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Abstract. In complex dynamics, the bungee set is defined as the set points whose
orbit is neither bounded nor tends to infinity. In this paper we study, for the first time,
the bungee set of a quasiregular map of transcendental type. We show that this set
is infinite, and shares many properties with the bungee set of a transcendental entire
function. By way of contrast, we give examples of novel properties of this set in the
quasiregular setting. In particular, we give an example of a quasiconformal map of
the plane with a non-empty bungee set; this behaviour is impossible for an analytic
homeomorphism.

1. Introduction

Suppose that f is an entire function. In the study of complex dynamics it is common
to partition the complex plane into two sets. Firstly, the Julia set J(f), which consists
of points in a neighbourhood of which the iterates of f are, in some sense, chaotic.
Secondly, its complement the Fatou set F (f) := C \ J(f). For more information on
complex dynamics, including precise definitions of these sets, we refer to [Ber93].

An alternative partition divides the plane into three sets based on the nature of the
orbits of points; the orbit of a point z is the sequence (fn(z))n≥0 of its images under the
iterates of f . This partition is defined as follows:

• The escaping set I(f) consists of those points whose orbit tends to infinity.
• The bounded orbit set BO(f) consists of those points whose orbit is bounded.
• The bungee set BU(f) := C \ (I(f) ∪BO(f)) contains all other points.

Suppose that P is a polynomial of degree greater than one. Then the escaping set I(P )
is the basin of attraction of infinity, and so I(P ) ⊂ F (P ). The set BO(P ) (usually in
this context denoted by K(P )) is known as the filled Julia set and has been extensively
investigated, since J(P ) = ∂BO(P ). It is well-known that BU(P ) is empty in this case.

The escaping set for a general transcendental entire function f was first studied by
Eremenko [Ere89], and has been the focus of much subsequent research in complex
dynamics. The set BO(f) for a transcendental entire function f was studied in [Ber12]
and [Osb13]. If f is transcendental, then BU(f) is non-empty; indeed the Hausdorff
dimension of BU(f) ∩ J(f) is greater than zero [OS16, Theorem 5.1]. The properties
of BU(f) were studied in [OS16] and subsequently in [Laz17, Six18]. Examples of
transcendental entire functions with Fatou components in BU(f) were given in [Bis15,
EL87, Laz17, FJL17]. These sets are connected by the equation [Ere89, Osb13, OS16]

(1) J(f) = ∂I(f) = ∂BO(f) = ∂BU(f).
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To move the study of the bungee set into a more general setting, we consider the
iteration of quasiregular and quasiconformal maps, which are defined as follows. Suppose
that d ≥ 2, that G ⊂ Rd is a domain, and that 1 ≤ p <∞. The Sobolev space W 1

p,loc(G)

consists of those functions f : G → Rd for which all first order weak partial derivatives
exist and are locally in Lp. We say that f is quasiregular if f ∈ W 1

d,loc(G) is continuous,
and there exists KO ≥ 1 such that

|Df(x)|d ≤ KOJf (x) a.e.

Here Df(x) denotes the derivative,

|Df(x)| := sup
|h|=1

|Df(x)(h)|

is the norm of the derivative, and Jf (x) denotes the Jacobian determinant.
Many properties of holomorphic functions extend to quasiregular maps; for example,

non-constant quasiregular maps are discrete and open. A quasiregular map that is also a
homeomorphism is called quasiconformal. We refer to [Ric93, Vuo88] for a more detailed
treatment of quasiregular and quasiconformal maps.

