeds. Changes in 

zebrafish gut microbiome were revealed by terminal restriction fragment length polymorphism 

(tRFLP) and sequencing of 16S rRNA of the gut bacteria after Pb exposure that can have an 

indirect effect in the organism health. The aqueous and dietary exposures demonstrated Pb 

toxicity in C. vulgaris and zebrafish after perovskite NP exposures and induction of mt2 

expression in zebrafish larvae and liver tissue but perovskite NP-spiked feeds did not affect the 

gut microbial community.    

 

4.2 Introduction 

Alkali metal halides (perovskites) technology is growing in the energy industry with promising 

potential and opportunities. Perovskites are coloured and three-dimensional materials, with a 

crystal structure ABX3 whose optical and electronic properties have been discovered for thirty 

years (Grätzel, 2014; Hoefler et al., 2017). Perovskite technology is expected to exceed the 

currently well-established silicon-based one and perovskites are characterised as next 

generation solar cell materials due to their low cost and high-power conversion efficiency (Lee 

et al., 2012). Most suitable metal cation used for perovskites nanoparticles (NPs) that leads to 

the highest efficiency of the material, is lead (Pb), however, few studies have been investigating 
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the stability of the perovskite cell and its suitability for outdoor applications and their 

environmental risks have not yet been evaluated.  

The release of metal ions from metal NPs is an issue that has been concerning the scientific 

community for the last decade. Nanoparticles possess a number of unique properties such as a 

high surface to volume ratio, that increases the surface interaction with the surrounding 

environment and, in turn, increases the potential of metal ion release (Petersen et al., 2014). 

For instance, in the case of silver (Ag) NPs, it is still unclear whether the toxicity of the particles 

can be attributed to the Ag+ release, the Ag NPs or a combination of both. In fish, evidence 

supports that the toxicity of Ag NPs is mainly caused by the silver ions (Griffitt et al., 2009; 

Jang et al., 2014) although this is not the case for all aquatic species and exposure conditions 

(Griffitt et al., 2009; Jang et al., 2014; Kalman et al., 2015). 

The chemical reactions of perovskite materials in the aqueous phase can lead to release of the 

metals and cause subsequent toxicity in aquatic organisms. Stress factors such as UV radiation, 

oxygen or high temperatures, can initiate degradation processes of the metal halide perovskite 

materials (Aristidou et al., 2015; Han et al., 2015) and the use of lead as the metal component 

of the perovskite cells increases the awareness and risk from the toxicological and 

environmental point of view. An X-ray electron spectroscopy scan showed that PbI2 and SnI2 

were the main by-products of full degradation of pristine perovskite particles containing Pb or 

tin (Sn) that were heated at 200 oC in air for 30 min, respectively (Babayigit et al., 2016). The 

same study investigated the acute toxicity of PbI2 and SnI2 in zebrafish embryos in a low 

hardness fresh water medium (E3 medium) and after dissolving the metal halides in dimethyl 

sulfoxide (DMSO). PbI2 was found less toxic in zebrafish embryos (4 days post fertilization, 

dpf) with a median lethal concentration (LC50) of 0.382 g / L) compared to SnI2 which toxicity 

was mainly attributed to reduction in media pH (Babayigit et al., 2016). No studies have been 

conducted up to date using Perovskite nanomaterials in zebrafish larvae. 

The dietary exposure to metals is an important route of exposure and accumulation and toxicity 

of metals in fish (Meyer, 2005). Lead, a well-known environmental contaminant and 

neurotoxin, has been shown to be available to fish for uptake through dietary exposures. 

Specifically, physiological and morphological changes that have been noticed after Pb-spiked 

dietary exposure were damages in enterocytes (Crespo et al., 1986) and accumulation in body 

and intestinal tissues (Alves and Wood, 2006; Mount et al., 1994) with no effects on survival 

or growth. Heavy metals, and specifically Pb, can inhibit the activity of ALA-D (δ-
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aminolevulinic acid dehydratase) or induce the activity of metallothionein (MT) proteins and 

both ALA-D and MT have been commonly used as biomarkers after Pb exposure (Johnson, 

1998; Wang and Fowler, 2008).  

The expected increasing application of the perovskite technology and the potential of ion 

leaching out of metal NPs leads to an urgent need to investigate perovskite NPs toxicity in the 

aquatic environment. The objective of this study was to assess the acute toxicity of five 

perovskite NPs, lead iodide and lead bromide-based materials, in the aqueous phase, using the 

green microalga Chlorella vulgaris and zebrafish larvae. The two model organisms were 

selected for the study as during exposure conditions algae are in direct contact with the NPs in 

contrast to zebrafish larvae that are in indirect contact due to NPs agglomerates settling at the 

bottom of the exposure vessel. Perovskite toxicity tests were held parallel to Pb ion exposures 

to evaluate whether toxicity of perovskite NPs can be attributed to Pb ions leaching. For the 

second part of the study, Pb bioavailability was evaluated after a 14-d dietary exposure to 

perovskite or Pb-spiked feeds to adult zebrafish to assess how ingestion can affect the function 

of the digestive system and the organism health by assessing hepatic gene expression of Pb-

specific biomarkers, tissue morphology and disruption of zebrafish gut microbiome.  

 

4.3 Materials & Methods 

4.3.1 Perovskite NPs 

The organometal perovskite NPs were manufactured at Ecole Polytechnique Federal de 

Lausanne, Switzerland. All five particles contain Pb and either Br or I, forming the chemical 

formula as the following: CH3NH3PbI3 (MALI), CHNHNH3PbBr3 (FALB), CH3NH3PbBr3 

(MALB), CH3NH3CHNHNH3PbI3 (MAFA), CHNHNH3PbI3 (FALI) (Table 4.1). Lead ions 

were used as a positive control (Pb(NO3)2, Sigma-Aldrich). 
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Table 4.1: The perovskite NPs used for the present study, the chemical type and molecular 

weight of each particle, along with the percentage of Pb that each NP contains. 

Name Chemical type Molecular 

weight (g/mol) 

Pb2+ (%) Experiments conducted 

MALI CH3NH3PbI3 619.9785 33.42 C. vulgaris and zebrafish acute 

toxicity tests, dietary exposure 

FALI CHNHNH3PbI3 632.9772 32.73 C. vulgaris and zebrafish acute 

toxicity tests 

MALB CH3NH3PbBr3 478.9770 43.26 C. vulgaris and zebrafish acute 

toxicity tests, dietary exposure 

FALB CH3NHNH3PbBr3 491.9758 42.12 C. vulgaris and zebrafish acute 

toxicity tests, dietary exposure 

MAFA CH3NH3CHNHNH3PbI3 665.0422 31.16  C. vulgaris and zebrafish acute 

toxicity tests 

 

 

4.3.2 Aqueous acute toxicity tests 

Algal growth inhibition assays were performed in glass 250-ml Erlenmeyer flasks according 

to the OECD test guideline (OECD 201) in the exponential growth phase. Temperature and 

light conditions for toxicity tests were identical to those used for culture growth. Experiments 

were carried out in triplicate. The initial concentration of the inoculum was 104 cells per ml, 

which was required to ensure exponential growth. Cell density was determined at 0, 24, 48 and 

72 h of exposure by measuring in vitro fluorescence of acetone-extracted chlorophyll a 

(Kalman et al., 2015). The exposure concentrations ranged between 5 and 200 mg/L for 

perovskites NPs. The detection of reactive oxygen species is based on the fluorescence of the 

probe 2, 7 dichlorofluorescein diacetate (H2-DCF-DA) and conducted by fluorescent plate 

reader (Molecular Devices SpectraMax M5) using excitation wavelength at 488 nm and 

emission wavelength at 525 nm at the same time points. For the reading, black 96-well plates 

were used, 250 µl of each flask were added per well in triplicates at 72 h after the start of the 
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exposure. DCF (10 µl) diluted in ethanol (180 mg/L) was added per sample in the dark and the 

plate was kept in dark conditions for 1 h till the fluorescence measurement. 

For the zebrafish acute toxicity tests, 72 hpf larvae were used. The duration of the exposure 

was 96 h and it was conducted in 96-well plates. One larva was placed per well and the well 

final volume was 200 µl. Ten wells were used per treatment and six treatments per plate. The 

electrolyte composition of system water was: 79.38, 12, 17 and 2 mg/L of [Ca2+], [Mg2+], [Na+] 

and [K+], respectively. The larvae were observed under the dissection microscope daily and 

mortality was recorded. The plates were kept at 28±1 oC throughout the exposure duration.  

For the mt2 gene expression study 15-20 larvae were exposed for a 24-h period in static 

solutions in glass beakers of total volume of 20 ml. The concentrations of particles ranged 

between 0 and 80 mg/L of the Pb the perovskite particles contain according to molecular weight 

(Table 4.1). Samples of the aqueous solutions at the end of the exposure were collected for Pb 

detection. 

 

4.3.3 Dietary exposure 

Wild type zebrafish were obtained from the zebrafish facility, Charles River laboratories 

(Tranent, UK), and fish were treated humanely in accordance with the regulations on animal 

use in UK. Adult fish (6-month old) were used for the dietary exposure experiment, of an 

average wet weight of 606 mg and fork length of 37.9 mm, were kept in recirculating biological 

systems with a 12:12 light:dark photoperiod. The electrolyte composition of system water was: 

79.38, 12, 17 and 2 mg/L of [Ca2+], [Mg2+], [Na+] and [K+], respectively. 

The zebrafish fish food was purchased from ZM systems, Winchester, UK, and it consists of 

52% protein, 12% oil, 10.3% ash, 1% fibre, vit A: 25,000 I.U./Kg, vit D3: 2,500 I.U./Kg, vit 

E: 300 mg/Kg, vit C: 300 mg/Kg. For the preparation of experimental feeds, Milli-Q water was 

added on dry food pellets, enough to create a thick mixture with pellets be no longer 

distinguishable. For the food with Pb, the water used to prepare the mixture contained the 

appropriate amount of Pb dissolved from Pb(NO3)2. The pellets were formed using a steel mesh 

with a hole size of 0.915 mm and were put to dry at room temperature for 24 h and finally 

stored at -20 oC.  
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Treatment food was prepared as follows: control, and 500 µg/g of Pb2+ that lead nitrate and the 

three perovskite particles contain according to molecular weight (0.8 mg Pb(NO3)2 per g of 

food; 1.496 mg perovskite MALI per g of food; 1.1872 mg perovskite FALB per g of food; 

1.155 mg perovskite MALB per g of food). During the two days of acclimation period, all fish 

were fed control food. Measurements of pH and total ammonia were conducted daily (pH: 

7.41-7.88 and unionised ammonia levels were at all times below 0.08 mg/L). The exposures 

were static with air supply, 50% of water was replaced twice daily and the average dissolved 

oxygen concentration was 8.24 mg/L. Fish were observed during feeding and all food was 

consumed. The exposure of experimental diets continued for 14 days. Before sampling the 

weight and fork length (from the tip of the snout to the middle of the caudal fin) of each fish 

were measured and the sex and condition of the gut (empty, half full or full) were recorded 

(Appendix C). Zebrafish were sacrificed with an overdose of tricaine methanesulfonate (MS-

222) (Sigma Aldrich). 

