

Hard Real-Time Constraints in Implementing the
Myopic Scheduling Algorithm

M S Hasan, K Muheimin-Us-Sakib1, and M A Hossain2
Faculty of Computing, Engineering and Technology

Staffordshire University, Stafford, UK
m.s.hasan@staffs.ac.uk,

1Institute of Information Technology,
University of Dhaka, Dhaka 1000

muheymin@yahoo.com,

2School of informatics, Department of Computing
University of Bradford, UK

m.a.hossain1@bradford.ac.uk

Abstract-This paper presents an investigation into the constraints in implementing the Myopic
scheduling algorithm. The Myopic algorithm is a hard real-time (RT) task scheduling algorithm
for multiprocessor systems. It selects a suitable task based on a heuristic function, H from a
subset (feasibility check window, K) of all ready tasks. On the other hand, the original heuristic
scheduling algorithm chooses the task with the least H value from all N ready tasks.
Performance of the Myopic algorithm significantly depends on the chosen heuristic function and
the size of the feasibility check window since it considers only K tasks from N tasks
(where NK ≤). This research investigates the impact of scheduling non-periodic hard RT tasks
using the Myopic algorithm and evaluates the performance for different parameters to
demonstrate the merits and constraints of the algorithm. The effects of the feasibility check
window size, K , choice of heuristic function, H , the worst case processing time of tasks, pT on
the performance of the Myopic algorithm under various loads are investigated. Finally, the
performance of the algorithm is evaluated as task completion ratio, presented and discussed
through a set of experiments.

Keywords-Original heuristic scheduling algorithm, Myopic algorithm, feasibility check

window size K , Earliest Starting Time (EST), processing time pT , task deadline (DT), laxity

time (LT).

I. INTRODUCTION
Hard real-time systems are used in time critical applications like avionics, nuclear weapon control,

robotics etc [1]. These systems must guarantee that all/most of the tasks are completed within their
explicit deadlines and resource utilisation is maximised [2]. It requires an efficient task scheduling
algorithm. Scheduling can be performed in two ways – statically and dynamically. In static algorithms,
the order of tasks and the times they start execution can be determined in advance and they are suitable
for RT periodic tasks [2]. On the other hand, dynamic algorithms deal with non-periodic tasks whose
characteristics are not known a priori. When new tasks arrive, the scheduler selects the most suitable
task [2]. In practice, RT task starting time, deadline etc. are not known in advance. Therefore, it creates
the challenge of efficient scheduling non-periodic RT tasks dynamically. This paper investigates the
application of the Myopic scheduling algorithm [3] for dynamically generated non-periodic RT tasks on
a uni-processor system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by STORE - Staffordshire Online Repository

https://core.ac.uk/display/188185261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Periodic RT tasks and static scheduling strategies are considered in many literatures for instance, [4],
[5] etc. Upper bound of processor utilisation for hard RT preemptive tasks and the rule for optimum
Fixed Priority scheduling have been derived in [4]. The task model of [4] also assumes that they are
independent, periodic with fixed priorities and fixed execution time. In [6], the authors showed that for
uni-processor systems, scheduling with simple heuristic considering resource requirements is more
effective than the scheduling that ignores resource requirements e.g., earliest deadline fast (EDF). Run
time scheduling problems and sufficient conditions optimal scheduling for multi-processor systems have
been investigated in [7]. Both the Myopic and the original heuristic scheduling algorithms use heuristic
function and are proposed in [3] for multiprocessor systems. It has been shown that integrated heuristic
function (formed by deadline and earliest starting time constrains) performs better than simple heuristics
such as EDF, minimum processing time first etc. The Myopic algorithm has less computational
overhead and therefore, is more effective than the original heuristic scheduling algorithm [3]. In [8], the
author proposed a new heuristic function () LESTD TWTWTTH ×+×+= 21 for the Myopic algorithm to
consider deadline, resource requirement and processing (Laxity) time of tasks in RT multiprocessor
systems.