Now, suppose that d ≥ 2, and that f : Rd → Rd is a quasiregular map of transcendental
type; in other words, f has an essential singularity at infinity. In this setting we need a
different definition of the Julia set. Precise definition requires the concept of (conformal)
capacity, but we do not need the full details of this. Roughly speaking, if S ⊂ Rd, then
S has zero capacity, in which case we write cap S = 0, when S is, in a precise sense, a
“small” set; otherwise we say that S has positive capacity and we write cap S > 0. Once
again, we refer to [Ric93, Vuo88] for a full definition and properties of sets of positive
capacity. Now, following [Ber13, BN14], we define the Julia set J(f) to be the set of all
x ∈ Rd such that

cap

(
Rd\

∞⋃
k=1

fk(U)

)
= 0,

for every neighbourhood U of x.
It is known that if f is a quasiregular map of transcendental type, then the Julia set

is infinite [BN14, Theorem 1.1]. It is easy to see that J(f) is closed, and also that J(f)
is completely invariant, in the sense that x ∈ J(f) if and only if f(x) ∈ J(f).

The definitions of I(f), BO(f) and BU(f) can be modified in an obvious way to apply
to quasiregular maps of space. In the quasiregular setting, the escaping set has been
studied in [BFLM09, BFN14, BDF14, Nic16], and the bounded orbit set in [BN14].
Our goal in this paper is to study BU(f) in the case that f is quasiregular and of
transcendental type; in particular, we look to generalise to the quasiregular setting
existing results about the bungee set of a transcendental entire function.

Our first result shows that the bungee set of a quasiregular map of transcendental
type is never empty, and in fact always meets the Julia set.

Theorem 1. Suppose that f : Rd → Rd is a quasiregular map of transcendental type.
Then BU(f) ∩ J(f) is an infinite set.

We now specialise to the case that the Julia set has positive capacity. In fact there
are no known examples where the Julia set of a quasiregular map of transcendental type
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does not have positive capacity, and it is conjectured that this is always the case. In
this case we can strengthen the conclusion of Theorem 1, as follows.

Theorem 2. Suppose that f : Rd → Rd is a quasiregular map of transcendental type. If
cap J(f) > 0, then BU(f) ∩ J(f) is an infinite set and

(2) J(f) ⊂ ∂I(f) ∩ ∂BO(f) ∩ ∂BU(f).

Recall from (1) that in the case of a transcendental entire function, the Julia set is the
boundary of the bungee set. We give an example to show that this is not necessarily the
case for a quasiregular map of transcendental type, even when the Julia set has positive
capacity. In this result, and subsequently, we identify R2 with C in the obvious way.

Theorem 3. There is a quasiregular map of transcendental type f : C → C such that
cap J(f) > 0 and J(f) 6= ∂BU(f).

In fact, the Julia set of a quasiregular map of transcendental type f : R2 → R2 is
always of positive capacity [BN14, Theorem 1.11], so this part of Theorem 3 is immediate.
There are many other conditions that are known to be sufficient for J(f) to have positive
capacity (see [BN14]); for example, if f is locally Lipschitz or has bounded local index.
In the following we add to this list a simple condition on the growth of the function;
roughly speaking, all functions that do not grow too slowly have a Julia set of positive
capacity. Here, for r > 0, we define the maximum modulus function by

M(r, f) := max
|x|=r
|f(x)|.

Theorem 4. Suppose that f : Rd → Rd is a quasiregular map of transcendental type.
Suppose also that

(3) lim inf
r→∞

log logM(r, f)

log log r
=∞.

Then cap J(f) > 0.

Remark. A quasiregular map f : Rd → Rd has positive lower order if there exist r0 > 0
and ε > 0 such that

M(r, f) > exp rε, for r ≥ r0.

It is easy to see that a quasiregular map with positive lower order satisfies (3).

Suppose that f : R2 → R2 is an analytic homeomorphism; in other words, f is an
affine map. In this case, the dynamics of f are not particularly interesting; certainly we
have that BU(f) = ∅. Our final result, which is perhaps somewhat surprising, shows
that this is not the case for quasiconformal maps of the plane.

Theorem 5. There is a quasiconformal map f : C→ C such that BU(f) 6= ∅.