Liver samples were extracted at 0, 48 and 96 h of exposure from 2 fish per tank and stored at -

80oC for RNA extraction. At 14 d after the start of the exposure the zebrafish liver and digestive 

tract was removed aseptically, placed immediately in liquid nitrogen and stored at -80 oC for 

further analyses. A whole fish per tank was fixed in 10% neutral buffered formalin solution for 

histological analyses. Sampling occurred at all times before first feeding. Water samples were 

collected during the 14-d exposure period for Pb detection by ICP-MS/OES. 

 

4.3.4 Measurements of Pb by analytical chemistry 

Aqueous phase Pb concentrations were determined by inductively coupled plasma mass 

spectrometry (ICP-MS, Agilent 7500ce, School of Chemistry, University of Edinburgh) to 

investigate leaching of Pb from perovskite NPs and lead nitrate in the aqueous exposures of 

zebrafish larvae and leaching of Pb from perovskite and lead nitrate-spiked food pellets in the 

aquaria during the 14-d dietary exposure. Samples (10 ml) from the water column were 

collected during the zebrafish acute toxicity tests, without disturbing the bottom of the beakers 

and the settled NP agglomerates. Samples were then acidified with 15% nitric acid (trace metal 

grade) for measurement of total Pb in the water column. 

Sub-samples (n = 5 of approximately 0.5 g) of each diet were accurately weighed into acid-

washed glass beakers and 5 mL trace-analysis grade HNO3 (Primar Plus™, for Trace Metal 
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Analysis, Fisher, UK) added. The beakers were then covered with a watch glass and after 

incubation for 1 h to digest easily oxidised material, the acid was then heated to boiling and 

simmered for a further 1 h on a hot plate. Once cooled, digests were decanted through filter 

paper (Whatman, UK) into acid-washed volumetric flasks and made up to volume with 2% 

HNO3 prepared in ultrapure water (ELGA). Samples (n = 3) of similar mass of a fish protein 

certified reference material (DORM-3, National Research Council of Canada) and procedural 

blanks (digests performed as described above but without solid material added to beakers) were 

also prepared as described above. Concentrations of total Pb in diets were then measured in 

digests using ICP-MS (low expected Pb concentrations, control, DORM-3 and procedural 

blanks; Thermo Electron Corporation X-Series II quadruple ICP-MS) and ICP-OES (Pb-spiked 

diets; Varian 725-ES, Agilent Technologies Inc.) and compared to matrix-matched elemental 

standards. The mean measured concentrations of Pb in the procedural blanks were < 1 µg/L. 

Measured Pb concentrations in DORM-3 were 0.33 ± 0.04 µg/g compared to certified values 

of 0.40 ± 0.05 µg/g.  

 

4.3.5 Gene expression analysis 

Total RNA was extracted from larvae 96 hpf (15-20 larvae per replicate) or liver samples using 

RNeasy MiniKit for animal tissue, Qiagen, West Crawley, UK as previously described (Boran 

et al., 2016). Briefly, zebrafish larvae were homogenized with a pestle, a DNase treatment 

(Qiagen) was included as a step during the extraction process remove DNA to prevent sample 

contamination from DNA, and the RNA was eluted in 30 µL of RNase/DNase free water. The 

concentration of the total RNA was measured using NanoDrop Spectophotometer (ND-2000) 

and all samples were diluted to a final concentration of 100 ng/µL. cDNA was synthesised 

using Precision nanoScript2 Primer design kit with the following conditions: annealing at 65 
oC for 5 minutes, extension at 42 oC for 20 minutes and inactivation of the reaction for 10 

minutes at 75 oC. The cDNA was stored at -20 oC until the gene expression analysis. 

Primers designed for zebrafish from Primer BLAST (NCBI) for the following genes: mt2 

(NCBI Reference Sequence: NM_001131053.2 Forward (5’-3’): 

TGTTCTCAATCTTGTCTGTTTAATG, Reverse (5’-3’): 

TGTAGAGCACTATCAGAATAAACG), ala-d (NCBI Reference Sequence: NM_0007645, 

Forward (5’-3’): CACGTTCCCTGAGCTTGTGT and Reverse (5’-3’): 
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ACAGCTTGCGGCATTATCCA) and β-actin (NCBI Reference Sequence: NM_131031.1 

Forward (5’-3’): ACACAGCCATGGATGAGGAAATCG, Reverse (5’-3’): 

TCACTCCCTGATGTCTGGGTCGT). Precision PLUS Mastermix with SYBRGreen, Primer 

Design, was used for the quantitative Polymerase Chain Reaction (q PCR). Fluorescence was 

detected after 40 two-step cycles of 95oC denaturing temperature, primer specific annealing 

temperature and extension step 60 oC by OneStep Real Time System (Applied Biosystems, 

Warrington, UK). The efficiency of the qPCR was calculated (! = 10(&
'

()*+,) − 1) based on a 

4-point standard curve. Efficiencies between 0.9 and 1.1 were accepted for further analyses. 

 

4.3.6 Assessment of gut microbiota 

The bacterial communities of the gut were identified by using a sequencing-based technique 

for rapid profiling, the terminal restriction fragment length polymorphism (tRFLP) analysis of 

16S rRNA genes. The DNA of 64 samples was extracted from the whole GI tract using DNeasy 

blood and tissue kit (Qiagen), including treatment with proteinase K. Following that, the 16S 

rRNA gene was amplified using PCR with the primer pair: labelled (6FAM) 63f (Marchesiet 

al., 1998) and 530r (Lane, 1991). Amplification was conducted using 2 µl of template DNA 

and 0.5 µl bovine serum albumin (BSA; Ambion) in a 50 µl reaction mixture of Taq PCR 

mastermix kit (QIAGEN). The DNA used for PCR was 100-fold dilution of initial DNA to 

minimise effect of PCR inhibitors. The PCR conditions were as follows: initial denaturation 

for 90 s at 94 °C followed by 30 cycles of 15 s at 94 °C; annealing for 30 s at 56 °C; elongation 

for 30 s at 72 °C; and a final elongation step for 10 min at 72 °C. The PCR products were 

verified on a 1 % (w / v) agarose gel by electrophoresis. Purified PCR products were quantified 

using a Nanodrop spectrophotometer (NanoDrop 2000). ExoSAP-IT (Thermo Scientific) was 

used to purify the amplified samples, 5 µl of PCR samples were mixed with 2 µl of reagent, 

incubated for 15 min at 37 °C to activate the exonuclease and then 15 min at 80 °C to de-

activate the enzyme. The digested product was analysed by GeneWiz, ML, USA, using Liz 

500 size standard. The electropherograms were then analysed by the GENEMARKER software 

(SoftGenetics, PA, USA), using manually created bins. Peaks of less than 50 nucleotides length 

or having intensity of less than 50 units were not included in the analysis. 

Nested PCR of DNA samples were prepared for MiSeq (Illumina) analysis. Amplification of 

8F to 1492R region of 16S rDNA using HotStart PCR mastermix kit (ThermoFisher), were 
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carried out under the following PCR conditons: 96 oC for 1 min, 30 cycles of 96 oC for 30 sec, 

50 oC for 30 sec, 72 oC for 30 sec, and 1 cycle of 72 oC for 3 min, prior to a secondary 

amplification of the V4 region with Golay barcoded 515F and 806R primers according to the 

Earth Microbiome protocol (Earth Microbiome Project, 2016). The PCR products were 

purified using GFX PCR DNA and Gel Band Purification kit (GE Healthcare). Concentration 

and quality of barcoded amplicons were evaluated using NanoDrop and 240 ng of each sample 

were pooled together and sent to Edinburgh Genomics (Edinburgh, UK) for next generation 

Illumina MiSeq sequencing. The operational taxonomic unit (OTU) identification was 

conducted using the Mothur pipeline (Schloss et al., 2011) and Silva ribosomal RNA database. 

 

4.3.7 Histological analysis 

One fish per aquarium was fixed in 10 % formalin and further dehydrated through ethanol, 

Histo-Clear II (National Diagnostics Inc., UK), and paraffin. The tissues were embedded in 

paraffin wax and then mounted on slides (8 mm sections). The transverse section selected were 

between the level of the heart and the end of the gastro-intestinal (GI) tract. The sections were 

stained with haematoxylin for 5 min and eosin for 5 min followed by thorough water washes.  

 

4.3.8 Statistical analyses 

The algal growth inhibition (dependent variable) and Pb concentration (independent variable) 

relationship, were modelled using a concentration-response model for algae, by ‘drc’ package 

in R. Mortality (dependent variable) of zebrafish larvae was modelled by logistic regression 

according to the independent variable of Pb concentration. The logistic regression models were 

generated by iterative maximization of the likelihood function. The median lethal concentration 

(LC50) and effective concentration (EC50) were calculated by the logistic regression model and 

the 95% confidence interval (CI) was calculated using the logit model in R statistics. For the 

gene expression analyses, the relative fold change (dependent variable) was modelled by 

general linear model according to the independent variable of Pb concentration (p-value of 

<0.05). Concentration-response statistical analyses were conducted using R statistics (version 

3.2.1, RStudio, Inc., 2015). 
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The gut microbiota community composition within the 5 different treatments was analysed by 

non-metric multidimensional scaling (NMDS), based on Bray-Curtis similarities after square 

root transformation. Bacterial diversity was assessed using Shannon-Wiener’s diversity Index 

(H-index) on the 13 tRFLP peaks and 396 bacterial phylla identified by illumine MiSeq 

analysis. Bray-Curtis similarities were plotted against food treatments to examine community 

treatment - response relationships. Permutational multivariate analysis of variance of sums of 

squares (PERMANOVA) was used to test for statistically significant differences between the 

bacterial communities of the control diets and Pb and NPs spiked diets. The numerical analyses 

for the gut microbiota data were conducted using PRIMER-E (v.7 PRIMER-E Ltd, Plymouth 

Marine Laboratory, Plymouth, UK). 
 

4.4 Results and Discussion 

A positive concentration – response relationship was observed after Pb or perovskite NPs 

exposure to C. vulgaris. Specifically, a 72-h EC40 of 99 mg/L was observed after Pb ions 

exposure to C. vulgaris, MALB showed similar toxicity with Pb with a predicted 72-h EC40 of 

194 mg/L (equivalent to 84 mg/L Pb ions as seen in Figure 4.1). The rest of perovskite NPs, 

FALI, FALB, MAFA and MALI once converted to Pb ion concentration according to 

molecular weight, caused similar and less growth inhibition to C. vulgaris after 72-h exposure 

when compared to MALB NPs or lead nitrate (Figure 4.1), suggesting that the observed acute 

toxicity can be caused by Pb ion release. The MALI, FALB and MAFA NPs were found to 

cause less growth inhibition and the predicted 72-h EC20 for FALI was found at 199 mg/L of 

FALI NPs that is equivalent to 65 mg/L of Pb ions. The outcome of the Pb toxicity in C. 

vulgaris is in agreement with previous research where significant reduction (66 %) in 

chlorophyll α (Chl α) levels was observed in C. vulgaris after 72-h exposure to 80 mg/L of Pb 

(Zhang et al., 2013) and in the present study a reduction of 45 and 82 % at Chl α levels was 

observed at 62 and 125 mg/L of Pb, respectively. The differences in perovskite NPs toxicity 

can be attributed to to different chemical type of perovskite NPs and different dissolution rates 

in the aqueous phase. 
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Figure 4.1: Growth inhibition of C. vulgaris with Pb2+ concentration after 72-h exposure (black 

circles). Plotted in the graph is the growth inhibition observed after MALI (diamonds), FALB 

(squares), MALB (*), MAFA (triangles) and FALI (empty circles) perovskite NPs transformed 

to Pb2+, according to molecular weight. 

