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Abstract—Taylor-Fourier (TF) filters represent a powerful
tool to design PMU algorithms able to estimate synchrophasor,
frequency and rate of change of frequency (ROCOF). The
resulting techniques are based on dynamic representations of
the synchrophasor, hence they are particularly suitable to track
the evolution of its parameters during time-varying conditions.
Electrical quantities in power systems are typically three-phase
and weakly unbalanced, but most PMU measurement techniques
are developed by considering them as a set of three single-
phase signals; on the contrary, this peculiarity can be favorably
exploited to improve accuracy and reduce the computational cost.
In this respect, the present paper proposes to directly perform
the TF expansion of the space vector (SV) samples obtained from
three-phase measurements. A new paradigm allows to indepen-
dently estimate positive and negative sequence synchrophasors
along with system frequency and ROCOF, leveraging the three-
phase characteristics. Performance of the proposed technique
is assessed by using test signals inspired by standard IEEE
C37.118.1-2011, including noise as well as magnitude and phase
unbalance. Achieved results highlight the flexibility of the en-
hanced SV-based approach, which is capable to combine excellent
dynamic performance together with accurate estimation of both
positive and negative sequence components.

Index Terms—Phasor Measurement Unit (PMU), Synchropha-
sor estimation, Frequency, Rate of Change of Frequency (RO-
COF), Voltage Measurement.

I. INTRODUCTION

Phasor Measurement Units (PMUs) are synchronized de-
vices intended to measure amplitude, phase angle, frequency
and rate of change of frequency (ROCOF) of electrical sig-
nals in power networks. Initially designed for transmission
networks [1], they are expected to become a widespread
tool also in electric distribution systems, being considered as
promising to pave the implementation of smart grids [2] able
to automatically control the network operation based on an
accurate, fast and reliable monitoring.

PMUs label data with time-tags referred to a common
timescale (the coordinated universal time, UTC, obtained from
a GPS receiver is typically adopted), so that measurements
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collected on a wide area can be correlated and employed
even in real-time, thus enabling an accurate representation of
the operating conditions that can be exploited in grid control
applications [2].

PMU algorithms are designed to extract the fundamental
frequency component, along with the corresponding frequency
and ROCOF, coping with different conditions that may occur
in electrical signals: dynamics, harmonic and interharmonic
disturbances, rapid variations, etc.

Several algorithms have been proposed in recent literature
(see [2] for a review), based on a wide range of estimation
techniques and tailored according to specific test conditions.
Signal dynamics is particularly important, since PMUs are
designed to operate even at high reporting rates (50 frames/s
or even higher in 50 Hz systems) in order to track amplitude,
phase angle and frequency changes. The last standard for
synchrophasor measurements IEEE C37.118.1-2011 [3] (along
with its amendment [4]) introduces the concept of dynamic
synchrophasor and prescribes specific tests that can be repre-
sentative of both slow variations, like amplitude or phase angle
modulations and linear frequency ramps, and abrupt changes,
such as amplitude and phase angle steps. Limits in terms of
accuracy or dynamic response are reported for the different
test conditions.

An interesting approach to measure dynamic signal pa-
rameters was proposed in [5] where a Taylor expansion of
the phasor around the measurement instant is adopted to
better describe its time evolution (Taylor-Fourier approach,
TF), thus allowing a more accurate dynamic tracking of the
related quantities. Such model has been exploited by different
algorithms. In [6], [7], for instance, estimations are based
on the discrete Fourier transform (DFT) and the model is
employed to correct them by considering the effects due to
parameter variations. In [8] the Taylor expansion approach is
used to extend the interpolated DFT algorithm, while in [9]
a two-channel PMU algorithm based on a Taylor approach is
employed to achieve simultaneous compliance with P and M
classes requirements defined by [3], [4].

All the above algorithms are designed starting from a single-
phase signal. Recently, the idea of exploiting the typical
characteristics of three-phase quantities to define PMU algo-
rithms has been proposed. In particular, in [10] a space vector
(SV) based algorithm is introduced. The positive sequence
synchrophasor is obtained from the SV by means of an IIR
filtering stage and two least-squares FIR interpolators: a first
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one for amplitude estimation and a second one allowing phase
angle and frequency measurements. In [11], all the quantities
are derived by FIR filtering the real and imaginary parts of
the SV. In particular, frequency and ROCOF are obtained by
applying properly-designed first and second order partial-band
FIR differentiators, respectively, which allow designing algo-
rithms that are compliant with the performance classes defined
in [3] and [4]. In [12], the SV transformation is considered
as a preliminary stage for the Interpolated DFT computation,
thus allowing better estimations under off-nominal frequency
conditions.

Other works exploiting similar approaches can be found
in the literature. As an example, [13] and [14] use the SV
transformation on a stationary reference frame in order to
estimate the positive sequence phasor. On the contrary, [15]
measure the positive sequence synchrophasor with respect
to a rotating reference frame, which provides three-phase
demodulation.

