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Abstract 

Mesoamerican amphibian declines in apparently pristine and protected habitats have been 

severe, especially at elevations above 500 m sea level and have been linked to emerging 

diseases and a changing climate. The Craugastor punctariolus species series of direct 

developing frogs is endemic to the region and used to be comprised of 33 species, seven of 

which have known populations at present. One of these, Craugastor ranoides, endemic to 

southern Nicaragua and Costa Rica, was historically found in cloud forest sites of Área de 

Conservación Guanacaste (ACG) in north-west Costa Rica and extended into dry forest sites 

20 km distant. Here C. ranoides declined and disappeared from high elevation sites between 

the late 1980s and early 1990s, but populations persisted in the lowland dry forest. We 

compared the genetic richness and ranavirus infection status of C. ranoides from extant dry 

forest populations to historic museum specimens of now extinct ACG cloud forest populations 

using DNA sequence diversity at two mitochondrial loci and molecular screening for ranavirus. 

Extant dry forest populations of C. ranoides formed a monophyletic group which included 

historic specimens sampled at cloud forest sites. However, the extirpated ACG cloud forest 

population contained additional diversity: samples formed a divergent clade with unknown 

spatial distribution. Ranavirus was detected in both current and museum samples of C. ranoides 

and sequences from a 267-nucleotide region of the major capsid protein gene shared 100% 

sequence identity with one another and with Frog virus 3. Our findings document cryptic 

diversity within an endangered species that has demonstrated no recovery in cloud forests and 

raises questions about Ranavirus as a potential driver of amphibian decline in this system. The 

presence of the same C. ranoides clade within present day and historical samples suggests a 

potential for effective translocation and repopulation of extirpated cloud forest populations.  
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1. Introduction 

Global, rapid and severe amphibian declines have occurred over the last three decades, 

gaining additional notoriety because even populations in protected and relatively pristine 

habitats have been affected (Stuart et al., 2004). These amphibian declines are particularly 

conspicuous in the Neotropics (Stuart et al., 2004); in Costa Rica alone, the cloud forest 

amphibian fauna nearly disappeared between the mid-1980s and early 1990s, including the 

golden toad and harlequin frog (Bolaños, 2002; Lips, 1998; Pounds, Fogden & Campbell, 

1999; Pounds et al., 1997). 

 The most severe amphibian population declines have occurred in high elevation, 

moist, montane habitats in which the chytrid fungus Batrachochytrium dendrobatidis can 

thrive (Lips et al., 2006; Piotrowski, Annis & Longcore, 2004). Batrachochytrium 

dendrobatidis causes the infectious disease chytridiomycosis and has been associated with 

amphibian declines globally (Lips et al., 2006; Longcore, Pessier & Nichols, 1999; 

Vredenburg et al., 2010).  

The Neotropics are home to half of all described species of frogs (Duellman, 1999; 

Young et al., 2001). However, an estimated 5-10% of the Central American amphibian fauna 

remains undescribed through classical morphological means (Young et al., 2001), and genetic 

characterisation is expected to reveal additional cryptic diversity even within seemingly well-

known species (Vieites et al., 2009). This presents a problem for effective biodiversity 

conservation in tropical forests, since it is unclear what is being lost, and is a barrier to a more 

complete understanding of host-pathogen interactions within persisting amphibian 

populations (Crawford, Bermingham & Carolina, 2007; Crawford, Lips & Bermingham, 

2010).  
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It is evident that there has been an extreme loss of amphibian populations throughout 

Central America, dramatically affecting biodiversity, however some recent rediscoveries give 

hope that not all will be lost in the long run (Young et al., 2001; Puschendorf et al., 2011;   

Garcia Rodriguez et al., 2012). Understanding which amphibians were lost and why should 

provide insight into effective conservation strategies. In an analysis of the lineage diversity of 

a Panamanian amphibian community before and after a mass-mortality event, five of 30 

extirpated species were undescribed at the time of their disappearance (Crawford et al., 

2010). In comparison, cloud forest amphibians in Costa Rica, including the Golden Toad and 

Harlequin frog, nearly disappeared between the mid-1980s and early 1990s, (Bolaños, 2002; 

Lips, 1998; Pounds et al., 1999; 1997). Unfortunately, few systematic collections were 

undertaken during this period, so very little is known about potential cryptic amphibian 

species richness and diversity that may have vanished during the Costa Rican amphibian 

declines. Similarly, not much is known regarding the cause of these declines, though B. 

dendrobatidis is presumed to have played a significant role (Lips et al., 2006; Pounds et al., 

2006). 