The proposed multiprocessor RT scheduling algorithm in [2] is a variant of the Myopic algorithm that

exploits the parallelism in the tasks. It has investigated the effect of feasibility check window size and
relative weight of deadline and resource requirement for multi-processor systems. It follows centralised
scheduling scheme: a central processor called scheduler distributes the arriving tasks to the other
processors. Fault-tolerant extensions of the Myopic algorithm are presented in [9] and [10] for
multiprocessor systems. The algorithm in [9] is capable of handling both processor and task failures.
The algorithm proposed in [10] maintains two copies of each task and can handle more than one
processor faults. An extension of the Myopic algorithm with resource reclaiming capability has been
proposed in [11] that can execute non-periodic RT tasks concurrently on multiple processors. In [12],
the author presented a variant of the Myopic algorithm for RT task scheduling in multiprocessor systems
that can execute self-diagnosis under normal load situation.

The Myopic algorithm was basically proposed for dynamic task scheduling in multiprocessor systems

and most of the previous works did not consider the relationship between worst case task processing
time, PT and feasibility check window size, K . The Myopic algorithm for uni-processor system with
non-periodic RT tasks and the effects of window size K has been reported earlier [13]. This research is
the extended investigation to explore the impact in implementing the hard real-time scheduling. The
impacts of feasibility check window size K, values of W, worst case processing time PT on the
performance under various load conditions are investigated using simulations.

This investigation explores the impact of scheduling non-periodic hard RT tasks using the Myopic
algorithm and evaluates the performance to demonstrate the merits and constraints of the algorithm. The
impact of the feasibility check window size, K , choice of heuristic function, H , the worst case
processing time of tasks, pT on the performance of the Myopic algorithm under various loads are
investigated. It is worth noting that the performance of the algorithm is evaluated as task completion
ratio, presented and discussed through a set of experiments. Section II of the paper describes the real-
time scheduling algorithms and task model. Simulation details and results are discussed in section III.
Finally, section IV draws conclusion of the paper.

II. REAL TIME SCHEDULING ALGORITHMS

A scheduling algorithm is said to be preemptive if the currently executing task leaves the CPU when a

higher priority task arrives. Otherwise, it is non-preemptive. Some of the frequently used RT scheduling
algorithms are discussed below.

• Fixed priority (FP) scheduling: A fixed priority is assigned to each task before execution and it is

preemptive. It is the most common scheduling strategy and widely used in commercial RT
operating systems [14]. However, it generates irregular delay patterns and the CPU is not utilised
properly [2], [14].

• Rate Monotonic (RM) scheduling: Shorter period tasks have higher priorities and it is pre-emptive

[15]. It is optimal in the sense that if there exists any static priority assignment algorithm that
satisfies the deadlines of a task set, then RM also satisfies the deadlines of that task set [14], [15].

• Earliest Deadline First (EDF) scheduling: Tasks are prioritised based on their deadline and task

with the earliest deadline is assigned the highest priority. The priorities are dynamic and task
period can vary [14]. It is optimal in the following sense. If it is possible to schedule a task set
using preemption then EDF generated schedule will also meet the deadlines of the task set.

A. The Task Model
This section explains the definitions/terms used in the paper followed by the original heuristic and the

Myopic algorithms.

• A task is considered to be feasible if the scheduling satisfies its timing and resource constraints

[2].
• The schedule in which every task is feasible is called feasible schedule [2], [9].
• A feasible schedule for a subset of tasks is defined as a partial schedule [2], [3].
• A partial schedule is said to be strongly feasible if all the schedules obtained by extending it by

any one of the remaining tasks are also feasible [2], [3], [9].

Tasks are considered to have the following properties [2], [3] to evaluate the constraints and impacts:
• GT (Generation time): An absolute time when the task is generated or submitted.

• PT (Processing time): The worst case processing time of a task.
• DT (Deadline): An absolute time by which it must complete its execution.
• { }REQR (Resource requirement vector): Resources can be requested exclusively or in shared mode

by tasks.
• ESTT (Earliest start time): An absolute time when a task can begin execution. In other words, the

time when all the required resources of a task are available. It must meet the condition
() 0≥≥≥− GESTPD TTTT .

