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Introduction

A victorious yet tragic hero. A genius but ominously
an augur of the end of human dominance. Such char-
acterizations come to mind regarding Alan Mathi-
son Turing (1912–1954) after reading the The Turing
Guide.

It is a 500-page compilation of articles by many
authors, written for “general readers”, which strikes
a balance between focusing on Turing himself, and
on the collection of topics he was involved in. The
driving force behind the book is philosopher Jack
Copeland, who has written many books and arti-
cles about Turing and participates in sixteen of the
fourty-two Chapters of the Guide. Officially the au-
thor list is Copeland, Bowen, Sprevak, Wilson, “and
others”1. The Chapters are lightly cross-referenced,
but are largely independent. The book is solidly
proof-read: I got to page 55 before finding the first
error (“during the did decades”).

Turing’s appeal in the popular imagination may
stem from checking several boxes: he is viewed as a
genius, a hero, and even a tragic hero. In support of
the genius label, he defined a mathematical notion of
computer that turned out to be the right one, proved
some fundamental results (existence of the universal
computer, unsolvability of its halting problem), and
arguably founded mathematical biology (see Part VI
below). As for heroism, he worked on cryptography
during World War II, leading a large team. However,
the claim in the Preface that

It is no overstatement to say that, without

1Amusingly, as of March 8, 2018, MathSciNet gives “and
others” the author ID 1227985 and reports that this book is
his or her only publication so far.

Turing, the war [...] might even have been
won by the Nazis.

is in Chapter 9 modified to indicate that perhaps his
work helped ensure that the war ended in 1945 rather
than 1946. As for tragedy, he was convicted of homo-
sexuality and ordered into female hormone therapy.
Moreover, he died from cyanide poisoning, in a mys-
terious event that has been called a suicide, but which
may well have been an accident stemming from his
home laboratory.

Turing earned the standing to present to us all his
thoughts on human and machine intelligence, and as
discussed below, those thoughts now seem prophetic.

The Guide is divided into eight Parts, each worth
a section of this review.

Part I: Biography

In this Part we learn many interesting facts. Tur-
ing died in a manner that involved cyanide and a lab
room next to his bedroom, but that the jury is still
out on whether it was suicide or some kind of experi-
ment gone awry. He thought that intellectual activity
mainly consists of various kinds of search, and that
we should expect the machines to take control. This
is a possible counterpoint to the label of hero: per-
haps he hastened the day of the “Singularity” when
machines take over and render humans irrelevant.

It is argued that he took his court-ordered female
hormone therapy with an impressively resilient atti-
tude, treating it almost as a case of freshman hazing.
If true, that tends to make him less a tragic hero and
more a simply mysterious hero.

His work on morphogenesis [17] is described as
“even deeper” than the discovery of DNA molecules.
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Part II: The universal machine
and beyond

Copeland writes about the move from
electromagnetically-controlled relays to blind-
ingly fast digital electronics, which were first used
for breaking German codes but would turn out
to combine stunningly with the universal Turing
machine. Turing’s ACE (Automatic Computing
Engine) machine ran at 1 MHz which outperformed
the competition at the time; von Neumann’s design
for a computer was less focused on speed. Turing’s
was essentially a RISC (Reduced Instruction Set
Computer). Copeland gives us the impression that
Turing was an engineer(ing professor) as much as a
mathematician (mathematics professor). It seems
that Turing looked at Turing machines as idealized
machines perhaps more than as purely combinatorial
mathematical concepts.

Part III: Codebreaker

Copeland argues convincingly, to me, that Turing’s
contributions did not change the victor of World War
Two from the Axis powers to the Allies. On the other
hand, it may have saved on the order of 10 million
lives by helping to shorten the war.

We get a very detailed description of how the
Germans’ secure communications machine “Enigma”
worked. For a mathematician a more mathematical
treatment would have been preferable; the given de-
scription of how some wheels are attached to others
in certain ways and triples of letters associated with
others was a bit bewildering.

Breaking the Germans’ codes was not a matter of
solving a well-defined math problem, but rather of
thinking of lots of aspects of what the Germans were
doing and finding a series of weak links, something
to hack. Again we perhaps see Turing’s engineering
essence above his mathematical one.

We learn about Turing’s cryptologic work. To de-
code German messages one had to basically search
through a huge space for some input whose output
would be a recognizable German language message.
Various heuristics and methods to reduce this search

space were considered. Turing made extensive use of
probability and used phrases like “cross” and “direct”
where other less mathematically serious colleagues
used “starfish” and “beetle”.

