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ABSTRACT 427 

Body fat distribution is a heritable risk factor for a range of adverse health consequences, 428 

including hyperlipidemia and type 2 diabetes. To identify protein-coding variants associated with body fat 429 

distribution, assessed by waist-to-hip ratio adjusted for body mass index, we analyzed 228,985 predicted 430 

coding and splice site variants available on exome arrays in up to 344,369 individuals from five major 431 

ancestries for discovery and 132,177 independent European-ancestry individuals for validation. We 432 

identified 15 common (minor allele frequency, MAF ≥ 5%) and 9 low frequency or rare (MAF < 5%) coding 433 

variants that have not been reported previously. Pathway/gene set enrichment analyses of all associated 434 

variants highlight lipid particle, adiponectin level, abnormal white adipose tissue physiology, and bone 435 

development and morphology as processes affecting fat distribution and body shape. Furthermore, the 436 

cross-trait associations and the analyses of variant and gene function highlight a strong connection to 437 

lipids, cardiovascular traits, and type 2 diabetes. In functional follow-up analyses, specifically in Drosophila 438 

RNAi-knockdown crosses, we observed a significant increase in the total body triglyceride levels for two 439 

genes (DNAH10 and PLXND1). By examining variants often poorly tagged or entirely missed by genome-440 

wide association studies, we implicate novel genes in fat distribution, stressing the importance of 441 

interrogating low-frequency and protein-coding variants. 442 

 443 

 444 

 445 

 446 

 447 

448 
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Body fat distribution, as assessed by waist-to-hip ratio (WHR), is a heritable trait and a well-449 

established risk factor for adverse metabolic outcomes1-6. A high WHR often indicates a large presence 450 

of intra-abdominal fat whereas a low WHR is correlated with a greater accumulation of gluteofemoral 451 

fat. Lower values of WHR have been consistently associated with lower risk of cardiometabolic diseases 452 

like type 2 diabetes (T2D)7,8, or differences in bone structure and gluteal muscle mass9. These 453 

epidemiological associations are consistent with the results of our previously reported genome-wide 454 

association study (GWAS) of 49 loci associated with WHR (after adjusting for body mass index, 455 

WHRadjBMI)10. Notably, a genetic predisposition to higher WHRadjBMI is associated with increased risk 456 

of T2D and coronary heart disease (CHD), and this association appears to be causal9. 457 

More recently, large-scale genetic studies have identified ~125 common loci for central obesity, 458 

primarily non-coding variants of relatively modest effect, for different measures of body fat distribution10-459 

16. Large scale interrogation of both common (minor allele frequency [MAF]≥5%) and low frequency or 460 

rare (MAF<5%) coding and splice site variation may lead to additional insights into the genetic and 461 

biological etiology of central obesity by narrowing in on causal genes contributing to trait variance. Thus, 462 

we set out to identify protein-coding and splice site variants associated with WHRadjBMI using exome 463 

array data and to explore their contribution to variation in WHRadjBMI through multiple follow-up 464 

analyses. 465 

RESULTS 466 

Protein-coding and splice site variation associated with body fat distribution 467 

We conducted a 2-stage fixed-effects meta-analysis testing both additive and recessive models in 468 

order to detect protein-coding genetic variants that influence WHRadjBMI (Online Methods, Figure 1). 469 

Our stage 1 meta-analysis included up to 228,985 variants (218,195 with MAF<5%) in up to 344,369 470 

individuals from 74 studies of European (N=288,492), South Asian (N=29,315), African (N=15,687), East 471 
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Asian (N=6,800) and Hispanic/Latino (N=4,075) descent, genotyped with an ExomeChip array 472 

(Supplementary Tables 1-3). For stage 2, we assessed 70 suggestively significant (P<2x10-6) variants from 473 

stage 1 in two independent cohorts from the United Kingdom [UK Biobank (UKBB), N=119,572] and 474 

Iceland (deCODE, N=12,605) (Online Methods, Supplementary Data 1-3) for a total stage 1+2 sample size 475 

of 476,546 (88% European). Variants were considered statistically significant in the total meta-analyzed 476 

sample (stage 1+2) when they achieved a significance threshold of P<2x10-7 after Bonferroni correction 477 

for multiple testing (0.05/246,328 variants tested). Of the 70 variants brought forward, two common and 478 

five rare variants were not available in either Stage 2 study (Tables 1-2, Supplementary Data 1-3). Thus, 479 

we require P<2x10-7 in Stage 1 for significance. Variants are considered novel if they were greater than 480 

one megabase (Mb) from a previously-identified WHRadjBMI lead SNP10-16.  481 

In stages 1 and 2 combined all ancestry meta-analyses, we identified 48 coding variants (16 novel) 482 

across 43 genes, 47 identified assuming an additive model, and one more variant under a recessive model 483 

(Table 1, Supplementary Figures 1-4). Due to the possible heterogeneity introduced by combining 484 

multiple ancestries17, we also performed a European-only meta-analysis. Here, four additional coding 485 

variants were significant (three novel) assuming an additive model (Table 1, Supplementary Figures 5-8). 486 

Of these 52 significant variants (48 from the all ancestry and 4 from the European-only analyses), eleven 487 

were of low frequency, including seven novel variants in RAPGEF3, FGFR2, R3HDML, HIST1H1T, PCNXL3, 488 

ACVR1C, and DARS2. These low frequency variants tended to display larger effect estimates than any of 489 

the previously reported common variants (Figure 2)10. In general, variants with MAF<1% had effect sizes 490 

approximately three times greater than those of common variants (MAF>5%). Although, we cannot rule 491 

out the possibility that additional rare variants with smaller effects sizes exist that, despite our ample 492 

sample size, we are still underpowered to detect (See estimated 80% power in Figure 2). However, in the 493 

absence of common variants with similarly large effects, our results point to the importance of 494 

investigating rare and low frequency variants to identify variants with large effects (Figure 2).  495 
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Given the established differences in the genetic underpinnings between sexes for 496 

WHRadjBMI10,11, we also performed sex-stratified analyses and report variants that were array-wide 497 

significant (P<2x10-7) in at least one sex stratum and exhibit significant sex-specific effects (Psexhet<7.14x10-498 

4, see Online Methods). We found four additional novel variants that were not identified in the sex-499 

combined meta-analyses (in UGGT2 and MMP14 for men only; and DSTYK and ANGPTL4 for women only) 500 

(Table 2, Supplementary Figures 9-15). Variants in UGGT2 and ANGPTL4 were of low frequency 501 

(MAFmen=0.6% and MAFwomen=1.9%, respectively). Additionally, 14 variants from the sex-combined meta-502 

analyses displayed stronger effects in women, including the novel, low frequency variant in ACVR1C 503 

(rs55920843, MAF=1.1%, Supplementary Figure 4). Overall, 19 of the 56 variants (32%) identified across 504 

all meta-analyses (48 from all ancestry, 4 from European-only and 4 from sex-stratified analyses) showed 505 

significant sex-specific effects on WHRadjBMI (Figure 1): 16 variants with significantly stronger effects in 506 

women, and three in men (Figure 1).  507 

In summary, we identified 56 array-wide significant coding variants (P<2.0x10-7); 43 common (14 508 

novel) and 13 low frequency or rare variants (9 novel). For all 55 significant variants from the additive 509 

model (47 from all ancestry, 4 from European-only, and 4 from sex-specific analyses), we examined 510 

potential collider bias18,19, i.e. potential bias in effect estimates caused by adjusting for a correlated and 511 

heritable covariate like BMI, for the relevant sex stratum and ancestry. We corrected each of the variant 512 

- WHRadjBMI associations for the correlation between WHR and BMI and the correlation between the 513 

variant and BMI  (Online Methods, Supplementary Table 7, Supplementary Note 1). Overall, 51 of the 55 514 

additive model variants were robust against collider bias18,19 across all primary and secondary meta-515 

analyses. Of the 55, 25 of the WHRadjBMI variants from the additive model were nominally associated 516 

with BMI (PBMI<0.05), yet effect sizes changed little after correction for potential biases (15% change in 517 

effect estimate on average). For 4 of the 55 SNPs (rs141845046, rs1034405, rs3617, rs9469913, Table 1), 518 

the association with WHRadjBMI appears to be attenuated following correction (Pcorrected> 9x10-4, 519 
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0.05/55), including one novel variant, rs1034405 in C3orf18. Thus, these 4 variants warrant further 520 

functional investigations to quantify their impact on WHR, as a true association may still exist, although 521 

the effect may be slightly overestimated in the current analysis. 522 

Using stage 1 meta-analysis results, we then aggregated low frequency variants across genes and 523 

tested their joint effect with both SKAT and burden tests20 (Supplementary Table 8, Online Methods). We 524 

identified five genes that reached array-wide significance (P<2.5x10-6, 0.05/16,222 genes tested), 525 

RAPGEF3, ACVR1C, ANGPTL4, DNAI1, and NOP2. However, while all genes analyzed included more than 526 

one variant, none remained significant after conditioning on the single variant with the most significant 527 

p-value. We identified variants within RAPGEF3, ACVR1C, ANGPTL4 that reached suggestive significance 528 

in Stage 1 and chip-wide significance in stage 1+2 for one or more meta-analyses (Tables 1 and 2); 529 

however, we did not identify any significant variants for DNAI1 and NOP2. While neither of these genes 530 

had a single variant that reached chip-wide significance, they each had variants with nearly significant 531 

results (NOP2: P=3.69x10-5, DNAI1: 4.64x10-5). Combined effects with these single variants and others in 532 

LD within the gene likely drove the association in our aggregate gene-based tests, but resulted in non-533 

significance following conditioning on the top variant. While our results suggest these associations are 534 

driven by a single variant, each gene may warrant consideration in future investigations. 535 

 536 

Conditional analyses 537 

 We next implemented conditional analyses to determine (1) the number of independent 538 

association signals the 56 array-wide significant coding variants represent, and (2) whether the 33 variants 539 

near known GWAS association signals (<+/- 1Mb) represent independent novel association signals. To 540 

determine if these variants were independent association signals, we used approximate joint conditional 541 

analyses to test for independence in stage 1 (Online Methods; Supplementary Table 4)20. Only the RSPO3-542 

KIAA0408 locus contains two independent variants 291 Kb apart, rs1892172 in RSPO3 (MAF=46.1%, 543 
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Pconditional=4.37x10-23 in the combined sexes, and Pconditional=2.4x10-20 in women) and rs139745911 in 544 

KIAA0408 (MAF=0.9%, Pconditional=3.68x10-11 in the combined sexes, and Pconditional=1.46x10-11 in women; 545 

Figure 3A).  546 

Further, 33 of our significant variants are within one Mb of previously identified GWAS tag SNPs 547 

for WHRadjBMI. We again used approximate joint conditional analysis to test for independence in the 548 

stage 1 meta-analysis dataset and obtained further complementary evidence from the UKBB dataset 549 

where necessary (Online Methods). We identified one coding variant representing a novel independent 550 

signal in a known locus [RREB1; stage1 meta-analysis, rs1334576, EAF = 0.44, Pconditional= 3.06x10-7, 551 

(Supplementary Table 5, Figure 3 [B]); UKBB analysis, rs1334576, RREB1, Pconditional= 1.24x10-8, 552 

(Supplementary Table 6) in the sex-combined analysis.  553 

In summary, we identified a total of 56 WHRadjBMI-associated coding variants in 41 independent 554 

association signals. Of these 41 independent association signals, 24 are new or independent of known 555 

GWAS-identified tag SNPs (either >1MB +/- or array-wide significant following conditional analyses) 556 

(Figure 1). Thus, bringing our total to 15 common and 9 low-frequency or rare novel variants following 557 

conditional analyses. The remaining non-GWAS-independent variants may assist in narrowing in on the 558 

causal variant or gene underlying these established association signals. 559 

Gene set and pathway enrichment analysis 560 

To determine if the significant coding variants highlight novel biological pathways and/or provide 561 

additional support for previously identified biological pathways, we applied two complementary pathway 562 

analysis methods using the EC-DEPICT (ExomeChip Data-driven Expression Prioritized Integration for 563 

Complex Traits) pathway analysis tool,21,22 and PASCAL23 (Online Methods). While for PASCAL all variants 564 

were used, in the case of EC-DEPICT, we examined 361 variants with suggestive significance (P<5x10-4)10,17 565 

from the combined ancestries and combined sexes analysis (which after clumping and filtering became 566 
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101 lead variants in 101 genes). We separately analyzed variants that exhibited significant sex-specific 567 

effects (Psexhet<5x10-4).  568 

The sex-combined analyses identified 49 significantly enriched gene sets (FDR<0.05) that grouped 569 

into 25 meta-gene sets (Supplementary Note 2, Supplementary Data 4-5). We noted a cluster of meta-570 

gene sets with direct relevance to metabolic aspects of obesity (“enhanced lipolysis,” “abnormal glucose 571 

homeostasis,” “increased circulating insulin level,” and “decreased susceptibility to diet-induced 572 

obesity”); we observed two significant adiponectin-related gene sets within these meta-gene sets. While 573 

these pathway groups had previously been identified in the GWAS DEPICT analysis (Figure 4), many of the 574 

individual gene sets within these meta-gene sets were not significant in the previous GWAS analysis, such 575 

as “insulin resistance,” “abnormal white adipose tissue physiology,” and “abnormal fat cell morphology” 576 

(Supplementary Data 4, Figure 4, Supplementary Figure 16a), but represent similar biological 577 

underpinnings implied by the shared meta-gene sets. Despite their overlap with the GWAS results, these 578 

analyses highlight novel genes that fall outside known GWAS loci, based on their strong contribution to 579 

the significantly enriched gene sets related to adipocyte and insulin biology (e.g. MLXIPL, ACVR1C, and 580 

ITIH5) (Figure 4).  581 

To focus on novel findings, we conducted pathway analyses after excluding variants from previous 582 

WHRadjBMI analyses10 (Supplemental Note 2). Seventy-five loci/genes were included in the EC-DEPICT 583 

analysis, and we identified 26 significantly enriched gene sets (13 meta-gene sets). Here, all but one gene 584 

set, “lipid particle size”, were related to skeletal biology. This result likely reflects an effect on the pelvic 585 

skeleton (hip circumference), shared signaling pathways between bone and fat (such as TGF-beta) and 586 

shared developmental origin24 (Supplementary Data 5, Supplementary Figure 16b). Many of these 587 

pathways were previously found to be significant in the GWAS DEPICT analysis; these findings provide a 588 

fully independent replication of their biological relevance for WHRadjBMI. 589 
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We used PASCAL (Online Methods) to further distinguish between enrichment based on coding-590 

only variant associations (this study) and regulatory-only variant associations (up to 20 kb upstream of the 591 

gene from a previous GIANT study10). For completeness, we also compared the coding pathways to those 592 

that could be identified in the total previous GWAS effort (using both coding and regulatory variants) by 593 

PASCAL. The analysis revealed 116 significantly enriched coding pathways (FDR<0.05; Supplementary 594 