• LT (Laxity time): It defines the urgency of the task and computed as PESTDL TTTT −−= . A task
with zero laxity must be executed immediately [7].

• Tasks are aperiodic and non-preemptive.

B. The Original Heuristic Scheduling
The original heuristic scheduling algorithm starts with an empty schedule and adds tasks one by one

[3]. At each level, it selects a task from the set of all available tasks }{Task based on a heuristic
function, H. Anyone of the following functions can be used as H in this scheduling [3].
• () ()DTMinTH = : The earliest deadline of all tasks or EDF.
• () ()PTMinTH = : The task with the shortest processing time.
• () ()ESTTMinTH = : The earliest ESTT carrying task.

• () ()PESTD TTTMinTH −−= : The task with the shortest laxity time.

• () PD TWTTH ×+=
• () ESTD TWTTH ×+=

The first four functions are called simple heuristics and last two choices are integrated heuristics
that combine two simple heuristics using weight parameter W [3]. Here, W controls the relative
importance of DT with PT or ESTT . The algorithm picks the task with the smallest H (heuristic) value
to form the partial schedule. After choosing the first task, the schedule becomes a partial schedule [2],
[3]. Then the algorithm checks for the strong feasibility. If it is not met then the algorithm can take any
one of the following steps:

• The algorithm may abort
• It can backtrack and change the latest chosen task etc.

For N tasks set there will be N steps and in each step the algorithm will compute H for at best N
tasks. So, the complexity of the algorithm is ()2NO .

C. Myopic Scheduling Algorithm
The Myopic algorithm is explained with the following additional terms [3]:
• { }remainingTask _ : the tasks that have not been scheduled.
• RN : the number of tasks in the set { }remainingTask _ .
• K : Feasibility check window, the maximum number of tasks in { }remainingTask _ that will be

considered.
• KN : Actual number of tasks that are considered, ()RK NKMinN ,= .
• { }consideredTask _ : the first K tasks in the { }remainingTask _ that are considered.

The tasks in { }remainingTask _ are always kept sorted by increasing order of deadlines, DT [6]. The
Myopic algorithm works like the original Heuristic Algorithm with the exception that it applies the
heuristic and strong feasibility to only K tasks, (NK ≤) that is defined as feasibility check window
instead of N tasks [3], [9]. This algorithm is called the Myopic because it is a short sighted approach
for decision making.

There are N steps for including N tasks and in each step H is applied to only K tasks. So, the
complexity becomes ()KNO , (NK ≤) [9], [11]. For small value of K (window size) the scheduling
executes faster. But since the algorithm considers only few tasks to choose the best one, it exhibits
worse performance. On the other hand, if it considers all the tasks NK = then the scheduling operation
executes slower and becomes the original scheduling algorithm [3].

III. EXPERIMENTS AND RESULTS

The Myopic algorithm is implemented on a high performance Pentium PC using C++ programming

language, assuming the model as discrete time model. The performance is measured by task completion
ratio since it is the most important metric for RT scheduling algorithms [8]. For a specific set of
conditions or value of parameters, five observations were taken and presented. The conditions and
parameters are described below:

A. Choice of Heuristic Function
Performance of the Myopic algorithm significantly depends on the chosen heuristic function [8].

Among all the heuristic functions listed in [3], () ESTD TWTTH ×+= considers both the deadline and
resource requirements [2], [11] and exhibits better performance than the other choices [3], [12].
Therefore, it has been chosen as H in this investigation.

B. Range of Weight parameter, W

This parameter controls the relative weight of DT and ESTT . If 0=W then the heuristic becomes

completely () ()DTMinTH = or in other words, EDF algorithm. If, W is set to 1, then DT and ESTT
both have the same importance. For the purpose of simplicity, this investigation considered the cases W
= 5.0 and W = 0.1 .