 

The intracellular ROS activity increased significantly with increased concentration of all 

perovskite NPs. FALI and MAFA NPs reaching 2,300 and 1,652 relative fluorescence units at 

the higher concentration tested that was similar to the levels of fluorescence after lead nitrate 

exposure (1,685) while exposure to 200 mg/L of FALB perovskite NPs produced more than 

four-times higher fluorescence (19,896 fluorescent units, as shown in Figure 4.2). The high 

concentration of perovskite NPs (200 mg/L), up to which C. vulgaris was tested, is 

considerably lower than environmentally relevant concentrations for perovskite NPs. No 

environmental concentrations of perovskite NPs are reported in the literature, however, TiO2 

NPs that are the most commercially used NPs (as reported in Chapter 1) has been estimated at 

µg level in surface waters (Sun et al., 2014). This is the first study to conduct risk assessment 

of lead-halide perovskite particles and inform on acute toxicity in green micro-algae. 
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Figure 4.2: Relative fluorescence units of DCF after 72-h C. vulgaris exposure in perovskite 

NPs (MALI, MALB, FALB, MAFA and FALI) in parallel to lead nitrate exposure up to 200 

mg / L. Data have been normalised to cell number of each sample, mean ± SE, n=3, control 

n=6. 

 

Zebrafish larvae mortality and mt2 gene expression were significantly increased with Pb ions 

increasing concentration, while Pb concentration showed an inverse relationship to ala-d 

expression. The median lethal concentration (LC50) for Pb was 67 mg/L (CI 95%= 23 – 209) 

for 96-h exposure of zebrafish larvae and when zebrafish larvae were exposed to a range of Pb 

for 24 h, mt2 induced up to 50-fold after normalization to control exposure (R2= 0.91, Figure 

4.4A) and ala-d decreased down to 0.65 (R2= 0.92, Figure 4.4C). Previous studies have 

evaluated Pb toxicity in zebrafish embryos and have reported 95 % mortality after 96-h 

exposure to 100 mg/L Pb ions (Peterson et al., 2011) and a 4-d LC50 of 382 mg/L for PbI2 in 

zebrafish embryos (Babayigit et al., 2016). Lead ions water solubility and therefore Pb aqueous 

toxicity are strongly dependent on the ionic strength of the exposure medium (Alsop and Wood, 

2011). Specifically, in soft water medium 71 % of total Pb was found in dissolved ionic form, 

while only 6.25 % of dissolved Pb ions were found in hard water medium (33 mg/L of Pb ions 
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nominal concentration). Peterson et al. (2011) also reported a 1.1-fold induction of mt2 after 

72-h exposure to 0.1 mg/L of Pb, while western blotting revealed a 600% induction of mt2 

protein levels. In the present study, the levels of mt2 gene were assessed after a 24-h exposure 

and a 21-fold induction was observed after 24-h exposure of 10 mg/L Pb ion in 96-hpf larvae. 

The differences between the two studies can be attributed to the differences in concentration 

range, exposure period and developmental stage of zebrafish, however, these findings suggest 

that mt2 is a relevant biomarker for Pb bioavailability in zebrafish. The loss of Pb ions in the 

water column can explain the high LC50 values for zebrafish larvae and the variation in lead 

toxicity among studies can be attributed to differences in hardness of the water medium.  

Perovskite NPs toxicity followed similar patterns of zebrafish mortality and mt2 gene 

expression as Pb ions. The LC50 for MALI and FALB NPs were estimated at 220 and 206 mg/L 

in zebrafish larvae after a 96-h exposure, respectively, and when the MALI and FALB NPs 

were converted to the equivalent amount of Pb (66.84 and 83.888 mg/L, respectively), a similar 

pattern to Pb concentration - response was observed (Figure 4.3) that can be attributed to lead 

dissolution of the perovskite NPs. Specifically, no differences were found between Pb(NO3)2 

and MALI concentration-response curves, while FALB concentration did not cause higher 

mortality than Pb. No mortality was recorded when larvae were exposed to MALB, FALI or 

MAFA NPs up to 200 mg/L concentration which contain 86.5, 65.46 and 62.32 mg/L Pb, 

respectively. When zebrafish larvae were exposed to MALI, MALB and FALB NPs for 24 h, 

in parallel with Pb ions, mt2 expression was positively induced with increasing concentration 

and no differences were observed among NPs or between NPs and Pb ions (GLM, p>0.05, 

Figure 4.4B). The parallel exposures and the lack of significant differences between the 

perovskite particles and the lead (II) nitrate mt2 expression suggests that the toxicity of 

perovskite particles can be attributed to the presence of Pb in the perovskite particles. The ala-

d expression after a 24-h Pb or perovskite NPs exposure to zebrafish larvae showed inhibition 

with increasing concentration and no significant differences were found among perovskite NPs 

or between NPs and lead nitrate, however, high variation in expression was observed (Figure 

4.4D). This is the first study to investigate mt2 and ala-d expression after lead-halide perovskite 

particles after aqueous exposure. 
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Figure 4.3: Mortality of zebrafish larvae with Pb2+ concentration after 96-h exposure (black 

circles and curve). Plotted in the graph is the mortality recorded after MALI (white diamonds) 

and FALB (black squares) perovskite NPs transformed to Pb2+, according to molecular weight. 

The predicted mortality was obtained by the following exponential equation: (e a+βx) (1 + e 
a+βx)-1. No mortality was observed after exposure to MALB, MAFA or FALI perovskite NPs 

up to 200 mg / L of NPs. Statistical differences between curves were obtained by pair-wise 

contrasts statements. 

 

Hepatic mt2 expression was induced and hepatic ala-d was inhibited after dietary exposure to 

both Pb and perovskite NP-spiked feeds. Both mt2 and ala-d expression differed significantly 

between male and female fish (ANOVA, Tukey HSD, p<0.05), therefore the data are presented 

in separated graphs. Both female and male liver mt2 levels exhibited significant differences 

between 48-h exposure and 96-h or 14-d exposure, specifically, mt2 levels after lead nitrate-

spiked diet, induced an 8-fold in female liver at 48 h after the start of exposure (highest 

induction observed in the present study), while down-regulation was observed at 96 h and 14 

d of 0.4 and 0.38-fold, respectively (Figure 4.5). The FALB-spiked diet led to significant 

induction of mt2 in female liver after 48-h exposure compared to fish fed with non-spiked diet, 

while MALB and LEAD-spiked diets led to increased mt2 expression with high variation 

between samples. No significant differences were observed in the male liver mt2 levels, 
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however, the LEAD, MALI and FALB treatments resemble similar pattern to the female liver 

mt2 (Figure 4.5). Additionally, low dissolution of Pb was observed in the water of the aquaria 

out of the Pb or perovskite-spiked feeds excluding the possibility of aqueous exposure to Pb 

ions during the 14-d period and a Pb recovery of higher than 81 % was revealed by ICP in the 

perovskite NP-spiked food pellets (Table 4.2). No differences were observed in hepatic ala-d 

expression after 48-h dietary exposure across treatments, however, all perovskite NPs and lead 

treatments showed inhibition of ala-d expression at the 96-h exposure period (Figure 4.5). At 

the end of the dietary exposure (14 d), ala-d expression increased. Restoration of normal ala-d 

values has been previously reported, specifically, in blood samples of Nile tilapia after a 9-d 

exposure of lead (Dos Santos et al., 2016). Dietary exposure is a relevant scenario of NP 

exposure to fish and other aquatic organisms and the present study is the first study to report 

on dietary exposure to perovskite NPs in fish as well as Pb bioavailability after dietary exposure 

in zebrafish. Lead has been reported to accumulate in liver tissue after one-day exposure (sub-

lethal injection) (Vinodhini and Narayanan, 2008), high variation was observed in the present 

study after lead dietary exposure and gender-dependent mt2 and ala-d expression, that can be 

attributed to the experimental design of the present study. Although all food was consumed, 

not all individuals consumed identical amount of food per aquarium, and the dominant 

behaviour of larger individuals may explain the high variation. The large size of zebrafish has 

been reported to lead to dominant behaviour independently of fish sex (Hamilton and Dill, 

2002). The first sampling for mt2 expression occurred 48 h after the start of exposure and it is 

possible that expression occurred swiftly and would have been more obvious after 24-h 

exposure. The down-regulation observed at 96-h and 14-d sampling support the hypothesis that 

mt2 protein is in high levels in the exposed fish.  
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Figure 4.4: Relative expression of A) mt2 and C) ala-d with Pb concentration after 24-h 

exposure in zebrafish larvae (R2 = 0.91 and 0.92, respectively). B) The mt2 relative fold 

induction and D) the ala-d inhibition with Pb concentration after 24-h exposure to Pb(NO3)2 

(black circles). Plotted in the graph is the mt2 induction with the Pb concentration the particles 

MALI (diamonds), FALB (squares) and MALB (*) contain, according to molecular weight. 
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Figure 4.5: Response of mt2 gene expression after dietary exposure to perovskite NMs or lead 

nitrate contaminated food with concentration of 500 µg/g of Pb2+. The mt2 levels were assessed 

in liver tissues after normalization to β actin. The graph A presents the results from female 

zebrafish liver tissue and the graph B from male tissue. Data are MEAN ± SEM, n=3, ANOVA, 

p < 0.05 

 

The tRFLP analysis identified 15 different taxonomical units (OTUs) of zebrafish gut 

microbiome whose distribution were influenced by the treatment. Zebrafish fed with Pb-spiked 

food displayed significant changes in the gut microbiome community compared to fish fed 

control food (PERMANOVA, p<0.05) while MALI-fed fish gut microbiome differed compare 

to Pb-fed fish with a p=0.06 (PERMANOVA), showing no differences compared to control-

fed fish. Non-metric MDS analysis of tRFLP data of different diet types is shown in Figure 

4.7. Results from this analysis revealed multivariate patterns among observations, and 

specifically, a strong distinction between Pb and control treatments was observed, while the 

perovskite NPs treatments were placed between the range set by control and Pb treatments 

along the y axis. The Shannon-Wiener Index, a measure of species diversity in bacterial 

communities (Marrugan, 2004), was significantly reduced in the MALB treatment when 

compared to FALB or LEAD treatments, while none of the spiked-fed fish microbiomes 

differed significantly compared to control treatment (Figure 4.6). Lead-spiked food, which was 
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used as a positive control in the present study, led to significant changes in the zebrafish gut 

microbiome communities, while the perovskite-spiked feeds did not change significantly the 

structure of the zebrafish gut microbiome after a 14-d dietary exposure. The Illumina MiSeq 

analysis of the control, lead nitrate and perovskite FALB samples identified 396 16S rRNA 

sequences and bacterial phylla of control and lead nitrate samples were grouped separately as 

shown in Figure 4.8. The analysis of presence or absence of the identified phylla (Figure 4.9) 

led to no differentiation among treatments, that is in contrast with the Shannon-Weiner Index 

out of tRFLP analysis. The high bacterial phylla richness identified by miseq Illumina 

compared to the relatively few alleles identified by tRFLP suggests loss of information using 

the tRFLP analysis, however, both analyses led to the same result regarding abundance of gut 

microbiota; the lead-spiked feeds led to differences in bacterial distribution that, in the case of 

tRFLP obtained data, was found statistically important.  

