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Abstract
This paper aims at constructing a stochastic model for the hysteretic behaviour of the nonlinear bit-rock interaction of a
drill string under torsional vibrations. The proposed model takes into account the fluctuations of the stick-slip oscillations
observed during the drilling process. These fluctuations are modelled by introducing a stochastic process associated
with the variations of the torque on bit, which is a function of the bit speed. The parameters of the stochastic model
are calibrated with field data. The response of the proposed stochastic model, considering the random bit-rock rock
interaction, is analyzed, and statistics related to the stability of the drill string are estimated.
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1 Introduction

Drill string is a slender structure used for exploitation of oil
reserves. A top drive rotates the system at the top, which
transmits the torque to the bit that drills the rock. The design
and analysis of drill strings are usually performed using a
computational model. Several drill string models have been
proposed in the literature. The complete dynamics of a drill
string includes axial, torsional, and lateral vibrations Tucker
and Wang C (1999); Ritto et al. (2009). In addition, in
the development of directional drilling, advanced features
taking into account the horizontal dynamics analysis might
be necessary Ritto et al. (2013); Cunha et al. (2015).
Torsional control is also an issue Patil et al. (2013); Ritto
and Ghandchi-Tehrani (2018).

The present paper focuses on the analysis of the torsional
vibration of the drill string, which is nonlinear due to the bit-
rock interaction. Field data (Pavone and Desplans (1994);
Ritto et al. (2017); Real et al. (2018)) show that the torque
on bit varies nonlinearly with the bit speed. Furthermore,
these observations show hysteretic cycles which fluctuate
during the drilling process, Real et al. (2018). Torsional
vibration is a problem in drill string dynamics, especially
when its length reaches thousands of meters. In some
conditions, the lateral and axial vibrations are small, and
the torsional vibration is the main concern (Ritto et al.
(2017)); it might lead to stick-slip oscillations, Kyllingstad
nd Halsey (1988); Leine et al. (1998); Tucker and Wang
C (1999); Richard and Detournay (2004); Khulief et al.
(2007); Kreuzer and Steidl (2012); Patil et al. (2013);

Hong et al. (2010). In this severe conditions, the bit sticks
(zero speed) then slips (high speed), and that might cause,
for instance, measurement equipment failure, low rate of
penetration, bit damage, and fatigue Wu et al. (2012).

In Real et al. (2018), the authors have observed
fluctuations of the nonlinear bit-rock interaction law during
the drilling. These fluctuations, which are affected by the
variation of soil mechanical properties during the drilling,

have to be taken into account in order to study the robust
stability of the drill string. The goals of the present paper
are (1) to characterize and construct a probabilistic model
of these fluctuations and then (2) to estimate the probability
of instability of the drill string including the stochastic non-
linear bit-rock interaction model. In the literature, only few
papers are concerned with the probabilistic modelling of the
bit-rock interaction. In Spanos et al. (2002), a stationary
random process is considered to model lateral forces at the
bit. Recently, Qiu et al. (2016, 2017) analysed the random
drill string dynamics considering random white noise for the
axial force and for the bit-rock interaction coefficients. In
Ritto and Sampaio (2012)), uncertainties are considered in
the bit-rock interaction parameters. In Ritto et al. (2009),
an adaptation of the nonparametric probabilistic approach
Soize (2000) is proposed to model globally the uncertainties
in the bit-rock interaction model. For the two later referred
papers, the probabilistic models are not time-dependent,
i.e., the bit-rock interaction model is random but does
not vary during the drilling. Constructing such stochastic
computational models including the stochastic fluctuations
of the bit-rock interaction forces would be helpful for robust
optimization of the drill string Ritto et al. (2010).
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In the present work, a continuous nominal model for
the torsional dynamics of a drill string is discretized by
means of the finite element method (Jansen (1993); Khulief
and Al-Naser (2005); Ritto and Sampaio (2012)), and a
reduced-order model is constructed using the elastic modes
of the linear structure. The bit-rock interaction is modelled
as a non-linear torque applied at the bit. This simple
model enables the analysis of the stability of the system.
Then a stochastic non-linear bit-rock interaction model is
proposed by introducing a multiplicative stationary Gaussian
stochastic process. Field data are used to calibrate the
power-spectral density function of this stochastic process.
Once calibrated, independent realizations are generated and
statistics of the drill string dynamical response are estimated
using the Monte Carlo method.

