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The mechanisms underlying rapid macroevolution are controver-
sial. One largely untested hypothesis that could inform this debate
is that evolutionary reversals might release variation in vestigial
traits, which then facilitate subsequent diversification. We eval-
uated this idea by testing key predictions about vestigial traits
arising from sexual trait reversal in wild field crickets. In Hawaiian
Teleogryllus oceanicus, the recent genetic loss of sound producing
and amplifying structures on male wings eliminates their acoustic
signals. Silence protects these ‘flatwing’ males from an acoustically
orienting parasitoid and appears to have evolved independently
more than once. Here we report that flatwing males show en-
hanced variation in vestigial resonator morphology under varied
genetic backgrounds. Using laser Doppler vibrometry, we found
that these vestigial sound-producing wing features resonate at
highly variable acoustic frequencies well outside the normal range
for this species. These results satisfy two important criteria for
a mechanism driving rapid evolutionary diversification: sexual
signal loss was accompanied by a release of vestigial morpho-
logical variants, and these could facilitate the rapid evolution of
novel signal values. Widespread secondary trait losses have been
inferred from fossil and phylogenetic evidence across numerous
taxa, and our results suggest that such reversals could play a role
in shaping historical patterns of diversification.

acoustic communication | diversification | evolutionary rate | sexual
signal | trait loss

Introduction

One of the most contentious debates to have arisen in evolution-
ary biology centres on the rate at which diversification proceeds
(1). In particular, the mechanisms responsible for driving rapid
bursts of macroevolution remain unresolved despite decades of
study (2-4). Here we evaluate an overlooked mechanism that
could cause rapid diversification: the release of cryptic variation
following secondary loss of a mate recognition signal, which
exposes a widened range of vestigial signalling structures to the
action of selection. If novel or variable signal values subsequently
evolve, they could play a key role in speciation.

Secondary trait losses are common (5) and in several studies
have been suggested to precede diversification, for example in
stick insects and in plethodontid salamanders (6, 7). Loci involved
in functional traits important for diversification, such as spectral
tuning of the visual system in cichlids, are known to be evolution-
arily labile (8), and when such traits are lost, functionless vestigial
structures or behaviours are left behind which could facilitate the
re-evolution of new functions or trait values (2, 9-11). Sexual traits
involved in mate recognition systems are particularly prone to
reversal (12). Their reduction under pressure from countervailing
natural selection is a central prediction of sexual selection theory
(13, 14), and widespread sexual trait losses have been inferred
phylogenetically (12). Acoustic signals play a prominent role in
speciation, communication and many animal behaviours. Here
we tested how their evolutionary reversal might predispose pop-
ulations to diversification using a field cricket system in which
the sexually-selected male acoustic signal has been recently, and
abruptly, lost from multiple wild populations (15, 16).