Remark. Suppose that f : Rd → Rd is a quasiregular map that is not of transcendental
type. Suppose also that the degree of f is sufficiently large compared to the distortion
of f ; in technical terms we require that deg f > KI(f). It is shown in [FN11, p.28] (see
also [FN16]) that I(f) contains a neighbourhood of infinity, and so BU(f) is empty.
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Notation. For 0 < r1 < r2, we denote the spherical shell centred at the origin by

A(r1, r2) := {x ∈ Rd : r1 < |x| < r2},
and the ball with centre at the origin and radius r1 by

B(r1) := {x ∈ Rd : |x| < r1}.
Finally, if S ⊂ Rd, then we denote the boundary of S in Rd by ∂S, and closure of S

in Rd by S.

2. Proof of Theorem 1 and Theorem 2

We use the following result. This is a version of [Six15, Lemma 3.1] stated for quasireg-
ular maps. The proof is omitted, as it is almost identical to the proof of the original.

Lemma 1. Suppose that (En)n∈N is a sequence of compact sets in Rd and (mn)n∈N is
a sequence of integers. Suppose also that f : Rd → Rd is a quasiregular map such that
En+1 ⊂ fmn(En), for n ∈ N. Set pn :=

∑n
k=1mk, for n ∈ N. Then there exists ζ ∈ E1

such that

(4) fpn(ζ) ∈ En+1, for n ∈ N.

If, in addition, En ∩ J(f) 6= ∅, for n ∈ N, then there exists ζ ∈ E1 ∩ J(f) such that (4)
holds.

We need the following, which is taken from [Nic16, Lemma 3.3] and [Nic16, Lemma 3.4].
Here a quasiregular map f : Rd → Rd of transcendental type has the pits effect if there
exists n ∈ N such that, for all c > 1 and ε > 0, there exists r0 such that if r > r0, then
the set

{x ∈ Rd : r ≤ |x| ≤ cr, |f(x)| ≤ 1}
can be covered by n balls of radius εr.

Lemma 2. Suppose that f : Rd → Rd is a quasiregular map of transcendental type that
has the pits effect. Then there exist increasing sequences of positive real numbers (sn)n∈N
and (tn)n∈N, both tending to infinity, such that, for t ≥ tn,

(5) f(A(sn, t)) ⊃ B(2t), for n ∈ N.

Note that [Nic16, Lemma 3.4] states f(A(sn, t)) ⊃ A(sn, 2t) in place of (5). Our
stronger statement is easily derived from the proof of [Nic16, Lemma 3.4].

Proof of Theorem 1 and Theorem 2. Suppose that f : Rd → Rd is a quasiregular map
of transcendental type. The proof splits into two cases: the case that cap J(f) > 0, and
the case that cap J(f) = 0.

We consider first the case that cap J(f) > 0. Pick R > 0 sufficiently large that
cap J ′ > 0, where J ′ := J(f) ∩B(R). For each n ∈ N set

Jn := J(f) ∩ {x ∈ Rd : |x| > n}.
It follows from [Ric80, Theorem 1.2], which is the quasiregular analogue of Picard’s great
theorem, together with complete invariance, that J(f) \ f(Jn) is a finite set, for n ∈ N.
Since the image under a quasiregular map of a set of capacity zero is also of capacity
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zero (see, for example, [Vuo88, Theorem 10.15]), we can deduce that cap Jn > 0, for
n ∈ N.

Choose a point x1 ∈ J(f), and let U1 be a neighbourhood of x1 of diameter at most
one. It follows from the definition of the Julia set that cap (Rd \

⋃
k∈N f

k(U1)) = 0, and
so there exist m1 ∈ N and x′1 ∈ U1 such that

x2 := fm1(x′1) ∈ J2.

Let U ′1 ⊂ U1 be a neighbourhood of x′1 sufficiently small that U2 := fm1(U ′1) is of diameter
at most one.