Table 9). In contrast, a total of 158 gene sets were identified in the coding+regulatory analysis that 595 

included data from the previous GIANT waist GWAS study. Forty-two gene sets were enriched in both 596 

analyses. Thus, while we observed high concordance in the -log10 (p-values) between ExomeChip and 597 

GWAS gene set enrichment (Pearson's r (coding vs regulatory only) = 0.38, P<10-300; Pearson's r (coding vs 598 

coding+regulatory) = 0.51, P<10-300), there are gene sets that seem to be enriched specifically for variants 599 

in coding regions (e.g., decreased susceptibility to diet-induced obesity, abnormal skeletal morphology) 600 

or unique to variants in regulatory regions (e.g. transcriptional regulation of white adipocytes) 601 

(Supplementary Figure 17).  602 

The EC-DEPICT and PASCAL results showed a moderate but strongly significant correlation (for EC-603 

DEPICT and the PASCAL max statistic, r = .277 with p = 9.8x10-253; for EC-DEPICT and the PASCAL sum 604 

statistic, r = .287 with p = 5.42x10-272). Gene sets highlighted by both methods strongly implicated a role 605 

for pathways involved in skeletal biology, glucose homeostasis/insulin signaling, and adipocyte biology. 606 

Indeed, we are even more confident in the importance of this core overlapping group of pathways due to 607 

their discovery by both methods (Supplementary Figure 18). 608 

Cross-trait associations 609 

To assess the relevance of our identified variants with cardiometabolic, anthropometric, and 610 

reproductive traits, we conducted association lookups from existing ExomeChip studies of 15 traits 611 

(Supplementary Data 6, Supplementary Figure 19). Indeed, the clinical relevance of central adiposity is 612 

likely to be found in the cascade of impacts such variants have on downstream cardiometabolic 613 
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disease.22,25-29 We found that variants in STAB1 and PLCB3 display the greatest number of significant cross-614 

trait associations, each associating with seven different traits (P<9.8x10-4, 0.05/51 variants tested). Of 615 

note, these two genes cluster together with RSPO3, DNAH10, MNS1, COBLL1, CCDC92, and ITIH3 616 

(Supplementary Data 6, Supplementary Figure 19). The WHR-increasing alleles in this cluster of variants 617 

exhibit a pattern of increased cardiometabolic risk (e.g. increased fasting insulin [FI], two-hour glucose 618 

[TwoHGlu], and triglycerides [TG]; and decreased high-density lipoprotein cholesterol [HDL]), but also 619 

decreased BMI. This phenomenon, where variants associated with lower BMI are also associated with 620 

increased cardiometabolic risk, has been previously reported.30-36. A recent Mendelian Randomization 621 

(MR) analysis of the relationship between central adiposity (measured as WHRadjBMI) and 622 

cardiometabolic risk factors found central adiposity to be causal.9 Using 48 WHR-increasing variants 623 

reported in the recent GIANT analysis10 to calculate a polygenic risk score, Emdin et al. found that a 1 SD 624 

increase in genetic risk of central adiposity was associated with higher total cholesterol, triglyceride levels, 625 

fasting insulin and two-hour glucose, and lower HDL – all indicators of cardiometabolic disease, and also 626 

associated with a 1 unit decrease in BMI9.   627 

We conducted a search in the NHGRI-EBI GWAS Catalog37,38 to determine if any of our significant 628 

ExomeChip variants are in high LD (R2>0.7) with variants associated with traits or diseases not covered by 629 

our cross trait lookups (Supplementary Data 7). We identified several cardiometabolic traits (adiponectin, 630 

coronary heart disease etc.) and behavioral traits potentially related to obesity (carbohydrate, fat intake 631 

etc.) with GWAS associations that were not among those included in cross-trait analyses and nearby one 632 

or more of our WHRadjBMI- associated coding variants. Additionally, many of our ExomeChip variants are 633 

in LD with GWAS variants associated with other behavioral and neurological traits (schizophrenia, bipolar 634 

disorder etc.), and inflammatory or autoimmune diseases (Crohn’s Disease, multiple sclerosis etc.) 635 

(Supplementary Data 7).  636 
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Given the established correlation between total body fat percentage and WHR (R= 0.052 to 637 

0.483)39-41, we examined the association of our top exome variants with both total body fat percentage 638 

(BF%) and truncal fat percentage (TF%) available in a sub-sample of up to 118,160 participants of UKBB 639 

(Supplementary Tables 10-11). Seven of the common novel variants were significantly associated 640 

(P<0.001, 0.05/48 variants examined) with both BF% and TF% in the sexes-combined analysis (COBLL1, 641 

UHRF1BP1, WSCD2, CCDC92, IFI30, MPV17L2, IZUMO1). Only one of our tag SNPs, rs7607980 in COBLL1, 642 

is nearby a known total body fat percentageBF% GWAS locus (rs6738627; R2=0.1989, distance=6751 bp, 643 

with our tag SNP)42. Two additional variants, rs62266958 in EFCAB12 and rs224331 in GDF5, were 644 

significantly associated with TF% in the women-only analysis. Of the nine SNPs associated with at least 645 

one of these two traits, all variants displayed much greater magnitude of effect on TF% compared to BF% 646 

(Supplementary Figure 20).  647 

Previous studies have demonstrated the importance of examining common and rare variants 648 

within genes with mutations known to cause monogenic diseases43,44. We assessed enrichment of our 649 

WHRadjBMI within genes that cause monogenic forms of lipodystrophy) and/or insulin resistance 650 

(Supplementary Data 8). No significant enrichment was observed (Supplementary Figure 21). For 651 

lipodystrophy, the lack of significant findings may be due in part to the small number of implicated genes 652 

and the relatively small number of variants in monogenic disease-causing genes, reflecting their 653 

intolerance of variation.  654 

Genetic architecture of WHRadjBMI coding variants 655 

We used summary statistics from our stage 1 results to estimate the phenotypic variance 656 

explained by ExomeChip coding variants. We calculated the variance explained by subsets of SNPs across 657 

various significance thresholds (P< 2x10-7 to 0.2) and conservatively estimated using only independent tag 658 

SNPs (Supplementary Table 12, Online Methods, and Supplementary Figure 22). The 22 independent 659 

significant coding SNPs in stage 1 account for 0.28% of phenotypic variance in WHRadjBMI. For 660 
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independent variants that reached suggestive significance in stage 1 (P<2x10-6), 33 SNPs explain 0.38% of 661 

the variation; however, the 1,786 independent SNPs with a liberal threshold of P<0.02 explain 13 times 662 

more variation (5.12%). While these large effect estimates may be subject to winner’s curse, for array-663 

wide significant variants, we detected a consistent relationship between effect magnitude and MAF in our 664 

stage 2 analyses in UK Biobank and deCODE (Supplementary Data 1-3). Notably, the Exomechip coding 665 

variants explained less of the phenotypic variance than in our previous GIANT investigation, wherein 49 666 

significant SNPs explained 1.4% of the variance in WHRadjBMI. When considering all coding variants on 667 

the ExomeChip in men and women together, 46 SNPs with a P<2x10-6 and 5,917 SNPs with a P<0.02 explain 668 

0.51% and 13.75% of the variance in WHRadjBMI, respectively. As expected given the design of the 669 

ExomeChip, the majority of the variance explained is attributable to rare and low frequency coding 670 

variants (independent SNPs with MAF<1% and MAF<5% explain 5.18% and 5.58%, respectively). However, 671 

for rare and low frequency variants, those that passed significance in stage 1 explain only 0.10% of the 672 

variance in WHRadjBMI. As in Figure 2, these results also indicate that there are additional coding variants 673 

associated with WHRadjBMI that remain to be discovered, particularly rare and low frequency variants 674 

with larger effects than common variants. Due to observed differences in association strength between 675 

women and men, we estimated variance explained for the same set of SNPs in women and men 676 

separately. As observed in previous studies10, there was significantly (PRsqDiff<0.002=0.05/21, Bonferroni-677 

corrected threshold) more variance explained in women compared to men at each significance threshold 678 

considered (differences ranged from 0.24% to 0.91%).  679 

To better understand the potential clinical impact of WHRadjBMI associated variants, we 680 

conducted penetrance analysis using the UKBB population (both sexes combined, and men- and women-681 

only). We compared the number of carriers and non-carriers of the minor allele for each of our significant 682 

variants in centrally obese and non-obese individuals to determine if there is a significant accumulation 683 

of the minor allele in either the centrally obese or non-obese groups (Online Methods). Three rare and 684 
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low frequency variants (MAF ≤ 1%) with larger effect sizes (effect size > 0.90) were included in the 685 

penetrance analysis using World Health Organization (WHO- obese women WHR>0.85 and obese men 686 

WHR>0.90) WHR cut-offs for central obesity. Of these, one SNV (rs55920843-ACVR1C; Psex-combined=9.25x10-687 

5; Pwomen=4.85x10-5) showed a statistically significant difference in the number of carriers and non-carriers 688 

of the minor allele when the two strata were compared (sex-combined obese carriers=2.2%; non-obese 689 

carriers=2.6%; women obese carriers=2.1%; non-obese women carriers=2.6% (Supplementary Table 13, 690 

Supplementary Figure 23). These differences were significant in women, but not in men (Pmen<5.5x10-3 691 

after Bonferroni correction for 9 tests) and agree with our overall meta-analysis results, where the minor 692 

allele (G) was significantly associated with lower WHRadjBMI in women only (Tables 1 and 2). 693 

Evidence for functional role of significant variants 694 

Drosophila Knockdown 695 

Considering the genetic evidence of adipose and insulin biology in determining body fat 696 

distribution10, and the lipid signature of the variants described here, we examined whole-body 697 

triglycerides levels in adult Drosophila, a model organism in which the fat body is an organ functionally 698 

analogous to mammalian liver and adipose tissue and triglycerides are the major source of fat storage45. 699 

Of the 51 genes harboring our 56 significantly associated variants, we identified 27 with Drosophila 700 

orthologues for functional follow-up analyses. In order to prioritize genes for follow-up, we selected genes 701 

with large changes in triglyceride storage levels (> 20% increase or > 40% decrease, as chance alone is 702 

unlikely to cause changes of this magnitude, although some decrease is expected) after considering each 703 

corresponding orthologue in an existing large-scale screen for adipose with ≤2 replicates per knockdown 704 

strain.45 Two orthologues, for PLXND1 and DNAH10, from two separate loci met these criteria. For these 705 

two genes, we conducted additional knockdown experiments with ≥5 replicates using tissue-specific 706 

drivers (fat body [cg-Gal4] and neuronal [elav-Gal4] specific RNAi-knockdowns) (Supplementary Table 707 

14). A significant (P<0.025, 0.05/2 orthologues) increase in the total body triglyceride levels was observed 708 
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in DNAH10 orthologue knockdown strains for both the fat body and neuronal drivers. However, only the 709 

neuronal driver knockdown for PLXND1 produced a significant change in triglyceride storage. DNAH10 710 

and PLXND1 both lie within previous GWAS identified regions. Adjacent genes have been highlighted as 711 

likely candidates for the DNAH10 association region, including CCDC92 and ZNF664 based on eQTL 712 

evidence. However, our fly knockdown results support DNAH10 as the causal genes underlying this 713 

association. Of note, rs11057353 in DNAH10 showed suggestive significance after conditioning on the 714 

known GWAS variants in nearby CCDC92 (sex-combined Pconditional=7.56x10-7; women-only rs11057353 715 

Pconditional= 5.86x10-7, Supplementary Table 6; thus providing some evidence of multiple causal 716 

variants/genes underlying this association signal. Further analyses are needed to determine whether the 717 

implicated coding variants from the current analysis are the putatively functional variants, specifically how 718 

these variants affect transcription in and around these loci, and exactly how those effects alter biology of 719 

relevant human metabolic tissues. 720 

eQTL Lookups  721 

To gain a better understanding of the potential functionality of novel and low frequency variants, 722 

we examined the cis-association of the identified variants with expression level of nearby genes in 723 

subcutaneous adipose tissue, visceral omental adipose tissue, skeletal muscle and pancreas from GTEx46, 724 

and assessed whether the exome and eQTL associations implicated the same signal (Online Methods, 725 

Supplementary Data 9, Supplementary Table 15). The lead exome variant was associated with expression 726 

level of the coding gene itself for DAGLB, MLXIPL, CCDC92, MAPKBP1, LRRC36 and UQCC1. However, at 727 

three of these loci (MLXIPL, MAPKBP1, and LRRC36), the lead exome variant is also associated with 728 

expression level of additional nearby genes, and at three additional loci, the lead exome variant is only 729 

associated with expression level of nearby genes (HEMK1 at C3orf18; NT5DC2, SMIM4 and TMEM110 at 730 

STAB1/ITIH3; and C6orf106 at UHRF1BP1). Although detected with a missense variant, these loci are also 731 
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consistent with a regulatory mechanism of effect as they are significantly associated with expression levels 732 

of genes, and the association signal may well be due to LD with nearby regulatory variants.  733 

Some of the coding genes implicated by eQTL analyses are known to be involved in adipocyte 734 

differentiation or insulin sensitivity: e. g. for MLXIPL, the encoded carbohydrate responsive element 735 

binding protein is a transcription factor, regulating glucose-mediated induction of de novo lipogenesis in 736 

adipose tissue, and expression of its beta-isoform in adipose tissue is positively correlated with adipose 737 

insulin sensitivity47,48. For CCDC92, the reduced adipocyte lipid accumulation upon knockdown confirmed 738 

the involvement of its encoded protein in adipose differentiation49.  739 

Biological Curation 740 

To gain further insight into the possible functional role of the identified variants, we conducted 741 

thorough searches of the literature and publicly available bioinformatics databases (Supplementary Data 742 

10-11, Box 1, Online Methods). Many of our novel low frequency variants are in genes that are intolerant 743 

of nonsynonymous mutations (e.g. ACVR1C, DARS2, FGFR2; ExAC Constraint Scores >0.5). Like previously 744 

identified GWAS variants, several of our novel coding variants lie within genes that are involved in glucose 745 

homeostasis (e.g. ACVR1C, UGGT2, ANGPTL4), angiogenesis (RASIP1), adipogenesis (RAPGEF3), and lipid 746 

biology (ANGPTL4, DAGLB) (Supplementary Data 10, Box 1).  747 

 748 

DISCUSSION  749 

Our two-staged approach to analysis of coding variants from ExomeChip data in up to 476,546 750 

individuals identified a total of 56 array-wide significant variants in 41 independent association signals, 751 

including 24 newly identified (23 novel and one independent of known GWAS signals) that influence 752 