In addition to understanding amphibian diversity, establishing drivers behind declines is 

important for predicting future losses and proactively conserving remaining populations. 

Emerging infectious disease have now been associated with the majority of these amphibian 

declines between the mid 1970’s to the early 2000’s (Phillips & Puschendorf, 2013). In 

addition to Batrachochytrium dendrobatidis a second pathogen group is receiving increasing 

scientific attention – Ranavirus (family Iridoviridae). Ranaviruses have an extremely broad 

host range that includes amphibians, reptiles, and fish, and has caused the collapse of some 

amphibian populations in Europe (Gray & Chinchar, 2015; Lesbarrères et al., 2012; Price et 

al., 2014; Rosa et al., 2017).  In the tropics, the information is scarce, for example in the 

Costa Rican Caribbean rainforest lowlands, despite the detection of either B. dendrobatidis or 
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ranavirus or both pathogens in association with 20 frog species, none exhibited signs of 

disease (Whitfield et al., 2013). A similar situation has been observed in the tropical Andes of 

Peru (Warne et al., 2016). This absence of diseased or dying frogs suggests a viable 

coexistence of amphibians with one, or both, of these potentially pathogenic microorganisms, 

however long-term trends remain unknown. It is also possible that the intensity of the 

surveillance programs was insufficient to detect outbreaks of acute disease or dead animals in 

warm, wet ecosystems where amphibian carcases are scavenged or decompose rapidly 

(Sugiura et al., 2013).  

 The Craugastor punctariolus species series is one of most endangered amphibian 

clades in Mesoamerica, with a loss of 26 of the characterised 33 species since the early 1980s 

(Padial, Grant & Frost, 2014; Stuart et al., 2008). One of the remaining seven 

morphologically characterised species, Craugastor ranoides, was once distributed throughout 

Costa Rica, including lowlands and premontane slopes between 10 and 1300 m above sea 

level, and on both the Pacific and Caribbean versants (Savage, 2002). Área de Conservación 

Guanacaste (ACG), which encompasses 120,000 ha of dry, wet and cloud forest (and 43,000 

ha of Pacific Ocean) in northwestern Costa Rica, has historic records of C. ranoides 

describing a distribution that included all the region’s major habitat types (Janzen & 

Hallwachs, 2016; Puschendorf et al., 2005; Sasa & Solórzano, 1995; Zumbado-Ulate, 

Puschendorf & Chavarría, 2007). However, during the mass amphibian declines C. ranoides 

disappeared (Puschendorf et al., 2005) and was last documented in high abundance in the 

cloud forest at Volcán Cacao in 1987 when specimens were preserved as part of an 

expedition from UC Berkley, led by David A. Good and David Canatella. 

In 1994, C. ranoides was discovered unexpectedly in a few small areas of ACG dry 

forest (Sasa and Solórzano, 1995) and has since been found in other locations, though 

exclusively on stream-beds that keep flowing in the dry season (Puschendorf pers. obs.). The 
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seasonally dry and hot environmental conditions of Costa Rican dry forest contrast strongly 

with the upper elevation rain and cloud forest habitats that foster the high B. dendrobatidis 

prevalence and lethal infection intensity that have been considered the cause of population 

declines (Whitfield et al., 2017). These dry forest sites are assumed to have served as a refuge 

from disease-driven amphibian extinctions (Puschendorf et al., 2009; Zumbado-Ulate, 

Bolaños, Willink et al., 2011; Zumbado-Ulate et al., 2014). However, relict dry forest 

populations of C. ranoides in ACG are separated from historic cloud forest site, Volcán 

Cacao, by low hills and deep valleys with no drainages that directly connect them, limiting 

opportunities for this frog to recolonise the cloud forest through natural dispersal.  

Conserving amphibian diversity and population density is essential for maintaining 

biodiversity and ecosystem stability in the face of climate change. With substantial loss 

already, effective conservation strategies will likely need to incorporate new technologies and 

bold, informed approaches. One such strategy may include species reintroductions via 

translocations, which can be highly effective and avoid some of the perils of captive breeding 

(Frankham, 2008; Williams & Hoffman, 2009). Such intervention requires a solid knowledge 

of source population genetic diversity, in the context of historic diversity, and any host-

pathogens interactions (Hartley & Sainsbury, 2017). Currently, the full extent of the possible 

cryptic clade diversity within C. ranoides, a formerly widespread “species”, remains 

unknown. 