Male crickets produce calls by stridulating: they rub modified
forewings together to generate mechanical vibrations (Fig. 1A).
An individual producing an advertisement, courtship, or aggres-
sive song will draw a thickened ridge of tissue (the scraper) on
one wing across a corrugated vein (the file) on the opposing
wing. In many species, the resulting vibrations are amplified by
resonating membranes formed from modified wing cells. When
coupled with wing motor behaviours that repeat this movement
in succession, the pulse rate, pattern, and carrier frequency of
chirps can convey information aboutmate location, identity, qual-
ity, or aggressiveness. We studied the widely-distributed Austro-
Pacific cricket Teleogryllus oceanicus. Hawaiian populations of
this species overlap with an acoustically-orienting endoparasitoid
fly (Ormia ochracea) which responds to male songs and infests
them with destructive larvae. A mutation(s) showing Mendelian
segregation on the X chromosome appeared in a population
on the island of Kauai approximately two decades ago, and it
silencesmales by erasing or dramatically reducing the stridulatory
apparatus and sound resonators on their forewings (15). Females
have undifferentiated wings and do not sing. Males carrying the
flatwing genotype develop wings resembling those of females, so
are referred to as ‘flatwing males’ (Fig. 1B). Flatwing males are
protected against parasitoid infestation (15), and the flatwing
phenotype rapidly spread and now appears on more than one
Hawaiian island (16, 17). In all cases investigated, flatwing seg-
regates as a single-locus trait on the X (16, 18), but the degree
to which affected male wings are feminised varies noticeably
between islands, and several lines of evidence suggest that in-
dependent flatwing mutations have arisen convergently (16). On
Kauai, flatwing male wings tend to be almost completely fem-
inised and lack identifiable resonators characteristic of grylline
species, whereas flatwing males from the neighbouring island of
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Bursts of rapid evolutionary diversification are widely ob-
served, but their underlying causes are controversial. We
tested whether secondary loss of sexual traits could play a
role in rapid diversification, by releasing variation in vestigial
signalling structures which then facilitates the rapid evolution
of novel signal values. We found evidence to support such an
evolutionary model in the field cricket Teleogryllus oceanicus,
which has recently lost the ability to sing. Trait reversals are
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mining the pattern and rate of macroevolutionary change.
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Fig. 1. Diversity of wing venation and acoustic signals
in crickets and katydids. (A) Forewing stridulation in
a normal-wing Teleogryllus oceanicus male (anterior
dorsal view with cricket’s directions indicated), with
mirror, harp and scraper highlighted in turquoise,
purple, and yellow, respectively. The dashed black
line indicates the stridulatory file present on the
ventral surface of the upper (right) wing, and the
solid gray line indicates the direction of forewing
movements during singing.(B) Representative Hawai-
ian T. oceanicus forewings, showing differences in
the degree to which Kauai and Oahu flatwings are
feminised. Resonators and corresponding vestigial
structures are highlighted as above. Adapted from
(16). (C) Male forewings from exemplar orthopteran
species (not to scale). Sampled clades are labelled
on the phylogeny (Proph. = Prophalangopsidae), and
approximate carrier frequencies reported in the lit-
erature (“?” if unknown) are shown above species
names. Shaded regions of the wing visually illustrate
taxonomic variation in sound resonator morphology
across this group. In this simplified phylogeny adapted
from (30), branch lengths do not scale to divergence
time. Thin branches represent groups that do not
sing or are not represented here. Sources from which
figures were drawn and carrier frequencies obtained:
1[figure: (S. K. Sakaluk); Cf: (68)], 2[figure: (69); Cf:
(70)], 3[figure: (28); Cf: (70)], 4[figure: (33); Cf: (33)],
5[figure: (S. Pascoal); Cf: (33)] 6[figure: (33)] 7[figure:
(33)], 8[figure: (71); Cf: (72)].

Oahu retain approximately one third to one half of their harp and
often possess a scraper (Fig. 1B) (16).

Research examining acoustic signal function and diversity
in ensiferan singing insects (crickets and katydids) has mostly
focused on the behavioural components of song, i.e. the pattern of
sound pulses produced during wingmovement (19, 20). However,
a major source of variation in acoustic signals is their carrier
frequency, which is increasingly recognised as an important signal
feature distinguishing closely-related species (21, 22). Frequency
is primarily determined by the morphology of sound resonating
structures (23, 24), and in some species can be varied by mechan-
ically shifting between different resonant modes (25-27). Res-
onatormorphologymost likely evolved from themodification and
specialisation of structural wing venation (28-30), subsequently
elaborated and diversified through coevolution with receivers
(31). Fig. 1C illustrates the diversity of wing resonators across
taxa: morphological variation over macroevolutionary timescales
shows suggestive parallels to the morphological variation ob-
served among the wings of flatwing T. oceanicus males from
different Hawaiian islands. We took advantage of the recent,
repeated loss of signalling in T. oceanicus to examine whether
secondary signal loss can generate variation in morphological
signal components that recapitulates this deepermacroevolution-
ary variation. Our study addressed two objectives focused on the
early stages of such a process. The apparently different underlying
genetic causes of the loss-of-function flatwing phenotype, coupled
with the incomplete erasure of resonating structures in some pop-
ulations, allowed us first to identify and measure the variability
of vestigial structures remaining on flatwing males’ wings. We
specifically evaluated whether background genetics could lead to
expression of decanalized variation following trait loss (32). Our

results indicated that trait loss is associated with the predicted
increase in variation of vestigial acoustic resonators, so we next
used laser Doppler vibrometry (LDV) to characterise acoustic
resonances of these new wing areas and assess their potential to
influence the evolution of new signal values.