In [16] conventional TF filtering and the SV approach are
combined in order to permit the estimation of positive and
negative sequence synchrophasors, frequency and ROCOF that
characterize three-phase signals with considerable reduction in
terms of computational burden.

It should be noticed that positive and negative sequence
components have very different magnitudes during typical
operation; a first consequence is that the challenge to be faced
when they have to be extracted from the complex SV signal are
extremely different in the two cases. On the one hand negative
component measurement may suffer from severe spectral
interference due to the positive sequence term acting as a
very large disturbance that have to be suppressed with strong
filtering. On the other hand, dynamic performance is much
more important as far as the positive sequence synchrophasor
estimate. Furthermore, since the spectrum of the SV signal
is far from being hermitian, there is no reason to design TF
filters having the same expansion order for the positive and
negative sequence terms.

Starting from the previous considerations, this paper pro-
poses a radically new approach using completely different
TF filters for positive and negative sequence estimations; in
turns, these filter may be characterized by different expansion
orders for the positive and negative sequence components.
The additional degrees of freedom in filter design allow a
more effective exploitation of the three-phase peculiarities of
electrical signals. For example, the proposed technique allows
to finely tune the filters to achieve an accurate and prompt
detection of unbalance [17], which is key to avoid severe
contingencies and blackouts [18].

The proposed approach is validated and discussed by means
of simulations intended to show the impact of the TF filter
design parameters on the overall measurement accuracy. This
allows highlighting the advantages and the generality of the
proposed framework for PMU algorithm design.

II. TAYLOR-FOURIER APPROACH IN THREE-PHASE
SYSTEMS

A. Conventional Taylor-Fourier Synchrophasor Estimation

As stated in the introduction, dynamic phasor measure-
ments through Taylor-Fourier filtering were proposed in [5]
to accurately track slow transients of electrical signals in
ac power system applications. In several works, this ap-
proach has been exploited to design PMU algorithms having
remarkable dynamic performance. The first step is writing
the synchrophasor model: supposing operation near the rated
frequency f0 (corresponding to the angular frequency ω0), the
time evolutions of its real and imaginary parts are slow in
the common, UTC-synchronized reference frame rotating at
the angular speed ω0. Therefore they can be represented with
truncated Taylor expansions (up to the Kth order) around the
generic measurement instant tr:

x̄(t− tr) '
K∑
k=0

X̄(k)(tr)
(t− tr)k

k!
(1)

where x̄(t− tr) is the dynamic synchrophasor while X̄(k)(tr)
represents its kth derivative in the measurement instant. The
previous expression can be rewritten by using the vector
notation. To this purpose, let us introduce the complex column
vector p̄K(tr) of the phasor derivatives and the real row vector
a:

p̄K(tr) =
[
X̄(0)(tr) X̄(1)(tr) · · · X̄(K)(tr)

]T
(2)

a(t− tr) =
[

1 t− tr · · · (t−tr)K
K!

]
(3)

where T denotes the transpose operator.
Therefore:

x̄(t− tr) ' a(t− tr)p̄K(tr) (4)

The time domain expression of the signal can be obtained
by projecting its synchrophasor on the real axis of a stationary
reference frame, as we do when the inverse Steinmetz trans-
form is applied to a phasor:

x(t− tr) '
√

2<
[
a(t− tr)p̄K(tr)e

jω0(t−tr)
]

(5)

denoting with ∗ the complex conjugate operator, (5) can be
rewritten in a more convenient form1:

x(t− tr) =

=
[

a(t− tr)ejω0(t−tr) a(t− tr)e−jω0(t−tr)
] p̄(tr)√

2
(6)

where p̄(tr) is defined as:

p̄(tr) =

[
p̄K(tr)
p̄∗
K(tr)

]
(7)

It is evident that, in general, the time domain expression
is a non-holomorphic function of the K + 1 synchrophasor
derivatives in the measurement instant tr, since it involves

1The equality symbol is used instead of similarity symbol from here on for
the sake of simplicity, thus assuming that the model holds true.
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also their complex conjugates. Estimating the synchrophasor
means inverting (6), but it is an underdetermined problem:
at least 2K + 2 independent constraints are required. To this
purpose, let us suppose to have available a N -sample window
(N odd and greater than 2K+2) of the time domain waveform
centered in tr. Assuming that such samples are collected with
a uniform interval Ts, low enough to avoid aliasing artifacts,
they can be arranged in a column vector x(tr):

x(tr) =

 x(tr + N−1
2 )Ts

...
x(tr − N−1

2 )Ts

 (8)

and the following system of equations can be set up:

x(tr) =
1√
2

[
Φ̄A Φ̄∗A

]
p̄(tr) =

1√
2
B̄p̄(tr) (9)

where:

A =

 a(N−1
2 Ts)
...

a(−N−1
2 Ts)