The paper is organized as follows. Section 2 describes
the nominal drill string computational model, including
the nonlinear bit-rock interaction. Section 3 presents the
proposed probabilistic model for the bit-rock interaction,
which is modelled as a nonstationary stochastic process
to take into account its stochastic fluctuations during the
drilling. The numerical results are presented in Section 4,
where deterministic and stochastic dynamical responses are
analysed. The last section brings the concluding remarks.

2 Deterministic model for the drill string

BHA

 drill 
pipes

Figure 1. General scheme of a drill string.

Figure 1 presents a scheme of the torsional system
considered in the analysis. A vertical wellbore, with only
torsional vibrations, is taken into account. The system is
composed of drill pipes (about 5,000 meters) and the bottom
hole assembly (BHA, about 400 meters). In the present paper
lateral and axial vibrations are not modelled. A pure torsional
model might give good results if axial and lateral vibrations
are small, Ritto et al. (2017).

A constant angular speed Ω is imposed at the top and
a reaction torque acts at the bottom due to the bit-rock
interaction. In this paper, the torsional dynamics of the drill
string is analysed by solving the differential equation:

ρJ
∂2θ(x, t)

∂t2
−GJ ∂

2θ(x, t)

∂x2
= T (x, t), (1)

where the space x and the time t are the independent
variables, θ(x, t) is the angular rotation, T (x, t) is the torque
per unit length, J is the cross sectional polar area moment of
inertia, and ρ and G are the mass density and shear modulus
of the material of the column. The boundary conditions
related to the imposed angular speed at the top are given by{

θ(0, t) = Ωt

θ̇(0, t) = Ω
, (2)

and the initial conditions are

θ(x, 0) = 0, θ̇(x, 0) = Ω , (3)

As proposed by Real et al. (2018), the rotational
displacements about a rotating frame is considered. Let
θrel(x, t) be the relative torsional degree of freedom in the
rotating frame associated to the top sectional area (at x = 0).
We introduce the absolute rotational displacement as

θ(x, t) = Ωt+ θrel(x, t). (4)

The system is discretized by means of the finite element
model, where linear shape functions are applied. Let u(t)
be the vector of θrel(x, t) nodal values related to the drill
string mesh. Note that, in the rotating frame, the angular
displacement is fixed at the top because there is no relative
displacement between the top drive and the first node, at the
top of the drill string. Adding a proportional damping to the
system, the vector u(t) is solution of the matrix equation

[M ]ü(t) + [D]u̇(t) + [K]u(t) = T(u̇(t), ü(t))), (5)

where [M ] is the mass matrix, [D] is the damping matrix,
[K] is the stiffness matrix, and T(u̇(t), ü(t)) is the torque
vector. According to Eqs. (3) and (4), the initial conditions
in the rotating frame read

u(0) = 0, u̇(0) = −Ω1. (6)

where 1 = [In×1] a vector with all entries equal to one.
All the components of the torque vector are zero except
the one corresponding to the drill bit node (at x = L). For
this node, the nonlinear torque applied to the bit is denoted
by Tbit(θ̇bit(t), θ̈bit(t)) and will be described in the next
section.