WHRadjBMI. Nine of these variants were low frequency or rare, indicating an important role for low 753 

frequency variants in the polygenic architecture of fat distribution and providing further insights into its 754 
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underlying etiology. While, due to their rarity, these coding variants only explain a small proportion of the 755 

trait variance at a population level, they may, given their predicted role, be more functionally tractable 756 

than non-coding variants and have a critical impact at the individual and clinical level. For instance, the 757 

association between a low frequency variant (rs11209026; R381Q; MAF<5% in ExAC) located in the IL23R 758 

gene and multiple inflammatory diseases (such as psoriasis50, rheumatoid arthritis51, ankylosing 759 

spondylitis52, and inflammatory bowel diseases53) led to the development of new therapies, targeting IL23 760 

and IL12 in the same pathway (reviewed in 54-56). Thus, we are encouraged that our associated low 761 

frequency coding variants displayed large effect sizes; all but one of the nine novel low frequency variants 762 

had an effect size larger than the 49 SNPs reported in Shungin et al. 2015, and some of these effect sizes 763 

were up to 7-fold larger than those previously reported for GWAS. This finding mirrors results for other 764 

cardiometabolic traits57, and suggests variants of possible clinical significance with even larger effect and 765 

lower frequency variants will likely be detected through larger additional genome-wide scans of many 766 

more individuals. 767 

We continue to observe sexual dimorphism in the genetic architecture of WHRadjBMI11. Overall, 768 

we identified 19 coding variants that display significant sex differences, of which 16 (84%) display larger 769 

effects in women compared to men. Of the variants outside of GWAS loci, we reported three (two with 770 

MAF<5%) that show a significantly stronger effect in women and two (one with MAF<5%) that show a 771 

stronger effect in men. Additionally, genetic variants continue to explain a higher proportion of the 772 

phenotypic variation in body fat distribution in women compared to men10,11. Of the novel female (DSTYK 773 

and ANGPTL4) and male (UGGT2 and MMP14) specific signals, only ANGPTL4 implicated fat distribution 774 

related biology associated with both lipid biology and cardiovascular traits (Box 1). Sexual dimorphism in 775 

fat distribution is apparent from childhood and throughout adult life58-60, and at sexually dimorphic loci, 776 

hormones with different levels in men and women may interact with genomic and epigenomic factors to 777 

regulate gene activity, though this remains to be experimentally documented. Dissecting the underlying 778 
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molecular mechanisms of the sexual dimorphism in body fat distribution, and also how it is correlated 779 

with – and causing – important comorbidities like T2D and cardiovascular diseases will be crucial for 780 

improved understanding of disease risk and pathogenesis. 781 

Overall, we observe fewer significant associations between WHRadjBMI and coding variants on 782 

the ExomeChip than Turcot et al. 25 examining the association of low frequency and rare coding variants 783 

with BMI. In line with these observations, we identify fewer pathways and cross-trait associations. One 784 

reason for fewer WHRadjBMI implicated variants and pathways may be smaller sample size (NWHRadjBMI = 785 

476,546, NBMI = 718,639), and thus, lower statistical power. Power, however, is likely not the only 786 

contributing factor. For example, Turcot et al. 25 have comparative sample sizes between BMI and that of 787 

Marouli et al.22 studying height (Nheight = 711,428). However, greater than seven times the number of 788 

coding variants are identified for height than for BMI, indicating that perhaps a number of other factors, 789 

including trait architecture, heritability (possibly overestimated in some phenotypes), and phenotype 790 

precision, likely all contribute to our study’s capacity to identify low frequency and rare variants with large 791 

effects. Further, it is possible that the comparative lack of significant findings for WHRadjBMI and BMI 792 

compared to height may be a result of higher selective pressure against genetic predisposition to 793 

cardiometabolic phenotypes, such as BMI and WHR. As evolutionary theory predicts that harmful alleles 794 

will be low frequency61, we may need larger sample sizes to detect rare variants that have so far escaped 795 

selective pressures. Lastly, the ExomeChip is limited by the variants that are present on the chip, which 796 

was largely dictated by sequencing studies in European-ancestry populations and a MAF detection criteria 797 

of ~0.012%. It is likely that through an increased sample size, use of chips designed to detect variation 798 

across a range of continental ancestries, high quality, deep imputation with large reference samples (e.g. 799 

HRC), and/or alternative study designs, future studies will detect additional variation from the entire allele 800 

frequency spectrum that contributes to fat distribution phenotypes. 801 
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The collected genetic and epidemiologic evidence has now demonstrated that fat distribution (as 802 

measured by increased WHRadjBMI) is correlated with increased risk of T2D and CVD, and that this 803 

association is likely causal with potential mediation through blood pressure, triglyceride-rich lipoproteins, 804 

glucose, and insulin9. This observation yields an immediate follow-up question: Which mechanisms 805 

regulate depot-specific fat accumulation and are risks for disease, driven by increased visceral or 806 

decreased subcutaneous adipose tissue mass (or both)? Pathway analysis identified several novel 807 

pathways and gene sets related to metabolism and adipose regulation, bone growth and development 808 

we also observed a possible role for adiponectin, a hormone which has been linked to “healthy” expansion 809 

of adipose tissue and insulin sensitivity 62. Similarly, expression/eQTL results support the function and 810 

relevance of adipogenesis, adipocyte biology, and insulin signaling, supporting our previous findings for 811 

WHRadjBMI10. We also provide evidence suggesting known biological functions and pathways 812 

contributing to body fat distribution (e.g., diet-induced obesity, angiogenesis, bone growth and 813 

morphology, and enhanced lipolysis). 814 

The ultimate aim of genetic investigations of obesity-related traits, like those presented here, is 815 

to identify genomic pathways that are dysregulated leading to obesity pathogenesis, and may result in a 816 

myriad of downstream illnesses. Thus, our findings may enhance the understanding of central obesity and 817 

identify new molecular targets to avert its negative health consequences. Significant cross-trait 818 

associations and additional associations observed in the GWAS Catalog are consistent with expected 819 

direction of effect for several traits, i.e. the WHR-increasing allele is associated with higher values of TG, 820 

DBP, fasting insulin, TC, LDL and T2D across many significant variants. However, it is worth noting that 821 

there are some exceptions. For example, rs9469913-A in UHRF1BP1 is associated with both increased 822 

WHRadjBMI and increased HDL. Also, we identified two variants in MLXIPL (rs3812316 and rs35332062), 823 

a well-known lipids-associated locus, in which the WHRadjBMI-increasing allele also increases all lipid 824 

levels, risk for hypertriglyceridemia, SBP and DBP. However, our findings show a significant and negative 825 
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association with HbA1C, and nominally significant and negative associations with two-hour glucose, 826 

fasting glucose, and Type 2 diabetes, and potential negative associations with biomarkers for liver disease 827 

(e.g. gamma glutamyl transpeptidase). Other notable exceptions include ITIH3 (negatively associated with 828 

BMI, HbA1C, LDL and SBP), DAGLB (positively associated with HDL), and STAB1 (negatively associated with 829 

TC, LDL, and SBP in cross-trait associations). Therefore, caution in selecting pathways for therapeutic 830 

targets is warranted; one must look beyond the effects on central adiposity, but also at the potential 831 

cascading effects of related diseases. 832 

A seminal finding from this study is the importance of lipid metabolism for body fat distribution. 833 

In fact, pathway analyses that highlight enhanced lipolysis, cross-trait associations with circulating lipid 834 

levels, existing biological evidence from the literature, and knockdown experiments in Drosophila 835 

examining triglyceride storage point to novel candidate genes (ANGPTL4, ACVR1C, DAGLB, MGA, RASIP1, 836 

and IZUMO1) and new candidates in known regions (DNAH1010 and MLXIPL14) related to lipid biology and 837 

its role in fat storage. Newly implicated genes of interest include ACVR1C, MLXIPL, and ANGPTL4, all of 838 

which are involved in lipid homeostasis; all are excellent candidate genes for central adiposity. Carriers of 839 

inactivating mutations in ANGPTL4 (Angiopoietin Like 4), for example, display low triglyceride levels and 840 

low risk of coronary artery disease63. ACVR1C encodes the activin receptor-like kinase 7 protein (ALK7), a 841 

receptor for the transcription factor TGFB-1, well known for its central role in growth and development in 842 

general64-68, and adipocyte development in particular68. ACVR1C exhibits the highest expression in adipose 843 

tissue, but is also highly expressed in the brain69-71. In mice, decreased activity of ACVR1C upregulates 844 

PPARγ and C/EBPα pathways and increases lipolysis in adipocytes, thus decreasing weight and diabetes in 845 

mice69,72,73. Such activity is suggestive of a role for ALK7 in adipose tissue signaling and therefore for 846 

therapeutic targets for human obesity. MLXIPL, also important for lipid metabolism and postnatal cellular 847 

growth, is a transcription factor which activates triglyceride synthesis genes in a glucose-dependent 848 

manner74,75. The lead exome variant in this gene is highly conserved, most likely damaging, and is 849 
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associated with reduced MLXIPL expression in adipose tissue. Furthermore, in a recent longitudinal, in 850 

vitro transcriptome analysis of adipogenesis in human adipose-derived stromal cells, gene expression of 851 

MLXIPL was up-regulated during the maturation of adipocytes, suggesting a critical role in the regulation 852 

of adipocyte size and accumulation76. However, given our observations on cross-trait associations with 853 

variants in MLXIPL and diabetes-related traits, development of therapeutic targets must be approached 854 

cautiously.  855 

Taken together, our 24 novel variants for WHRadjBMI offer new biology, highlighting the 856 

importance of lipid metabolism in the genetic underpinnings of body fat distribution. We continue to 857 

demonstrate the critical role of adipocyte biology and insulin resistance for central obesity and offer 858 

support for potentially causal genes underlying previously identified fat distribution GWAS loci. Notably, 859 

our findings offer potential new therapeutic targets for intervention in the risks associated with abdominal 860 

fat accumulation, and represents a major advance in our understanding of the underlying biology and 861 

genetic architecture of central adiposity. 862 
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METHODS  1113 

Studies 1114 

Stage 1 consisted of 74 studies (12 case/control studies, 59 population-based studies, and five 1115 

family studies) comprising 344,369 adult individuals of the following ancestries: 1) European descent (N= 1116 

288,492), 2) African (N= 15,687), 3) South Asian (N= 29,315), 4) East Asian (N=6,800), and 5) Hispanic 1117 

(N=4,075). Stage 1 meta-analyses were carried out in each ancestry separately and in the all ancestries 1118 

group, for both sex-combined and sex-specific analyses. Follow-up analyses were undertaken in 132,177 1119 

individuals of European ancestry from the deCODE anthropometric study and UK Biobank (Supplementary 1120 

Tables 1-3). Conditional analyses were performed in the all ancestries and European descent groups. 1121 

Informed consent was obtained for participants by the parent study and protocols approved by each 1122 

study’s institutional review boards. 1123 

Phenotypes 1124 

For each study, WHR (waist circumference divided by hip circumference) was corrected for age, 1125 

BMI, and the genomic principal components (derived from GWAS data, the variants with MAF >1% on the 1126 

ExomeChip, and ancestry informative markers available on the ExomeChip), as well as any additional 1127 

study-specific covariates (e.g. recruiting center), in a linear regression model. For studies with non-related 1128 

individuals, residuals were calculated separately by sex, whereas for family-based studies sex was included 1129 

as a covariate in models with both men and women. Additionally, residuals for case/control studies were 1130 

calculated separately. Finally, residuals were inverse normal transformed and used as the outcome in 1131 

association analyses. Phenotype descriptives by study are shown in Supplementary Table 3. 1132 

Genotypes and QC 1133 
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The majority of studies followed a standardized protocol and performed genotype calling using 1134 

the algorithms indicated in Supplementary Table 2, which typically included zCall3. For 10 studies 1135 

participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, 1136 

the raw intensity data for the samples from seven genotyping centers were assembled into a single project 1137 

for joint calling4. Study-specific quality control (QC) measures of the genotyped variants were 1138 

implemented before association analysis (Supplementary Tables 1-2). Furthermore, to assess the 1139 

possibility that any significant associations with rare and low-frequency variants could be due to allele 1140 

calling in the smaller studies, we performed a sensitivity meta-analysis including all large studies (>5,000 1141 

participants) and compared to all studies. We found very high concordance for effect sizes, suggesting 1142 

that smaller studies do not bias our results (Supplementary Fig. 24). 1143 

Study-level statistical analyses 1144 

Individual cohorts were analyzed for each ancestry separately, in sex-combined and sex-specific 1145 

groups, with either RAREMETALWORKER (http://genome.sph.umich.edu/wiki/RAREMETALWORKER) or 1146 

RVTESTs (http://zhanxw.github.io/rvtests/), to associate inverse normal transformed WHRadjBMI with 1147 

genotype accounting for cryptic relatedness (kinship matrix) in a linear mixed model. These software 1148 

programs are designed to perform score-statistic based rare-variant association analysis, can 1149 

accommodate both unrelated and related individuals, and provide single-variant results and variance-1150 

covariance matrices. The covariance matrix captures linkage disequilibrium (LD) relationships between 1151 

markers within 1 Mb, which is used for gene-level meta-analyses and conditional analyses77,78. Single-1152 

variant analyses were performed for both additive and recessive models.  1153 

Centralized quality-control 1154 

Individual cohorts identified ancestry population outliers based on 1000 Genome Project phase 1 1155 

ancestry reference populations. A centralized quality-control procedure implemented in EasyQC79 was 1156 

https://paperpile.com/c/1z4cgJ/2cuM
https://paperpile.com/c/1z4cgJ/mk4x
http://genome.sph.umich.edu/wiki/RAREMETALWORKER
http://zhanxw.github.io/rvtests/
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applied to individual cohort association summary statistics to identify cohort-specific problems: (1) 1157 

assessment of possible errors in phenotype residual transformation; (2) comparison of allele frequency 1158 

alignment against 1000 Genomes Project phase 1 reference data to pinpoint any potential strand issues, 1159 

and (3) examination of quantile-quantile (QQ) plots per study to identify any inflation arising from 1160 

population stratification, cryptic relatedness and genotype biases.  1161 

Meta-analyses 1162 

Meta-analyses were carried out in parallel by two different analysts at two sites using 1163 

RAREMETAL77. During the meta-analyses, we excluded variants if they had call rate <95%, Hardy-Weinberg 1164 

equilibrium P-value <1x10-7, or large allele frequency deviations from reference populations (>0.6 for all 1165 

ancestries analyses and >0.3 for ancestry-specific population analyses). We also excluded from 1166 

downstream analyses markers not present on the Illumina ExomeChip array 1.0, variants on the Y-1167 

chromosome or the mitochondrial genome, indels, multiallelic variants, and problematic variants based 1168 

on the Blat-based sequence alignment analyses. Significance for single-variant analyses was defined at an 1169 

array-wide level (P<2x10-7). For all suggestive significant variants from Stage 1, we tested for significant 1170 

sex differences. We calculated Psexhet for each SNP, testing for difference between women-specific and 1171 

men-specific beta estimates and standard errors using EasyStrata11,80. Each SNP that reached 1172 