Results
Despite possessing wings that lack functional sound-producing
structures, flatwing males still produce the motor patterns asso-
ciated with song: they elevate their forewings and silently move
them in a precise pattern characteristic of male sexual advertise-
ment song (11). The persistence of what appear to be partially-
formed resonating structures (hereafter referred to as ‘vestigial
resonators’) on flatwingmales’ forewings, coupled with the persis-
tence of wing motor behaviour associated with song, is consistent
with the idea that trait loss could potentiate the evolution of
novel signal variants. The only requirement for the evolutionary
origin of a new or re-evolved signal is invasion of a genotype
that re-engages the residual file and scraper mechanism cur-
rently expressed in a reduced, functionless state in some flatwing
males (Fig. 1B). Developmental constraints could influence signal
evolution following such a reversal, but the existence of sister
Teleogryllus species with different male carrier frequencies (21)
suggests that such constraints would not necessarily cause re-
evolution of the exact original configuration of resonating struc-
tures. The existence of wide variation in song carrier frequency
and wing venation suggests that such constraints are either weak,
or have been broken repeatedly during the evolutionary history
of many ensiferan taxa (33).

To test whether variability in flatwing vestigial resonator mor-
phology has been released following loss of male-typical wing
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Fig. 2. Cross design for complementation test and geometric morpho-
metrics. For each test family, a parental flatwing male from Oahu (fwO)
was crossed with a homozygous flatwing-carrying female from Kauai (fwK).
Recombination could potentially occur in the resulting heterozygous F1

females. A full-sib mating was then performed to produce F2 offspring. F2

males were expected to represent either parental or recombinant (asterisks)
genotypes, assessed using landmark-based geometric morphometrics. The
same crossing scheme was followed using fwK sires and fwK dams as a con-
trol.Two genetic scenarios are illustrated. (A) If fwK and fwO are sufficiently
physically distant on the X (hypothetically illustrated with yellow and blue
colour, respectively), rare recombinant males with a restored normal-wing
phenotype might be detected in the F2 generation. The phenotype of the
other recombinant progeny (fwK/fwO) is unknown. (B) If fwK and fwO are dis-
tinct loci but sufficiently tightly linked (represented by the gray region), re-
combination between flatwing loci is unlikely to occur. In this case, genomic
background effects (indicated by the yellow and blue shaded chromosomes)
might be expected to predominate, and recombinant F2 offspring would
represent a mix of recombinant backgrounds (green shaded chromosome).
Under this scenario, variation in flatwing morphology is predicted to reflect
the release of cryptic genetic variation that epistatically interacts with wing
venation loci, despite not producing obvious recombinant phenotypes. The
two scenarios are not mutually exclusive, but make distinct predictions about
whether normal-wing recombinants or release of cryptic variation should
predominate patterns of variation among F2 flatwing males. (C) Exemplar
flatwing male forewing showing the 16 landmarks used in this study (orange
dots). Colour scheme for vestigial resonator follows Fig. 1.

structures, we performed a series of crosses with crickets known to
carry flatwing genotypes derived from either Kauai or Oahu. We
tested whether we could recover rare normal-wing recombinants
in a complementation-like assay, whether the genetic background
of different populations affected expression of vestigial wing
structures, and whether family-level variation was detectable for
flatwing morphology. The crossing design allowed us to examine
two genetic scenarios. Under the first, background effects are
minimal and variation following trait loss is mainly caused by
the expression of independent loss-of-function flatwing mutations
(Fig. 2A). Under the second, background effects play a more
significant role in generating variability among flatwing crickets
(Fig. 2B).