The Bombes were electromagnetic devices created
to carry out the search that remained to be done
after all heuristics and mathematical simplifications
had been applied. Turing played a leading role in
adapting these from Polish cryptanalysts’ Bombas
(see page 6).

Enigma is an elaboration of Vigenère ciphers which
are elaborations of the simple Cæsar ciphers. Turing
wrote a manuscript on the deciphering of such ci-
phers using Bayes’ Theorem, which has recently been
released to the ArXiv [13].

Banburismus was a mechanical (not even electro-
mechanical) means of reducing the search space be-
fore starting a Bombe run. It involved punch cards
inspired by the loom industry (as also Lovelace and
Babbage had been). It is explained that people of
intermediate skill were not needed for the endeavor:
there were the manual card-punchers and measurers,
there were the cryptanalysts, who had a much more
enjoyable job, and then there were Turing and his
ilk who designed the algorithms the cryptanalysts
carried out. Sometimes the attempts at explaining
mathematical ideas in plain language arguably be-
come too vague (p. 139):

“A two-letter sequence such as ‘en’ occurs
more frequently in English than the combi-
nation of ‘e’ and ‘n’ counted separately”.

A more advanced machine, Tunny, took over from
Enigma, and we learn about the methods and com-
puters (Colossus) used to decode Tunny messages.
Encryption by vector addition mod 2 is nicely ex-
plained. Doing it twice recovers the original message
since

(A+B) +B = A,

and it satisfies the associative law. Special tricks in-
cluded waiting for Germans to send the same mes-
sage again, but with some minor variation, because
the Germans thought the first message did not go
through. Two similar messages could be more eas-
ily broken and this is explained in some detail. The
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Colossus computer used electronic valves. These had
at the time a status similar to that of quantum bits
now: believed to be too flaky to be used en masse,
i.e., have many of them in one computer. It is claimed
that had many Colossi not been destroyed after the
war, things like the Internet and social networking
might have happened a decade earlier than they did.
(The idea of Facebook starting already in 1994 may
not be universally viewed as a positive, however.)

A Chapter by Eleanor Ireland details the secrecy
and tedium of working on the Colossus machines.
Global WWII events and their relation to Bletchley
Park are detailed. We hear what a large industrial-
scale cyberwarfare operation it was. Turing however
was “flicking the walls with his fingers as he walked”,
an image that may feel familiar to mathematicians
and children alike. We learn that when two mes-
sages are “in depth”, meaning encrypted by adding
the same vector, we can add the encrypted versions

(A+B) + (C +B) = A+ C

and cancel out the encrypting vector B. Next, we
think of a piece of German phrase we think might be
used and add that to some consecutive entries of the
vector A+C. If our German phrase was in A or C we
would be left with a fragment of C or A, respectively.
Intimate knowledge of the German language, as it
was used by the Tunny operators, was key.

Brian Randell writes about the revelation of some
classified information about Ultra, the codename for
the British efforts against German cryptography, in
the 1970s. It reminds me that Turing via his Bletch-
ley Park work becomes an almost unbelievable in-
carnation of the “nerd’s superhero”: someone who
through mathematical work becomes a leader among
thousands of regular people engaged in the largest
war of all time.

Turing visited the U.S. to help with their own
Bombe-making, and worked on a speech encryption
device. Much work has been done on the preservation
of Bletchley Park’s historical WWII buildings via in-
creasing the public and funders’ interest with books,
TV reports, special events and publications.

Part IV: Computers after the
war

Baby, the first stored-program computer, was built
in Manchester, England but with inspiration from
Princeton. Interestingly von Neumann (at Princeton)
pushed the idea of a CPU with an accumulator (fa-
miliar to those who have studied machine/assembly
language) whereas Turing liked a more decentralized
design.

Turing developed the ACE computer rivaling Baby.
It was fast, but ultimately obsolete compared to ri-
val designs. At the time random-access memory had
not been developed. Rather than scanning through
memory until the desired memory location arrived,
Turing’s design used something called optimum pro-
gramming to lay out instructions in memory so that
the desired info in memory tended to arrive quickly,
or rather, at the exactly right time. Such program-
ming suited Turing rather well, as the architecture
was similar to that of his own Turing machines.

Turing had a great deal of foresight with regard to
the design of machine language. Brian E. Carpenter
and Robert W. Doran give a beautifully simple de-
scription of recursion: a computer must keep track of
where it is, so a stack is needed.

Copeland and composer Jason Long describe how
Turing and colleagues made computer music. For
someone growing up with Commodore machines in
the 1980s the similarity is striking and appealing.