 (10)

Φ̄ =


ejω0

N−1
2 Ts

. . .
1

. . .
e−jω0

N−1
2 Ts

 (11)

The synchrophasor and its derivatives can be obtained by
minimizing the norm of the error between model output and
waveform samples. It requires computing the matrix H̄ as the
pseudoinverse of B̄:

ˆ̄p(tr) =
√

2(B̄HB̄)−1B̄Hx(tr) =
√

2H̄x(tr) (12)

where H denotes the Hermitian transpose operator while ˆ
indicates that the quantity is an estimate. From (12) it can be
noticed that, with this approach, measuring the synchrophasor
and its derivatives is a linear operation, corresponding to
apply a bank of FIR filters of length N (the rows of matrix√

2H̄, two for each derivative order including the zeroth)
to the time-domain signal. The order K of the expansion
and the window length N are the design parameters that
allow tailoring their frequency response functions in order to
match specific requirements. In turn, frequency and ROCOF
estimates are provided by the following formulas, that require
at first and second order expansions, respectively:

f̂(tr) = f0 +
1

2π

=
[

ˆ̄X
(1)
p (tr) · ˆ̄X

(0)∗
p (tr)

]
∣∣∣ ˆ̄X

(0)
p (tr)

∣∣∣2
R̂OCOF(tr) =

1

π

=
[

ˆ̄X
(2)
p (tr)X̄

(0)∗
p (tr)

]
2
∣∣∣ ˆ̄X

(0)
p (tr)

∣∣∣2 +

−
<
[

ˆ̄X
(1)
p (tr)

ˆ̄X
(0)∗
p (tr)

]
=
[

ˆ̄X
(1)
p (tr)

ˆ̄X
(0)∗
p (tr)

]
∣∣∣ ˆ̄X

(0)
p (tr)

∣∣∣4
 (13)

A closer look at (12) allows several, interesting consider-
ations. Reminding (7), it returns not only the synchrophasor
derivatives (first K+ 1 rows of ˆ̄p(tr)), but also their complex
conjugates (last K + 1 rows of ˆ̄p(tr)), which is redundant
information. Another closely related issue is that the estimates
of the synchrophasor and its derivatives are affected by in-
terference due to the dynamic image component when the
synchrophasor model is not exact.

B. Straightforward Extension to Three-phase Systems

For both economic and technical reasons, ac power systems
are inherently three-phase. For a given electrical quantity, the
Taylor-Fourier estimator (12) can be straightforwardly applied
to each of the three phases; adopting a matrix formulation is
more convenient. To the purpose, let us define the matrixes
Xabc(tr) and P̄abc(tr) containing the samples and the syn-
crophasor derivatives of the three phases, respectively:

XT
abc(tr) =

 xT
a (tr)

xT
b (tr)

xT
c (tr)

 P̄T
abc(tr) =

 p̄T
a (tr)

p̄T
b (tr)

p̄T
c (tr)

 (14)

where the subscript a, b or c indentifies a particular phase. In
this way, the three-phase model can be easily written:

XT
abc(tr) =

1√
2
P̄T
abc(tr)B̄

T (15)

and it can be inverted in a least squares (LS) sense to obtain
the estimates of the synchrophasor, their derivatives and their
conjugates:

ˆ̄PT
abc(tr) =

√
2XT

abc(tr)H̄
T (16)

This formulation maintains all the drawbacks of the single-
phase implementation. Furthermore, different frequency and
ROCOF estimations can be performed by applying (13) to each
of the three phases (see also [16]. However, a unique frequency
and ROCOF has to be provided for a three-phase quantity.
A straightforward yet inefficient possibility is computing the
mean of the three single-phase estimates.
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C. Symmetrical Components and Taylor-Fourier Filters

The analysis of three-phase systems is much more effective
when carried out by using the symmetrical components. To
this purpose, let us define the transformation matrix S̄ that
allows obtaining the symmetrical components from the three
phasors (ᾱ , ej2π/3):

S̄ =
1√
3

 1 ᾱ ᾱ2

1 ᾱ2 ᾱ
1 1 1

 (17)

With this formulation S̄ is unitary, hence its inverse corre-
sponds to the Hermitian transpose S̄H. The symmetrical com-
ponents transformation can be applied to the matrix ˆ̄PT

abc(tr):

ˆ̄PT
S(tr) = S̄P̄T

abc(tr) =
√

2S̄XT
abc(tr)H̄

T (18)

and, by performing simple considerations, it can be noticed
that the resulting matrix ˆ̄PT

S(tr) shows the following structure:

ˆ̄PT
S(tr) =

 ˆ̄pT
+(tr) ˆ̄p∗T

− (tr)
ˆ̄pT
−(tr) ˆ̄p∗T

+ (tr)
ˆ̄pT
0 (tr) ˆ̄p∗T

0 (tr)