Psexhet<0.05/# of variants tested (70 variants brought forward from Stage 1, Psexhet<7.14x10-4) was 1173 

considered significant. Additionally, while each individual study was asked to perform association analyses 1174 

stratified by race/ethnicity, and adjust for population stratification, all study-specific summary statistics 1175 

were meta-analyzed together for our all ancestry meta-analyses. To investigate potential heterogeneity 1176 

across ancestries, we did examine ancestry-specific meta-analysis results for our top 70 variants from 1177 

stage 1, and found no evidence of significant across-ancestry heterogeneity observed for any of our top 1178 

variants (I2 values noted in Supplementary Data 1-3). 1179 
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For the gene-based analyses, we applied two sets of criteria to select variants with a MAF<5% 1180 

within each ancestry based on coding variant annotation from five prediction algorithms (PolyPhen2, 1181 

HumDiv and HumVar, LRT, MutationTaster, and SIFT)80,81. Our broad gene-based tests included nonsense, 1182 

stop-loss, splice site, and missense variants annotated as damaging by at least one algorithm mentioned 1183 

above. Our strict gene-based tests included only nonsense, stop-loss, splice site, and missense variants 1184 

annotated as damaging by all five algorithms. These analyses were performed using the sequence kernel 1185 

association test (SKAT) and variable threshold (VT) methods. Statistical significance for gene-based tests 1186 

was set at a Bonferroni-corrected threshold of P<2.5x10-6 (0.05/~20,000 genes). All gene-based tests were 1187 

performed in RAREMETAL77. 1188 

Genomic inflation 1189 

We observed a marked genomic inflation of the test statistics even after controlling for population 1190 

stratification (linear mixed model) arising mainly from common markers; λGC in the primary meta-analysis 1191 

(combined ancestries and combined sexes) was 1.06 and 1.37 for all and only common coding and splice 1192 

site markers considered herein, respectively (Supplementary Figures 3, 7 and 13, Supplementary Table 1193 

16). Such inflation is expected for a highly polygenic trait like WHRadjBMI, for studies using a non-random 1194 

set of variants across the genome, and is consistent with our very large sample size79,82,83. 1195 

Conditional analyses 1196 

The RAREMETAL R-package77 was used to identify independent WHRadjBMI association signals 1197 

across all ancestries and European meta-analysis results. RAREMETAL performs conditional analyses by 1198 

using covariance matrices to distinguish true signals from the shadows of adjacent significant variants in 1199 

LD. First, we identified the lead variants (P<2x10-7) based on a 1Mb window centered on the most 1200 

significantly associated variant. We then conditioned on the lead variants in RAREMETAL and kept new 1201 
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lead signals at P<2x10-7 for conditioning in a second round of analysis. The process was repeated until no 1202 

additional signal emerged below the pre-specified P-value threshold (P<2x10-7). 1203 

To test if the associations detected were independent of the previously published WHRadjBMI 1204 

variants 10,14,16, we performed conditional analyses in the stage 1 discovery set if the GWAS variant or its 1205 

proxy (r20.8) was present on the ExomeChip using RAREMETAL77. All variants identified in our meta-1206 

analysis and the previously published variants were also present in the UK Biobank dataset84. This dataset 1207 

was used as a replacement dataset if a good proxy was not present on the ExomeChip as well as a 1208 

replication dataset for the variants present on the ExomeChip. All conditional analyses in the UK Biobank 1209 

dataset were performed using SNPTEST85-87. The conditional analyses were carried out reciprocally, 1210 

conditioning on the ExomeChip variant and then the previously published variant. An association was 1211 

considered independent of the previously published association if there was a statistically significant 1212 

association detected prior to the conditional analysis (P<2x10-7) with both the exome chip variant and the 1213 

previously published variant, and the observed association with both or either of the variants disappeared 1214 

upon conditional analysis (P>0.05). A conditional p-value between 9x10-6 and 0.05 was considered 1215 

inconclusive. However, a conditional p-value < 9x10-6 was also considered suggestive. 1216 

 1217 

Stage 2 meta-analyses 1218 

In our Stage 2, we sought to validate a total of 70 variants from Stage 1 that met P<2x10-6 in two 1219 

independent studies, the UK Biobank (Release 184) and Iceland (deCODE), comprising 119,572 and 12,605 1220 

individuals, respectively (Supplementary Tables 1-3). The same QC and analytical methodology were used 1221 

for these studies. Genotyping, study descriptions and phenotype descriptives are provided in 1222 

Supplementary Tables 1-3. For the combined analysis of Stage 1 plus 2, we used the inverse-variance 1223 

weighted fixed effects meta-analysis method. Significant associations were defined as those nominally 1224 
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significant (P<0.05) in the Stage 2 study and for the combined meta-analysis (Stage 1 plus Stage 2) 1225 

significance was set at P<2x10-7 (0.05/~250,000 variants). 1226 

Pathway enrichment analyses: EC-DEPICT 1227 

We adapted DEPICT, a gene set enrichment analysis method for GWAS data, for use with the 1228 

ExomeChip (‘EC-DEPICT’); this method is also described in a companion manuscript22. DEPICT’s primary 1229 

innovation is the use of “reconstituted” gene sets, where many different types of gene sets (e.g. canonical 1230 

pathways, protein-protein interaction networks, and mouse phenotypes) were extended through the use 1231 

of large-scale microarray data (see Pers et al.21 for details). EC-DEPICT computes p-values based on 1232 

Swedish ExomeChip data (Malmö Diet and Cancer (MDC), All New Diabetics in Scania (ANDIS), and Scania 1233 

Diabetes Registry (SDR) cohorts, N=11,899) and, unlike DEPICT, takes as input only the genes directly 1234 

containing the significant (coding) variants rather than all genes within a specified amount of linkage 1235 

disequilibrium (see Supplementary Note 2). 1236 

Two analyses were performed for WHRadjBMI ExomeChip: one with all variants p<5x10-4 (49 1237 

significant gene sets in 25 meta-gene sets, FDR <0.05) and one with all variants > 1 Mb from known GWAS 1238 

loci 10 (26 significant gene sets in 13 meta-gene sets, FDR <0.05). Affinity propagation clustering88 was 1239 

used to group highly correlated gene sets into “meta-gene sets”; for each meta-gene set, the member 1240 

gene set with the best p-value was used as representative for purposes of visualization (see 1241 

Supplementary Note). DEPICT for ExomeChip was written using the Python programming language, and 1242 

the code can be found at https://github.com/RebeccaFine/obesity-ec-depict. 1243 

Pathway enrichment analyses: PASCAL 1244 

We also applied the PASCAL pathway analysis tool23 to exome-wide association summary statistics 1245 

from Stage 1 for all coding variants. The method derives gene-based scores (both SUM and MAX statistics) 1246 

and subsequently tests for over-representation of high gene scores in predefined biological pathways. We 1247 
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used standard pathway libraries from KEGG, REACTOME and BIOCARTA, and also added dichotomized (Z-1248 

score>3) reconstituted gene sets from DEPICT21. To accurately estimate SNP-by-SNP correlations even for 1249 

rare variants, we used the UK10K data (TwinsUK89 and ALSPAC90 studies , N=3781). In order to separate 1250 

the contribution of regulatory variants from the coding variants, we also applied PASCAL to association 1251 

summary statistics of only regulatory variants (20 kb upstream) and regulatory+coding variants from the 1252 

Shungin et al10 study. In this way, we could comment on what is gained by analyzing coding variants 1253 

available on ExomeChip arrays. We performed both MAX and SUM estimations for pathway enrichment. 1254 

MAX is more sensitive to genesets driven primarily by a single signal, while SUM is better when there are 1255 

multiple variant associations in the same gene.  1256 

Monogenic obesity enrichment analyses 1257 

We compiled two lists consisting of 31 genes with strong evidence that disruption causes 1258 

monogenic forms of insulin resistance or diabetes; and 8 genes with evidence that disruption causes 1259 

monogenic forms of lipodystrophy. To test for enrichment of association, we conducted simulations by 1260 

matching each gene with others based on gene length and number of variants tested, to create a matched 1261 

set of genes. We generated 1,000 matched gene sets from our data, and assessed how often the number 1262 

of variants exceeding set significance thresholds was greater than in our monogenic obesity gene set.  1263 

Variance explained 1264 

We estimated the phenotypic variance explained by the association signals in Stage 1 all 1265 

ancestries analyses for men, women, and combined sexes91. For each associated region, we pruned 1266 

subsets of SNPs within 500 kb, as this threshold was comparable with previous studies, of the SNPs with 1267 

the lowest P-value and used varying P value thresholds (ranging from 2x10-7 to 0.02) from the combined 1268 

sexes results. Additionally, we examined all variants and independent variants across a range of MAF 1269 

thresholds. The variance explained by each subset of SNPs in each strata was estimated by summing the 1270 
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variance explained by the individual top coding variants. For the comparison of variance explained 1271 

between men and women, we tested for the significance of the differences assuming that the weighted 1272 

sum of chi-squared distributed variables tend to a Gaussian distribution ensured by Lyapunov’s central 1273 

limit theorem.91,92 1274 

Cross-trait lookups 1275 

To carefully explore the relationship between WHRadjBMI and related cardiometabolic, 1276 

anthropometric, and reproductive traits, association results for the 51 WHRadjBMI coding SNPs were 1277 

requested from existing or on-going meta-analyses from 7 consortia, including ExomeChip data from 1278 

GIANT (BMI, height), Global Lipids Genetics Consortium Results (GLGC) (total cholesterol, triglycerides, 1279 

HDL-cholesterol, LDL-cholesterol), International Consortium for Blood Pressure (IBPC)93 (systolic and 1280 

diastolic blood pressure), Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) 1281 

(glycemic traits), and DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium (type 2 1282 

diabetes). ).22,25-29  For coronary artery disease, we accessed 1000 Genomes Project-imputed GWAS data 1283 

released by CARDIoGRAMplusC4D94 and for the ReproGen consortium (age at menarche and menopause) 1284 

we used a combination of ExomeChip and 1000 Genomes Project-Imputed GWAS data. Heatmaps were 1285 

generated in R v3.3.2 using gplots (https://CRAN.R-project.org/package=gplots). We used Euclidean 1286 

distance based on p-value and direction of effect and complete linkage clustering for the dendrograms. 1287 

GWAS Catalog Lookups 1288 

In order to determine if significant coding variants were associated with any related 1289 

cardiometabolic and anthropometric traits, we also searched the NHGRI-EBI GWAS Catalog for previous 1290 

variant-trait associations near our lead SNPs (+/- 500 kb). We used PLINK to calculate LD for variants using 1291 

ARIC study European participants. All SNVs within the specified regions with an r2 value > 0.7 were retained 1292 

from NHGRI-EBI GWAS Catalog for further evaluation37. Consistent direction of effect was based on WHR-1293 
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increasing allele, LD, and allele frequency. Therefore, when a GWAS Catalog variant was not identical or 1294 

in high LD (r2 > 0.9) with the WHR variant, and MAF >0.45, we do not comment on direction of effect. 1295 

Body-fat percentage associations 1296 

We performed body fat percent and truncal fat percent look-up of 48 of the 56 identified variants 1297 

(tables 1 and 2) that were available in the UK Biobank, Release 184, data (notably some of the rare variants 1298 

in table 1 and 2 were not available) to further characterize their effects on WHRadjBMI. Genome-wide 1299 

association analyses for body fat percent and truncal fat percent were carried out in the UK Biobank. Prior 1300 

to analysis, phenotype data were filtered to exclude pregnant or possibly pregnant women, individuals 1301 

with body mass index < 15, and without genetically confirmed European ancestry, resulting in a sample 1302 

size of 120,286. Estimated measures of body fat percent and truncal fat percent were obtained using the 1303 

Tanita BC418MA body composition analyzer (Tanita, Tokyo, Japan). Individuals were not required to fast 1304 

and did not follow any specific instructions prior to the bioimpedance measurements. SNPTEST was used 1305 

to perform the analyses based on residuals adjusted for age, 15 principle components, assessment center 1306 

and the genotyping chip85.  1307 

Collider bias 1308 

In order to evaluate SNPs for possible collider bias18, we used results from a recent association 1309 

analysis from GIANT on BMI25. For each significant SNP identified in our additive models, WHRadjBMI 1310 

associations were corrected for potential bias due to associations between each variant and BMI (See 1311 

Supplementary Note 1 for additional details). Variants were considered robust against collider bias if they 1312 

met Bonferroni-corrected significance following correction (Pcorrected<9.09x10-4, 0.05/55 variants 1313 

examined). 1314 

Drosophila RNAi knockdown experiments 1315 
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For each gene in which coding variants were associated with WHRadjBMI in the final combined 1316 

meta-analysis (P < 2×10-7), its corresponding Drosophila orthologues were identified in the Ensembl 1317 

ortholog database (www.ensembl.org), when available. Drosophila triglyceride content values were 1318 

mined from a publicly available genome-wide fat screen data set 45 to identify potential genes for follow-1319 

up knockdowns. Estimated values represent fractional changes in triglyceride content in adult male flies. 1320 

Data are from male progeny resulting from crosses of male UAS-RNAi flies from the Vienna Drosophila 1321 

Resource Center (VDRC) and Hsp70-GAL4; Tub-GAL8ts virgin females. Two-to-five-day-old males were 1322 

sorted into groups of 20 and subjected to two one-hour wet heatshocks four days apart. On the seventh 1323 

day, flies were picked in groups of eight, manually crushed and sonicated, and the lysates heat-inactivated 1324 

for 10 min in a thermocycler at 95 °C. Centrifuge-cleared supernatants were then used for triglyceride 1325 

(GPO Trinder, Sigma) and protein (Pierce) determination. Triglyceride values from these adult-induced 1326 

ubiquitous RNAi knockdown individuals were normalized to those obtained in parallel from non-1327 

heatshocked progeny from the very same crosses. The screen comprised one to three biological replicates. 1328 

We followed up each gene with a >0.2 increase or >0.4 decrease in triglyceride content.  1329 

Orthologues for two genes were brought forward for follow-up, DNAH10 and PLXND1. For both 1330 

genes, we generated adipose tissue (cg-Gal4) and neuronal (elav-Gal4) specific RNAi-knockdown crosses 1331 

to knockdown transcripts in a tissue specific manner, leveraging upstream activation sequence (UAS)-1332 

inducible short-hairpin knockdown lines, available through the VDRC (Vienna Drosophila Resource 1333 

Center). Specifically, elav-Gal4, which drives expression of the RNAi construct in post mitotic neurons 1334 

starting at embryonic stages all the way to adulthood, was used. Cg drives expression in the fat body and 1335 

hemocytes starting at embryonic stage 12, all the way to adulthood. We crossed male UAS-RNAi flies and 1336 

elav-GAL4 or CG-GAL4 virgin female flies. All fly experiments were carried out at 25°C. Five-to-seven-day-1337 

old males were sorted into groups of 20, weighed and homogenated in PBS with 0.05% Tween with Lysing 1338 