In this study, we aimed to partly describe the historic, cryptic diversity of C. ranoides and 

compare this to the extant dry forest population in order to generate baseline data that could 

inform future conservation actions. Further to this, using historical and present-day samples, 

we tested the hypothesis that an emerging infectious pathogen other than B. dendrobatidis 

may have been associated with late 1980s declines by screening for the presence of ranavirus. 



 

 
 

8 

 

 

 

2. Materials and Methods 

2.1 Field sites and surveys  

Six sites with extant C. ranoides populations were sampled in the dry forest of ACG (Fig. 1). 

These sites included Quebrada Grande at 10.90134 N, 85.77522 W; Río Pedregal at 10.90135 

N, 85.75068 W; Río Murciélago at 10.89691 N, 85.73029 W; Quebrada La Danta at 

10.86623 N, 85.71600 W; Río Nisperal at 10.8273N, 85.6486W and Río La Calera at 

10.86139 N, 85.66409 W. One site at which the species is currently thought to be extinct was 

also sampled (Volcán Cacao at 10.92403 N, 85.46682 W). Prior to our field sampling in 

2014, C. ranoides had been sighted at all of these dry forest localities, except Río Nisperal 

which had never been surveyed before for this species. 

Field sampling of C. ranoides was undertaken from 27 June 2014 to 01 July 2014 in the dry 

forest of ACG (Fig. 1). Sampling was always conducted after sunset, as late dusk was 

previously the most likely time to locate C. ranoides. Individuals of C. ranoides were 

identified by their distinctive red and yellow hind leg markings, the slight but characteristic 

webbing on their hind feet and more rotund bodies and heads in comparison to the common 

rain frog, C. fitzingeri, a congeneric which coexists in the same habitats (Savage, 2002). 

Volcán Cacao cloud forest was also surveyed in 2005, 2012, 2014, and 2016. Each of these 

surveys represents one night in which at least 4-6 hours were spent surveying two streams 

and one transect, Río San Josecito, Quebrada Arenales and Sendero Derrumbe heading to the 
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summit of Volcan Cacao, sites in which historical specimens of this species had been 

collected. In 2017, in an attempt to search more extensively for these missing frogs, four 

students from Plymouth University under the guidance of RP spent a total of 60 person-hours 

surveying these historic collection sites at Volcán Cacao. 

2.2 Sample collection  

During the dry forest 2014 surveys, a maximum of six individuals were sexed, aged (male, 

female, juvenile) and toe-tipped at each locality then returned to their site of capture. Toepads 

were stored individually in 95% ethanol for subsequent DNA extraction. In total, twenty-five 

individuals were sampled in the dry forest, and tissues were obtained from four individuals 

collected in 1987 from the vicinity of Estación Cacao on Volcán Cacao (cloud forest; 20 km 

east of the nearest dry forest site at 900-1300 m elevation; Fig.1). All frogs sampled, extant 

and museum specimens, were identified as C. ranoides based on morphology.  

2.3 Laboratory procedures 

DNA was extracted from C. ranoides toepads using an ammonium acetate extraction protocol 

(Nicholls et al., 2000). CO1 and 16S mitochondrial genes were amplified using the same 

primers and cycle settings as Crawford et al. (2010): CO1 using forward (F) 5’-

GGTCAACAAATCATAAAGAYATYGG-3’ and reverse (R) 5’–

TAAACTTCAGGGTGACCAAARAAYCA-3’primers, and 16S using F 5’– 

CGCCTGTTTATCAAAAACAT-3’and R 5’–CCGGTCTGAACTCAGATCACGT-3 

primers. PCR reactions for mitochondrial targets were carried out in a Techne Prime Thermal 

Cycler. We used total PCR reaction volumes of 20µL, including 2µL of the template DNA. 