 (19)

where ˆ̄ps(tr) with s ∈ {+,−, 0} is the column vector
containing the estimates of the positive, negative or zero
sequence synchrophasors together with the corresponding K
derivatives. Hence, adopting the usual notation:

ˆ̄ps(tr) =
[

ˆ̄X
(0)
s (tr)

ˆ̄X
(1)
s (tr) · · · ˆ̄X

(K)
s (tr)

]T
(20)

where ˆ̄X
(k)
s (tr) is the generic sequence p synchrophasor kth

derivative.
Looking at (19) it becomes evident that the first two rows

of ˆ̄ps(tr) carry the same information. In particular, when the
zero sequence component is a priori negligible or not present
(e.g. line voltages), the first row synthesize all the parameters
describing the dynamic phasors of the three-phase quantity.
Using (17), (18), (19) it can be written:[

ˆ̄pT
+(tr) ˆ̄p∗T

− (tr)
]

=

√
2

3

[
1 ᾱ ᾱ2

]
XT
abc(tr)H̄

T

(21)
In (21) the N samples of the SV related to the three phase

quantity can be recognized. Defining:

ˆ̄pSV (tr) =

[
ˆ̄p+(tr)
ˆ̄p∗
−(tr)

]
(22)

x̄T
SV (tr) =

√
2

3

[
1 ᾱ ᾱ2

]
XT
abc(tr) (23)

therefore (21) can be expressed as:

ˆ̄pSV (tr) = H̄x̄SV (tr) (24)

The previous equation applies the Taylor-Fourier expansion
to the SV signal, performed by inverting the following expres-
sion in the LS sense:

x̄SV (tr) = B̄p̄SV (tr) (25)

This approach features many advantages with respect to
separately processing the phase signals as in the previous
subsection. First of all, no redundant data is returned by (24),
since, when looking at the SV, it is a linear, holomorphic
function of the positive and the conjugate of the negative
sequence synchrophasors. Several applications only require
to measure the positive sequence synchrophasor: in this way
it is directly obtained with clear advantages in terms of
computational cost, since three single-phase estimations are
avoided. Furthermore, frequency and ROCOF of a three-
phase quantity are typically obtained starting from the time
evolution of the phase angle of the fundamental, positive
sequence synchrophasor. In fact, the reference P and M class
methods proposed by [3], [4] adopt this definition. Finally, it
should be noticed that the positive sequence synchrophasor
carries most of the information about the three-phase quantity
because of the typically weak unbalance levels in power
systems. Therefore, supposing that the phase signals are purely
sinusoidal, the estimate of the positive sequence synchrophasor
is only affected by interference with the negative sequence
component, which is surely much lower in amplitude. In this
respect, a single-phase estimation is much more critical, since
it may suffer from interaction with the large image component.

D. Taylor Fourier Filters of the Space Vector

In the previous paragraph, it has been shown how the
positive and negative sequence synchrophasors (and their
derivatives) can be estimated by applying a Kth order Taylor-
Fourier filter bank to the SV samples. The results are the
same as those obtained by performing three Taylor-Fourier
transforms of the single-phase signals (with the same order
K) and then computing the symmetrical components thanks
to the Fortescue transformation; however, the computational
burden is considerably reduced. On the other hand, starting
from single-phase quantities implies that the expansion orders
of the positive and negative sequence synchrophasors must be
the same. This constraint can be removed by thinking in terms
of SV signal while reminding the relationship with positive and
negative sequence dynamic synchrophasors, modeled with K+

and K− expansion orders respectively. Therefore, let us define:

p̄s(tr) =
[
X̄

(0)
s (tr) X̄

(1)
s (tr) · · · X̄

(Ks)
s (tr)

]T
(26)

as(t− tr) =
[

1 t− tr · · · (t−tr)Ks

Ks!

]
(27)

with s ∈ {+,−}. Using the relationship between symmetrical
components synchrophasors and SV, the model results:

x̄SV (t− tr) = a+(t− tr)p̄+(tr)e
jω0(t−tr)+

+ a−(t− tr)p̄∗
−(tr)e

−jω0(t−tr) =

=
[

a+(t− tr)ejω0(t−tr) a−(t− tr)e−jω0(t−tr)
]
p̄SV (tr)

(28)

where the last term is obtained introducing p̄SV (tr) ,[
p̄T
+(tr) p̄H

−(tr)
]T

and defining x̄SV (tr) (N sample win-
dow of the SV signal centered in tr) as in (22) and (23):

x̄SV (tr) =
[
Φ̄A+ Φ̄∗A−

]
p̄SV (tr) = B̄±p̄SV (tr) (29)
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where:

As =

 as(
N−1
2 Ts)
...

as(−N−1
2 Ts)

 (30)

with s ∈ {+,−}. Assuming that the usual hypothesis are
met and that N ≥ K+ + K− + 2, the previous problem is
overderdetermined and B̄± has a left pseudoinverse H̄± so
that (29) can be solved in the least squares sense as follows:

p̄SV (tr) = H̄±x̄SV (tr) =
(
B̄H

±B̄±
)−1

x̄SV (tr) (31)

H̄± contains the bank of FIR filters that allows obtaining
ˆ̄pSV (namely the estimate of p̄SV ) for each window of
SV samples, being (24) formally identycal to (31). The first
K+ + 1 rows of H̄± allow computing the positive sequence
synchrophasor (and its derivatives) while the last K− + 1
rows permit evaluating the conjugate of the negative sequence
synchrophasor (together with its derivatives).