Matrix D in a beadshaker. The homogenate was heat-inactivated for 10 min in a thermocycler at 70°C. 1339 

https://mail.mhi-rc.org/owa/redir.aspx?C=ms-mu2hJDkG74AmexeSk-Qu73fl9fdMIUbgoFf08eYzAY1dlgcqb81BHnMgu_Y4cMEn-cMis2Z4.&URL=http%3a%2f%2fwww.ensembl.org
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10μl of the homogenate was subsequently used in a triglyceride assay (Sigma, Serum Triglyceride 1340 

Determination Kit) which was carried out in duplicate according to protocol, with one alteration: the 1341 

samples were cleared of residual particulate debris by centrifugation before absorbance reading. 1342 

Resulting triglyceride values were normalized to fly weight and larval/population density. We used the 1343 

non-parametric Kruskall-Wallis test to compare wild type with knockdown lines. 1344 

Expression quantitative trait loci (eQTLs) analysis 1345 

We queried the significant variant (Exome coding SNPs)-gene pairs associated with eGenes across 1346 

five metabolically relevant tissues (skeletal muscle, subcutaneous adipose, visceral adipose, liver and 1347 

pancreas) with at least 70 samples in the GTEx database46. For each tissue, variants were selected based 1348 

on the following thresholds: the minor allele was observed in at least 10 samples, and the minor allele 1349 

frequency was ≥ 0.01. eGenes, genes with a significant eQTL, are defined on a false discovery rate (FDR)95 1350 

threshold of ≤0.05 of beta distribution-adjusted empirical p-value from FastQTL. Nominal p-values were 1351 

generated for each variant-gene pair by testing the alternative hypothesis that the slope of a linear 1352 

regression model between genotype and expression deviates from 0. To identify the list of all significant 1353 

variant-gene pairs associated with eGenes, a genome-wide empirical p-value threshold64, pt, was defined 1354 

as the empirical p-value of the gene closest to the 0.05 FDR threshold. pt was then used to calculate a 1355 

nominal p-value threshold for each gene based on the beta distribution model (from FastQTL) of the 1356 

minimum p-value distribution f(pmin) obtained from the permutations for the gene. For each gene, 1357 

variants with a nominal p-value below the gene-level threshold were considered significant and included 1358 

in the final list of variant-gene pairs64. For each eGene, we also listed the most significantly associated 1359 

variants (eSNP). Only these exome SNPs with r2 > 0.8 with eSNPs were considered for the biological 1360 

interpretation (Supplementary eQTL GTEx). 1361 

We also performed cis-eQTL analysis in 770 METSIM subcutaneous adipose tissue samples as 1362 

described in Civelek, et al.96 A false discovery rate (FDR) was calculated using all p-values from the cis-1363 
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eQTL detection in the q-value package in R. Variants associated with nearby genes at an FDR less than 1% 1364 

were considered to be significant (equivalent p-value < 2.46 × 10−4).  1365 

1366 

1367 

1368 

1369 

1370 

1371 

1372 

1373 

1374 

1375 

1376 

1377 

1378 

1379 

1380 

1381 

1382 

1383 

1384 

For loci with more than one microarray probeset of the same gene associated with the 

exome variant, we selected the probeset that provided the strongest LD r2 between the exome variant 

and the eSNP. In reciprocal conditional analysis, we conditioned on the lead exome variant by 

including it as a covariate in the cis-eQTL detection and reporting the p-value of the eSNP and vice 

versa. We considered the signals to be coincident if both the lead exome variant and the eSNP were no 

longer significant after conditioning on the other and the variants were in high pairwise LD (r2 > 0.80). 

For loci that also harbored reported GWAS variants, we performed reciprocal conditional analysis 

between the GWAS lead variant and the lead eSNP. For loci with more than one reported GWAS variant, 

the GWAS lead variant with the strongest LD r2 with the lead eSNP was reported. 

Penetrance analysis 

Phenotype and genotype data from the UK Biobank (UKBB) were used for the penetrance analysis. 

Three of 16 rare and low frequency variants (MAF ≤ 1%) detected in the final Stage 1 plus 2 meta-analysis 

were available in the UKBB and had relatively larger effect sizes (>0.90). The phenotype data for these 

three variants were stratified with respect to waist-to-hip ratio (WHR) using the World Health 

Organization (WHO) guidelines. These guidelines consider women and men with WHR greater than 0.85 

and 0.90 as obese, respectively. Genotype and allele counts were obtained for the available variants and 

these were used to calculate the number of carriers of the minor allele. The number of carriers for women, 

men and all combined was then compared between two strata (obese vs. non-obese) using a χ2 test. The 

significance threshold was determined by using a Bonferroni correction for the number of tests performed 

(0.05/9=5.5x10-3)).  1385 
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DATA AVAILABILITY  1386 

Summary statistics of all analyses are available at https://www.broadinstitute.org/collaboration/giant/. 1387 

  1388 
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BOXES 1389 

Box 1. Genes of biological interest harboring WHR-associated variants 

PLXND1- (3:129284818, rs2625973, known locus) The major allele of a common non-synonymous 

variant in Plexin D1 (L1412V, MAF=26.7%) is associated with increased WHRadjBMI (β (SE)= 0.0156 

(0.0024), P-value=9.16x10-11). PLXND1 is a semaphorin class 3 and 4 receptor gene, and therefore, is 

involved in cell to cell signaling and regulation of growth in development for a number of different cell 

and tissue types, including those in the cardiovascular system, skeleton, kidneys, and the central 

nervous system97-101. Mutations in this gene are associated with Moebius syndrome102-105, and 

persistent truncus arteriosus99,106. PLXND1 is involved in angiogenesis as part of the SEMA and VEGF 

signalling pathways107-110. PLXND1 was implicated in the development of T2D through its interaction 

with SEMA3E in mice. SEMA3E and PLXND1 are upregulated in adipose tissue in response to diet-

induced obesity, creating a cascade of adipose inflammation, insulin resistance, and diabetes 

mellitus101. PLXND1 is highly expressed in adipose (both subcutaneous and visceral) (GTeX). PLXND1 is 

highly intolerant of mutations and therefore highly conserved (Supplementary Data 10). Last, our lead 

variant is predicted as damaging or possibly damaging for all algorithms examined (SIFT, 

Polyphen2/HDIV, Polyphen2/HVAR, LRT, MutationTaster).  

 

ACVR1C– (2:158412701, rs55920843, novel locus) The major allele of a low frequency non-synonymous 

variant in activin A receptor type 1C (rs55920843, N150H, MAF=1.1%) is associated with increased 

WHRadjBMI (β (SE)= 0.0652 (0.0105), P-value= 4.81x10-10). ACVR1C, also called Activin receptor-like 

kinase 7 (ALK7), is a type I receptor for TGFB (Transforming Growth Factor, Beta-1), and is integral for 

the activation of SMAD transcription factors; therefore, ACVR1C plays an important role in cellular 

growth and differentiation64-68, including adipocytes68. Mouse Acvr1c decreases secretion of insulin and 
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is involved in lipid storage69,72,73,69,72,73,111. ACVR1C exhibits the highest expression in adipose tissue, but 

is also highly expressed in the brain (GTEx)69-71. Expression is associated with body fat, carbohydrate 

metabolism and lipids in both obese and lean individuals70. ACVR1C is moderately tolerant of mutations 

(EXaC Constraint Scores: synonymous= -0.86, nonsynonymous = 1.25, LoF = 0.04, Supplementary Data 

10). Last, our lead variant is predicted as damaging for two of five algorithms examined (LRT and 

MutationTaster). 

 

FGFR2– (10:123279643, rs138315382, novel locus) The minor allele of a rare synonymous variant in 

Fibroblast Growth Factor Receptor 2 (rs138315382, MAF=0.09%) is associated with increased 

WHRadjBMI (β (SE) = 0.258 (0.049), P-value= 1.38x10-07). The extracellular portion of the FGFR2 protein 

binds with fibroblast growth factors, influencing mitogenesis and differentiation. Mutations in this gene 

have been associated with many rare monogenic disorders, including skeletal deformities, 

craniosynostosis, eye abnormalities, and LADD syndrome, as well as several cancers including breast, 

lung, and gastric cancer. Methylation of FGFR2 is associated with high birth weight percentile112. FGFR2 

is tolerant of synonymous mutations, but highly intolerant of missense and loss-of-function mutations 

(ExAC Constraint scores: synonymous=-0.9, missense=2.74, LoF=1.0, Supplementary Data 10). Last, this 

variant is not predicted to be damaging based on any of the 5 algorithms tested. 

 

ANGPTL4 – (19:8429323, rs116843064, novel locus) The major allele of a nonsynonymous low 

frequency variant in Angiopoietin Like 4 (rs116843064, E40K, EAF=98.1%) is associated with increased 

WHRadjBMI (β (SE) = 0.064 (0.011) P-value= 1.20x10-09). ANGPTL4 encodes a glycosylated, secreted 

protein containing a C-terminal fibrinogen domain. The encoded protein is induced by peroxisome 

proliferation activators and functions as a serum hormone that regulates glucose homeostasis, 

triglyceride metabolism113,114, and insulin sensitivity115. Angptl4-deficient mice have 
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hypotriglyceridemia and increased lipoprotein lipase (LPL) activity, while transgenic mice 

overexpressing Angplt4 in the liver have higher plasma triglyceride levels and decreased LPL activity116. 

The major allele of rs116843064 has been previously associated with increased risk of coronary heart 

disease and increased TG63. ANGPTL4 is moderately tolerant of mutations (ExAC constraint scores 

synonymous=1.18, missense=0.21, LoF=0.0, Supplementary Data 10). Last, our lead variant is predicted 

damaging for four of five algorithms (SIFT, Polyphen 2/HDIV, Polyphen2/HVAR, and MutationTaster). 

 

RREB1 – (6:7211818, rs1334576, novel association signal) The major allele of a common non-

synonymous variant in the Ras responsive element binding protein 1 (rs1334576, G195R, EAF=56%) is 

associated with increased WHRadjBMI (β (SE)=0.017 (0.002), P-value=3.9x10-15). This variant is 

independent of the previously reported GWAS signal in the RREB1 region (rs1294410; 6:673875210). 

The protein encoded by this gene is a zinc finger transcription factor that binds to RAS-responsive 

elements (RREs) of gene promoters. It has been shown that the calcitonin gene promoter contains an 

RRE and that the encoded protein binds there and increases expression of calcitonin, which may be 

involved in Ras/Raf-mediated cell differentiation117-119. The ras responsive transcription factor RREB1 is 

a candidate gene for type 2 diabetes associated end-stage kidney disease118. This variant is highly 

intolerant to loss of function (ExAC constraint score LoF = 1, Supplementary Data 10). 

 

DAGLB – (7:6449496, rs2303361, novel locus) The minor allele of a common non-synonymous variant 

(rs2303361, Q664R, MAF=22%) in DAGLB (Diacylglycerol lipase beta) is associated with increased 

WHRadjBMI (β (SE)= 0.0136 (0.0025), P-value=6.24x10-8). DAGLB is a diacylglycerol (DAG) lipase that 

catalyzes the hydrolysis of DAG to 2-arachidonoyl-glycerol, the most abundant endocannabinoid in 

tissues. In the brain, DAGL activity is required for axonal growth during development and for retrograde 

synaptic signaling at mature synapses (2-AG)120. The DAGLB variant, rs702485 (7:6449272, r2= 0.306 
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and D’=1 with rs2303361) has been previously associated with high-density lipoprotein cholesterol 

(HDL) previously. Pathway analysis indicate a role in the triglyceride lipase activity pathway 121. DAGLB 

is tolerant of synonymous mutations, but intolerant of missense and loss of function mutations (ExAC 

Constraint scores: synonymous=-0.76, missense=1.07, LoF=0.94, Supplementary Data 10). Last, this 

variant is not predicted to be damaging by any of the algorithms tested.  

 

MLXIPL (7:73012042, rs35332062 and 7:73020337, rs3812316, known locus) The major alleles of two 

common non-synonymous variants (A358V, MAF=12%; Q241H, MAF=12%) in MLXIPL (MLX interacting 

protein like) are associated with increased WHRadjBMI (β (SE)= 0.02 (0.0033), P-value=1.78x10-9; β 

(SE)= 0.0213 (0.0034), P-value=1.98x10-10). These variants are in strong linkage disequilibrium (r2=1.00, 

D’=1.00, 1000 Genomes CEU). This gene encodes a basic helix-loop-helix leucine zipper transcription 

factor of the Myc/Max/Mad superfamily. This protein forms a heterodimeric complex and binds and 

activates carbohydrate response element (ChoRE) motifs in the promoters of triglyceride synthesis 

genes in a glucose-dependent manner74,75. This gene is possibly involved in the growth hormone 

signaling pathway and lipid metabolism. The WHRadjBMI-associated variant rs3812316 in this gene has 

been associated with the risk of non-alcoholic fatty liver disease and coronary artery disease74,122,123. 

Furthermore, Williams-Beuren syndrome (an autosomal dominant disorder characterized by short 

stature, abnormal weight gain, various cardiovascular defects, and mental retardation) is caused by a 

deletion of about 26 genes from the long arm of chromosome 7 including MLXIPL. MLXIPL is generally 

intolerant to variation, and therefore conserved (ExAC Constraint scores: synonymous = 0.48, 

missense=1.16, LoF=0.68, Supplementary Data 10). Last, both variants reported here are predicted as 

possible or probably damaging by one of the algorithms tested (PolyPhen).  
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RAPGEF3 (12:48143315, rs145878042, novel locus) The major allele of a low frequency non-

synonymous variant in Rap Guanine-Nucleotide-Exchange Factor (GEF) 3 (rs145878042, L300P, 

MAF=1.1%) is associated with increased WHRadjBMI (β (SE)=0.085 (0.010), P-value = 7.15E-17). RAPGEF3 

codes for an intracellular cAMP sensor, also known as Epac (the Exchange Protein directly Activated by 

Cyclic AMP). Among its many known functions, RAPGEF3 regulates the ATP sensitivity of the KATP 

channel involved in insulin secretion124, may be important in regulating adipocyte differentiation125-127, 

plays an important role in regulating adiposity and energy balance128. RAPGEF3 is tolerant of mutations 

(ExAC Constraint Scores: synonymous = -0.47, nonsynonymous = 0.32, LoF = 0, Supplementary Data 

10). Last, our lead variant is predicted as damaging or possibly damaging for all five algorithms 

examined (SIFT, Polyphen2/HDIV, Polyphen2/HVAR, LRT, MutationTaster).  

 

TBX15 (1:119427467, rs61730011, known locus) The major allele of a low frequency non-synonymous 

variant in T-box 15 (rs61730011, M460R, MAF=4.3%) is associated with increased WHRadjBMI 

(β(SE)=0.041(0.005)). T-box 15 (TBX15) is a developmental transcription factor expressed in adipose 

tissue, but with higher expression in visceral adipose tissue than in subcutaneous adipose tissue, and is 

strongly downregulated in overweight and obese individuals129. TBX15 negatively controls depot-

specific adipocyte differentiation and function130 and regulates glycolytic myofiber identity and muscle 

metabolism131. TBX15 is moderately intolerant of mutations and therefore conserved (ExAC Constraint 

Scores: synonymous = 0.42, nonsynonymous = 0.65, LoF = 0.88, Supplementary Data 10). Last, our lead 

variant is predicted as damaging or possibly damaging for four of five algorithms (Polyphen2/HDIV, 

Polyphen2/HVAR, LRT, MutationTaster). 