The reaction mix included 2µL Qiagen 10x buffer (containing 15mM MgCl2; QIAGEN 

Group 2011), 1µL dNTPs (10mM), 0.4 µL Mg2+ (25mM), 0.2µL Taq DNA polymerase (5 

units/uL, from Qiagen PCR core kit), 0.6µL of the respective forward and reverse primers (at 

10µM stock concentration) and 12.7µL nuclease-free water. Amplification was confirmed by 
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running the PCR products on 1% agarose gels for 20 minutes at 100V using Tris-acetate-

EDTA buffer. Gel electrophoresis runs were exposed and visualised on the ImageQuant 

LAS4000. PCR products were sent to Macrogen Inc. for Sanger sequencing from both the 

forward and reverse primers. 

2.4 Experimental design and Bioinformatics 

Only individuals for which both CO1 and 16S sequences were generated were included in 

phylogenetic analyses. Geneious version 8.1 was used to first trim each read at the 3’ and 5’ 

ends where low quality base calls were present (maximum probability limit of 0.01 – 

equating to ≥ 1% chance of the call being an error), then to assemble forward and reverse 

reads of the 16S and CO1 regions into their respective contigs using the Geneious alignment 

tool (Kearse et al., 2012).  Any disagreements in calls between the forward and reverse 

sequences were checked manually against chromatograms in order to create final consensus 

sequences for each gene and each individual sampled. 

We compiled all candidate C. punctariolus species series sequences available from GenBank 

that had both CO1 and 16S sequences available for the same individual (Supplementary 

Table 1) and aligned them to sequences from our samples. We used TOPALI (Milne et al., 

2009) to select the best-fit substitution model for our data based on the Bayesian information 

criterion (BIC). We used MrBayes version 3.2.6 (Ronquist & Huelsenbeck, 2003) through the 

Geneious plugin to estimate a Bayesian consensus tree from the alignment of each gene 

separately (two trees) and using the concatenated alignment generated by joining the 16S and 

CO1 alignments end to end (without partitioning by loci). We ran MrBayes as follows for all 

three trees: a Hasegawa–Kishino–Yano (HKY85) substitution model was used with gamma 

distributed rate variation (four rate categories), chain length of 15 million generations, burn-

in length of 1.5 million, subsampling frequency of one tree each 10,000 generations, and 

default settings otherwise. A clade comprising Craugastor opimus and Craugastor 
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megacephalus was used as an outgroup to root the tree (Crawford & Smith, 2005). Kimura 2-

parameter (K2P) corrected average pairwise distance (π) was used to generate net divergence 

values in MEGA v7.0.26 using known and potential clades as identified by our tree (Kumar, 

Stecher & Tamura, 2016; Nei & Li, 1979). A minimum spanning haplotype network for C. 

ranoides based on the concatenated sequences of both CO1 and 16S was constructed in 

Popart (Leigh & Bryant, 2015). 

2.5 Ranavirus molecular diagnostics and partial genetic characterisation 

We screened all samples of historic and extant C. ranoides individuals for ranaviruses using a 

nested PCR comprised of PCRs with outer primers (‘4’ and ‘5’) from Mao, Hedrick & 

Chinchar (1997) and inner primers (‘MCP-IF’ and ‘MCP-IR’) described by Meng et al. 

(2013). Total reaction volumes were 8 μL, consisting of outer primers at 0.05 μM or inner 

primers at 0.4 μM (Meng et al., 2013), 4 μL 2X DreamTaq Green PCR Master Mix (Thermo 

Scientific, Massachusetts), 1.2 μL of nuclease-free water and 2 μL of template DNA (the 

second PCR used the product from the first PCR diluted one in ten in nuclease-free water as a 

template). Both PCRs were run using a touchdown program with the following cycling 

conditions: 23 cycles of 95°C for 30s, a 30s primer annealing step starting at 62°C and 

decreasing by 0.5°C per cycle, and a 72°C for 30s elongation step, followed by 25 cycles of 

30 s at each of 95°C, 50°C, and 72°C, before a final seven-minute 72°C elongation step. PCR 

products were visualised on 2% agarose gels, and amplicons with visible bands were sent for 

Sanger sequencing as above. 

 

3. Results 

The 2014 surveys documented C. ranoides at each site where it had previously been observed 

post-decline and recorded its presence at a new location on the Río Nisperal (Fig. 1; 
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(Puschendorf et al., 2005; Zumbado-Ulate et al., 2007). Craugastor ranoides was not found 

at high elevation sites on Volcán Cacao.  