C. Task Properties
Tasks are considered as non-preemptive and non-periodic. Tasks are scheduled when the current task

is completed. All the tasks have random DT , PT , GT and REQT values. PT is varied from 5 to 21 time
units.

D. Range of feasibility window size, K

Window sizes implementing the algorithm are considered for 10,8,6,4,2 . window size 1 is not
considered, because the Heuristic () ESTD TWTTH ×+= with window size 1 becomes EDF algorithm.

E. Effect of Load
This section presents the effect of feasibility check window size under different load of tasks. To

demonstrate the impact, loads of 200, 500 and 1000 tasks are used for the parameter 5.0=W and
0.1=W . The simulation results are described below.

Case 1: 200 tasks with PT = 10 to 11 time unit and LT = 100 time unit

Figure 1(a) and 1(b) show the performance of the Myopic algorithm for 200 tasks with processing
time 10 to 11 time unit and the value for W is 0.5 and 1.0 respectively. It is noted from the figure 1(a)
and 1(b) that the task completion ratio increases slightly for larger window size. It may be due to the fact
that for larger window the algorithm gets wider choice to select a suitable task. For window size 2, the
choice for the task is very limited and most probably, for this reason, readings show lower task
completion ratio. A significant level of oscillation is also noted for window size 6 in figure 1(a) which
could be due to the random nature of the tasks. From figure 1(b), it is perceived that the task completion
ratio is lower than the performance shown in figure 1(a). In general, it is reflected from figure 1(b) that
the task completion ratio drops due to higher relative weight of ESTT . It is also noted from figure 1(b)
that instead of oscillation the performance becomes constant at window size 6 and higher.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12
Feasibility check Window size, K

Ta
sk

 c
om

pl
et

io
n

ra
tio

Reading 1 Reading 2 Reading 3
Reading 4 Reading 5

Figure 1(a). Performance of the Myopic algorithm for 200 tasks
with PT = 10 to 11 time unit and W=0.5.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0 2 4 6 8 10 12
Feasibility check Window size, K

Ta
sk

 c
om

pl
et

io
n

ra
tio

Reading 1 Reading 2 Reading 3
Reading 4 Reading 5

Figure 1(b). Performance of the Myopic algorithm for 200 tasks
with PT = 10 to 11 time unit and W=1.0.

Case 2: 500 tasks with PT = 10 to 11 time unit and LT = 100 time unit

Figure 2(a) and 2(b) depict the performance of the Myopic algorithm for 500 tasks with
processing time 10 to 11 time unit and the value for W is 0.5 and 1.0 respectively. It is
observed from figure 2(a) and 2(b) that they show the similar trend: the task completion ratio

gets higher with the larger window size. These figures also depict significant level of
oscillations due to random nature of the tasks.

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0 2 4 6 8 10 12
Feasibility check Window size, K

Ta
sk

 c
om

pl
et

io
n

ra
tio

Reading 1 Reading 2 Reading 3
Reading 4 Reading 5

Figure 2(a). Performance of the Myopic algorithm for 500 tasks
with PT = 10 to 11 time unit and W=0.5.

0.14

0.145

0.15

0.155

0.16

0.165

0 2 4 6 8 10 12
Feasibility check Window size, K

Ta
sk

 c
om

pl
et

io
n

ra
tio

Reading 1 Reading 2 Reading 3
Reading 4 Reading 5

Figure 2(b). Performance of the Myopic algorithm for 500 tasks
with PT = 10 to 11 time unit and W=1.0.

Case 3: 1000 tasks with PT = 10 to 11 time unit and LT = 100 time units

Figure 3(a) and 3(b) show the performance of the Myopic algorithm for 1000 tasks with processing
time 10 to 11 time unit and the value for W is 0.5 and 1.0 respectively. It can be observed from figure

3(a) and 3(b) that they all show the same tendency: increasing task completion ratio with larger window
size. However, some observations show a significant level of oscillations for window size over 4 in
figure 3(a) and 3(b). It is also noted that the degree of oscillation is significant for higher window size.
However, average task completion ratio falls a little with increasing value of W.