Sex determination is female homogametic (XX/XO) in T.
oceanicus, and in both populations used, the flatwing phenotype
segregates as a single-locus trait on the X chromosome (16).
Using pure-breeding Kauai lines and Oahu flatwing males, two
generations of crosses were performed to introduce flatwing-
carrying X chromosomes from Kauai and Oahu populations (fwK

and fwO, respectively) into the same female to allow potential
recombination on the X (“test” condition). Simultaneously, the
same crossing design using only Kauai genotypes was undertaken
separately (“control” condition). We performed visual assess-
ments for the presence or absence of scrapers and mirrors, and
used landmark-based geometric morphometrics and multivariate

Fig. 3. . Flatwing T. oceanicus wing venation. (A) Variable feminisation of
vestigial sound-producing structures. Selected wings (i) through (v) illustrate
the range of variation in F2 individuals, from no scraper, no mirror and
minimal harp area in (i), to prominent scraper, ca. ½ sized harp, and almost
complete mirror in (v). Female and normal male wings are shown for com-
parison. CorelDraw v.12 was used to adjust contrast and remove background.
(B) Principal components describing flatwing venation among the two island
subtypes (data from (16)) and F2 test wings. Polygons indicate the data range
for each group. (C) Variability of wing venation, contrasting groups in B. (D)
Principal components describing test and control F2 flatwings; the former are
the same samples as in B. Polygons indicate the data range for each group.
(E) Variability of wing venation, contrasting groups in D. Asterisks indicate
that group variation differed significantly (see Table 1 for statistics).

analyses to quantify variation in wing venation among the test and
control crickets (Fig. 2C).

A total of 1,067 F2 test crickets and 245 F2 Kauai control
crickets were scored. Visual classification of scraper and mirror
presence revealed that 63.7% (n = 680) of test crickets possessed
a residual scraper, 1.2% (n = 13) possessed a definable, partial
mirror, and a further 4.5% (n=48) possessed incompletemirror-
like structures (e.g. enlarged but not completely enclosed wing
cells). Examples of the range of flatwing phenotypes recovered
are provided in Fig. 3A. Among Kauai control crickets, 32.2% (n
= 79) possessed a vestigial scraper, and one (0.4%) possessed a
partial mirror.We validated our visual scoring system by assigning
a randomly-selected subset of 100 wings to a sample-blind scorer,
and proportions carrying scrapers were consistent with the origi-
nal dataset for both control crickets (Fisher Exact Test: p = 1.00)
and test crickets (Chi-square test with Yates’ correction: χ2 =
0.30, p = 0.584). Across all 100 validation samples, concordance
between scorers was 96% for the presence or absence of scrapers,
and 100% for mirrors.

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

Footline Author PNAS Issue Date Volume Issue Number 3

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408



Submission PDF

Table 1.

Table 1. Principal components describing variation in forewing venation among groups of flatwing males (A) F2 complementation test, Kauai,
Oahu (B) F2 complementation test, F2 Kauai controls). Explained variance and eigenvalues are given for the leading 5 components of PCAs,
and statistics are from Levene’s tests for homogeneity of variances performed separately for each component. Significance is indicated by
bold text.

Principal component PCA variance
(%)

PCA eigenvalue F1 (homogeneity) P (homogeneity)

A. Test vs. Oahu and Kauai
flatwings

PC1 42 0.00491 7.76 <0.001

PC2 20 0.00235 25.38 <0.001
PC3 11 0.00133 4.59 0.010
PC4 7 0.00086 2.71 0.067
PC5 6 0.00074 10.22 <0.001

B. Test vs. Kauai control flatwings PC1 43 0.00494 6.98 0.008
PC2 19 0.00224 60.73 <0.001
PC3 9 0.00112 40.53 <0.001
PC4 8 0.00087 1.87 0.172
PC5 7 0.00076 1.97 0.161

1 degrees of freedom (num,den) are (2,1212) and (1,1310) for (A) and (B), respectively.