 Both the haplotype network and the phylogenetic tree, inferred from concatenated CO1 and 

16S aligned data, show that all samples of C. ranoides collected within the dry forest (n = 

15), across six independent streams and rivers, cluster in one well supported clade (posterior 

probability = 1) comprising three well defined haplotypes (Fig. 2). The presence of a small 

sub-group within this dry-forest clade (posterior probability = 0.99) revealed some 

mitochondrial gene diversity (0.126% CO1 within group divergence).  

Two of the historic museum samples from the cloud forest in Volcán Cacao (MVZ 207286 

and MVZ 207289) fall within the dry forest clade (clade 1; Fig. 2). However, the other two 

historic cloud forest samples (MVZ 207278 and MVZ 207285) form a separate, well-

supported ‘Cacao’ clade (posterior probability = 1, Fig. 2) composed of a single haplotype, 

which clustered with a Panamanian species, Craugastor evanesco. Net divergence between 

the Cacao C. ranoides clade and C. evanesco is 2.5–4.1% at CO1 and 1.4–1.8% at 16S (Table 

1). 

Both current ACG dry forest and historic ACG cloud forest C. ranoides samples tested 

positive for ranavirus. Out of the 25 samples collected in 2014, one sample (RP56) from 

Quebrada Grande was positive for ranavirus. Similarly, one of the four historic samples 

(MVZ 207285) was positive for the pathogen. The two generated sequences (264-267 bp) 

showed 100% sequence identity with Frog virus 3 (FV3, GenBank accession AY548484), the 

type species of the genus Ranavirus. 

 

4. Discussion 
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The persistence of C. ranoides at all sites with earlier observations and the discovery of a 

new subpopulation in Quebrada Nisperal suggest that this species may be more widespread 

across the ACG dry forest than previously thought. Similarly, the presence of multiple 

genetic clades within the morphologically characterised C. ranoides suggests a previously 

unknown cryptic diversity, indicative of a species complex. Furthermore, the presence of the 

FV3 ranavirus associated with historic and present-day C. ranoides samples suggests a 

potential involvement of this pathogen in the 1980s declines and possible subsequent co-

existence within surviving populations. Overall, this provides optimism that similar dry forest 

habitats may harbour undiscovered populations of the species-complex C. ranoides, that 

ranavirus may not always be pathogenic, and that frog reintroductions are potentially viable.  

The C. punctariolus species series of frogs has undergone severe, multi-species 

declines, but recent rediscoveries, such as documented here for C. ranoides, suggest new 

searches for missing species may be fruitful. Since 2011, two populations of Craugastor 

taurus have been rediscovered in south-eastern Costa Rica after 17 years without sightings 

(Chaves, Zumbado-Ulate, García-Rodríguez et al., 2014) whilst individual frogs of two 

highland species, Craugastor escoces (Jiménez & Alvarado, 2017) and Craugastor angelicus 

(Kubicki, 2016), were rediscovered in 2016, suggesting that some species may persist at 

extremely low densities. Therefore, it remains possible that C. ranoides could still be present 

at Volcán Cacao and similar areas but at very low densities that have so far evaded detection. 

Our genetic characterisation of the relict dry forest population of C. ranoides revealed 

some variation between sites. This is likely due to the area’s rugged terrain and relatively 

high mountain range (Santa Elena’s mountains reach 700 m asl) with several deep valleys, 

despite the short linear distance between the different sampling localities. Whilst the isolated, 

independent river systems are likely to have enforced a degree of historic isolation on this 

stream dwelling species of frog, the relatively low genetic diversity indicates that individuals 
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sampled across the six dry forest sites belong to the same species and that these populations 

were historically connected. In contrast, the genotypes of samples from the cloud forest point 

to a more complex evolutionary history. 