 

Table 4.2: Total lead concentration measured by ICP-MS and ICP-OES in the water column 

of aqueous exposures to perovskite NPs (MALI, MALB, FALB) and Pb(NO3)2 with nominal 

concentration of 60 mg / L; measurements of water of the aquaria after 14 d dietary exposure 

to NP or lead contaminated food; and measurements of total lead found in acid digested food 

pellets, mean ± SE, n=5. 

Samples 

from: 

Water column of exposure vial 

(nominal concentration 60 mg 

/ L, in mg / L) 

Aquarium water following 

dietary exposure (in µg/L) 

Contaminated food 

pellets (nominal 

concentration 500 

µg/g, in µg/g) 

MALI 0.212 <0.001 467.163 ± 15.6 

MALB 0.152 0.2973 406.917 ± 5.5 

FALB 0.223 0.31484 484.814 ± 11.5 

Pb(NO3)2 0.189 <0.001 286.753 ± 5 
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Figure 4.6: Shannon-Weiner Index that informs on species richness and proportion within the 

zebrafish gut community using data collected from tRFLP analysis of the gut microbiota. The 

microflora richness of fish fed with MALB-contaminated food was found significantly 

different from FALB-fed and LEAD-fed fish gut microflora. Data represent mean ± SE, 

ANOVA, TukeyHSD, p < 0.05 

 

Figure 4.7:  Nonmetric Multidimensional Scaling (NMDS) ordination displaying microbiome 

communities of gut microbiota of fish fed control, MALI, MALB, FALB, or lead-spiked feeds. 

Microbiomes were distinct between control and lead-spiked feeds along y axis, while 

microbiomes of perovskite-spiked feeds were placed between control and lead treatments. Each 

point in the graph, represents 1 aquarium and pooled allele data obtained from the fish 

sacrificed per aquarium. 
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Figure 4.8: Shannon-Weiner Index that informs on species richness and proportion within the 

zebrafish gut community using data collected from illumine miSeq analysis of the gut 

microbiota. The microflora richness of fish fed with FALB or lead-contaminated food was 

found at similar levels with control diet-fed fish gut microflora. Data represent mean ± SE, n=3 

(n=2 for FALB treatment). 

 

Figure 4.9: Nonmetric Multidimensional Scaling (NMDS) ordination displaying microbiome 

communities of gut microbiota of fish fed control (blue), FALB (red) or lead-spiked feeds 

(green). Microbiomes were distinct between control and lead-spiked feeds along y axis. Each 

point on the graph represents 1 aquarium and 5 pooled fish gut microbiome DNA.  
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The histological examination of zebrafish cross sections revealed no lesions associated with 

Pb or perovskite NPs exposure after 14-d dietary exposure (Appendix C). Specifically, no 

indication of inflammation or lesions were observed in liver and kidney tissues, and no lesions 

were found the intestinal mucosae when sections were compared to fish fed with control food 

(Figure 4.10). A low incidence of basophilic cytoplasm and nuclei pyknosis indicative of early 

stages of cellular necrosis have been reported in neotropical fish Hoplias malabaricus liver 

tissue, after injection of 8 or 14 doses of inorganic lead (4 µg per g of fish daily) (Rabitto et al., 

2005). The observed differences between Rabitto et al. (2005) and the present study can be 

explained by the exposure methods that were employed by each investigation. Specifically, the 

injection is considered more potent exposure compared to dietary exposure, as during the latter 

the compound reaches the blood flow indirectly after absorption from the lumen of the gut 

(Boyle et al., 2013) indicating that although during an injection exposure all external factors 

are eliminated, a dietary exposure is an environmentally relevant way of assessing toxicity of 

NPs.  

Taken together, the results of this study indicate that toxicity of perovskite NPs is attributed to 

Pb release in the aqueous phase, while less Pb ion bioavailability occurred through dietary 

exposure.  The results of the present study revealed growth inhibition and ROS generation in 

C. vulgaris and mortality of zebrafish larvae in high concentration of lead-halide perovskite 

NPs, and this toxicity can be attributed to increased Pb bioavailability after dissolution, 

identified by induction in expression mt2 and inhibition of ala-d expression. Lead became 

bioavailable after a dietary exposure with perovskite-spiked feeds in adult zebrafish. The data 

gathered by the DNA analyses suggest significant changes in gut microbiome community after 

a 14-d exposure to lead-spiked food, while the perovskite-spiked food did not affect the 

microbiome. The present study provides evidence of indirect toxicity of lead-halide perovskite 

NPs due to lead dissolution and shows potential direct and indirect roots of exposure of 

perovskite NPs in the aquatic environment. 
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Figure 4.10: Representative image of liver (A and B) and intestine (C and D) tissue sections 

after H&E staining in x40 (A and C) and x100 (B and D) from fish fed with control food. The 

liver tissue sections (A and B) showed healthy hepatic cells with intact cell membrane, visible 

nucleus and nucleolus and no signs of haemorrhage. The lumen of the gut (C and D) showed 

no lesions or any epithelial cell defects. 
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Chapter 5 - A Comparison of Nanoparticle (NP) Acute Toxicity Tests in the 

Aqueous Phase: The Importance of Homogeneous NP Dispersions.  

 

5.1 Abstract 

The agglomeration and settling of NPs in the aqueous phase makes the conventional fish larva 

toxicity test inefficient to identify the relation between NPs unique physicochemistry and 

toxicity. The unique physicochemical properties (e.g., size, surface charge etc.) of aqueous-

phase NPs and lack of reproducibility of NP eco-toxicity tests is a critical issue may be 

consequent on a variety of causes (e.g., different NPs, exposure media, etc.). Differences in 

toxicity of NPs have been reported for NPs tested in parallel under static versus controlled 

dynamic suspensions and toxicity has been found dependent on the consistency of exposure 

concentrations throughout the exposure. The aim of the present study was to further develop 

an exposure chamber with characteristics that allow routine testing and low amount of waste 

and to compare toxicity of zebrafish larvae in the exposure chamber, to traditional static 

toxicity tests (i.e. glass beakers and 96-well plates). Results indicated consistently higher 

toxicity of all NPs when toxicity tests were conducted in the exposure chamber compared to 

static exposures. The fish larvae NP toxicity tests were held in parallel to fresh algae NP 

toxicity tests, where no sedimentation of NPs occurs during the exposure period and NPs are 

in direct contact with the algal cells since the algae are constantly agitated. This study provided 

a pragmatic approach on NP toxicity testing, emphasizing the ineffectiveness of the current 

experimentation limiting the probability of toxicity artefacts and maximising the exposure for 

an efficient risk assessment.  
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5.2 Introduction 

The physicochemistry (e.g., size, surface charge etc.) of aqueous-phase NPs are hypothesized 

to be related to their toxicity in aquatic organisms. The change in physicochemistry of NPs 

alters the exposure conditions, therefore testing this hypothesis requires careful 

characterization of NP physicochemistry in the aqueous phase, and consistent exposure 

conditions such that results of toxicity tests can be reproduced independently. Despite 

considerable effort over numerous years, mechanistic links between NP physicochemistry and 

toxicity in aquatic organisms have not been yet established (Holden et al., 2016; Selck et al., 

2016). Research indicates that some aqueous-phase NPs can dissolve (dissolution of metal 

ions) or form agglomerates with consequent changes in NP physicochemistry (i.e. changes in 

particle size and active surface area) that can change during the exposure in the aqueous phase 

and add to the difficulties of attributing NP physicochemistry to toxicity (Petersen et al., 2014). 

In addition, concentrations of NPs that induce toxic responses can be below the concentrations 

in which NP physicochemistry can be effectively analysed (e.g., for some Ag-NPs), making 

difficult to identify the physicochemistry of the NPs at the exact exposure conditions.   

The lack of consistency of NP ecotoxicity tests is a critical issue that must be resolved for a 

better understanding of NP ecotoxicology. Although differences in toxicity results among 

studies are expected and may be a consequence of the exposure (e.g., different size NPs, 

coatings, exposure media, differences between nominal and real concentrations, different sizes 

of exposure vessels etc.), the lack of reproducibility among tests (even within laboratories) 

suggest other factors that must be addressed. An example of inconsistent results among several 

studies on NP toxicity is evident for Ag NPs. Specifically, exposure conducted in petri dishes 

with Ag NPs stabilised with polyacrylate sodium acquired a 96-h LC50 of 1.18 mg/L in 

zebrafish embryos (Massarsky et al., 2013), polyvinyl alcohol Ag NPs tested in 6-well plates 

obtained a 72-h LC50 of approximately 75 mg/L using the same model organism (AshaRani et 

al., 2011). After a 4-d exposure to pure Ag NPs in petri dishes obtained an LC50 of 2 mg/L in 

zebrafish embryos (Kovriznych et al., 2013), a 48-h LC50 of 7.20 mg/L was observed when 24 

hpf zebrafish embryos were exposed in 12-well plates mg/L (Griffitt et al., 2008) and an LC50 

of 10 mg/L was obtained after exposure to 3 nm Ag NPs in 96-well plates (Bar-Ilan et al., 

2009). The inconsistent results may be due to differences in the methods used for the exposure 

(e.g. 24-well plates, petri dishes, glass beakers, developmental stage of the organism). Disparity 

in NP toxicity is also evident in reports of TiO2 NPs toxicity, with studies reporting 96-h LC50 
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of TiO2 NPs exposure to Japanese medaka embryo at 155 mg/L under laboratory light and daily 

solution changes (Ma et al., 2012), and no mortality in zebrafish embryos up to 1600 mg/L 

(Boyle et al., 2015; Griffitt et al., 2008; Harper et al., 2008; Kovriznych et al., 2013). The rapid 

sedimentation and agglomeration of TiO2 NPs can lead to fish embryo toxicity artefacts and 

unrepresentative toxicity of zebrafish embryos that can be a consequent of suffocation of 

embryos due to clogged chorion pores. The fish embryos are settled at the bottom of the 

exposure vessel and the embryo chorion can be considered as a mechanical barrier, protecting 

the embryo from NP agglomerates larger than 200 nm diameter changing in a way the actual 

exposure condition. 

Nanoparticles do not behave as traditional dissolved toxicants and the currently standardised 

methods of exposure to homogeneous aqueous dispersions do not apply to all model organisms 

used in eco-toxicological studies. With the exception of the microalgae toxicity test, that offers 

constant agitation of the algal cells and the NP agglomerates during the exposure, therefore, 

limited sedimentation of NPs, other aquatic organisms, including fish, are not exposed to 

nominal NP concentration due to sedimentation of agglomerates. The issue of sedimentation 

of NPs within aqueous exposure preparations has been addressed in an earlier study (Boyle et 

al., 2015), demonstrating that toxicity of NMs is dependent on the consistency of exposure 

concentrations throughout the exposure. Boyle et al., reported an 80 and 81.2 % of initial Ag 

and Cu NPs at the end of a 96-h exposure period, using an exposure chamber, that enabled 

homogeneous dispersions of the NPs in a 2-L beaker, while the zebrafish larvae were held in a 

semi-isolated chamber in the water column (Figure 5.1). On the contrary, 3.1 and 2.3 % of Ag 

and Cu NP, respectively, were found in the water column, in a static beaker after a 96-h 

exposure. Consequently, significantly lower 96-h LC50 values and variability were found for 

both NPs using the exposure chamber when compared to static beaker exposures. Shaw and 

colleagues (2016) attempted a miniaturization of the exposure chamber and reported a 74 and 

83 % of TiO2 NM105 and Ag NM300K after 24 h dispersion. Assessment of NPs toxicity 

requires testing strategies that are reproducible and accessible under laboratory conditions, 

therefore, the step forward regarding the exposure chamber will be to improve its design using 

smaller volumes, that would in turn enable more replication of the toxicity tests and less waste 

production. 