We recovered no obvious recombinant, i.e. normal-wing, phe-
notypes, though among the test crickets, the 13 males possessing
partial mirrors were classified as nearly-normal. These nearly-
normal forewings possessed partial to complete scrapers, reduced
but clearly distinguishable mirror membranes bounded by thick-
ened venation, and a distinctive harp that extended significantly
across the wing, but did not fully reach the distal wing margin
as occurs in normal-wing males. An example is given in Fig.
3A, and photographs of all 13 are provided in SI Appendix, Fig.
S1. This suggests that any mutation(s) independently controlling
the expression of flatwing phenotypes may be too closely linked
on the X chromosome, or contained within a non-recombining
region, to allow double recombinants to arise readily. However,
the surprising level of morphological variation recovered from
these crosses suggests that background or modifier effects are
superimposed upon the effects of flatwing itself.

Consistent with the idea that trait loss leads to the expression
of uncanalised or cryptic variation, the forewings of F2 flatwing
males from the complementation test showed greater variation
than those previously reported from Kauai and Oahu laboratory
populations and measured using the same methods by the same
scorer (S.P.) (16). The range of phenotypic variation among
F2 males fully encompassed that of both island types (Fig.
3B). Forewing morphology differed among the three groups of
flatwing males (MANOVA: Wilks’ λ = 0.786, F10,2418 = 30.95, p
< 0.001), and pairwise post-hoc tests between groups for each
principal component describing landmark-based wing morphol-
ogy (with eigenvalue > 1) revealed that this was largely driven
by Oahu, which was involved in 12 out of 16 significant post-hoc
comparisons (SI Appendix, Table S2). Crucially, the amount of
variation in wing venation differed among groups, and was largest
for test crickets for 4 of the 5 principal components analysed (Fig.
3C and Table 1).

To exclude the possibility that minor variation in the genetic
composition of lab stocks or methodology between this and the
previous study could have influenced the differences we observed
between test flatwings and Kauai and Oahu flatwings, we per-
formed a separate analysis of Kauai control flatwings which were
simultaneously produced using the same crossing protocol, con-
trasted with the same set of test flatwings. This analysis revealed
patterns of variation in flatwing venation consistent with the
previous result. A separate principal components analysis (PCA)
showed that phenotypic variation of test crickets’ wing venation

exceeded that of the controls, again fully encompassing it (Fig.
3D). Flatwing venationwas significantly different between the two
groups (MANOVA: Wilks’ λ = 0.849, F5,1306 = 46.59, p < 0.001).
Also as before, morphological variation was greater for test than
control crickets in all 5 principal components analysed, and sig-
nificantly so for the first three (Fig. 3E and Table 1). As a final
analysis of the potential for background effects to interact with
the flatwing genotype, we examined family-level variation among
the test crickets. Significant family-level variation in wing shape
among F2 flatwing males in the complementation test provided
confirmation of our interpretation of genetic background effects
superimposed on different flatwing genotypes (MANOVA:Wilks’
λ= 0.763, F20,3510 = 14.89, p < 0.001) (SI Appendix, Fig. S2).

Pre-existing morphological traits that permit the evolution
of new signal variants are difficult to identify and characterise,
and reconstructing the sequence of evolutionary events that cou-
pled behavioural and morphological components of signals in
ancestral lineages represents a major challenge. Characterising
ancestral behaviours is in many cases impossible (though see
(10)), and often the critical morphological structures involved
in sound production are comprised of soft tissue that does not
persist in the fossil record (though see (34)). Most work on signal
macroevolution has therefore relied on comparative analyses
across extant taxa (35-38). An alternative approach is to predict
and characterise signal values on the basis of relevant morpholog-
ical features, before the signalling traits themselves evolve. To test
whether vestigial harp and mirror structures that we identified
on the surface of flatwing crickets are a) capable of producing
acoustic resonances, b) likely to produce a more varied range of
signal values than the typical 4-5 kHz carrier frequency produced
by this species, and c) to characterise these acoustic resonances,
we performed a second experiment using micro-scanning LDV
(Fig. 4A). Adult flatwing male crickets were selected from three
pure-breeding Kauai flatwing lines and four pure-breeding Oahu
lines that had been subsequently produced (see Methods). For
comparison, we also selected adult normal-wing males from two
lines from each island. The objective was to achieve a breadth
of sampling across different, naturally-occurring flatwing back-
grounds, rather than a design balanced across morph types. After
a pilot experiment to assess the feasibility of the approach, we
successfully recorded data from 16 male cricket wings.