Now, it should be noticed that the challenges to be faced
when the positive or negative sequence synchrophasor have
to be measured are very different. For example, the signal to
noise ratio and the spectral interference may heavily affect the
estimation of the negative sequence component, while their
impact is not so pronounced as for the positive sequence
synchrophasor measurement. On the one hand, if frequency
and ROCOF have to be measured, at least a second order
expansion of the positive sequence synchrophasor is required;
on the other hand this is not mandatory as far as the neg-
ative sequence synchrophasor. Furthermore, good dynamic
performance is needed to follow the evolution of the positive
sequence synchrophasor, while usually it does not apply to
the negative sequence synchrophasor. It should be noticed that
generally increasing the order of the expansion allows better
dynamic performance (flatter bandpass) but at the expense of
lower frequency selectivity, which makes the estimate more
sensitive to spectral interference and broadband noise.

Therefore, an interesting solution that allows a more flex-
ible tuning of the algorithm is to employ different models
(thus different Taylor Fourier expansion orders) for estimating
the positive and the negative synchrophasor. Thanks to the
proposed approach, it is possible to choose a couple of
expansion orders K++ and K+− that will be used to obtain
the filters for estimating the positive sequence synchrophasor
and its two first derivatives (first three rows of the resulting
pseudoinverse H+). At the same time, a potentially different
couple of expansion orders K−+ and K−− can be employed
to compute the filters for estimating the (conjugate of the)
negative sequence synchrophasor (namely the first row of the
pseudoinverse H−).

III. TESTS AND RESULTS

Hybrid SV-TF algorithms proposed in Section II-D have
been tested and compared by means of numerical simu-
lations under Matlab environment. A sampling frequency
fs = 10 kHz is adopted and a 50-Hz system is considered
(f0 = 50 Hz). Synchronization error is neglected since
it would affect every algorithm in the same way, namely

producing a phase-angle error due to the clock offset (typical
GPS time error is < 100 ns and timebase error < 1µs).

Different TF filters can be defined according to the selected
expansion orders (namely K++ and K+− when focusing on
the positive-sequence estimation) and window length. In the
following, the smallest odd number of samples including an
integer number of nominal cycles is used.

Synchrophasor, frequency and ROCOF are evaluated
sample-by-sample as if a reporting rate equal to fs were
considered. The performance of the algorithms is quantified
and expressed in terms of total vector error (TVE) %, absolute
frequency error (FE) and absolute ROCOF error (RFE) for
synchrophasor, frequency and ROCOF estimations, respec-
tively, as defined by [3].

Algorithms are tested with different input signals, covering
both steady-state and dynamic conditions; maximum TVE, FE
and RFE are computed in each test. Since the aim is assessing
algorithm performance and highlighting the impact of design
parameters, the test signals are only inspired by those of the
compliance tests in IEEE C37.118.1 (and IEEE C37.118.1a)
[3], [4], without in any way claiming to be exhaustive with
respect to P or M class requirements. While in [16] the focus
was about the advantages of a three-phase TF implementation,
in this paper the generalization of the model allowed by the
SV approach is considered in order to show how the addi-
tional degrees of freedom can be exploited. According to this
purpose, it is more useful to test the algorithm performance
under specific yet realistic conditions, thus including also the
presence of noise and unbalance which are typically neglected
by the relevant standards.

Firstly, following the achievements of Section II, a dy-
namic test is performed. Three-phase, amplitude modulated
signals are applied; sinusoidal modulation having frequency
fm ∈ [0, 5] Hz (with a step of 0.1 Hz) is adopted. The generic
expression of the test signal is given by:

xabc(t) =
√

2X (1 + xm(t)) · <
(
ej2πf0t

[
1 ᾱ2 ᾱ

]T)
(32)

where xabc(t) is the vector of phase signals, X is the common
rms magnitude and:

xm(t) = kx cos (2πfmt) (33)

kx represents the amplitude modulation depth; the highest
value considered by [4] has been adopted, thus kx = 0.1.