Now, since cap J ′ > 0, and U2 is open and meets J(f), there exist m2 ∈ N and x′2 ∈ U2

such that

x3 := fm2(x′2) ∈ J ′.
Let U ′2 ⊂ U2 be a neighbourhood of x′2 sufficiently small that U3 := fm2(U ′2) is of diameter
at most one.

Continuing inductively, we obtain a sequence of domains (Un)n∈N, each of diameter at
most one, and a sequence of integers (mn)n∈N such that fmn(Un) ⊃ Un+1, and Un meets
Jn when n is even, and J ′ when n ≥ 3 is odd.

An application of Lemma 1 gives that there is a point

ξ ∈ U1 ∩BU(f) ∩ J(f).

In particular, we can deduce that BU(f) ∩ J(f) is infinite by considering points in the
orbit of ξ.

Since x1 and U1 were arbitrary, it follows that J(f) ⊂ BU(f). It is known that
J(f) ⊂ ∂I(f) ∩ ∂BO(f) [BN14, Theorem 1.3]. We can deduce that J(f) ⊂ ∂BU(f),
and so (2) holds. This completes the proof of Theorem 2, and also of Theorem 1 in the
case that cap J(f) > 0.

It remains to prove Theorem 1 in the case that cap J(f) = 0, so we now assume that
the Julia set has capacity zero. It follows by [BN14, Corollary 1.1] that f has the pits
effect.

Let (sn)n∈N and (tn)n∈N be as given in Lemma 2. Set Vn := A(sn, tn), for n ∈ N. We
may assume that B(2tn) meets J(f) for all n ∈ N, so (5) and complete invariance imply
that

Vn ∩ J(f) 6= ∅, for n ∈ N.
By (5) again,

f(Vn) ⊃ B(2tn) ⊃ V1, for n ∈ N,
and, moreover, if mn ∈ N is sufficiently large that 2mn ≥ tn/t1, then

fmn(V1) ⊃ B(2mnt1) ⊃ Vn, for n ∈ N.

An application of Lemma 1 (with En = V1 for odd n, and En = Vn for even n) gives
that there is a point

ξ ∈ V1 ∩BU(f) ∩ J(f).

Once again, we can deduce that BU(f) ∩ J(f) is infinite. �
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3. Proof of Theorem 4

Suppose that f : Rd → Rd is a quasiregular map of transcendental type. It is known
that if (3) holds, then J(f) = ∂A(f) [BFN14, Theorem 1.2]. Here A(f) is the fast
escaping set, which is a subset of the escaping set consisting of points that iterate to
infinity at a rate comparable to iteration of the maximum modulus; the exact definition
is not needed here.

Now, the set A(f) contains continua [BDF14, Theorem 1.2], and so has positive
capacity. Moreover, the complement of A(f) contains BO(f), and so also has positive
capacity [BN14, Theorem 1.4]. We can deduce that cap J(f) = cap ∂A(f) > 0, as
required.

4. Examples

In this section we first prove Theorem 5, and then use the function constructed to
prove Theorem 3.

Proof of Theorem 5. We construct a quasiconformal map f : C→ C such thatBU(f) 6= ∅.
First we fix y0 > 100, and let T0 be the domain

T0 := {x+ iy : y > y0, |x| < 1/y}.

We define a continuous map ψ : T0 → T0 as follows. If x+ iy ∈ T0, then we set

(6) ψ(x+ iy) :=
xy

y + 1/y − |x|
+ i(y + 1/y − |x|).

Note that ψ is the identity map on the two vertical sides of T0. Note in addition that

(7) ψn(z)→∞ as n→∞, for z = 0 + iy where y > y0.

We show that ψ is quasiconformal on T0 by estimating the derivative. By differenti-
ating (6) we obtain that, as y →∞,

Dψ(x+ iy) =

(
1 +O(y−2) O(y−2)
±1 1 +O(y−2)

)
, for (x+ iy) ∈ T0.