  

  67 

REFERENCES 1390 

1. Pischon, T. et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med 359, 1391 

2105-20 (2008). 1392 

2. Wang, Y., Rimm, E.B., Stampfer, M.J., Willett, W.C. & Hu, F.B. Comparison of abdominal adiposity 1393 

and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr 81, 555-63 1394 

(2005). 1395 

3. Canoy, D. Distribution of body fat and risk of coronary heart disease in men and women. Curr Opin 1396 

Cardiol 23, 591-8 (2008). 1397 

4. Snijder, M.B. et al. Associations of hip and thigh circumferences independent of waist 1398 

circumference with the incidence of type 2 diabetes: the Hoorn Study. Am J Clin Nutr 77, 1192-7 1399 

(2003). 1400 

5. Yusuf, S. et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 1401 

countries: a case-control study. Lancet 366, 1640-9 (2005). 1402 

6. Mason, C., Craig, C.L. & Katzmarzyk, P.T. Influence of central and extremity circumferences on all-1403 

cause mortality in men and women. Obesity (Silver Spring) 16, 2690-5 (2008). 1404 

7. Karpe, F. & Pinnick, K.E. Biology of upper-body and lower-body adipose tissue--link to whole-body 1405 

phenotypes. Nat Rev Endocrinol 11, 90-100 (2015). 1406 

8. Manolopoulos, K.N., Karpe, F. & Frayn, K.N. Gluteofemoral body fat as a determinant of metabolic 1407 

health. Int J Obes (Lond) 34, 949-59 (2010). 1408 

9. Emdin, C.A. et al. Genetic Association of Waist-to-Hip Ratio With Cardiometabolic Traits, Type 2 1409 

Diabetes, and Coronary Heart Disease. JAMA 317, 626-634 (2017). 1410 

10. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 1411 

518, 187-96 (2015). 1412 



  

  68 

11. Winkler, T.W. et al. The Influence of Age and Sex on Genetic Associations with Adult Body Size 1413 

and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genet 11, e1005378 (2015). 1414 

12. Wen, W. et al. Genome-wide association studies in East Asians identify new loci for waist-hip ratio 1415 

and waist circumference. Sci Rep 6, 17958 (2016). 1416 

13. Gao, C. et al. A Comprehensive Analysis of Common and Rare Variants to Identify Adiposity Loci 1417 

in Hispanic Americans: The IRAS Family Study (IRASFS). PLoS One 10, e0134649 (2015). 1418 

14. Graff, M. et al. Genome-wide physical activity interactions in adiposity - A meta-analysis of 1419 

200,452 adults. PLoS Genet 13, e1006528 (2017). 1420 

15. Justice, A.E. et al. Genome-wide meta-analysis of 241,258 adults accounting for smoking 1421 

behaviour identifies novel loci for obesity traits. Nat Commun 8, 14977 (2017). 1422 

16. Ng, M.C.Y. et al. Discovery and fine-mapping of adiposity loci using high density imputation of 1423 

genome-wide association studies in individuals of African ancestry: African Ancestry 1424 

Anthropometry Genetics Consortium. PLoS Genet 13, e1006719 (2017). 1425 

17. Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 1426 

518, 197-206 (2015). 1427 

18. Aschard, H., Vilhjalmsson, B.J., Joshi, A.D., Price, A.L. & Kraft, P. Adjusting for heritable covariates 1428 

can bias effect estimates in genome-wide association studies. Am J Hum Genet 96, 329-39 (2015). 1429 

19. Day, F.R., Loh, P.R., Scott, R.A., Ong, K.K. & Perry, J.R. A Robust Example of Collider Bias in a 1430 

Genetic Association Study. Am J Hum Genet 98, 392-3 (2016). 1431 

20. Feng, S., Liu, D., Zhan, X., Wing, M.K. & Abecasis, G.R. RAREMETAL: fast and powerful meta-1432 

analysis for rare variants. Bioinformatics 30, 2828-9 (2014). 1433 

21. Pers, T.H. et al. Biological interpretation of genome-wide association studies using predicted gene 1434 

functions. Nat Commun 6, 5890 (2015). 1435 



  

  69 

22. Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 1436 

186-190 (2017). 1437 

23. Lamparter, D., Marbach, D., Rueedi, R., Kutalik, Z. & Bergmann, S. Fast and Rigorous Computation 1438 

of Gene and Pathway Scores from SNP-Based Summary Statistics. PLoS Comput Biol 12, e1004714 1439 

(2016). 1440 

24. Kawai, M., de Paula, F.J. & Rosen, C.J. New insights into osteoporosis: the bone-fat connection. J 1441 

Intern Med 272, 317-29 (2012). 1442 

25. Turcot, V. et al. Protein-altering variants associated with body mass index implicate pathways that 1443 

control energy intake and expenditure in obesity. Nat Genet 50, 26-41 (2018). 1444 

26. Liu, D.J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. 49, 1758-1445 

1766 (2017). 1446 

27. Kraja, A.T. et al. New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475 000 1447 

Individuals. Circ Cardiovasc Genet 10(2017). 1448 

28. Mahajan, A. et al. Identification and functional characterization of G6PC2 coding variants 1449 

influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet 1450 

11, e1004876 (2015). 1451 

29. Manning, A. et al. A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population 1452 

Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes 66, 2019-2032 (2017). 1453 

30. Zhao, W. et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological 1454 

pathways with coronary heart disease. 49, 1450-1457 (2017). 1455 

31. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic architecture 1456 

and pathophysiology of type 2 diabetes. Nat Genet 44, 981-90 (2012). 1457 

32. Ng, M.C. et al. Meta-analysis of genome-wide association studies in African Americans provides 1458 

insights into the genetic architecture of type 2 diabetes. PLoS Genet 10, e1004517 (2014). 1459 



  

  70 

33. Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic 1460 

architecture of type 2 diabetes susceptibility. Nat Genet 46, 234-44 (2014). 1461 

34. Saxena, R. et al. Genome-wide association study identifies a novel locus contributing to type 2 1462 

diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes 62, 1746-55 (2013). 1463 

35. Cook, J.P. & Morris, A.P. Multi-ethnic genome-wide association study identifies novel locus for 1464 

type 2 diabetes susceptibility. Eur J Hum Genet 24, 1175-80 (2016). 1465 

36. Voight, B.F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale 1466 

association analysis. Nat Genet 42, 579-89 (2010). 1467 

37. Burdett, T. et al. The NHGRI-EBI Catalog of published genome-wide association studies. v1.0 edn 1468 

Vol. 2015 (2015). 1469 

38. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci 1470 

for human diseases and traits. Proc Natl Acad Sci U S A 106, 9362-7 (2009). 1471 

39. Lutoslawska, G. et al. Relationship between the percentage of body fat and surrogate indices of 1472 

fatness in male and female Polish active and sedentary students. J Physiol Anthropol 33, 10 (2014). 1473 

40. Verma, M., Rajput, M., Sahoo, S.S., Kaur, N. & Rohilla, R. Correlation between the percentage of 1474 

body fat and surrogate indices of obesity among adult population in rural block of Haryana. J 1475 

Family Med Prim Care 5, 154-9 (2016). 1476 

41. Pereira, P.F. et al. [Measurements of location of body fat distribution: an assessment of colinearity 1477 

with body mass, adiposity and stature in female adolescents]. Rev Paul Pediatr 33, 63-71 (2015). 1478 

42. Lu, Y. et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic 1479 

disease risk. Nat Commun 7, 10495 (2016). 1480 

43. Chambers, J.C. et al. Common genetic variation near MC4R is associated with waist circumference 1481 

and insulin resistance. Nat Genet 40, 716-8 (2008). 1482 



  

  71 

44. Nead, K.T. et al. Contribution of common non-synonymous variants in PCSK1 to body mass index 1483 

variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 1484 

175 individuals. Hum Mol Genet 24, 3582-94 (2015). 1485 

45. Pospisilik, J.A. et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant 1486 

of brown versus white adipose cell fate. Cell 140, 148-60 (2010). 1487 

46. Consortium, G.T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: 1488 

multitissue gene regulation in humans. Science 348, 648-60 (2015). 1489 

47. Baraille, F., Planchais, J., Dentin, R., Guilmeau, S. & Postic, C. Integration of ChREBP-Mediated 1490 

Glucose Sensing into Whole Body Metabolism. Physiology (Bethesda) 30, 428-37 (2015). 1491 

48. Kursawe, R. et al. Decreased transcription of ChREBP-alpha/beta isoforms in abdominal 1492 

subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: 1493 

associations with insulin resistance and hyperglycemia. Diabetes 62, 837-44 (2013). 1494 

49. Lotta, L.A. et al. Integrative genomic analysis implicates limited peripheral adipose storage 1495 

capacity in the pathogenesis of human insulin resistance. Nat Genet 49, 17-26 (2017). 1496 

50. Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the 1497 

identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80, 273-90 (2007). 1498 

51. Hazlett, J., Stamp, L.K., Merriman, T., Highton, J. & Hessian, P.A. IL-23R rs11209026 polymorphism 1499 

modulates IL-17A expression in patients with rheumatoid arthritis. Genes Immun 13, 282-7 (2012). 1500 

52. Karaderi, T. et al. Association between the interleukin 23 receptor and ankylosing spondylitis is 1501 

confirmed by a new UK case-control study and meta-analysis of published series. Rheumatology 1502 

(Oxford) 48, 386-9 (2009). 1503 

53. Duerr, R.H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel 1504 

disease gene. Science 314, 1461-3 (2006). 1505 



  

  72 

54. Abdollahi, E., Tavasolian, F., Momtazi-Borojeni, A.A., Samadi, M. & Rafatpanah, H. Protective role 1506 

of R381Q (rs11209026) polymorphism in IL-23R gene in immune-mediated diseases: A 1507 

comprehensive review. J Immunotoxicol 13, 286-300 (2016). 1508 

55. Abraham, C., Dulai, P.S., Vermeire, S. & Sandborn, W.J. Lessons Learned From Trials Targeting 1509 

Cytokine Pathways in Patients With Inflammatory Bowel Diseases. Gastroenterology 152, 374-388 1510 

e4 (2017). 1511 

56. Molinelli, E., Campanati, A., Ganzetti, G. & Offidani, A. Biologic Therapy in Immune Mediated 1512 

Inflammatory Disease: Basic Science and Clinical Concepts. Curr Drug Saf 11, 35-43 (2016). 1513 

57. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41-7 (2016). 1514 

58. Wells, J.C. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab 21, 415-1515 

30 (2007). 1516 

59. Loomba-Albrecht, L.A. & Styne, D.M. Effect of puberty on body composition. Curr Opin Endocrinol 1517 

Diabetes Obes 16, 10-5 (2009). 1518 

60. Rogol, A.D., Roemmich, J.N. & Clark, P.A. Growth at puberty. J Adolesc Health 31, 192-200 (2002). 1519 

61. Gibson, G. Rare and common variants: twenty arguments. Nat Rev Genet 13, 135-45 (2012). 1520 

62. Stern, J.H., Rutkowski, J.M. & Scherer, P.E. Adiponectin, Leptin, and Fatty Acids in the 1521 

Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metab 23, 770-84 1522 

(2016). 1523 

63. Dewey, F.E. et al. Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease. N Engl J 1524 

Med 374, 1123-33 (2016). 1525 

64. Bondestam, J. et al. cDNA cloning, expression studies and chromosome mapping of human type I 1526 

serine/threonine kinase receptor ALK7 (ACVR1C). Cytogenet Cell Genet 95, 157-62 (2001). 1527 



  

  73 

65. Jornvall, H., Blokzijl, A., ten Dijke, P. & Ibanez, C.F. The orphan receptor serine/threonine kinase 1528 

ALK7 signals arrest of proliferation and morphological differentiation in a neuronal cell line. J Biol 1529 

Chem 276, 5140-6 (2001). 1530 

66. Kim, B.C. et al. Activin receptor-like kinase-7 induces apoptosis through activation of MAPKs in a 1531 

Smad3-dependent mechanism in hepatoma cells. J Biol Chem 279, 28458-65 (2004). 1532 

67. Watanabe, R. et al. The MH1 domains of smad2 and smad3 are involved in the regulation of the 1533 

ALK7 signals. Biochem Biophys Res Commun 254, 707-12 (1999). 1534 

68. Kogame, M. et al. ALK7 is a novel marker for adipocyte differentiation. J Med Invest 53, 238-45 1535 

(2006). 1536 

69. Murakami, M. et al. Expression of activin receptor-like kinase 7 in adipose tissues. Biochem Genet 1537 

51, 202-10 (2013). 1538 

70. Carlsson, L.M. et al. ALK7 expression is specific for adipose tissue, reduced in obesity and 1539 

correlates to factors implicated in metabolic disease. Biochem Biophys Res Commun 382, 309-14 1540 

(2009). 1541 

71. Carithers, L.J. & Moore, H.M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv Biobank 1542 

13, 307-8 (2015). 1543 

72. Yogosawa, S., Mizutani, S., Ogawa, Y. & Izumi, T. Activin receptor-like kinase 7 suppresses lipolysis 1544 

to accumulate fat in obesity through downregulation of peroxisome proliferator-activated 1545 

receptor gamma and C/EBPalpha. Diabetes 62, 115-23 (2013). 1546 

73. Yogosawa, S. & Izumi, T. Roles of activin receptor-like kinase 7 signaling and its target, peroxisome 1547 

proliferator-activated receptor gamma, in lean and obese adipocytes. Adipocyte 2, 246-50 (2013). 1548 

74. Seifi, M., Ghasemi, A., Namipashaki, A. & Samadikuchaksaraei, A. Is C771G polymorphism of MLX 1549 

interacting protein-like (MLXIPL) gene a novel genetic risk factor for non-alcoholic fatty liver 1550 

disease? Cell Mol Biol (Noisy-le-grand) 60, 37-42 (2014). 1551 



  

  74 

75. Cairo, S., Merla, G., Urbinati, F., Ballabio, A. & Reymond, A. WBSCR14, a gene mapping to the 1552 

Williams--Beuren syndrome deleted region, is a new member of the Mlx transcription factor 1553 

network. Hum Mol Genet 10, 617-27 (2001). 1554 

76. Ambele, M.A., Dessels, C., Durandt, C. & Pepper, M.S. Genome-wide analysis of gene expression 1555 

during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene 1556 

expression during adipocyte differentiation. Stem Cell Res 16, 725-34 (2016). 1557 