Table I shows the maximum TVE (for positive sequence
synchrophasor estimation), FE and RFE values for two mod-
ulation frequency ranges ([0, 2] Hz and [0, 5] Hz, respectively)
when the algorithm is implemented with different positive
sequence expansion orders; window lengths corresponding
to 2 or 3 nominal cycles are used. The negative sequence
component is either expanded to the same order as the positive
one (K+− = K++) or excluded from the model. All the errors
are low and only slight advantages are obtained by increasing
K++. It is interesting to notice that considering the negative
sequence component does not give significant improvements.
This perfectly reflects the considerations performed in Section
II, since when a balanced three-phase input is acquired, no
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negative sequence component is present and thus, a single-
sideband SV signal model holds. The slight improvement
achieved by including also the negative sequence contribution
is due to undermodeling: the model error due to the truncated
TF expansion is partially embedded by the negative sequence
term.

TABLE I
MAXIMUM TVE, FE, RFE UNDER AMPLITUDE MODULATION

max
fm

Orders Cycles TVE
[%]

FE
[mHz]

ROCOF
[Hz/s]

K++ K+−

2

2 2 2 1.4 · 10−4 3.0 · 10−3 1.9 · 10−3

2 - 2 1.6 · 10−4 ~0 ~0

3 3 2 1.4 · 10−4 2.3 · 10−3 3.3 · 10−5

3 - 2 1.6 · 10−4 ~0 ~0

4 4 2 8.2 · 10−7 0.9 · 10−5 1.5 · 10−4

4 - 2 0.9 · 10−7 ~0 ~0

2 2 3 0.8 · 10−3 3.3 · 10−3 1.5 · 10−3

2 - 3 0.8 · 10−3 ~0 ~0

3 3 3 0.7 · 10−3 2.7 · 10−3 4.3 · 10−5

3 - 3 0.8 · 10−3 ~0 ~0

4 4 3 0.1 · 10−5 3.0 · 10−5 4.1 · 10−5

4 - 3 0.1 · 10−5 ~0 ~0

5

2 2 2 5.4 · 10−3 0.12 3.1 · 10−2

2 - 2 6.2 · 10−3 ~0 ~0

3 3 2 5.3 · 10−3 0.09 3.2 · 10−3

3 - 2 6.2 · 10−3 ~0 ~0

4 4 2 7.9 · 10−5 2.3 · 10−3 1.4 · 10−2

4 - 2 2.1 · 10−5 ~0 ~0

2 2 3 2.9 · 10−2 0.12 2.3 · 10−2

2 - 3 3.0 · 10−2 ~0 ~0

3 3 3 2.8 · 10−2 0.12 4.1 · 10−3

3 - 3 3.0 · 10−2 ~0 ~0

4 4 3 0.2 · 10−3 7 · 10−3 3.8 · 10−3

4 - 3 0.2 · 10−3 ~0 ~0

Similar results can be obtained when phase angle modu-
lation is considered. The modulating signal is still sinusoidal
and its frequency fm in swept in the same ranges as before.
Table II shows that there are significant values only for FE
and RFE, particularly when higher modulation frequencies
are considered. Results reflect the above discussion, since
errors are very similar notwithstanding the different models
adopted. Once again, measurement improvements are linked
to the order of K++, which extends the filters bandwidths.

It should be noticed that the choice of the TF expansion
orders have significant impact in the presence of broadband
noise which typically affects the samples. Figs. 1 and 2 show
the results when steady-state signals at the rated frequency
with superimposed uniform noise are applied. The root mean
square errors of frequency and ROCOF estimations (FErms

and RFErms, respectively) are reported at increasing noise
levels, with signal to noise ratios (SNRs) in the range 40÷90

TABLE II
MAXIMUM TVE, FE, RFE UNDER PHASE MODULATION

max
fm

Orders Cycles TVE
[%]

FE
[mHz]

ROCOF
[Hz/s]