In contrast to the fish embryo toxicity tests, the microalgae NP toxicity test is considered to 

have limited issues with respect to sedimentation. The nature of the algal toxicity tests can 
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ensure true dosimetry (loses only to sorption to exposure vessel) and algal cells are 

continuously in direct contact with NPs through the incubation period. The diameter of the 

pores in the cell wall of algae can range between 5 and 20 nm (Navarro et al., 2008), suggesting 

internalization of NP agglomerates rather unlikely. Microalgae can be considered as a very 

sensitive aquatic toxicology model organisms as they are highly dependent on the chemical 

composition of the medium. Subsequently, several indirect effects of NP toxicity have been 

reported such as shading effects in high NP concentrations which inhibit photosynthesis 

(Aruoja et al., 2009) and mineral nutrient depletion, as essential nutrient adsorb on NPs and 

become less bioavailable to the microalgae (Van Hoecke et al., 2009). The algal toxicity test 

can be held in direct comparison with the zebrafish larvae toxicity test regarding the 

sedimentation of the NPs.  

The objective of this study was twofold. First, the 2-L exposure chamber (Boyle et al., 2015) 

was further developed to allow routine toxicity testing using smaller volumes and advance 

towards standardization of the in vivo assessment of NP toxicity in the aqueous phase. A range 

of commercially important engineered NPs were tested using zebrafish larvae. Second, widely 

used traditional aqueous toxicity assays and their variability in the outcomes were compared 

to the exposure chamber assay. Specifically, the experimental comparison of NP acute toxicity 

included static test in glass beakers, polystyrene 96-well plates, and the modified exposure 

chamber toxicity test system. Toxicity tests in zebrafish larvae were held in parallel with fresh 

water algae toxicity test using Chlorella vulgaris, as the algal NP toxicity test is considered to 

have limited issues with respect to sedimentation and dosimetry during exposure in contrast to 

the fish embryo NP toxicity test. 
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Figure 5.1: Schematic outlining of the major features of the exposure chamber used to assess 

the toxicity of NPs to zebrafish larvae in the present study. The exposure chamber has a bottom 

mesh that separates and protects the exposed zebrafish larvae from the magnetic stirring bar at 

the bottom of the 600-ml glass beakers while the NPs are kept in constant dispersion throughout 

the exposure duration. The water circulation is enhanced by the air supply through the thin tube 

inside the inner chamber.  

 

5.3 Materials and Methods 

5.3.1 Nanoparticles tested 

For the present study, four NPs with different physicochemistry were selected (Table 5.1).  Ag 

polyvinylpyrrolidone (PVP) coated nano-prisms, CeO2 and TiO2 NPs with 

hexamethylenetetramine (HMT) and tetramethylammonium hydroxide (TMAOH) stabilising 

agents, respectively, and CuO NPs, were suspended in Milli-Q water and the stocks were 

sonicated for 8x2 min before the preparation of the exposure solutions. Silver nitrate (AgNO3) 
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was used as a control toxicant compound and was provided by FSA Laboratory Supplies. For 

NP characterization, 10 mg/L of each NP in milli-Q water was sonicated and the measurements 

of the average hydrodynamic size of NP agglomerate in the aqueous solution (z-average) and 

the surface charge of the NPs (ζ-potential) were conducted using Dynamic Light Scattering 

(DLS). 

 

 

Table 5.1: The list of NPs used in the present study included Ag nanoprisms, CeO2 and TiO2 

NP and CuO NPs. The table summarises the NP physicochemistry as in the shape, coating and 

size provided by manufacturer and the average agglomerate size in aqueous solution (z-

avearge) and NP charge (ζ-potential) as measured by DLS at Heriot Watt University. Data are 

means ± standard error, n=3. 

NPs Characterisation 
(manufacturer data) 

z-average 
(diameter, nm ± 
SE) 

Ζ-potential  

(mV ± SE) 

NPs provided by 

Ag Nano-prisms coated 
with 
polyvinylpyrrolidone 
(PVP) 

39.56 ± 0.2 -18.26 ± 0.6 Philipps 
Universitaet 
Marburg, 
Germany 

CeO2 Stabilised with 
hexamethylenetetram
ine (HMT)   

1185.13 ± 199.4 4.9 ± 0.5 Fundacio Privada 
Institut Catala de 
Tecnologia, Spain 

TiO2 4 nm diam., nano-
spheres, stabilised 
with 
tetramethylammoniu
m hydroxide 
(TMAOH) 

66.54 ± 0.9 -24.56 ± 0.9 

Fundacio Privada 
Institut Catala de 
Tecnologia, Spain 

CuO 12 nm diameter 343.13 ± 28.3 -7.98 ± 0.6 PlasmaCheam, 
Germany 
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5.3.2 Acute Toxicity Tests 

Zebrafish (Danio rerio) were obtained from the zebrafish research facility (Heriot-Watt 

University), and husbandry, spawning and experimentation were conducted with complete 

approval and according to animal welfare regulations of the UK Home Office. Characteristics 

of water chemistry were 79, 38, 12, 17 and 2 mg/L of Ca2+, Mg2+, Na+ and K+, respectively; 

pH of 7.7; temperature was maintained between 28-30 oC, and a 12-h photoperiod. Ammonia, 

nitrate, nitrite and chlorines were measured weekly and kept under 0.02, 5, 0.05 and 0.05 mg/L, 

respectively. Breeder fish were fed daily dry pellet food ZM systems, Winchester, and newly 

hatched Artemia salina.  

Embryos (1-2 hpf) were collected, non-fertilised embryos and debris were removed and clean 

embryos were placed in petri dishes (~30 ml volume) in fresh water medium. Hatching 

occurred between 48 and 72 hpf, and fish of age 72-168 hpf were used for the experiments. 

The NPs used for toxicity tests were the TiO2, CeO2, Ag nanoprisms, CuO NPs. The model 

toxicant used in the study was Ag+ (in the form of AgNO3). The concentrations the larvae were 

exposed ranged between 0 and 200 mg/L and the medium used was consistent with the OECD 

guideline no.236 (OECD, 2006). Each zebrafish larvae exposure experiment included 

exposures using all three methodologies in parallel to allow comparison of results. The NP 

exposures were repeated twice, and the silver nitrate exposures were conducted once. The 

experimental preparations were kept at 28 oC throughout the exposure duration. The larvae 

survival was observed under a dissection microscope daily during the 96-h exposure period. 

Mortality was expressed as the total number of dead larvae at the end of 96-h exposure period 

according to total number of larvae exposed. 

Larvae age 72 hpf were used for the static exposures in Corning® Costar® 96-well plates. One 

larva was placed per well, 200 µl exposure volume, 10 independent replicate wells per 

treatment, 6 treatments per plate, without using the outer well lines to reduce evaporation of 

water. Pyrex glass beakers of 100 ml volume were used for the static exposure experiments. 

The total volume of the exposure was 40 ml and 15 to 20 larvae were placed per beaker. Lids 

were placed on top of the beakers to reduce evaporation. 

The design of the exposure chamber was based on the chamber described in Boyle et al. (2015) 

as the nano-SCAPE test system. The chamber was constructed to keep NPs in suspension 

throughout an acute fish larvae toxicity test. The larvae are held inside a PVC chamber where 
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the bottom end is closed with a fine mesh (mesh eye) and the upper end is open. At the wall of 

the chamber lays a vertical tube where an air tube fits to provide aeration and circulation of the 

NPs held in suspension without disturbing the larvae inside the chamber. The modification of 

the chamber included reducing the volume to a 600 ml-glass beaker compared to the initial 2-

L beaker design (Boyle et al., 2015). Solutions of 450 ml final volume were prepared and 6 - 

8 conditions were tested at a time for a 96-h exposure period. The beakers with a magnetic stir 

bar at the bottom were set on a multi position magnetic stirrer with speed set at 250 rpm, to stir 

the water and keep a homogeneous NP dispersion. 

Algal growth inhibition assays were performed in pyrex 250-ml Erlenmeyer flasks according 

to the OECD test guideline (OECD 201) in the exponential growth phase. Temperature and 

light conditions for toxicity tests were identical to those used for culture growth. Experiments 

were carried out in triplicate. The initial concentration of the inoculum was 104 cells per ml, 

which was required to ensure exponential growth. Cell density was determined at 0, 24, 48 and 

72 h of exposure by measuring in vitro fluorescence of acetone-extracted chlorophyll a 

(Kalman et al., 2015). The exposure concentrations ranged between 0.01 and 10 mg/l for Ag 

nano-prisms and between 5 and 200 mg/L for CeO2 NPs.  

 

5.3.3 Antioxidant Activity 

The detection of reactive oxygen species is based on the fluorescence of the probe 2, 7 

dichlorofluorescein diacetate (H2-DCF-DA) and conducted by fluorescent plate reader 

(Molecular Devices SpectraMax M5) using excitation wavelength at 488 nm and emission 

wavelength at 525 nm at the same time points. For the reading, black polystyrene 96-well plates 

were used, 250 µl of each flask were added per well in triplicates at 72 h after the start of the 

exposure. DCF (10 µl) diluted in ethanol (180 mg/L) was added per sample in the dark and the 

plate was kept in dark conditions for 1 h till the fluorescence measurement. 

 

5.3.4 Statistical analyses 

Mortality (dependent variable) of zebrafish larvae was modelled by logistic regression 

according to the independent variables copper concentration, treatment (exposure 

methodology), and concentration x treatment interaction. The logistic regression models were 

generated by iterative maximization of the likelihood function, and independent variables and 



 

 

106 

their interaction were included if they significantly improved the model (likelihood ratio test, 

based on Wald χ2 distribution). The median lethal concentration (LC50) was calculated by the 

logistic regression model and the 95% confidence interval (CI) was calculated using the logit 

model in R statistics. Differences in fish mortality among treatments (i.e., presence or absence 

of NPs) were determined by pair-wise contrast statements with a p-value of <0.05. The algal 

growth inhibition (depended variable) and NP concentration (independent variable) 

relationship, and the median effective concentration (EC50), were modelled using a 

concentration-response model for algae, by ‘drc’ package in R. All statistical analyses were 

conducted using R statistics (version 3.4.2, RStudio, Inc., 2015). 