The historic sampling revealed that two divergent populations of C. ranoides 

coexisted at Volcán Cacao. One of these populations is grouped in the same clade as the 

rediscovered dry forest populations and suggests a degree of connectivity between them. In 

contrast, the divergent Volcán Cacao population is not known to persist at any location and is 

assumed to be extirpated with unknown historical distribution. Although it was not the aim of 

this study to create a phylogeny of the C. punctariolus species series, these results highlight 

the ongoing taxonomic complexities within this group of critically endangered frogs, 

especially when species descriptions are based on morphology alone. Our molecular data 

revealed cryptic lineage richness within C. ranoides, however the levels of mtDNA 

divergence between the dry forest and Volcán Cacao populations are within the levels of 

genetic diversity observed in sympatric samples of conspecific amphibians where cases of 

low interspecific divergence are usually around 5-7% in COI and 3-5% in 16S (Chambers & 

Hebert, 2016; Crawford, 2003; Vences et al., 2005). Alternatively, our DNA sequence data 

might suggest that the C. ranoides could be conspecific with C. evanesco, thus greatly 

extending the known geographic distribution of the latter from central Panama to northern 

Costa Rica. However, further systematic investigations are necessary before accepting the 

idea that C. ranoides is composed of more than one species (Vieites et al., 2009), or that C. 

ranoides and C. evanesco are indeed the same species. A comprehensive revision of this 

group, with data from additional localities across isthmian Central America, is needed to 

reassess the taxonomic status of many of these species. 

This study also underlines the value of knowing the clade-based taxonomy of a 

species prior to moving animals as part of conservation actions. The Chinese giant 
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salamander, a species that has been farmed intensively, may represent the best example from 

the Amphibia where the evolutionary history of the species has been ignored during a series 

of intentional and unintentional reintroductions (Cunningham et al., 2016). This giant 

salamander seems to be a complex of cryptic species that is able to hybridise, as will the 

members of many species complexes as they gradually diverge into different clades (Yan et 

al., 2018). The broad genetic mixing may eradicate the original wild clades and lead to their 

extinction by genetic homogenisation (Marie, Bernatchez & Garant, 2010). 

In the case of C. ranoides, it is clear that the dry forest clade is confined to a relatively 

small area in the dry forest of ACG, with no direct drainage connecting to the nearby 

mountains, making a re-invasion into its former range extremely unlikely. Added to that, the 

last El Niño of 2014-2016 produced the strongest drought on the pacific coast of Costa Rica 

since 1937 (Alvarado Gamboa, 2015). If this pattern of stronger El Niños continues, it will 

put these dry forest populations at risk as C. ranoides requires year-round flowing water for 

their survival. These dry forest frogs could be used as a source for translocation to the cloud 

forest highlands. They could for example be translocated into open lowland streams near the 

foothills of the volcanoes where they could escape the cold and moist environment where 

chytrid is likely to cause outbreaks. While potentially viable and necessary, a detailed, 

knowledge-based plan needs to be developed before a translocation is attempted (Germano & 

Bishop, 2009). 

Both current ACG dry forest and historic ACG cloud forest C. ranoides samples 

tested positive for Frog virus 3 (FV3), a type of Ranavirus that is a frequent cause of mass 

mortality incidents in amphibians and reptiles in North America and is thought to have been 

translocated internationally (Price et al., 2017; 2016). Ranavirus was the likely cause of an 

amphibian die-off at Volcán Maderas, on the island of Ometepe in Nicaragua in 2011 (Stark 

et al., 2014), a site only 55 km from ACG. In Costa Rica, FV3 has been found associated 
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with a variety of species of amphibians at La Selva Biological Station, a lowland Caribbean 

site, but no dead and dying amphibians have been recorded there during these studies 

(Whitfield et al., 2013; 2012). Despite the absence of observations of mortality in amphibian 

and reptile populations at La Selva there has been shown to be a long trend of decline 

between 1970 and 2005 (Whitfield et al., 2007), similar to observations of lowland 

populations on the Pacific coast of Costa Rica (Ryan et al., 2014).  

The presence of FV3 on a C. ranoides individual in 1987 from Volcán Cacao supports 

the conclusion of a study published in 1991 that icosahedral viral particles observed using 

microscopy in the blood of Rhinella marina collected in Guanacaste, Costa Rica, belonged to 

the family Iridoviridae (Speare, Freeland & Bolton, 1991). The finding also confirms that 

ranavirus was present in Costa Rica during country-wide amphibian declines at high 

elevation sites (Pounds et al., 1997). These severe, regional amphibian declines were linked 

to the presence of B. dendrobatidis, and consequent chytridiomycosis, but the presence of 

ranavirus in this system raises the possibility that the causes of these population crashes were 

more complex and could have involved more than one pathogen. Cloud forest and montane 

anoles declined in addition to amphibians such as the golden toad and harlequin toad in 

Monteverde (Pounds et al., 1999). These reptile declines are often overlooked, but they are an 

additional reason to further consider the role of ranaviruses in driving declines since these 

viruses have broad host ranges and can have severe impacts on reptiles (e.g. Kimble et al., 

2017). 