The normal modes of the conservative homogeneous
system are used to construct a reduced-order model. The m
first eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λm associated with
the elastic modes {ϕ1,ϕ2, . . . ,ϕm} are solution of the
generalized eigenvalue problem

[K]ϕ = λ[M ]ϕ . (7)

The reduced-order model is obtained by projecting the full
computational model on the subspace spanned by the m first
elastic modes calculated using Eq. (7). Let [Φ] be n×m
matrix whose columns are the m first elastic modes. We can
then introduce the following approximation

u(t) = [Φ] q, (8)

in which q is the vector of the m generalized coordinates
which are solution of the reduced-order system

[M̃ ]q̈(t) + [D̃]q̇(t) + [K̃]q(t) = T̃(q̇(t), q̈(t)), (9)
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with the initial conditions

q(0) = 0, q̇(0) = −Ω [M̃ ]−1[Φ]T [M ]1. (10)

In these equations, [M̃ ] = [Φ]T [M ] [Φ], [D̃] = [Φ]T [D] [Φ]

and [K̃] = [Φ]T [K] [Φ] are m×m mass, damping and
stiffness reduced-order matrices, and T̃(q̇(t), q̈(t)) =
[Φ]T T([Φ]q̇(t),Φ]q̈(t)) is the vector of the reduced-order
generalized torque. The set of equations (8), (9) and (10) can
be solved using commonly used integration schemes, such
as the Euler or the Runge-Kutta schemes, for instance.

3 Probabilistic model for the bit-rock
interaction with hysteretic effects

Figure 2 shows the field data (Ritto et al. (2017); Real et
al. (2018)) that will support the proposed model presented
in this section. The downhole information used in this paper
was acquired using a downhole mechanics measurement unit
capable of providing both real-time measurement through
mud telemetry and continuously recorded high-frequency
data throughout the run. The sub, installed at the BHA above
the bit, contains a suite of 19 sensors sampled at 10,000 Hz
and downsampled and filtered prior to recording at 50 Hz.
Following is a list of 50-Hz data recorded in this sub: triaxial
accelerations; gyro rpm; magnetometer rpm; axial loading;
torque; bending moment (Shi et al. (2016)).

The field data shown in Fig. 2 was measured at the
BHA, very close to the drill bit, Shi et al. (2016). A
window average smoothing was used to filter measurements
noise and obtain the stick-slip cycles shown in the figure.
The figure shows the variation of the torque on bit with
respect to the bit speed; and also the bit speed as a function
of time. A deterministic bit-rock interaction model that
takes into account the observed hysteresis (non-reversibility)
effect was proposed by Real et al. (2018). The bit-
rock interaction mechanism is complex, but its overall
behaviour has similarities with friction models; Hess and
Soom (1990); Olsson et al. (1998); Wojewoda et al.

(2008). The deterministic hysteretic bit-rock interaction
model considered in the present paper reads (Real et al.
(2018))

T bit(θ̇bit, θ̈bit) = b0

(
tanh(b1θ̇bit) +

b2θ̇
b4
bit

1 + b3θ̇
b5
bit

(1 +H(θ̇bitθ̈bit)),

)
,

(11)
for θ̇bit > 0, in which b0, b1, b2, b3, b4, b5 are positive
parameters to be fitted such that 0 < b4 < b5. The bit-rock
interaction model contains a hysteretic function H , which is
a function of the bit angular acceleration (to separate forward
and backward phases) and which is defined by

H(θ̇bit, θ̈bit) = β1 tanh(β2θ̈bit) , (12)

where β1 and β2 are two positive parameters. Note that the
hysteretic cycle is limited (1± β1), and if H equals to zero
there is no hysteresis.

In Real et al. (2018), the parameters of this bit-rock
interaction model have been calibrated such that it fits
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Figure 2. Field data stick-slip cycles: measured torque T exp
bit

versus the bit speed θ̇bit (top), and bit speed versus time
(bottom).

with the mean field data cycle. The optimal parameters
are b0 = −3478, b1 = 938, b2 = 2.56, b3 = 0.38, b4 = 0.78,
and b5 = 1.1, β1 = 14%, β2 = 10.6.
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Figure 3. Bit-rock interaction: field data (black), mean field data
cycle (green) and bit-rock interaction model with hysteresis
(red).