 

5.4 Results and Discussion 

No differences were observed between the concentration-response curves of larvae inside the 

exposure chamber and the static glass beakers. Results obtained in this study indicated no 

additional mortality of the zebrafish larvae inside the exposure chamber that can be attributed 

to the exposure chamber. Significantly less mortality was observed if zebrafish larvae were 

exposed to AgNO3 in 96-well plates (Figure 5.2, Logistic Regression, p<0.001). In the present 

study, silver ions (as AgNO3) were used as a model toxicant to evaluate whether the exposure 

chamber is causing additional mortality by design, and the results were compared to traditional 

static exposure methods. The toxicity of AgNO3 was found higher using the exposure 

chambers, followed closely by the toxicity curve generated employing static glass beakers and 

AgNO3 was significantly less toxic inside the 96-well plates compared to the two previous 

methodologies. This outcome is in agreement with the surface-to-volume ratio hypothesis, 

resulting to less toxicity when smaller exposure vessels are employed. The compound in 

assessment can sorb on the surface area of the exposure vessel, therefore the larger the surface 

area, the less compound can be available by the organism and silver ions are considered a 

highly-adsorbing substance (Baumann et al., 2014). 

 

 



 

 

107 

 

Figure 5.2: Concentration-mortality (%) curves after 96 h exposure of Ag+ (AgNO3) to 

zebrafish larvae at 72 hpf developmental stage. The exposures were conducted in exposure 

chambers (black dots, black curve), glass static beakers (empty circles, dotted curve) and 96-

well polystyrene plates (grey triangles, dotted curve). The predicted mortality was obtained by 

the following exponential equation: (e a+βx) (1 + e a+βx)-1. The concentration-response curve 

generated mortality after exposure in chambers was found significantly different, from the 

concentration-response curves in static glass beakers or 96-well polystyrene plates by pair-wise 

contrast statements, p<0.001. No differences in larvae mortality were observed between 

exposure in static glass beakers and 96-well plates. 

 

Zebrafish mortality was significantly increased with NP concentration independent of the 

method of exposure used and NPs showed more potency when the exposure chamber was 

employed (Figure 5.3). Specifically, for Ag PVP-coated NPs the 96-h LC50 using the exposure 

chambers was found 220 µg/L (CI 95% = 107-420) while the 96-h LC50 in 96-well plates and 

glass beakers were found 13.5 (CI 95% = 3-23.5) and 15.5 mg/L, respectively. The mortality 

curve after chamber exposure was found significantly different compared to beakers or 96-well 

plates (Logistic regression, p<0.001), while no differences were found between the curves 

generated in glass beakers and 96-well plates. Polyvinyl alcohol coated Ag NPs of lower 

diameter (25 nm) have been found less toxic to zebrafish embryos (72-h LC50 of 85 mg/L) 

(Asharani et al., 2011) and PVP coated Ag NPs (20 nm diameter) caused increased incidence 

of mortality in concentration higher than 10 mg/L in 96-well plates (Kim et al., 2013). Kim et 
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al. (2013) also concluded that Ag PVP NP toxicity can be NP size dependent. For CuO NPs, 

the 96-h LC50 of larvae exposed inside the chamber was found 8.2 mg/L (CI 95% = 3.6-18.7). 

No 96-h LC50 was found for larvae exposed to CuO NPs in 96-well plates and no mortality was 

found for larvae exposed in static glass beakers up to 200 mg/L of CuO NPs. No significant 

changes in mortality has been found in zebrafish embryos exposed to CuO NPs (Vicario-Parés 

et al., 2014), survival rate dropped to 30% when zebrafish embryos (4 hpf) were exposed to 

concentrations higher than 25 mg/L and hatching rate dropped to less than 20% in 

concentrations higher than 6.25 mg/L of CuO NPs in well-plates (Sun et al., 2016), and no 

mortality was found in zebrafish larvae when exposed to 16 mg/L of CuO NPs (Thit et al., 

2017). In the present study, the CeO2 NPs were found significantly more toxic inside the 

exposure chambers compared to static exposures (Logistic Regression, p<0.001). No zebrafish 

96-h LC50 was found after CeO2 NP exposure in static glass beakers and no mortality was 

observed when larvae were exposed in 96-well plates up to 200 mg/L. No acute toxicity of 

CeO2 NPs has been found in zebrafish embryos in previous study (van Hoecke et al., 2009), 

and the high number of CeO2 NP agglomerates was observed to adsorb onto the chorion of 

zebrafish embryos. Finally, for TiO2 NPs, no dead larvae were found in either 96-well plates 

or glass beakers at the end of the 96-h exposure period that is in agreement with previous 

studies using other kinds of TiO2 NPs (Boyle et al., 2015; Griffitt et al., 2008). Mortality was 

observed for larvae exposed to TiO2 NPs inside the exposure chamber in the present study, 

however, no significant mortality response was found with increasing concentration.  

Employing the fish larva toxicity test for traditional dissolved environmental pollutants to 

assess NP toxicity may not be representative as the NPs are not in dispersion throughout the 

exposure duration and fish are not exposed to the nominal NP concentrations. The use of the 

exposure chamber in the present study prohibited the NP sedimentation, with zebrafish larvae 

being exposed to NPs in the water column throughout the exposure duration. The NPs 

concentration-response curves of zebrafish larvae exposed inside the chambers were 

significantly different from NP concentration-response curves generated when larvae were 

exposed in static vessels (Figure 5.3).  
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Figure 5.3: Concentration-mortality (%) curves after 96 h exposure of Ag-PVP, CuO, CeO2 

and TiO2 NPs to zebrafish larvae at 72 hpf developmental stage. The exposures were conducted 

in exposure chambers (black dots, black curve), glass static beakers (empty circles, dotted 

curve) and 96-well polystyrene plates (grey triangles, dotted curve). The predicted mortality 

was obtained by the following exponential equation: (e a+βx) (1 + e a+βx)-1.The mortality 

observed after exposure to TiO2 NPs in exposure chamber was not related to NP concentration 

(p>0.05).  

 

Although, all NPs inside the exposure chamber were found more toxic, no clear pattern was 

observed between the static exposures (glass beakers compared to 96-well plates) that can be 

attributed to the different material, coating or shape of NPs. The Ag and CuO NPs, were more 

toxic in the 96-well plates compared to glass beakers, while the CeO2 NPs were more toxic in 

glass beakers and no mortality was observed in 96-well plates. The CeO2 NPs seem to follow 



 

 

110 

the surface-to-volume ratio (S:V) hypothesis that indicates how shallow or deep the exposure 

vessel is, how much toxicant can adsorb on the surface relative to the total volume of the 

exposure that, in turn, can change the quantity of toxicant that can be bioavailable. Toxicity 

and reactivity of NPs cannot be solely attributed to S:V ratio since toxicity is strongly affected 

by dissolution ratio, stabilizing agents, and other factors (Petersen et al., 2014). The 

miniaturization offers many advantages such as reduced number of animals used, reduced 

waste production, less space and the possibility of identifying effects in individuals (e.g. 

monitoring heart-beat, swimming behaviour), however, the high surface-to-volume ratio in 

small exposure vessels (i.e. 96-well plates) can result in considerably less toxicity that can 

depend on the toxicant tested (Figure 5.4). Silver ions are considered a highly-adsorbing 

substance (Baumann et al., 2014), and the lower mortality of zebrafish larvae in 96-well plates 

compared to glass beakers are in agreement with the S:V hypothesis (Figure 5.6C). On the 

contrary, the S:V hypothesis does not apply to the not-water-soluble NPs. The volume of NP 

solution that corresponds per larva is the highest inside the chamber (25 ml per larva) and, 

additionally, the NPs are in constant dispersion during the exposure chamber method, in 

contrast to the traditional static methodologies. The well of the 96-well plate has the lowest 

volume per larva (0.2 ml) and in the static beaker 2.2 ml of solution corresponds to each larva 

(Figure 5.4). Furthermore, the 96-well plate offers limited space for the larva to swim in the 

water column while the static beaker offers the opportunity of depuration as 96-hpf and older 

zebrafish larvae can freely swim in the water column and avoid the settled NP agglomerates at 

the bottom of the exposure vessel. It is important to consider also the possibility of the larvae 

been exposed to NPs via a dietary route as the 120-hpf zebrafish larvae have developed mouth 

and the yolk sac has been consumed. Taking all the above under consideration, the lack of 

pattern in the toxicity of the NPs of the present study using static exposure methods can be 

explained.  
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Figure 5.4: A) The surface-to-volume ratio (black bars) presented in the exposure vessels for 

zebrafish assays in the present study, along with the volume (ml) that each larva is exposed to 

in the different exposure regimes (grey bars); B) the toxicity (96-h LC50) of zebrafish exposed 

to Ag ions and Ag NPs correlated with the volume each larva was exposed; C) the toxicity (96-

h LC50) of zebrafish exposed to Ag ions and Ag NPs correlated with the surface-to-volume 

ratio. 

 

C. vulgaris growth was inhibited with increasing concentration of all NPs tested.  In particular, 

the 72h-EC50 was found 4.28 mg/L when C. vulgaris was exposed to Ag-PVP nano-prisms 

(Figure 5.5). Regarding the Ag PVP NPs, the PVP coating has been shown to reduce the 

toxicity caused by Ag NPs in microalgae (Tuominen et al., 2013), and the reduced toxicity can 

be explained by increased the size after the addition of the coating layer and reduced dissolution 

of Ag ions. No investigation of un-coated Ag NPs has been conducted by the present study, 

however, similar EC50 have been found in other microalgae after Ag-PVP NPs exposure (3.7 

mg/L in Pseudokirchneriella subcapitata (Moreno-Garrido et al., 2015)). CeO2 72h-EC50 was 

found at 123 mg/L but no EC50 was detected after exposure to TiO2 NPs up to 200 mg/L. Van 

Hoecke and colleagues (Van Hoecke et al., 2009) reported a surface area dependent toxicity of 

CeO2 toxicity in P. subcapitata with 72-h EC50 values ranged between 7.6 and 28.8 mg/L. 

Rogers and colleagues (2010) reported with an 72-h EC50 of 10 mg/L in P. subcapitata, and 

suggested indirect toxicity in the fresh water microalgae due to sorption of nutrients, such as 

phosphate, on the surface area of CeO2 NPs thus less nutrients were available to the microalgae 

which led to inhibition of growth. In the present study, we reported less toxicity of CeO2 NPs 

that can be attributed to less sorption of nutrients on the HMT coating. For TiO2 NPs, an EC 50 

of 120 mg/L was found after a 6-day exposure of 5-10 nm diam. anatase TiO2 NPs in C. 
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vulgaris (Ji et al., 2011) but no growth inhibition was observed after a 5-day exposure to TiO2 

NM105 in the same microalgae species up to 300 mg/L (Cardinale et al., 2012). The C. vulgaris 

toxicity assays, demonstrated that the toxicity of the NPs tested in the present study lay in the 

same range as it has been previously reported by other studies using NPs of similar 

physicochemistry. 

Exposure to Ag, CeO2 and TiO2 NPs at 72 h induced the intracellular production of ROS in a 

positive manner with increasing concentration. Specifically, at highest concentration of Ag 

NPs tested, the highest amount of fluorescence was recorded, at 3,000 fluorescent units (Figure 

5.6). Increasing concentration of CeO2 NPs led to increased fluorescence (5,000 fluorescence 

units) up to 100 mg/L and no further increase was recorded at 200 mg/L of CeO2 NPs. The 

highest fluorescence with high variation was observed after TiO2 NPs exposure reaching 

11,500 fluorescence units at 50 mg/L and decreasing to 6,000 at 200 mg/L. Positive 

concentration-response relationship with Ag NPs has previously been reported in C. vulgaris 

(Oukarroum et al., 2012), with CeO2 NPs in P. subcapitata (Rodea-Palomares et al., 2012) and 

TiO2 NPs in C. vulgaris (Lin et al., 2012) and Chlamydomonas reinhardtii (Von Moos et al., 

2016). The intracellular H2O2 production can be monitored by non-fluorescent 

dichlorofluorescein diacetate (H2DCF-DA), that upon oxidation by H2O2 it is converted to its 

fluorescent form, dichlorofluorescein (DCF) (Lee et al., 1999). However, false positive results 

after TiO2 NPs measurements have been reported as DCF fluorescence can be increased by 

solely TiO2 NPs (Guadagnini et al., 2015). In the present study, the fluorescence of DCF/TiO2 

NPs alone need to be subtracted from the fluorescence generated when the algae were present 

to eliminate artefacts in the ROS production measurements.   