0.168

0.17

0.172

0.174

0.176

0.178

0.18

0.182

0 2 4 6 8 10 12

Feasibility check Window size, K

Ta
sk

 c
om

pl
et

io
n

ra
tio

Reading 1 Reading 2 Reading 3
Reading 4 Reading 5

Figure 3(a). Performance of the Myopic algorithm for 1000 tasks
with PT = 10 to 11 time unit and W=0.5.

0.17
0.171
0.172
0.173
0.174
0.175
0.176
0.177
0.178
0.179

0.18

0 2 4 6 8 10 12
Feasibility check Window size, K

Ta
sk

 c
om

pl
et

io
n

ra
tio

Reading 1 Reading 2 Reading 3
Reading 4 Reading 5

Figure 3(b). Performance of the Myopic algorithm for 1000 tasks
with PT = 10 to 11 time unit and W=1.0.

It can be perceived from the above three cases that the algorithm achieved the best performance for
higher number of tasks and the performance increase with the window size. It indicates that the original
algorithm should show the best performance. But since the original heuristic algorithm has higher

complexity ()2NO than that of Myopic ()KNO , it spends more time in selecting an appropriate task
that can have a bad impact on scheduling tasks of short PT . This issue has been explored in the
following section.

F. Effect of Processing Time, PT

This section presents the impact of window size due to variation of processing time. To demonstrate
the effect, load of 500 tasks with PT = 5 to 6 and 20 to 21 time unit are used. The load of 500 tasks with

PT = 10 to 11 time unit has been already discussed in the previous section.

Case 1: 500 tasks with PT = 5 to 6 time unit and LT = 100 time units

Figure 4(a) and 4(b) show the performance of the Myopic algorithm for 500 tasks with processing
time 5 to 6 time unit and the values for W are 0.5 and 1.0 respectively. In this case, the scheduling time
dominates PT and more time is spent for scheduling rather than executing the tasks. So, the task
completion ratio drops in both cases: W=0.5 and W=1.0. Since PT is small compared to scheduling
time, the effect of ESTT is insignificant in choosing a task. However, figure 4(a) and 4(b) depict the
same performance in terms of task completion ratio.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 2 4 6 8 10 12
Feasibility check w indow size, K

Ta
sk

 c
om

pl
et

io
n

ra
tio

Reading 1 Reading 2 Reading 3
Reading 4 Reading 5

Figure 4(a). Performance of the Myopic algorithm for 500 tasks
with PT = 5 to 6 time unit and W=0.5.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 2 4 6 8 10 12
Feasibility check w indow size, K

Ta
sk

 c
om

pl
et

io
n

ra
tio

Reading 1 Reading 2 Reading 3
Reading 4 Reading 5

Figure 4(b). Performance of the Myopic algorithm for 500 tasks
with PT = 5 to 6 time unit and W=1.0.

Case 2: 500 tasks with PT = 20 to 21 time unit and LT = 100 125 time units

Figure 5(a) and 5(b) depict the performance of the Myopic algorithm for 500 tasks with processing
time 20 to 21 time unit and the values for W are 0.5 and 1.0 respectively. Figure 5(a) and 5(b) show
that for longer tasks duration, the performance (task completion ratio) is independent of window size.
Moreover, it is clearly demonstrated that the value of W does not have any effect on the performance
for tasks with higher PT .

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12

Feasibility check w indow size, K

Ta
sk

 c
om

pl
et

io
n

ra
tio

Reading 1 Reading 2 Reading 3
Reading 4 Reading 5

Figure 5(a). Performance of the Myopic algorithm for 500 tasks
with PT = 20 to 21 time unit and W=0.5.

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12
Feasibility check w indow size, K

Ta
sk

 c
om

pl
et

io
n

ra
tio

Reading 1 Reading 2 Reading 3
Reading 4 Reading 5

Figure 5(b). Performance of the Myopic algorithm for 500 tasks
with PT = 20 to 21 time unit and W=1.0.