K++ K+−

2

2 2 2 1.7 · 10−4 1.2 1.1 · 10−2

2 - 2 1.5 · 10−4 1.3 1.1 · 10−2

3 3 2 1.3 · 10−4 2.0 · 10−3 1.1 · 10−2

3 - 2 1.5 · 10−4 1.6 · 10−3 1.1 · 10−2

4 4 2 9.8 · 10−7 1.3 · 10−3 1.1 · 10−4

4 - 2 1.3 · 10−7 1.8 · 10−3 0.1 · 10−4

2 2 3 7.2 · 10−3 2.8 2.5 · 10−2

2 - 3 7.5 · 10−4 2.9 2.6 · 10−2

3 3 3 6.9 · 10−4 8.3 · 10−3 2.4 · 10−2

3 - 3 7.5 · 10−4 8.2 · 10−3 2.6 · 10−2

4 4 3 1.5 · 10−6 7.9 · 10−3 7.1 · 10−5

4 - 3 1.4 · 10−6 7.9 · 10−3 5.5 · 10−5

5

2 2 2 5.0 · 10−3 19 0.42

2 - 2 5.8 · 10−3 20 0.44

3 3 2 4.9 · 10−3 0.14 0.41

3 - 2 5.8 · 10−3 0.16 0.44

4 4 2 1.0 · 10−4 0.13 1.1 · 10−2

4 - 2 0.3 · 10−4 0.17 0.3 · 10−2

2 2 3 2.7 · 10−2 42 0.96

2 - 3 2.8 · 10−2 43 0.98

3 3 3 2.6 · 10−2 0.74 0.94

3 - 3 2.8 · 10−2 0.78 0.98

4 4 3 2.6 · 10−4 0.75 0.13

4 - 3 3.4 · 10−4 0.83 0.14

dB. Typical SNR values of acquired signals are between 60
and 80 dB (e.g. 72 dB corresponds to 12 effective bits) but
sometimes they can be even lower [19]. A wider range has
been explored in order to study the behavior also in case of
extremely good or very poor signal to noise ratio. FErms and
RFErms are employed since maximum errors can be highly
uncertain because of noise. The analysis is focused on a 2-
cycle window and K++ values of 2 and 4 are considered.

For all the test cases, errors decrease by including only the
positive sequence term in the SV model. The reduction of
FErms ranges from 5.8 % for order 2 to 13.3 % for order 4,
while that of RFErms is about 6.8 % for order 2 and 29.6 % for
order 4. Smaller improvements can be achieved also for TVE
(up to 7.1 %), but they are not reported for the sake of brevity.
As expected, wideband noise rejection is strictly linked to the
equivalent noise bandwidth of each filter, thus using different
expansions orders for positive and negative sequence terms
allows enhancing robustness with respect to noise.

All together, the reported results show that thanks to the
flexibility of the proposed approach it is possible to follow
the positive sequence synchrophasor, frequency and ROCOF
dynamics while also guaranteeing a better immunity to dis-
turbances. These considerations apply to all the tests of the
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Fig. 1. Impact of broadband noise: root mean square FE achieved by SV-TF
with different expansion orders.
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Fig. 2. Impact of broadband noise: root mean square RFE achieved by SV-TF
with different expansion orders.

standard IEEE C37.118.1 [3], since PMU compliance tests
are designed only for positive-sequence signals.

Now, it is very interesting to investigate the performance
achieved with unbalanced three-phase signals which may oc-
cur in real-world applications, in particular when distribution
systems are considered. Tests were performed at both nominal
and off-nominal frequency with different types of unbalance.
Since standards [3], [4] consider only positive sequence sig-
nals, these tests have been inspired by the unbalanced signals
suggested in the guide IEEE C37.242 [20]. The following
single-phase variations are applied:

• Magnitude variations δm: ±10 % (corresponding to un-
balance levels of 3.2 % and 3.4 %)

• Phase-angle variations δφ: ±10° (corresponding to an
unbalance level of 5.8 %)

where (1 + δm) and δφ are, respectively, the amplification
factor and the phase angle deviation applied to phase a.
Table III reports the maximum TVE, FE and RFE for two
frequencies and δm = +10 % when different orders are
used (2-cycle algorithms). 49 Hz and 50 Hz frequencies are

considered, as suggested by [20]. It is clear that a purely
positive-sequence model K++ > 0 is no longer sufficient to
match the SV and thus the errors become unacceptable. On
the other end, a first order expansion (K+− = 1) is suitable
to properly consider the negative sequence component even
under off-nominal frequency conditions.

TABLE III
MAXIMUM TVE, FE, RFE UNDER MAGNITUDE UNBALANCE

(δm = +10 %)

frequency Orders TVE
[%]

FE
[mHz]

ROCOF
[Hz/s]K++ K+−

50

2 2 ~0 ~0 ~0

2 1 ~0 ~0 ~0

2 - 0.16 61 4.0

4 4 ~0 ~0 ~0

4 1 ~0 ~0 ~0

4 - 0.49 130 48.2

49

2 2 1.1 · 10−4 1.5 1.6 · 10−3

2 1 1.5 · 10−3 1.9 3.6 · 10−2

2 - 0.12 62 1.5

4 4 2.8 · 10−7 3.7 · 10−7 2.2 · 10−7

4 1 2.5 · 10−3 4.5 · 10−4 1.3 · 10−4

4 - 0.47 138 42.8

Since TF filtering is based on least squares fitting, more
accurate estimations are achieved when the model is able
to match the actual signal. In Figs. 3 and 4 the FErms and
RFErms results for a +10 % magnitude variation with a 60 dB
noise are considered in the frequency range [49, 51] Hz. In
particular, the errors for K++ = 4 are reported with different
values of K+−. The configuration {K++,K+−} = {4, 1}
gives best results for both FE and RFE with maximum error
reductions with respect to the configuration {4, 4} of about
12 % and 29 %, respectively. It is possible to notice that the
advantages with respect to the configuration {4, 2} become
less relevant as the frequency offset increases; the reason
lies in the trade-off between stopband flatness around −f0
(that allows reucing interference with the negative sequence
term) and wideband noise filtering. Similar results have been
obtained for TVErms, but error reduction is lower (~7 %). Fig.
5 reports the results for a 10° variation of phase a signal
(only RFErms is reported for the sake of brevity); the previous
considerations for amplitude unbalance apply also in this case.
The advantages of {4, 1} are evident for frequencies close to
f0 (RFErms reduces up to 29 %); when a larger frequency
deviation occurs, the effect of the negative sequence infiltration
becomes more important, hence a larger K+− (e.g. 2) allows
reducing its impact.