Figure 3 compares the field data with the deterministic
model. It can be seen that, in average, the bit-rock interaction
model, Eq.(11), presents a reasonable good fit comparing
to the field data mean cycle. Nevertheless, it is noticed a
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considerable time fluctuation of the field data cycles. Part
of this fluctuation is explained by the variation of the soil
mechanical properties during the drilling. The probabilistic
modelling of this fluctuation is the objective of this paper.

If we take a close look at the field data, we notice that
the torque on bit varies from about 7 to 10.5 kNm, when
the bit speed is close to 1 rad/s. For higher speeds, 20
rad/s, the torque on bit varies from about 4 to 5.8 kNm.
The distance between the higher and lower values is very
different, depending on the bit speed: 3.5 and 1.8 kNm. But,
for both speeds the torque on bit is varying plus or minus
20%. Therefore, the present paper proposes to take into
account the stochastic fluctuations of the bit-rock interaction
model by including a multiplicative stochastic process to the
deterministic model:

Tbit(θ̇bit(t), θ̈bit(t)) = T bit(θ̇bit(t), θ̈bit(t))(1 + η(t)),
(13)

where η(t) is a centred stochastic process η(t) which can be
rewritten as

η(t) =
Tbit(θ̇bit(t), θ̈bit(t))

T bit(θ̇bit(t), θ̈bit(t))
− 1. (14)

The experimental stochastic process ηexp(t) can be
computed using Eq. (14) and the field data related to the
torque on bit. This stochastic process is shown in Fig. 4.
Unfortunately, there is not enough field data to completely
characterize this stochastic process. We will assume here
that η(t) is a centred stationary Gaussian stochastic process.
This assumption should be verified in future works, using
more experimental data. The power spectral density (PSD) is
estimated using the periodogram method Priestley (1981).
Figure 5 shows the estimated field data PSD.
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Figure 4. Stochastic process ηexp(t) obtained experimentally
with field data.

Regarding Figure 5, the PSD is constant until a critical
frequency and then decreases linearly (in log-log scale). This
type of PSD is often encountered when addressing turbulent
forces Batou and Soize (2009). Then the proposed PSD
model S(f) is written as

log(S(f)) = A0 for f < f0 ,

log(S(f)) = a log(f) + b for f ≥ f0 ,
(15)

10 0 10 1

frequency (Hz)

10 -8

10 -6

10 -4
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D

Figure 5. Field data PSD.

where f0,A0, a and b are the parameters of the model. These
parameters are calibrated using the experimental PSD such
that f0 = 0.27, A0 = −7.6, a = −3.13 and b = −11.67
(with appropriate units). Figure 6 compares the calibrated
PSD model with field data PSD, where a reasonable
agreement is observed.
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10 -6
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D

Figure 6. Comparison between the calibrated PSD (red line)
and the field data PSD (black line).

With the PSD S(f) in hands one can generate independent
realizations of the stochastic process η(t) using a classical
generator of Gaussian process, Benaroya (2005). Figure
7 shows two independent trajectories of η(t), which again
give reasonable agreement with the observed process ηexp(t)
shown in Figure 4.

4 Simulation of the stochastic drill string
dynamics

The computational time to perform a deterministic run in
a computer Quad-Core Processor (1GHz), 4 GB RAM, is
about 3 seconds. The computational time to perform the
stochastic samples is about 13 minutes.

Prepared using sagej.cls



Smith and Wittkopf 5

0 10 20 30 40 50
time (s)

-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50
time (s)

-0.2

-0.1

0

0.1

0.2

Figure 7. Two independent realizations of the stochastic
process η(t).

4.1 Analysis of one realization of the
stochastic drill string dynamical response

The previous section was concerned with the construction of
a stochastic bit-rock interaction model including hysteretic
cycles fluctuations. A stationary stochastic process was
introduced for the computation of the torque on bit, Eq.(13).
The stochastic bit-rock interaction model is then added to
the torsional drill string model, Eq.(9), and the stochastic
non-linear dynamical response of the drill string is computed
and analysed. Note that Eq.(9) becomes random because
of the random bit-rock interaction, Eq.(13). The general
integration scheme for one realization of the stochastic bit-
rock interaction model is presented in Algorithm 1.