77. Liu, D.J. et al. Meta-analysis of gene-level tests for rare variant association. Nat Genet 46, 200-4 1558 

(2014). 1559 

78. Goldstein, J.I. et al. zCall: a rare variant caller for array-based genotyping: genetics and population 1560 

analysis. Bioinformatics 28, 2543-5 (2012). 1561 

79. Winkler, T.W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat 1562 

Protoc 9, 1192-212 (2014). 1563 

80. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 1564 

518, 187-196 (2015). 1565 

81. Purcell, S.M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 1566 

185-90 (2014). 1567 

82. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet 19, 807-12 1568 

(2011). 1569 

83. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies 1570 

additional variants influencing complex traits. Nat Genet 44, 369-75, S1-3 (2012). 1571 

84. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range 1572 

of complex diseases of middle and old age. PLoS Med 12, e1001779 (2015). 1573 

85. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for 1574 

genome-wide association studies by imputation of genotypes. Nat Genet 39, 906-13 (2007). 1575 



  

  75 

86. Wellcome Trust Case Control, C. Genome-wide association study of 14,000 cases of seven 1576 

common diseases and 3,000 shared controls. Nature 447, 661-78 (2007). 1577 

87. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat Rev 1578 

Genet 11, 499-511 (2010). 1579 

88. Frey, B.J. & Dueck, D. Clustering by passing messages between data points. Science 315, 972-6 1580 

(2007). 1581 

89. Moayyeri, A., Hammond, C.J., Valdes, A.M. & Spector, T.D. Cohort Profile: TwinsUK and healthy 1582 

ageing twin study. Int J Epidemiol 42, 76-85 (2013). 1583 

90. Boyd, A. et al. Cohort Profile: the 'children of the 90s'--the index offspring of the Avon Longitudinal 1584 

Study of Parents and Children. Int J Epidemiol 42, 111-27 (2013). 1585 

91. Kutalik, Z., Whittaker, J., Waterworth, D., Beckmann, J.S. & Bergmann, S. Novel method to 1586 

estimate the phenotypic variation explained by genome-wide association studies reveals large 1587 

fraction of the missing heritability. Genet Epidemiol 35, 341-9 (2011). 1588 

92. Billingsley, P. Probability and measure, xii, 622 p. (Wiley, New York, 1986). 1589 

93. Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated 1590 

with blood pressure and hypertension. Nat Genet 48, 1151-61 (2016). 1591 

94. Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis 1592 

of coronary artery disease. Nat Genet 47, 1121-30 (2015). 1593 

95. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S 1594 

A 100, 9440-5 (2003). 1595 

96. Civelek, M. et al. Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits. Am 1596 

J Hum Genet 100, 428-443 (2017). 1597 

97. Marchler-Bauer, A. et al. CDD: NCBI's conserved domain database. Nucleic Acids Res 43, D222-6 1598 

(2015). 1599 



  

  76 

98. Toyofuku, T. et al. Semaphorin-4A, an activator for T-cell-mediated immunity, suppresses 1600 

angiogenesis via Plexin-D1. EMBO J 26, 1373-84 (2007). 1601 

99. Gitler, A.D., Lu, M.M. & Epstein, J.A. PlexinD1 and semaphorin signaling are required in endothelial 1602 

cells for cardiovascular development. Dev Cell 7, 107-16 (2004). 1603 

100. Luchino, J. et al. Semaphorin 3E suppresses tumor cell death triggered by the plexin D1 1604 

dependence receptor in metastatic breast cancers. Cancer Cell 24, 673-85 (2013). 1605 

101. Shimizu, I. et al. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary 1606 

obesity. Cell Metab 18, 491-504 (2013). 1607 

102. Verzijl, H.T., van der Zwaag, B., Cruysberg, J.R. & Padberg, G.W. Mobius syndrome redefined: a 1608 

syndrome of rhombencephalic maldevelopment. Neurology 61, 327-33 (2003). 1609 

103. Verzijl, H.T., van der Zwaag, B., Lammens, M., ten Donkelaar, H.J. & Padberg, G.W. The 1610 

neuropathology of hereditary congenital facial palsy vs Mobius syndrome. Neurology 64, 649-53 1611 

(2005). 1612 

104. Fujita, M., Reinhart, F. & Neutra, M. Convergence of apical and basolateral endocytic pathways at 1613 

apical late endosomes in absorptive cells of suckling rat ileum in vivo. J Cell Sci 97 ( Pt 2), 385-94 1614 

(1990). 1615 

105. Briegel, W. Neuropsychiatric findings of Mobius sequence -- a review. Clin Genet 70, 91-7 (2006). 1616 

106. Ta-Shma, A. et al. Isolated truncus arteriosus associated with a mutation in the plexin-D1 gene. 1617 

Am J Med Genet A 161A, 3115-20 (2013). 1618 

107. Mazzotta, C. et al. Plexin-D1/Semaphorin 3E pathway may contribute to dysregulation of vascular 1619 

tone control and defective angiogenesis in systemic sclerosis. Arthritis Res Ther 17, 221 (2015). 1620 

108. Yang, W.J. et al. Semaphorin-3C signals through Neuropilin-1 and PlexinD1 receptors to inhibit 1621 

pathological angiogenesis. EMBO Mol Med 7, 1267-84 (2015). 1622 



  

  77 

109. Zygmunt, T. et al. Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy 1623 

receptor sFlt1. Dev Cell 21, 301-14 (2011). 1624 

110. Kim, J., Oh, W.J., Gaiano, N., Yoshida, Y. & Gu, C. Semaphorin 3E-Plexin-D1 signaling regulates 1625 

VEGF function in developmental angiogenesis via a feedback mechanism. Genes Dev 25, 1399-411 1626 

(2011). 1627 

111. Bertolino, P. et al. Activin B receptor ALK7 is a negative regulator of pancreatic beta-cell function. 1628 

Proc Natl Acad Sci U S A 105, 7246-51 (2008). 1629 

112. Haworth, K.E. et al. Methylation of the FGFR2 gene is associated with high birth weight centile in 1630 

humans. Epigenomics 6, 477-91 (2014). 1631 

113. Chi, X. et al. Angiopoietin-like 4 Modifies the Interactions between Lipoprotein Lipase and Its 1632 

Endothelial Cell Transporter GPIHBP1. J Biol Chem 290, 11865-77 (2015). 1633 

114. Catoire, M. et al. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc 1634 

Natl Acad Sci U S A 111, E1043-52 (2014). 1635 

115. van Raalte, D.H. et al. Angiopoietin-like protein 4 is differentially regulated by glucocorticoids and 1636 

insulin in vitro and in vivo in healthy humans. Exp Clin Endocrinol Diabetes 120, 598-603 (2012). 1637 

116. Koster, A. et al. Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of 1638 

angptl4 and angptl3: regulation of triglyceride metabolism. Endocrinology 146, 4943-50 (2005). 1639 

117. Thiagalingam, A. et al. RREB-1, a novel zinc finger protein, is involved in the differentiation 1640 

response to Ras in human medullary thyroid carcinomas. Mol Cell Biol 16, 5335-45 (1996). 1641 

118. Bonomo, J.A. et al. The ras responsive transcription factor RREB1 is a novel candidate gene for 1642 

type 2 diabetes associated end-stage kidney disease. Hum Mol Genet 23, 6441-7 (2014). 1643 

119. Thiagalingam, A., Lengauer, C., Baylin, S.B. & Nelkin, B.D. RREB1, a ras responsive element binding 1644 

protein, maps to human chromosome 6p25. Genomics 45, 630-2 (1997). 1645 



  

  78 

120. Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation 1646 

of endocannabinoid signaling in the brain. J Cell Biol 163, 463-8 (2003). 1647 

121. Global Lipids Genetics, C. et al. Discovery and refinement of loci associated with lipid levels. Nat 1648 

Genet 45, 1274-83 (2013). 1649 

122. Kooner, J.S. et al. Genome-wide scan identifies variation in MLXIPL associated with plasma 1650 

triglycerides. Nat Genet 40, 149-51 (2008). 1651 

123. Pan, L.A. et al. G771C Polymorphism in the MLXIPL Gene Is Associated with a Risk of Coronary 1652 

Artery Disease in the Chinese: A Case-Control Study. Cardiology 114, 174-8 (2009). 1653 

124. Kang, G., Leech, C.A., Chepurny, O.G., Coetzee, W.A. & Holz, G.G. Role of the cAMP sensor Epac 1654 

as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 1655 

cells. J Physiol 586, 1307-19 (2008). 1656 

125. Ji, Z., Mei, F.C. & Cheng, X. Epac, not PKA catalytic subunit, is required for 3T3-L1 preadipocyte 1657 

differentiation. Front Biosci (Elite Ed) 2, 392-8 (2010). 1658 

126. Martini, C.N., Plaza, M.V. & Vila Mdel, C. PKA-dependent and independent cAMP signaling in 3T3-1659 

L1 fibroblasts differentiation. Mol Cell Endocrinol 298, 42-7 (2009). 1660 

127. Petersen, R.K. et al. Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires 1661 

the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes. Mol 1662 

Cell Biol 28, 3804-16 (2008). 1663 

128. Yan, J. et al. Enhanced leptin sensitivity, reduced adiposity, and improved glucose homeostasis in 1664 

mice lacking exchange protein directly activated by cyclic AMP isoform 1. Mol Cell Biol 33, 918-26 1665 

(2013). 1666 

129. Gesta, S. et al. Evidence for a role of developmental genes in the origin of obesity and body fat 1667 

distribution. Proc Natl Acad Sci U S A 103, 6676-81 (2006). 1668 



  

  79 

130. Gesta, S. et al. Mesodermal developmental gene Tbx15 impairs adipocyte differentiation and 1669 

mitochondrial respiration. Proc Natl Acad Sci U S A 108, 2771-6 (2011). 1670 

131. Lee, K.Y. et al. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism. 1671 

Nat Commun 6, 8054 (2015). 1672 

 1673 

 1674 

  1675 



  

  80 

FIGURES 1676 

Figure 1. Summary of meta-analysis study design and workflow. Abbreviations: 1677 

EUR- European, AFR- African, SAS- South Asian, EAS- East Asian, and HIS- Hispanic/Latino ancestry. 1678 

Figure 2. Minor allele frequency compared to estimated effect. This scatter plot displays the relationship 1679 

between minor allele frequency (MAF) and the estimated effect (β) for each significant coding variant in 1680 

our meta-analyses. All novel WHRadjBMI variants are highlighted in orange, and variants identified only 1681 

in models that assume recessive inheritance are denoted by diamonds and only in sex-specific analyses 1682 

by triangles. Eighty percent power was calculated based on the total sample size in the Stage 1+2 meta-1683 

analysis and P=2x10-7. Estimated effects are shown in original units (cm/cm) calculated by using effect 1684 

sizes in standard deviation (SD) units times SD of WHR in the ARIC study (sexes combined=0.067, 1685 

men=0.052, women=0.080).  1686 

Figure 3. Regional association plots for known loci with novel coding signals. Point color reflects r2 1687 

calculated from the ARIC dataset. In a) there are two independent variants in RSPO3 and KIAA0408, as 1688 

shown by conditional analysis. In b) we have a variant in RREB1 that is independent of the GWAS variant 1689 

rs1294421. 1690 

Figure 4. Heat maps showing DEPICT gene set enrichment results. For any given square, the color indicates 1691 

how strongly the corresponding gene (shown on the x-axis) is predicted to belong to the reconstituted 1692 

gene set (y-axis). This value is based on the gene’s z-score for gene set inclusion in DEPICT’s reconstituted 1693 

gene sets, where red indicates a higher and blue a lower z-score. To visually reduce redundancy and 1694 

increase clarity, we chose one representative "meta-gene set" for each group of highly correlated gene 1695 

sets based on affinity propagation clustering (Online Methods, Supplementary Note 2). Heatmap 1696 

intensity and DEPICT P-values (see P-values in Supplementary Data 4-5) correspond to the most 1697 

significantly enriched gene set within the meta-gene set. Annotations for the genes indicate (1) the minor 1698 
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allele frequency of the significant ExomeChip (EC) variant (shades of blue; if multiple variants, the lowest-1699 

frequency variant was kept), (2) whether the variant’s P-value reached array-wide significance (<2x10-7) 1700 

or suggestive significance (<5x10-4) (shades of purple), (3) whether the variant was novel, overlapping 1701 

“relaxed” GWAS signals from Shungin et al.10 (GWAS P<5x10-4), or overlapping “stringent” GWAS signals 1702 

(GWAS P<5x10-8) (shades of pink), and (4) whether the gene was included in the gene set enrichment 1703 

analysis or excluded by filters (shades of brown/orange) (Online Methods and Supplementary 1704 

Information). Annotations for the gene sets indicate if the meta-gene set was found significant (shades of 1705 

green; FDR <0.01, <0.05, or not significant) in the DEPICT analysis of GWAS results from Shungin et al. 1706 
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TABLES 1709 

Table 1. Association results for Combined Sexes. Association results based on an additive or recessive model for coding variants that met array-wide significance (P<2x10-07) in the sex-combined 1710 

meta-analyses. 1711 

Locus 
(+/-1Mb 

of a 
given 

variant) 

Chr:Position 
(GRCh37)b 

rsID EA OA Genec 
Amino Acid 

Changec 

If locus is 
known, 

nearby (< 1 
MB) published 

variant(s) d 

N EAF βe SE P-value 
P-value for 

Sex-
heterogeneityf 

Other 
Criteria 
For Sigh 

Variants in Novel Loci 

All Ancestry Additive model Sex-combined analyses 

1 2:158412701 rs55920843 T G ACVR1C N150H - 455,526 0.989 0.065 0.011 4.8E-10 1.7E-07  

2 3:50597092 rs1034405 G A C3orf18 A162V - 455,424 0.135 0.016 0.003 1.9E-07 8.8E-01 G,C 

3 4:120528327 rs3733526 G A PDE5A A41V - 461,521 0.187 0.015 0.003 2.6E-08 5.2E-03  

4 6:26108117 rs146860658 T C HIST1H1T A69T - 217,995 0.001 0.229 0.042 4.3E-08 6.3E-01 S 

5 7:6449496 rs2303361 C T DAGLB Q664R - 475,748 0.221 0.014 0.003 6.2E-08 3.4E-03 G 

6 10:123279643 rs138315382 T C FGFR2 synonymous - 236,962 0.001 0.258 0.049 1.4E-07 1.1E-01 G,S 

7 11:65403651 rs7114037 C A PCNXL3 H1822Q - 448,861 0.954 0.029 0.005 1.8E-08 4.4E-01  

8 12:48143315 rs145878042 A G RAPGEF3 L300P - 470,513 0.990 0.085 0.010 7.2E-17 7.3E-03  

9 12:108618630 rs3764002 C T WSCD2 T266I - 474,637 0.737 0.014 0.002 9.8E-10 5.5E-01  

10 15:42032383 rs17677991 G C MGA P1523A - 469,874 0.345 0.015 0.002 3.5E-11 9.1E-01  

11 

16:4432029 rs3810818 A C VASN E384A - 424,163 0.231 0.016 0.003 2.0E-09 3.3E-01  

16:4445327 rs3747579 C T CORO7 R193Q - 453,078 0.299 0.018 0.002 2.2E-13 4.3E-02  

16:4484396 rs1139653 A T DNAJA3 N75Y - 434,331 0.284 0.015 0.002 4.3E-10 1.4E-01  

12 
19:49232226 rs2287922 A G RASIP1 R601C - 430,272 0.494 0.014 0.002 1.6E-09 3.7E-02  

19:49244220 rs2307019 G A IZUMO1 A333V - 476,147 0.558 0.012 0.002 4.7E-08 3.9E-02  

13 20:42965811 rs144098855 T C R3HDML P5L - 428,768 0.001 0.172 0.032 9.7E-08 1.0E+00 G 
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European Ancestry Additive model Sex-combined analyses 