 

 

 

 



 

 

113 

  

Figure 5.5: Concentration-response curves for C. vulgaris at the end of 72-h exposure period. 

Growth inhibition is presented as a percentage of cell numbers estimated by measurements of 

chlorophyll α fluorescence. The NPs tested were CeO2 and TiO2 NPs up to 200 mg/L and Ag 

PVP-coated NPs up to 10 mg/L. 

 

 

Figure 5.6: Relative fluorescence units of C. vulgaris after 72-h exposure to Ag, CeO2 and TiO2 

NPs (mg/L). The fluorescence has been normalised to control conditions (no NPs added) and 

to the number of cells per condition. 

 

In conclusion, toxicity of compounds can differ among methodology employed to assess the 

toxicity. The outcome for dissolved metal ions such as Ag ions can follow the S:V theory, 

decreasing the toxicity of a compound when the exposure vessel has higher a S:V. The not-

water-soluble NP toxicity in the aqueous phase, however, is more challenging to assess, when 

constant agitation of the solutions is prohibited due to the model organism employed. In the 

present study, two aqueous phase toxicity tests with fundamental differences in NP exposure 

design were used to assess NP aqueous toxicity, the fresh water algae toxicity test and the 
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zebrafish larvae toxicity test. Additionally, the traditional static exposure methods (i.e. glass 

beakers and 96-well plates) were compared to the modified exposure chamber to assess 

zebrafish NP acute toxicity with limited sedimentation of the NPs in the aqueous phase. The 

exposure chamber allowed the zebrafish larvae to get exposed to a concentration of NPs that is 

closer to the nominal concentration than when larvae are exposed via glass beakers or 96-well 

plates. The present study indicates that the exposure chamber is able to successfully expose the 

zebrafish larvae to a homogeneous NP suspension therefore providing an important tool for 

NP risk characterisation. 
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Chapter 6 - Conclusions 

 

As nanotechnology is becoming a powerful tool with numerous applications in everyday life, 

it is only but essential to assess the NP toxicity upon release in the aquatic environment. 

Evidence suggests that toxicity of NPs in the aqueous phase can be associated with NP 

physicochemistry and a great challenge in the assessment of NP eco-toxicology is that NP are 

seldom found in isolation in the aquatic environment. The adsorption of already existing 

aquatic contaminants onto NPs is of major interest and potentially considerable impact on the 

environmental remediation as well as on the toxicology level. Chapters 2 and 3 of the present 

thesis investigated associations between a range of NPs and two representative groups of 

environmental contaminants, PAHs and metal ions, respectively.  

Chapter 2 identified sorption of photo-labile organic compounds (i.e. PAHs) onto semi-

conductor NPs which under UVA promoted photo-catalysis of the organic compounds. This 

project is the first to comprehensively investigate the sorption of PAHs onto semiconductor 

NPs under UVA using bioavailability of adsorbed compound and photo-by-products to study 

sorption processes at the organism level. Toxicity of adsorbed contaminants in aquatic 

organisms strongly related to sorption capacity and photo-catalysis efficiency as the NPs under 

UVA can catalyse organic compounds to potentially toxic photo-by-products. While sorption 

of both PAHs was suggested in the present study, the presence of NPs reduced anthracene 

bioavailability while low concentrations of benzo(a)pyrene in the presence of NPs increased 

the photo-by-product bioavailability in zebrafish. Additional research is needed to fully 

understand the implications of sorption under UVA radiation in environmentally relevant 

conditions (e.g. lower concentrations and solar irradiation), environmentally relevant 

interactions (e.g. presence of bacteria or organic matter) and screening of more biomarkers to 

identify toxicity at the organism level.  

Sorption of copper was confirmed on negatively charged NPs with sorption being closely 

related to surface area as presented in Chapter 3. While adsorbent surface area has been 

previously shown to play important role in sorption, this research provided a comprehensive 

assessment of co-contaminant sorption onto NPs, employing nine NPs with different 

physicochemical properties and assessing sorption using four different methodologies 

including analytical chemistry, algae growth inhibition, zebrafish mortality and zebrafish gene 
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expression. While the chemistry of the surface of NPs during sorption was not investigated, 

the presence of all NPs suggested no additional effect or a protective role against copper in C. 

vulgaris and larval zebrafish, and sorption capacity increased with higher surface area (i.e. 

smaller diameter NPs).  

An indirect effect of metallic NPs was indicated in chapter 4 investigating the aquatic toxicity 

of perovskite, a new generation, photovoltaic NP. The lead dissolution out of lead-halide 

perovskite NPs was identified responsible for perovskite NP toxicity in zebrafish and C. 

vulgaris. Many studies have described perovskite chemistry in the aqueous phase, however, 

this is the first study to investigate perovskite NP toxicity in the aqueous phase. The perovskite 

NPs dissolved lead in aqueous and dietary exposure in zebrafish inducing metal bioavailability 

specific biomarkers without significantly changing distribution of zebrafish gut microbiota 

after a 14-d dietary exposure in contrast to lead ions that were used as a positive control. This 

study provided an example of indirect effects of NPs in the aquatic environment as well as 

possible routes of exposure to perovskite NPs. A further step would be the replacement of lead 

as the metal cation in the perovskite solar cells with a cation of lower toxicity and production 

of environmentally safe solar cell materials. 

A particular concern in nanotoxicology is the lack of aqueous dispersion of most NPs during 

many in vivo toxicity assays. Chapter 5 presented an exposure chamber designed to assess 

toxicity of NPs in the aqueous phase and enhance exposure conditions as NPs are continuously 

in dispersion throughout the exposure duration. It was shown that controlled conditions of NP 

exposure in the aqueous phase leads to consistent results and higher toxicity of NP in zebrafish 

larvae. Results indicated that NP toxicity depends on NP aqueous dispersion. The designed 

exposure chamber can provide the start for a standardised methodology that would limit 

variation in results among laboratories and will enable to critically compare data and conduct 

correct risk assessment. It would be interesting to further investigate the physicochemistry of 

NP during the controlled conditions provided by the present exposure chamber using other 

aquatic model organisms that previously were assessed in static exposure conditions, thus a 

better understanding of the link between toxicity and NP physicochemistry can be developed. 

Finally, the results of the present thesis support the bioavailability and gene expression as 

sensitive and environmentally relevant tools for investigation of NPs toxicity in the aqueous 

phase. Bioavailability of adsorbent successfully identified sorption of co-contaminants onto 

NPs and metal and lead-specific biomarkers attributed lead-halide perovskite NPs toxicity to 
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lead ion dissolution. Specific biomarkers can provide information on knowledge gaps and in 

combination with careful characterization of the physicochemical properties of NPs can 

provide insights on the relationship between NP physicochemistry and environmentally 

relevant toxicity. A long-term observation of NP behaviour in the aquatic environment and 

investigation of NP toxicity in association with other environmental components in the aquatic 

environment can provide information with respect to environmental management and 

sustainable nanotechnology. 
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Appendix A 

 

 

Figure A.1: Preliminary study on the sod1 and cyp1A expression after 6 µg/L of anthracene 

under 5 W/m2 UVA radiation. Sod1 expression increases with time reaching highest expression 

(2-fold induction) at 4 h after the end of UVA exposure. Cyp1A increases with maximum 3-

fold induction at 2 h after the end of UVA. The sampling of the following experiments was 

conducted 3 h after UVA radiation so induced expression of both biomarkers could be 

observed. 
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Figure A.2: Cyp1A gene expression of zebrafish larvae exposed to anthracene (black triangles) 

and anthracene and 0.2 mg/L of NM105 mixture (x). No induction of cyp1A was observed in 

the presence of 0.2 mg/L of NPs. Concentration-response curves were analysed by glm 

(p<0.001) and treatments were compared with pair-wise contrast statemens (p<0.001). Data 

represent one replicate and a pool of 20 larvae. 

 

Figure A.3: Cyp1A gene expression of zebrafish larvae exposed to anthracene (black triangles) 

and anthracene and 0.2 mg/L of Si NPs mixture (black cirlces). No induction of cyp1A was 

observed in the presence of 0.2 mg/L of NPs. Concentration-response curves were analysed by 

glm (p<0.001) and treatments were compared with pair-wise contrast statements (p<0.001). 

Data represent one replicate and a pool of 20 larvae.   
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Appendix B 

 

 

Figure B.1: The photoelectron peaks of 933 eV corresponds to Cu 2p detected by XPS. (A) 

comparison of Cu measurements with 0 mg/L of NPs (B) Cu and 2mg/L Si NPs (grey line), Cu 

and 16 mg/L Si NPs (black line), (C) Cu and 2 mg/L TiO2 18 nm NPs (grey line), Cu and 16 

mg/L TiO2 18 nm NPs (black line), (D) Cu and 2 mg/L TiO2 4-8 nm NPs (grey line), Cu and 

16 mg/L TiO2 4-8 nm NPs (black line), (E) comparison of Cu and 16 mg/L of NPs. 
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Figure B.2: zebrafish larvae mortality curves of Cu and Cu + NPs (CuSi, CuPerovskite). The 

solid lines and white squares represent the dose response curves when larvae exposed to Cu 

and the dashed line and black circles represent the response when exposed to Cu and Si (A) 

and Perovskite (B). There were no significant differences in the dose response curves between 

Cu and Cu with NPs indicating no sorption of Cu on the NPs on Cu bioavailability (likelihood 

ratio test, p>0.05). 
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Figure B.3: Growth inhibition curves of Cu and Cu + NPs (CuSi, CuPerovskite). The solid 

lines and white squares represent the concentration response curves when algae were exposed 

to Cu and the dashed line and black circles represent the response when exposed to Cu and Si 

(A) and Perovskite (B). There were no significant differences in the concentration-response 

curves between Cu and Cu with NPs indicating no sorption of Cu on the NP on Cu 

bioavailability (likelihood ratio test, p>0.05).   
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Appendix C 

 

 

Figure C.1: The structure of a metal halide perovskite solar cell follows the generic formula 

ABX3. Organic or inorganic cations occupy position A (green), metal cations and halides 

occupy positions B (grey) and X (purple), respectively.  Picture taken from (Grätzel, 2014) 
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Figure C.2: A cross section of a corresponding device showing the TiO2 and perovskite layer 

in entirely inert atmosphere. Picture taken from (Aruoja et al., 2009; Hoefler et al., 2017). 
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Table C.1: Wet weight (mg), peduncle length (mm) and sex (female or male) of dietary 

exposure experiment presented in Chapter 4. Fish in the following table were exposed to 

perovskite nanoparticles (MALI, MALB or FALB) or lead nitrate. Samples were collected at 

0, 48 and 96 h after the start of dietary exposure. 