Table 1 contains the parameters of the drill string used for
the simulation.
The mass and stiffness matrices are constructed using 100

finite elements, after convergence check. The generalized
damping matrix is diagonal with damping ratios equal to
0.005 for the first mode, 0.03 for the second and third modes,
and 0.005 for all the other modes. The first five natural
frequencies computed for the system are: 0.13, 0.42, 0.74,
1.07, 1.41 Hz.

The non-linear equation (9) is solved using a modified
Euler scheme with a time step 0.512 ms. For one realization
of the stochastic bit-rock interaction model, Figure 8 shows

Algorithm 1: Simulation of the drill string dynamics.
INITIALIZATION:
Generate a realization of stochastic process η(t);
q0 = 0;
q̇0 = −Ω [M̃ ]−1[Φ]T [M ]1;
LOOP: for k = 1, . . . , (nt) do

Update the angle and angular speed (depending on
the integration scheme):
(q̇i−1, q̇i−1)→ (q̇i, q̇i) ;
u̇i = [Φ] q̇i ;
θ̇bit,i = u̇bit,i + Ω ;
θ̈bit,i = übit,i ;

Calculate the torque on bit:
Tbit,i(θ̇bit,i, θ̈bit,i) = T bit(θ̇bit,i, θ̈bit,i)(1 + ηi) ;

Calculate the torque vector Ti ;
Calculate the reduced-order torque vector
T̃i = [Φ]T Ti

DP BHA
Elastic Modulus [GPa] 220 220
Poisson’s coefficient 0.29 0.29
Volumetric mass density [kg/m3] 7, 800 7, 800
Length [m] 4, 733.60 466.45
Inner radius [m] 0.0595 0.0363
Outer radius [m] 0.070 0.0803

Table 1. Drill string characteristics.

the stochastic response of the drill string in the stationary
regime.
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Figure 8. One realization of the simulated bit-rock interaction.

In comparison with Figure 2, it can be observed the same
stochastic behaviour but with a slightly larger value of the
maximum angular speed. Figure 9 compares the steady-state
of random bit response using the proposed stochastic bit-
rock interaction model with the corresponding time range
response obtained using the deterministic model described
by Eq. (11). The simulation was computed up to 2000 s,
and the figure shows the steady state response from 1200
to 1300 s. While a 3-cycles periodic regime is reached for
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the deterministic case, no periodicity is observed in the
stochastic case.
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Figure 9. Steady-state response of the bit angular speed:
deterministic bit-rock interaction model (top, 3-cycles periodic
regime is observed) and stochastic bit-rock interaction model
(bottom, no periodicity is observed).

For the deterministic case, the 3-cycles periodic sequence
for the duration of the stick and slip phases are respectively
(1.34, 2.53, 2.48) s and (5.4, 6.28, 6.41) s. As a reference,
the mean stick and slip duration of the six cycles registered
from the field are, respectively, 2.82 s and 5.31 s. For
the stochastic case, these durations are random and their
associated probability distribution (obtained statistically
using 750 cycles) are plotted in Fig. 10. We can see in these
figures the variability of the stick and slip durations. The
values calculated with the deterministic bit-rock interaction
model fall inside the support of the probability distributions.

4.2 Stochastic stability analysis
Now the analysis is extended to quantify statistics on the
stability threshold of the system, as the imposed speed at
the top varies. The torsional stability of a drill string can be
quantified through the stick-slip severity factor, defined by
(Ritto et al. (2017))

γSS(Ω) =
θ̇max
bit (Ω)− θ̇min

bit (Ω)

2 Ω
, (16)

where θ̇max
bit (Ω) and θ̇min

bit (Ω) are the minimum and maximum
bit speed in the steady-state regime. In the case of
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stick duration
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f

4 5 6 7
slip duration

0

0.5
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1.5
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Figure 10. Random stick and slip phases duration: probability
density functions (black line) and corresponding 3-cycles
periodic values calculated with a deterministic bit-rock
interaction model (red vertical lines).

no torsional oscillations, γSS = 0. If there are torsional
oscillations then γSS > 0. As a reference, the available
field data presents stick-slip oscillations with γSS = 0.99, in
which the top drive speed is 12.6 rad/s.