IV. CONCLUSION

This paper has presented the impact of the performance in implementing the Myopic algorithm for

different feasibility check window sizes. A set of experiments have been performed to demonstrate the
performance issues of the algorithm. It is noted that the window size plays a vital role on the
performance of the Myopic algorithm, in particular, for tasks of lower processing time. For relatively
large number of tasks and lower processing time, the algorithm achieved better performance and this
increases further for larger feasibility check window size. It is also noted that the algorithm achieved
better performance for the higher processing time, without any impact of the window size.

Finally, it is worth noting that the processing time and window size has a significant impact on the

performance in implementing the Myopic algorithm even in a uniprocessor computing domain.

REFERENCE
[1] M L Dertouzos, and A K Mok, “Multiprocessor On-Line Scheduling of Hard Real-Time Tasks,”

IEEE Transactions: Software Engineering, vol. 15, No. 12, 1989, pp. 1497-1506
[2] G Manimaran and C S R Murthy, “An efficient dynamic scheduling algorithm for multiprocessor

real-time systems“, IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 3, Mar 1998,
pp. 312 – 319.

[3] K Ramamritham, J A Stankovic and P F Shiah, “Efficient Scheduling Algorithms for Real-Time
Multiprocessor Systems”, IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 2, Apr
1990, pp. 184-194.

[4] C L Liu and J W Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-time
Environment”, Journal of ACM, vol. 20, no. 1, 1973, pp. 46-61.

[5] K Ramamritham, “Allocation and Scheduling of Precedence-Related Periodic Tasks”, IEEE
Transactions on Parallel and Distributed Systems, vol. 6, no. 4, Apr 1995, pp. 412-420.

[6] W Zhao, K Ramamritham and J A Stankovic, “Scheduling Tasks with Resource Requirements in
Hard Real-Time Systems”, IEEE Transaction on Software Engineering, vol. 12, no. 5, May 1987,
pp. 567-577.

[7] M L Dertouzos and A K Mok, “Multiprocessor online scheduling of hard-real-time tasks”, IEEE
Transactions on Software Engineering, vol. 15, no. 12, Dec 1989, pp. 1497-1506.

[8] Z Xiangbin and T Shiliang, “An improved dynamic scheduling algorithm for multiprocessor real-
time systems”, Proceedings of the 4th International Conference on Parallel and Distributed
Computing, Applications and Technologies, Aug 2003, pp. 710 - 714

[9] G Manimaran and C S R Murthy, “A new study for fault-tolerant real-time dynamic scheduling
algorithms”, Journal of Systems Architecture, vol. 45, no.1, Sep 1998, pp.1-13.

[10] G Manimaran and C S R Murthy, “A fault-tolerant dynamic scheduling algorithm for real-time
multiprocessor systems and its analysis”, IEEE Transactions on Parallel and Distributed Systems,
vol. 9, no.11, Nov 1998, pp. 1137-1152.

[11] G Manimaran and C S R Murthy, “Dynamic Scheduling of Parallelizable Tasks and Resource
Reclaiming in Real-time Multiprocessor Systems”, Proceedings of the 4th International Conference
on High Performance Computing, Dec 1997, pp. 206 – 211.

[12] K Mahesh, G Manimaran, C S R Murthy and A K Somani, “Scheduling algorithm exploiting spare
capacity and task laxities for fault detection and location in real-time multiprocessor systems”,
Journal of Parallel and Distributed Computing, vol.51, no.2, Jun 1998, pp.136-150.

[13] M S Hasan, K M Sakib and M A Hossain, “Hard Real-Time Constraints in Implementing the
Myopic Scheduling Algorithm”, Proceedings of the 12th International Conference on Advanced
Computing and Communications, Dec 2004, pp. 545-549.

[14] Anton Cervin, “Integrated Control and Real time Scheduling”, PhD Thesis, Lund Institute of
Technology, Lund, Sweden, Apr 2003.

[15] M S Branicky, S M Phillips and W Zhang, “Scheduling and Feedback Co-Design for Networked
Control Systems”, Proc of the IEEE Conference on Decision and Control, Las Vegas, Dec 2002.