We are also taken on a trip back to the time of
Charles Babbage. Babbage was focused on arith-
metic and algebra. He acknowledged that Ada
Lovelace saw further and envisioned a machine that
could make music and replicate the brain. The sit-
uation is summarized by saying that Babbage was
focused on hardware (and algebra), Lovelace on ap-
plications, and Turing on theory (as he developed
mathematical theory of what was needed to achieve
Lovelace’s vision).
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Part V: Artificial intelligence
and the mind

Perhaps the most famous idea named after Turing is
the Turing test. Turing proposed that to test whether
a machine had achieved intelligence, it should be
asked to try to fool a human into thinking it was
human. More precisely, a human judge gets to in-
terrogate both another human and the machine (via
a neutral interface such as computer chat window),
and is asked to guess which is the human.

Turing hypothesized that around our time ma-
chines would be able to fool some people some of the
time, and that in another 50 years or so machines
would be able to fully pass the Turing test. So far,
so good, for these predictions: for instance Google’s
artificial intelligence is able to play the role of some-
one booking an appointment with a hair dresser, in
such a way as to not be detected as a machine.

In this Part we learn that Turing wanted to de-
fine intelligence subjectively, as behavior that we find
mysterious and admirable but do not fully under-
stand [16]. This way the judge in the Turing test
becomes an important participant. Diane Proudfoot
gives a delightful discussion of some of my favorite
topics like consciousness zombies and solipsism. Tur-
ing imagined child machines that learned, a precursor
to today’s machine learning. The Chapter by Proud-
foot includes an unnerving observation: robots must
look like humans in order to build rapport (make a
connection) with humans, in order to learn from hu-
mans.

The Chapter on computer chess discusses heuris-
tic search. Rather than searching through possible
moves, one uses guiding rules such as “a rook is worth
5 points”. With machine learning one could even dis-
cover that it is better to value a rook at, say, 4.9
points. As in some other Chapters, however, there is
a bit of historic trivia of little interest such as, who
first lost a game of chess to a computer, who first won
etc. There is also some material that perhaps is of in-
terest to lay-persons, such as a complete transcript of
the first game of chess between a human and Turing
acting as a computer. And some fascinating tidbits
such as Mozart’s Musikalische Würfelspiel (randomly

generated Mozart music).
The book does have a smattering of strange mat-

ters to a mathematician.

• The standard normal distribution is described as
having mean 0, standard deviation 1, and also
height 1 at the mean.

• The proof of the undecidability of the halting
problem (p. 410–411) seems to make no use of
the crucial negation step whereby a computation
halts if and only if it does not.

• The distinction between countable sets and com-
putably enumerable sets is missing in the same
Chapter 37. (Very nice though is that Chapter’s
display of an explicit polynomial over Z that pro-
duces the primes, and no other positive integers.)

A Chapter on WWII coding methods reads a bit
tedious at times (imagine going through a detailed
computation with repeated Bayes theorem usage, in
prose rather than equations) but there are some in-
teresting things for me such as the use of the score
log p of a probability p to simplify hand calculations
so that the clerks at Bletchley Park could use addi-
tion rather than multiplication.

Extra-sensory perception (ESP) was credible to
many scientists at Turing’s time. He apparently wor-
ried that ESP used by the judge in the Turing test
would lead the judge to falsely fail to attribute in-
telligence to the machine. Thus in a sense Turing
seems to truly sympathize, in theory, with intelligent
machines.

In Sprevak’s Chapter about cognitive science, a dis-
cussion of finite automata as inspired by McCulloch
and Pitts [6] would have been appropriate. There is
a sense in which the language

(01)∗ = {∅, 01, 0101, 010101, . . . }

is understandable by humans and

{0n1n : n ≥ 0} = {∅, 01, 0011, 000111, 00001111, . . . }

is not. For the former, we just have to scan the whole
input, rejecting if we see 00 or 11. Only our lifespan
or fatigue limits us in this regard. For the latter, we
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have to keep a counter, and for large n that is beyond
our memory capabilities whether in our brain or in
hardware or paper.

Part VI: Biological growth

This interesting Part introduces morphogenesis via
the tale of the sweating grasshoppers and the fire.
The basic idea is pretty clear even in the absence of
any differential equations. While it is not mentioned
in the Guide, Turing’s work is related (see [2, 3]) to
Schelling’s [11] work on segregation. If individuals
tend to prefer to live close to similar individuals, how
do segregated neighborhoods form? In terms of a tol-
erance parameter, higher tolerance may lead individ-
uals to be less likely to move, which can actually lead
to more segregation: once individuals land in a rather
homogeneous area they are likely to stay. Here, the
neighborhoods (in economics) are analogous to the
stripes on a zebra (in biology).