Sample name Concentration/ 
Treatment 

Exposure 
time (h) 

Wet 
weight 
(mg) 

Peduncle 
length (mm) 

Sex 

16.0.1 0 µg/g 0 404 28 M 
16.0.2 0 µg/g 0 530 27 F 
16.0.3 0 µg/g 0 710 31 F 
16.0.4 0 µg/g 0 660 33 M 
16.0.5 0 µg/g 0 610 34 F 
16.0.6 0 µg/g 0 500 29 M 
16.0.7 0 µg/g 0 380 30 M 
16.0.8 0 µg/g 0 520 31 M 
1.48.1 ctrl 48 610 30 M 
1.48.2 ctrl 48 810 33 F 
2.48.1 MALI 48 620 32 F 
2.48.2 MALI 48 480 25 M 
3.48.1 MALB 48 570 31 M 
3.48.2 MALB 48 420 26 F 
4.48.1 FALB 48 830 36 F 
4.48.2 FALB 48 410 29 M 
5.48.1 LEAD NIT 48 420 28 M 
5.48.2 LEAD NIT 48 440 28 F 
6.48.1 MALB 48 1000 32 F 
6.48.2 MALB 48 410 29 M 
7.48.1 FALB 48 420 28 M 
7.48.2 FALB 48 630 27 F 
8.48.1 LEAD NIT 48 670 32 F 
8.48.2 LEAD NIT 48 530 30 M 
9.48.1 ctrl 48 460 29 M 
9.48.2 ctrl 48 550 31 F 
10.48.1 MALI 48 510 27 F 
10.48.2 MALI 48 590 30 M 
11.48.1 LEAD NIT 48 470 28 M 
11.48.2 LEAD NIT 48 460 26 F 
12.48.1 ctrl 48 610 34 F 
12.48.2 ctrl 48 540 30 M 
13.48.1 MALI 48 580 29 M 
13.48.2 MALI 48 750 31 F 
14.48.1 MALB 48 580 30 M 
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14.48.2 MALB 48 540 28 F 
15.48.1 FALB 48 530 29 M 
15.48.2 FALB 48 810 30 F 
1.96.1 ctrl 96 600 30 F 
1.96.2 ctrl 96 610 31 M 
2.96.1 MALI 96 580 30 M 
2.96.2 MALI 96 780 31 F 
3.96.2 MALB 96 530 31 M 
3.96.1 MALB 96 460 27 F 
4.96.2 FALB 96 670 31 F 
4.96.1 FALB 96 550 29 M 
5.96.1 LEAD NIT 96 680 29 F 
5.96.2 LEAD NIT 96 530 29 M 
6.96.1 MALB 96 650 30 M 
6.96.2 MALB 96 820 30 F 
7.96.1 FALB 96 700 30 F 
7.96.2 FALB 96 650 32 M 
8.96.1 LEAD NIT 96 560 30 M 
8.96.2 LEAD NIT 96 910 30 F 
9.96.1 ctrl 96 510 27 F 
9.96.2 ctrl 96 460 29 M 
10.96.1 MALI 96 450 27 M 
10.96.2 MALI 96 630 29 F 
11.96.1 LEAD NIT 96 660 27 F 
11.96.2 LEAD NIT 96 680 30 M 
12.96.1 ctrl 96 650 31 M 
12.96.2 ctrl 96 550 28 F 
13.96.1 MALI 96 700 32 F 
13.96.2 MALI 96 490 29 M 
14.96.1 MALB 96 770 30 F 
14.96.2 MALB 96 1200 32 F 
15.96.1 FALB 96 730 30 F 
15.96.2 FALB 96 490 29 M 
AVERAGE     600.206 29.720588 
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Table C.2: Wet weight (mg), peduncle length (mm), gut condition (empty, full or half full) and 

sex (female or male) of dietary exposure experiment presented in Chapter 4. Fish in the 

following table were exposed to perovskite nanoparticles (MALI, MALB or FALB) or lead 

nitrate. Samples were collected at 14 d after the start of dietary exposure. 

Sample name Treatment 

 
Exposure 
time (d) 

Wet weight 
(mg) 

Peduncle 
length 
(mm) Gut Sex 

1.14.1 ctrl 14 890 35 full F 
2.14.1 MALI 14 560 33 full M 

3.14.1 MALB 14 730 31 
1/2 
full F 

4.14.1 FALB 14 590 29 
1/2 
full F 

5.14.1 LEAD NIT 14 410 28 
1/2 
full M 

6.14.1 MALB 14 730 31 
1/2 
full M 

7.14.1 FALB 14 59 31 full M 

8.14.1 LEAD NIT 14 880 32 
1/2 
full F 

9.14.1 ctrl 14 710 31 full F 
10.14.1 MALI 14 590 29 full F 
11.14.1 LEAD NIT 14 500 26 full M 
12.14.1 ctrl 14 970 32 full F 

13.14.1 MALI 14 500 26 
1/2 
full M 

14.14.1 MALB 14 720 29 
1/2 
full F 

15.14.1 FALB 14 700 30 full F 

1.14.2 ctrl 14 1270 35 
1/2 
full M 

2.14.2 MALI 14 630 29 
1/2 
full M 

3.14.2 MALB 14 670 29 full M 
4.14.2 FALB 14 790 31 full F 
5.14.2 LEAD NIT 14 780 35 empty F 
6.14.2 MALB 14 920 32 full M 
7.14.2 FALB 14 620 29 full M 

8.14.2 LEAD NIT 14 670 30 
1/2 
full M 

9.14.2 ctrl 14 720 31 full M 
10.14.2 MALI 14 680 29 full M 
11.14.2 LEAD NIT 14 770 30 full F 
12.14.2 ctrl 14 1230 34 full F 
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13.14.2 MALI 14 900 31 full F 
14.14.2 MALB 14 490 25 full F 
15.14.2 FALB 14 710 30 full M 
1.14.3 ctrl 14 480 30 full M 
2.14.3 MALI 14 450 28 full M 

3.14.3 MALB 14 600 32 
1/2 
full M 

4.14.3 FALB 14 490 26 
1/2 
full M 

5.14.3 LEAD NIT 14 970 29 full F 
6.14.3 MALB 14 110 33 full F 
7.14.3 FALB 14 610 30 full M 
8.14.3 LEAD NIT 14 710 30 full F 
9.14.3 ctrl 14 810 35 full M 

10.14.3 MALI 14 450 29 
1/2 
full M 

11.14.3 LEAD NIT 14 620 28 
1/2 
full M 

12.14.3 ctrl 14 590 29 full M 
13.14.3 MALI 14 610 29 full F 

14.14.3 MALB 14 750 31 
1/2 
full M 

15.14.3 FALB 14 560 28 
1/2 
full M 

1.14.4 ctrl 14 1020 33 
1/2 
full F 

2.14.4 MALI 14 680 29 
1/2 
full M 

3.14.4 MALB 14 690 26 
1/2 
full M 

4.14.4 FALB 14 500 27 
1/2 
full M 

5.14.4 LEAD NIT 14 640 30 full M 
6.14.4 MALB 14 680 31 full M 
7.14.4 FALB 14 600 32 full M 

8.14.4 LEAD NIT 14 750 34 
1/2 
full M 

9.14.4 ctrl 14 530 29 full M 
10.14.4 MALI 14 630 31 full F 
11.14.4 LEAD NIT 14 460 25 empty M 
12.14.4 ctrl 14 500 28 empty M 
13.14.4 MALI 14 650 31 empty M 

14.14.4 MALB 14 500 27 
1/2 
full M 

15.14.4 FALB 14 770 31 
1/2 
full M 
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4.14.5 FALB 14 640 32 full M 

6.14.5 MALB 14 410 25 
1/2 
full M 

12.14.5 ctrl 14 700 29 
1/2 
full M 

13.14.5 MALI 14 680 31 full F 
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Figure C.3: Liver tissue sections (8 mm) after H&E staining, viewed in x40 (i) and x100 (ii) 

from fish fed with control food (A), Pb-spiked food (B), MALI NP (C), MALB NP (D) and 

FALB NP-spiked food(E). 
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Figure C.4: Gut lumen tissue sections (8 mm) after H&E staining, viewed in x40 (i) and x100 

(ii) from fish fed with control food (A), Pb-spiked food (B), MALI NP (C), MALB NP (D) and 

FALB NP-spiked food(E). 
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Appendix D 

Table D.1: The list of nanoparticles used in the present PhD study, but not necessarily all 

reported in this thesis, included NPs used for the Round Robin exercise (gold nano-spheres and 

nano-rods), and NPs that belong to the FNN energy value chain (silicon, boron doped silicon 

and perovskites NPs) and which have demonstrated great potential for application on 

photovoltaic panels because of their low cost and their high theoretical energy efficiency, as 

well as titanium dioxide, PVP coated silver, and cerium dioxide NPs. 
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Sample Label Material Dispersion(solvent) Test conducted 

FNN_RR_GNP1 Au H2O Round Robin 

FNN_RR_GNP2 Au H2O Round Robin 

FNN_RR_GNR1 Au H2O Round Robin 

FNN_IUTA_SiO2@Si_01 Si H2O Acute toxicity 

FNN_IUTA_Si@B_2.5%_01 B doped Si H2O Acute toxicity, Copper sorption study 

FNN_IUTA_Si@B_2%_01 B doped Si H2O Acute toxicity, Copper sorption study 

FNN_IUTA_Si@B_1.5%_01 B doped Si H2O Acute toxicity, Copper sorption study 

FNN_IUTA_Si@B_1%_01 B doped Si H2O Acute toxicity, Copper sorption study 

FNN_IUTA_ Si_01 Si H2O Acute toxicity, Copper sorption study, 
PAHs sorption study 

FNN_EPFL_Perovskite_01    CH3NH3PbI3 H2O Acute toxicity, Copper sorption study, 
Perovksite eco-toxicity study 

FNN_PUM_Ag_#1 Ag coated with 
PVP 

H2O Acute toxicity, exposure chamber 

FNN_EPFL_TiO2_01    TiO2 H2O Acute toxicity 

FNN_ICN_CeO2_#002 CeO2 HTM 10 mM in H2O 

(Hexamethylenetetramine) 

Acute toxicity, exposure chamber 

FNN_ICN_TiO2_#010 TiO2 TMAOH 
(Tetramethylammonium 
hydroxide) 10 mM in H2O 

Acute toxicity, exposure chamber 

FNN_EPFLA_MAFA(67pc)L
I #05 

CH3NH3(0.33)CHN
HNH3(0.67)PbI3 

H2O Acute toxicity, Perovksite eco-
toxicity study 

FNN_EPFLA_FALB CH3NH3PbBr3 H2O Acute toxicity, Perovksite eco-
toxicity study 

FNN_EPFLA_MALB CH3NHNH3PbBr3 H2O Acute toxicity, Perovksite eco-
toxicity study 

FNN_EFPLA_FALI CHNHNH3PbI3 H2O Acute toxicity, Perovksite eco-
toxicity study 
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Figure D.1: Correlation of chlorophyll α levels after acetone extraction with optical density 

(OD) of Chlorella vulgaris cultures. 

 

 

Figure D.2: Correlation of chlorophyll α levels after acetone extraction with Chlorella vulgaris 

cell numbers/ml (multiplied by 104). 
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