It follows that ψ is indeed quasiconformal on T0.
Roughly speaking T0 is an infinite “straight snake”. We now seek to define a quasi-

conformal map φ on T0, homeomorphic up to the boundary, such that φ(T0) is a “coiled
snake”. Moreover half the ends of the coils of this snake will have imaginary parts tend-
ing to infinity, whereas the remaining ends of coils will be within a fixed distance of the
origin.

To construct this map, we first need to fix two particular quasiconformal maps. Let
A be the rectangle

A := {z : Re(z) ∈ [0, 1], Im(z) ∈ [0, 2]},
and let B be the half-annulus

B := {z : Im(z) ≥ 0, 1/2 ≤ |z − 3/2| ≤ 3/2}.
We define a map νr : A→ B by

(8) νr(x+ iy) := 3/2 + (x− 3/2)e−iπy/2.
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It can be checked that νr is a quasiconformal map on the interior of A. It is also
easy to check that νr maps the lower boundary of A to itself by the identity, maps each
vertical line segment ending at a point on the lower boundary of A to a semi-circle in B,
and maps the upper boundary of A to the right-hand lower boundary of B by an affine
transformation.

The second quasiconformal map is

(9) νl(x+ iy) := −1/2 + (x+ 1/2)eiπy/2.

This maps A to the half annulus

{z : Im(z) ≥ 0, 1/2 ≤ |z + 1/2| ≤ 3/2},
once again fixing the lower boundary of A.

Let the sequences (sn)n∈N and (tn)n∈N of positive real numbers be defined by tn := 2n,
s1 := y0 and then

sn+1 := sn + 2tn + 4/(sn + tn) + 4/(sn + 2tn + 4/(sn + tn)).

Roughly speaking tn will be the height of the nth coil of the snake, and sn will measure
the total distance along the snake to the start of the nth coil. Note that sn+1 is only
approximately equal to sn+2tn; the additional terms correspond to the “corners” of the
coils. See Figure 1.

We now divide the set T0 into infinitely many collections of four closed approximate
rectangles. In particular, for each n ∈ N we define:

• A strip of height tn given by

S1
n := T0 ∩ {x+ iy : sn ≤ y ≤ sn + tn}.

• A small (approximate) rectangle, of height twice its width, given by

S2
n := T0 ∩ {x+ iy : sn + tn ≤ y ≤ sn + tn + 4/(sn + tn)}.

• A second strip of height tn given by

S3
n := T0 ∩ {x+ iy : sn + tn + 4/(sn + tn) ≤ y ≤ sn + 2tn + 4/(sn + tn)}.

• A second (approximate) rectangle, also of height twice its width, given by

S4
n := T0 ∩ {x+ iy : sn + 2tn + 4/(sn + tn) ≤ y ≤ sn+1}.

We define φ by specifying it first on S1
1 , then on S2

1 , then on S3
1 , and so on “up” T0.

Note that the rectangles above meet where upper and lower boundaries coincide, but
we will ensure that the definitions of φ respect this. In addition, the upper and lower
boundaries will be mapped only by affine transformations.

First we define φ on the lowest collection of four rectangles in T0.

• On S1
1 we let φ be the identity.

• The action of φ on S2
1 is defined as follows. First translate S2

1 so that its bottom
left corner lies at the origin. Then enlarge it by a scale factor of (s1 + t1)/2, so
that it maps into A, and then map it by the function νr defined in (8). Then
scale it by a scale factor of 2/(s1 + t1), and translate it so the left-hand lower
boundary of the image coincides with the upper boundary of φ(S1

1). (Observe
here that the enlarged translation of S2

1 is only a subset of the rectangle A. This
does not affect the argument).
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Figure 1. A rough schematic of the construction of the map φ, showing
the result after two iterations of the four-step process defined above.

• The action of φ on S3
1 is defined by first rotating by one half-turn, and then

translating so that the upper boundary of the image of S3
1 coincides with the

right-hand lower boundary of φ(S2
1).