The Chapter about radiolaria is amazing: suffice it
to say that it concerns single-cell organisms shaped
like Platonic solids with spikes!

Part VII: Mathematics

Here we learn that Turing worked on the Cen-
tral Limit Theorem and on the Riemann ζ-function
[15, 18]. Conveniently for this book, Turing worked
on a lot of very central topics.

Turing’s work [14] on the Entscheidungsproblem
(the decision problem for validity in first-order logic)
is discussed in several Chapters in the book. One
Chapter makes it seem like Turing did the most and
Gödel a relatively minor amount, but Rod Downey’s
Chapter gives the view that the Entscheidungsprob-
lem had arguably already been solved before Turing.
In any case, Gödel showed that any computable ax-
iom system gives an incomplete set of theorems, thus
absent an algorithm for which new axioms to add, it is
clear that there can be no algorithm to decide which
results are true and which are false in arithmetic.
Downey discussed randomness and Turing’s work on
absolutely normal numbers and how they correspond

to finite-state random sequences. He adds that it is
not clear whether one can physically generate true
randomness. One might add that it is not clear what
that would even mean. Cornout argued that we need
a principle, namely

events of very low probability simply do not
happen,

in order to give a non-circular explanation of what
probability is [12].

Part VIII: Finale

To me this was the most interesting Part of the book.
It deals with various arguments for how the time
evolution of our physical Universe may not be com-
putable. Of course, if the universe is finite and dis-
crete then in some sense it is computable. However,
even in that scenario, as the universe is very large,
it is conceivable that the universe is not well mod-
eled as being computable, but is better thought of as
containing some random or noncomputable aspects.

Early thinking on this topic may have been moti-
vated by the idea that, surely, human minds can do
things that Turing machines cannot. In “Renewing
Philosophy” [9], Hilary Putnam argues that artifi-
cial intelligence is impossible on the basis of the work
of Pour-El and Richards [8] on non-computability in
classical physics. Next, there was the thought that
physics, with its marvelous use of higher mathemat-
ics, may contain undecidability [4]. That argument
has lost some of its shimmer [5]. Finally, at present
it seems a technological solution for achieving non-
computability is all we are left to imagine. Now it
seems that while perhaps technology based on physi-
cal systems can carry out non-Turing machine com-
putations, that seems unlikely to mean human minds
can do the same (see Figure 1).

Andréka, Németi and Székely [1] work on using
time travel (closed timelike curves) to compensate
for the lack of space (and time). In the so-called
Malament–Hogarth spacetimes one can compute for-
ever and thus solve the halting problem. Hogarth
worked on this in the 90s and Welch [21] showed that
even a larger class of problems than those solvable
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Figure 1: The impact of Turing’s work on popular
culture [20].

using the halting problem (all hyperarithmetic prob-
lems) can be solved in MH-spacetimes.

Interestingly for our times, hypercomputation us-
ing CTCs is a technological solution. Thus re-
searchers are no longer claiming nature itself, and
certainly not humans, are super-Turing-machine. For
another example, consider Christina Perri’s song
“Human” [7] with the eerie lyrics:

But I’m only human
And I bleed when I fall down
I’m only human
And I crash and I break down

Could these words have been sung a century ago?

Polish contribution

A good test of a biographical and historical book is
how it holds up in light of new information. Sir Der-
mot Turing, Turing’s nephew and author of a Chap-
ter of The Turing Guide, in 2018 published a book
X, Y & Z [19] in which he argues that Polish mathe-
maticians like Marian Rejewski and Henryk Zygalski
should get more credit and they have not gotten it
because of an exaggerated “Turing cult” [10]. To The
Turing Guide’s credit, it is indeed mentioned in the
book that the Polish mathematicians had addressed
the Enigma problem more as a pure math problem

than the British, by the time the two groups com-
pared notes. In particular, the Polish had the idea of
using machinery to decrypt machine-produced codes,
using what they called bomba (as opposed to Turing’s
Bombe). In my draft of this review, written before
the article [10] appeared, I had already noted that
The Polish were ahead of the British for a while, as
the former realized right away that the code breaking
was fundamentally a mathematical problem.

Conclusion

Overall I found this to be delightful book. It was
even inspiring, for instance with the mentions of sem-
inar topics which turned into new research directions.
Mathematicians should find a mixture of things they
already knew, things they are glad to learn, and a
couple of things they disagree with. I imagine a gen-
eral well-educated audience, especially scientists and
engineers who do not specialize in mathematics, may
enjoy the book the most.
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