The interaction between the two pathogens may be important in determining disease 

outcomes for amphibian populations. In high elevation sites in the Serra da Estrela, Portugal, 

chytrid caused very severe declines of a single anuran species between 2009 and 2011 

following an assumed introduction (Rosa et al., 2013). There were no signs of ranavirus 

disease in any of the amphibian populations in the region during this time but incidents of 
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ranavirus disease and mortality were observed in multiple species (anurans and caudates) in 

late 2011, with subsequent – and sometimes dramatic – declines in densities within the next 

three years (Rosa et al., 2017). In contrast to these temperate systems the historic and long-

term impacts of ranavirus infection in neotropical ecosystems remain unknown and further 

investigation is certainly warranted to assess the pathogenicity, host range and potential 

impact. 

 The disappearance of amphibian diversity in Costa Rica is poorly characterised and 

understood. We have used the recent discoveries of populations of a previously widespread 

frog along with archived specimens to reveal a loss of historic diversity and the presence and 

persistence of an important pathogen. Our results further understanding of historical diversity 

and taxonomy, generate new hypotheses about the causes of declines, and provide valuable 

baseline data that can be used to plan conservation actions for a critically endangered frog. 
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Legends for Figures and Tables 

Figure 1. Study area and sampling sites for Craugastor ranoides across Área de Conservación 

de Guanacaste (ACG), Guanacaste, Costa Rica. Quebrad Grande (Grande); Río Pedregal 

(Pedregal); Río Murciélago (Murciélago); Quebrada La Danta (Danta), Río Nisperal 

(Nisperal); Río La Calera (Calera); Volcán Cacao (Cacao). Inset map shows the study area (red 

box) in the context of the Costa Rican border. 

 

Figure 2. Diversity among extant and historic samples of Craugastor ranoides from the Área 

de Conservación de Guanacaste (ACG). a) A Bayesian phylogeny constructed from 

concatenated alignments of 16S rRNA and CO1 genes of C. ranoides samples from ACG and 

their sister taxa. The tree was rooted using the C. opimus and C. megacephalus clade as an 

outgroup. Mr Bayes v3.2.6 was run without partitioning by loci using the HKY85 substitution 

model with rate variation modelled by a gamma distribution with four rate categories. Support 

values at nodes are posterior probabilities. B) Minimum spanning haplotype network of 

Craugastor ranoides constructed in Popart. Green shading denotes historic samples collected 

at Volcán Cacao; beige shading denotes extant samples collected from the seasonally dry 

tropical forest. 

 

Table 1. Estimates of Net Evolutionary Divergence with K2P correction between Groups of 

CO1 (bold), and 16S sequences based on our phylogeny (Fig. 1). The number of amino acid 

substitutions per site from estimation of net average between groups of sequences are shown. 

Analyses were conducted using the Poisson correction model (Zuckerkandl & Pauling, 1965). 
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The analysis involved 24 amino acid sequences. Evolutionary analyses were conducted in 

MEGA7 (Kumar et al., 2016). 

 

Supplementary Table 1. Species name, voucher number, locality information, ranavirus 

infection status and GenBank accession numbers for the 16S and CO1 mitochondrial gene 

markers.  Voucher number acronyms:  University of Costa Rica (UCR), United States National 

Museum (USNM; now National Museum of Natural History, Smithsonian Institution), 

Museum of Vertebrate Zoology at Berkeley (MVZ), Robert Puschendorf field voucher (RP). 

Country acronyms: Costa Rica (CR), Panama (PA). NA indicates that either a sample was not 

tested for ranavirus infection, the test was negative, or no sequences were generated.  
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Figure 1. 2 
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Figure 2. 4 
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Table 1. 6 

 7 

  8 

1 2 3 4 5
1. outgroup 0.1898 0.2202 0.1794 0.2012
2. C. punctariolus 0.0828 0.2096 0.2181 0.2007
3. C. evanesco 0.1013 0.0978 0.0401 0.0245
4. C. ranoides  dry forest lineage 0.0951 0.0947 0.0137 0.0292
5. C. ranoides  cloud lineage 0.1076 0.1008 0.0182 0.0206
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Supplementary Table 1. 9 
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