• The action of φ on S4
1 is defined as follows, and is very similar to the action on

S2
1 . First translate S4

1 so that its bottom left corner lies at the origin. Then
enlarge it by a scale factor of (sn + 2tn + 4/(sn + tn))/2 to obtain a subset of A.
Then apply the map νl defined in (9), followed by an second scaling with scale
factor equal to 2/(sn + 2tn + 4/(sn + tn)). Finally rotate by one half-turn, and
then translate so that the upper left-hand boundary of the image of S4

1 coincides
with the lower boundary of φ(S3

1).

It is now clear how to continue this process; we iterate the four steps above, although
with different translations at each stage to ensure continuity at the boundary. In par-
ticular, for each n ≥ 2, φ maps S1

n by a translation, rather than the identity. See
Figure 1.

In order to see that φ is quasiconformal on T0, we now check that subsequent coils
do not overlap; that is, for each n ∈ N, the sets φ(S1

n), φ(S3
n) and φ(S1

n+1) are pairwise
disjoint. To see this, fix n ∈ N. Note that the base of the strip φ(S1

n) is of width 2/sn,
and the top of this strip is of width 2/(sn + tn). Also, by construction, the left-hand
side of the strip φ(S3

n) is at least 4/(sn + tn) from the left-hand side of the strip φ(S1
n).

Now, it follows from the definitions that tn < sn, and hence 2/sn < 4/(sn + tn). Thus
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the strips φ(S1
n) and φ(S3

n) are pairwise disjoint. The proof that the strips φ(S3
n) and

φ(S1
n+1) are also pairwise disjoint is similar and is omitted.

Importantly, we also observe that the coils remain within a strip of bounded real part.
This follows from the fact that

∑∞
n=0 1/tn is finite.

We are now able to define our quasiconformal map f : C→ C. First, set T̃ := φ(T0).

For z ∈ T̃ we define f(z) := (φ◦ψ ◦φ−1)(z). It is easy to check that f is quasiconformal

on T̃ and extends to the identity on all parts of the boundary of T̃ apart from the line
segment {x+ iy : y = y0, |x| < 1/y0}.

We then extend f to a map of the whole plane. First we let R be the rectangle

R := {x+ iy : y ∈ (0, y0), |x| < 1/y0}.

On C \ (T̃ ∪ R) we let f be the identity map. It is then straightforward, using, for
example, [NS17, Theorem 6], to see that f can be extended to a quasiconformal map of

the whole plane. Note that we are actually only interested in the behaviour of f in T̃ ;
the rectangle R is only used to allow us to extend the definition of f to the whole plane.

It is now straightforward to see, by (7) and the geometry of T̃ , that

φ({x+ iy : x = 0, y > y0}) ⊂ BU(f),

and this completes the construction. �

Finally we prove Theorem 3 by constructing a quasiregular map h : C → C, of
transcendental type, such that ∂BU(h) \ J(h) 6= ∅.

Proof of Theorem 3. We first use a technique from [BFLM09, Section 6], (see also [Nic13,
Section 4]), to define a quasiregular map g : C→ C of transcendental type which is equal
to the identity in the upper half-plane H.

In particular we choose δ > 0 small, and then set

g(z) :=


z, for Im z ≥ 0,

z − δ(Im z) exp(−z2), for Im z ∈ [−1, 0),

z + δ exp(−z2), otherwise.

It can be shown by a calculation that if δ is sufficiently small, then g is quasiregular. It
is clearly of transcendental type.

Now, let f be the quasiconformal map constructed in the proof of Theorem 5. We note

that the “snake” T̃ constructed in the proof of that result lies in H. We set h := g ◦ f .
Since f(H) ⊂ H, we have that h(H) ⊂ H, and so H∩J(h) = ∅. Since g is the identity

on T̃ , the maps f and h have the same dynamics on T̃ . It follows that

H ∩BO(h) 6= ∅ and H ∩BU(h) 6= ∅.
Hence, in particular, H meets ∂BU(h) \ J(h). �
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