The algorithm presented in Section II also permits to
estimate the negative sequence synchrophasor. In this context
the definition of the SV model becomes even more important,
since, as explained in previous sections, X̄− is much lower
than X̄+, thus resulting in a increased sensitivity to interfer-
ence with the positive sequence term and disturbances. Table
IV shows the TVErms values for the negative sequence estima-
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Fig. 3. Root mean square FE achieved by SV-TF with different negative
sequence component expansion orders under magnitude unbalance, 60 dB
SNR.
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Fig. 5. Root mean square RFE achieved by SV-TF with different negative
sequence component expansion orders under phase unbalance, 60 dB.

tion (2-cycle window) in the above conditions (δm = +10 %
and SNR = 60 dB) for different {K−+,K−−} couples. It is
important to notice that, as expected, TVE values are much
higher than those considering positive sequence measurements.
Choosing a suitable filter configuration has a dramatic impact
on the accuracy: with {4, 1}, for instance, it is possible to
get at least a 30 % error reduction at the rated frequency with
respect to configurations resulting in similar TVE errors at
49 Hz.

The accuracy in estimating the negative sequence syn-
chrophasor have been compared to that achieved by using
the well-known standard P-class method (P-C37.118.1) in [3]
having the same two-cycle length. The negative sequence
synchrophasor has been obtained by applying the Fortescue
transformation to the estimated single-phase synchrophasors.
For the above magnitude unbalance at 49 Hz, with a SNR
= 60 dB, P-C37.118.1 results in RFErms ' 0.860 Hz/s and
TVErms ' 0.383 % for the negative sequence synchrophasor,
which is much larger than almost all the configurations listed
in Table IV. From another viewpoint, it is important to recall
that the standard P-class method achieves maximum TVE
errors which are at least two orders of magnitude larger than
those reported in Tables I and II under amplitude and phase
modulations.

Finally, tests have been performed also by considering
signals acquired with a real data acquisition stage. Since
real-world signals lack of ground-truth reference, algorithms
are verified by using signals generated with an OMICRON
CMC256Plus calibrator [21] synchronized with the IRIG-B
output of CMIRIG-B interface [22] fed by a GPS receiver
(±1µs overall synchronization accuracy). A typical PMU
input level of 100 Vrms is used as reference voltage and thus
a 300 Vrms NI-9225 card [23] is employed with fs = 50 kHz.
As an example, the results in terms of FErms, for the +10%
magnitude unbalance and 49 Hz frequency, are 0.6 mHz and
1.2 mHz for the configurations {K++,K+−} = {4, 1} and
{4, 4}, respectively. These values fully confirm the considera-
tions derived from simulation results in Fig. 3. It is important
to recall that the calibrator gives a stable frequency with a
0.5 ppm accuracy, corresponding to less that 0.025 mHz at
nominal frequency.

IV. CONCLUSIONS

In this paper, a general framework to merge two powerful
approaches (TF and SV) for PMU algorithm design in three-
phase systems has been presented.

TF filters have been applied to estimate the positive and neg-
ative sequence synchrophasors from the time domain samples
obtained by applying the SV transformation. The proposed
technique allows an independent estimation of the positive and
negative sequences components by exploiting different Taylor
expansions. This represents a very important outcome since
the measurement challenges to be faced in the two cases are
completely different.

Simultation results have shown that the proposed method al-
lows following positive and negative sequence synchrophasors,
frequency and ROCOF dynamics with remarkable accuracy
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TABLE IV
ROOT MEAN SQUARE TVE OF X̄− ESTIMATION UNDER MAGNITUDE

UNBALANCE (δm = +10 %). SNR = 60 dB

Orders TVE
[%]

K−+ K−− 50 Hz 49 Hz

1 1 0.194 0.443

2 2 0.291 0.293

2 1 0.194 0.314

3 3 0.295 0.295

3 2 0.294 0.294

3 1 0.198 0.303

4 4 0.381 0.379

4 3 0.306 0.305

4 2 0.305 0.305

4 1 0.202 0.290

both in presence of noise and under off-nominal frequency
conditions. The higher flexibility allowed by the three-phase
approach permits better performance with respect to the con-
ventional per-phase TF expansion.

The proposed framework is intended to permit a fine-
tuning of PMU design that allows a better exploitation of
the peculiarities of three-phase signals, which is extremely
promising for many important applications requiring accurate
estimates of the symmetrical components.
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