14 1:173802608 rs35515638 G A DARS2 K196R - 352,646 0.001 0.201 0.038 1.4E-07 6.0E-02 G 

15 14:58838668 rs1051860 A G ARID4A synonymous - 367,079 0.411 0.013 0.002 2.2E-08 1.3E-01  

16 15:42115747 rs3959569 C G MAPKBP1 R1240H - 253,703 0.349 0.017 0.003 2.0E-08 6.3E-01   

Variants in Previously Identified Loci 

All Ancestry Additive model Sex-combined analyses 

1 
1:119427467 rs61730011 A C 

TBX15 
M566R 

rs2645294, 
rs12731372, 
rs12143789, 
rs1106529 

441,461 0.957 0.041 0.005 2.2E-14 6.7E-01  

1:119469188 rs10494217 T G H156N 472,259 0.174 0.018 0.003 1.4E-10 6.0E-01  

2 1:154987704 rs141845046 C T ZBTB7B P190S rs905938 476,440 0.976 0.037 0.007 3.8E-08 7.9E-07 C 

3 2:165551201 rs7607980 T C COBLL1 N941D 

rs1128249, 
rs10195252, 
rs12692737, 
rs12692738, 
rs17185198 

389,883 0.879 0.026 0.004 1.6E-13 3.0E-30  

4 2:188343497 rs7586970 T C TFPI N221S rs1569135 452,638 0.697 0.016 0.002 3.0E-12 6.3E-01  

5 
3:52558008 rs13303 T C STAB1 M113T 

rs2276824 
470,111 0.445 0.019 0.002 5.5E-18 6.7E-02  

3:52833805 rs3617 C A ITIH3 Q315K 452,150 0.541 0.015 0.002 1.6E-12 4.0E-01 C 

6 
3:129137188 rs62266958 C T EFCAB12 R197H 

rs10804591 
476,382 0.936 0.036 0.004 8.3E-17 9.3E-05  

3:129284818 rs2625973 A C PLXND1 L1412V 476,338 0.733 0.016 0.002 9.2E-11 1.6E-05  

7 
4:89625427 rs1804080 G C HERC3 E946Q 

rs9991328 
446,080 0.838 0.021 0.003 1.5E-12 4.1E-06  

4:89668859 rs7657817 C T FAM13A V443I 476,383 0.815 0.016 0.003 5.0E-09 9.6E-05  

8 5:176516631 rs1966265 A G FGFR4 V10I rs6556301 455,246 0.236 0.023 0.003 1.7E-19 2.1E-01  

9 6:7211818 rs1334576g G A RREB1 G195R rs1294410 451,044 0.565 0.017 0.002 3.9E-15 1.5E-01  

10 6:34827085 rs9469913 A T UHRF1BP1 Q984H rs1776897 309,684 0.847 0.021 0.004 1.2E-08 2.7E-01 C 

11 
6:127476516 rs1892172 A G RSPO3 synonymous rs11961815, 

rs72959041, 
rs1936805 

476,358 0.543 0.031 0.002 2.6E-47 7.7E-09  

6:127767954 rs139745911g A G KIAA0408 P504S 391,469 0.010 0.103 0.012 6.8E-19 2.0E-04  

12 
7:73012042 rs35332062 G A 

MLXIPL 
A358V 

rs6976930 
451,158 0.880 0.020 0.003 1.8E-09 1.5E-01  

7:73020337 rs3812316 C G Q241H 454,738 0.881 0.021 0.003 2.0E-10 5.8E-02  
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13 10:95931087 rs17417407 T G PLCE1 R240L rs10786152 476,475 0.173 0.018 0.003 2.5E-11 5.9E-01  

14 11:64031241 rs35169799 T C PLCB3 S778L rs11231693 476,457 0.061 0.034 0.004 9.1E-15 1.3E-04  

15 

12:123444507 rs58843120 G T ABDB9 F92L 

rs4765219, 
rs863750 

466,498 0.987 0.053 0.009 1.3E-08 3.5E-01  

12:124265687 rs11057353 T C 
DNAH10 

S228P 476,360 0.373 0.018 0.002 2.1E-16 2.7E-08  

12:124330311 rs34934281 C T T1785M 476,395 0.889 0.025 0.003 2.9E-14 3.1E-08  

12:124427306 rs11057401 T A CCDC92 S53C 467,649 0.695 0.029 0.002 7.3E-37 5.5E-11  

16 15:56756285 rs1715919 G T MNS1 Q55P rs8030605 476,274 0.096 0.023 0.004 8.8E-11 2.7E-02  

17 
16:67397580 rs9922085 G C 

LRRC36 
R101P 

rs6499129 
469,474 0.938 0.034 0.005 3.8E-13 5.9E-01  

16:67409180 rs8052655 G A G388S 474,035 0.939 0.034 0.005 5.5E-13 4.0E-01  

18 
19:18285944 rs11554159 A G IFI30  R76Q 

rs12608504 
476,389 0.257 0.015 0.002 3.5E-10 3.1E-03  

19:18304700 rs874628 G A MPV17L2 M72V 476,388 0.271 0.015 0.002 1.2E-10 2.5E-03  

19 
20:33971914 rs4911494 T C UQCC1 R51Q 

rs224333 
451,064 0.602 0.018 0.002 2.5E-16 1.5E-03  

20:34022387 rs224331 A C GDF5 S276A 345,805 0.644 0.017 0.003 1.8E-11 3.2E-03  

All Ancestry Recessive model Sex-combined analyses 

20 17:17425631 rs897453 C T PEMT V58L rs4646404 476,546 0.569 0.025 0.004 4.1E-11 8.2E-01  

European Ancestry Additive model Sex-combined analyses 

6 3:129293256 rs2255703 T C PLXND1 M870V rs10804591 420,520 0.620 0.014 0.002 3.1E-09 1.6E-04   
Abbreviations: GRCh37=human genome assembly build37;rsID=based on dbSNP; VEP=Ensembl Variant Effect Predictor toolset; GTEx=Genotype-Tissue Expression project;SD=standard deviation; SE=standard error;N=sample size; 1712 

EAF=effect allele frequency; EA=effect allele; OA=other allele.  1713 

a Coding variants refer to variants located in the exons and splicing junction regions.          1714 

b Variant positions are reported according to Human assembly build 37 and their alleles are coded based on the positive strand.  1715 

c The gene the variant falls in and amino acid change from the most abundant coding transcript is shown (protein annotation is based on VEP toolset and transcript abundance from GTEx database).  1716 

d Previously published variants within +/-1Mb are from Shungin et al.10, except for rs6976930 and rs10786152 from Graff et al.14 and rs6499129 from Ng. et al 16. 1717 

e Effect size is based on standard deviation (SD) per effect allele  1718 

f P-value for sex heterogeneity, testing for difference between women-specific and men-specific beta estimates and standard errors, was calculated using  EasyStrata: Winkler, T.W. et al. EasyStrata: evaluation and visualization of 1719 

stratified genome-wide association meta-analysis data. Bioinformatics 2015: 31, 259-61.PMID: 25260699. Bolded P-values met significance threshold after bonferonni correction (P-value<7.14E-04; i.e. 0.05/70 variants).  1720 

g rs1334576 in RREB1 is a new signal in a known locus that is independent from the known signal, rs1294410; rs139745911 in KIAA0408 is a new signal in a known locus that is independent from all known signals rs11961815, rs72959041, 1721 

rs1936805, in a known locus (see Supplementary 8A/B). 1722 



  

  4 

h Each flag indicates a that a secondary criteria for significance may not be met, G- P-value > 5x10-8 (GWAS significant), C- Association Signal was not robust against collider bias; S- variant was not available in stage 2 studies for validation 1723 

of Stage 1 association.             1724 

1725 
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Table 2. Association results for Sex-stratified analyses. Association results based on an additive or recessive model for coding variants that met array-wide significance (P<2x10-07) in the sex-1726 

specific meta-analyses and reach bonferonni corrected P-value for sex hetergeneity (Psexhet<7.14E-04). 1727 

Locus (+/-1Mb 
of a given 
variant) 

Chr:Position 
(GRCh37)c 

rsID EA OA Gened 
Amino Acid 

Changed 

In sex-
combined 
analysese 

If locus is known, nearby (< 
1 MB) published variant(s) 

f 

P-value for Sex-
heterogeneityg 

Men Women 

Other 
Criteria For 

Sigj 

N EAF βh SE P N EAF βh SE P 

Variants in Novel Loci 

All Ancestry Additive model Men only analyses 

1 13:96665697 rs148108950 A G UGGT2 P175L No - 1.5E-06 203,009 0.006 0.130 0.024 6.1E-08 221,390 0.004 -0.044 0.027 1.1E-01 G 

2 14:23312594 rs1042704 A G MMP14 D273N No - 2.6E-04 226,646 0.202 0.021 0.004 2.6E-08 250,018 0.197 0.002 0.004 6.1E-01   

All Ancestry Additive model Women only analyses 

3 1:205130413 rs3851294 G A DSTYK C641R No - 9.8E-08 225,803 0.914 -0.005 0.005 3.4E-01 249,471 0.912 0.034 0.005 4.5E-11   

4 2:158412701 rs55920843 T G ACVR1C N150H Yes - 1.7E-07 210,071 0.989 0.006 0.015 7.2E-01 245,808 0.989 0.113 0.014 1.7E-15   

5 19:8429323 rs116843064 G A ANGPTL4 E40K No - 1.3E-07 203,098 0.981 -0.017 0.011 1.4E-01 243,351 0.981 0.064 0.011 1.2E-09   

Variants in Previously Identified Loci 

All Ancestry Additive model Women only analyses 

1 1:154987704 rs141845046 C T ZBTB7B P190S Yes rs905938 7.9E-07 226,709 0.975 0.004 0.010 6.9E-01 250,084 0.977 0.070 0.010 2.3E-13   

2 2:165551201 rs7607980 T C COBLL1 N941D Yes 
rs1128249, rs10195252, 

rs12692737, rs12692738, 
rs17185198 

3.0E-30 173,600 0.880 -0.018 0.005 5.8E-04 216,636 0.878 0.062 0.005 6.7E-39   

3 

3:129137188 rs62266958 C T EFCAB12 R197H Yes 

rs10804591 

9.3E-05 226,690 0.937 0.018 0.006 3.1E-03 250,045 0.936 0.051 0.006 8.1E-18   

3:129284818 rs2625973 A C 
 PLXND1 

L1412V Yes 1.6E-05 226,650 0.736 0.005 0.003 1.9E-01 250,023 0.730 0.025 0.003 8.2E-14   

3:129293256 rs2255703 T C M870V Yes 5.0E-04 226,681 0.609 0.003 0.003 3.1E-01 250,069 0.602 0.018 0.003 1.9E-09   

4 4:89625427 rs1804080 G C HERC3 E946Q Yes rs9991328 4.1E-06 222,556 0.839 0.008 0.004 6.6E-02 223,877 0.837 0.034 0.004 2.1E-16   
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4:89668859 rs7657817 C T FAM13A V443I Yes 9.6E-05 226,680 0.816 0.006 0.004 1.5E-01 242,970 0.815 0.026 0.004 5.9E-12   

5 
6:127476516 rs1892172 A G RSPO3 synonymous Yes rs11961815, rs72959041, 

rs1936805 

7.7E-09 226,677 0.541 0.018 0.003 5.6E-10 250,034 0.545 0.042 0.003 3.4E-48   

6:127767954 rs139745911i A G KIAA0408 P504S Yes 2.0E-04 188,079 0.010 0.057 0.017 6.8E-04 205,203 0.010 0.143 0.016 5.9E-19   

6 11:64031241 rs35169799 T C PLCB3 S778L Yes rs11231693 1.3E-04 226,713 0.061 0.016 0.006 9.6E-03 250,097 0.061 0.049 0.006 6.7E-16   

7 

12:124265687 rs11057353 T C 
DNAH10 

S228P Yes 

rs4765219, rs863750 

2.7E-08 226,659 0.370 0.005 0.003 8.3E-02 250,054 0.376 0.029 0.003 3.1E-22   

12:124330311 rs34934281 C T T1785M Yes 3.1E-08 226,682 0.891 0.006 0.005 1.9E-01 250,066 0.887 0.043 0.005 1.4E-20   

12:124427306 rs11057401 T A CCDC92 S53C Yes 5.5E-11 223,324 0.701 0.013 0.003 4.3E-05 244,678 0.689 0.043 0.003 1.0E-41   

Abbreviations: GRCh37=human genome assembly build 37;rsID=based on dbSNP; VEP=Ensembl Variant Effect Predictor toolset; GTEx=Genotype-Tissue Expression project; SD=standard deviation; SE=standard error;N=sample size; EA=effect 1728 

allele; OA=other allele; EAF=effect allele frequency. 1729 

a Coding variants refer to variants located in the exons and splicing junction regions.  1730 

b Bonferonni corrected Pvalue for the number of SNPs tested for sex-heterogeneity is <7.14E-04 i.e. 0.05/70 variants. 1731 

c Variant positions are reported according to Human assembly build 37 and their alleles are coded based on the positive strand.  1732 

d The gene the variant falls in and amino acid change from the most abundant coding transcript is shown (protein annotation is based on VEP toolset and transcript abundance from GTEx database). 1733 

e Variant was also identified as array-wide significant in the sex-combined analyses.             1734 

f Previously published variants within +/-1Mb are from Shungin D et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015; 518, 187–196 doi:10.1038/nature14132 (PMID 25673412). 1735 

g P-value for sex heterogeneity, testing for difference between women-specific and men-specific beta estimates and standard errors, was calculated using EasyStrata: Winkler, T.W. et al. EasyStrata: evaluation and visualization of stratified 1736 

genome-wide association meta-analysis data. Bioinformatics 2015: 31, 259-61. PMID: 25260699. 1737 

h Effect size is based on standard deviation (SD) per effect allele 1738 

i rs139745911 in KIAA0408 is a new signal in a known locus that is independent from all known signals rs11961815, rs72959041, rs1936805, in a known locus (see Supplementary 8A/B).  1739 

j Each flag indicates a that a secondary criteria for significance may not be met, G- P-value > 5x10-8 (GWAS significant), C- Association Signal was not robust against collider bias; S- variant was not availabel in Stage 2 studies for validation 1740 

of Stage 1 association. 1741 

 1742 