First, the deterministic system is analysed. The stick-slip
severity factor in the frequency range B = [6; 27] rad/s is
plotted in Fig. 11. As expected, the stick-slip severity factor
decreases when the imposed rotation at the top increases. If
the speed at the top is lower than 16 rad/s, γSS is greater than
0.5.

For the stochastic bit-rock interaction model, the stick-
slip severity factor becomes random and its statistics are
estimated using the Monte Carlo simulation method with
ns = 500 samplings. For each Monte Carlo simulation, a
realization of the stochastic bit-rock interaction model is
generated, a realization of the stochastic angular speed is
calculated, and the corresponding stick-slip severity factor
is determined on the stationary regime. Figure 13 shows
statistics on the random stick-slip severity factor. The
convergence with respect to the number of samplings ns is
analysed by introducing the convergence function

CV (ns) =
1

ns

ns∑
i=1

∫
B

γSSi(ω)2dω, (17)
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Figure 11. Stick-slip severity factor for a deterministic bit-rock
interaction. Red dashed line indicates the stability threshold of
γSS.

where γSSi corresponds to the ith calculated realization of
the stick-slip severity factor, andB is the integration domain.
The convergence function is plotted in Figure 12; where a
reasonable convergence is achieved with 500 realizations.

0 100 200 300 400 500
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15.5

15.6

15.7

15.8

15.9

16

16.1

C
V

Figure 12. Convergence function ns 7→ CV (ns).

The statistical envelope shown in Fig. 13, due to the
stochastic bit-rock interaction, yields large fluctuation in the
random stick-slip severity factor. This means that bit-rock
interaction variability has a direct impact on the drill string
stability and should therefore be taken into account for a
robust analysis of the drill string dynamics. The results show
that when the top speed is about 20.5 rad/s the system has 5%
probability of having the value of γSS greater than 0.5. The
probability of instability increases as the speed decreases.
This result brings much more information comparing with
the deterministic result, where, for the same threshold of
γSS < 0.5, the limit speed of 16 rad/s was obtained.

5 Concluding Remarks
In the present paper, a new probabilistic model for the bit-
rock interaction model is proposed. This model includes

5 10 15 20 25 30
 (rad/s)

0

0.5

1

1.5

 S
S

Figure 13. Random stick-slip severity factor for a stochastic
bit-rock interaction. Solid lines: mean response and 90%
confidence region. Dashed line: deterministic case (black),
stability threshold (red).

a multiplicative stochastic process to take into account
fluctuations of the torque on bit during the drilling. The
stochastic model was calibrated with field data, and it
takes into account hysteretic cycles and their stochastic
fluctuations. The proposed bit-rock probabilistic model can
be constructed independently from the computational model
of the column.

The deterministic and stochastic torsional dynamics of a
drill string are analysed and a reasonable agreement between
model predictions and field data is observed. The statistics of
the stick and slip duration were also analysed.

A considerable impact of the proposed stochastic model
on the torsional stability of the system was observed. For this
end, the stick-slip severity factor is computed and statistical
envelopes are plotted for varying imposed speed at the top.
A robust estimation of the minimum top drive speed is
estimated using these plots.

In future works, additional experimental data will be
collected in order to validate our assumptions on the
probability distribution of the stochastic process η(t)
introduced in the stochastic non-linear bit rock interaction
model. Also, the PSD is likely to depend on the imposed
angular speed. Future experimental results will enable the
characterization of this angular speed dependency.
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