Analysis of wing resonances revealed acoustic resonators on
flatwing males’ forewings, and Fig. 4 provides examples. Our
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Fig. 4. Vibration maps of male forewings obtained using LDV. (A) Diagram
of experimental set-up, showing lateral view of a normal-wing male cricket,
with mirror and harp of the extended left hindwing highlighted in turquoise
and purple, respectively. During scans, a male is positioned in front of
the laser, which is aimed perpendicular to the plane of the wings (red
line). The laser scans pre-defined grid points while a broadband signal is
played back. (B-D) Illustrative vibration maps (displacement / sound pressure)
showing resonant wing areas at the frequencies indicated (not necessarily
peak resonances, see Table 2) for: (B) Normal-wing male with typical resonant
frequency at 4.8 kHz. (C) Oahu flatwing male with vestigial harp producing a
resonance at 5.6 kHz. (D) Kauai flatwing male with a resonance at 13.8 kHz.
(E) Enlarged grid format of data collected from an Oahu flatwing male’s left
forewing, with a pronounced acoustic resonance at 7.0 kHz centred over the
vestigial harp area.

main analysis focused on the harp area of the wing as it is a key
determinant of the carrier frequency of male song in ensiferan

insects (22). Table 2 reports the peak resonance of the harp (or
vestigial harp) for each measured individual. We confirmed that
normal-wing males produced acoustic resonances characteristic
of this species between ca. 4.5-5.5 kHz. In contrast, flatwingmales
produced a large range of peak resonant frequencies that almost
exclusively did not overlap with normal-wing males (Fig. 5). Peak
resonance frequencies differed betweenKauai andOahu flatwing
crickets, with a higher average peak frequency in the former (left
forewings: t = 7.10, p < 0.001; right forewings: t = 2.88, P =
0.016) (Figs. 5A, B). Animations of wing resonances for exemplar
flatwing and normal-wing males are provided in the SI Appendix
(Movies S1-S3).

Discussion

Sexual signals play a major role in speciation (20, 39, 40), so any
factor that increases the likelihood of new signal values evolving
is likely to have an impact on the rate of macroevolutionary
diversification (41, 42). The morphological and functional out-
comes of evolved silence in field crickets support our predictions
about the role of trait loss in rapid diversification. We found that
secondary loss of male song in Hawaiian T. oceanicus is associ-
ated with substantial variation in vestigial morphological traits,
susceptible to genomic background effects. Analysis of vestigial
wing structures identified a broad range of acoustic resonances,
which could facilitate the evolution of new cricket songs with
carrier frequencies that extend well beyond the typical narrow
range centred around 5 kHz for this species [ = 5.02 kHz ± 0.017
s.e. reported in (43)].

The venation which has been left behind on the disrupted
forewings of silent flatwing crickets includes a wide range of
morphological features: more than one occurrence of genetic
mutation appears to have driven convergent loss of song with no-
ticeably different morphological consequences (16; Fig. 1B), and
we have found that these loss-of-function flatwing genotype(s)
also interact with background genetic variation to produce a
suite of wing structures with sharp acoustic resonances but im-
paired signalling capability. Peak frequencies of vestigial harps on
flatwing T. oceanicus wings spanned a range from approximately
4.0 – 16.5 kHz in this study. The range of morphological variation
we detected among flatwings is suggestively similar to that which
characterises variation in wing resonators across deep evolution-
ary divisions within the Ensifera (Fig. 1C). Acoustic signalling
is thought to have facilitated rapid speciation and radiation in
crickets and katydids, has evolved independently on multiple
occasions, and has been secondarily lost in several lineages (33,
44). Our results raise the intriguing possibility that secondary
losses of song through male wing feminisation could have played
a key role in evolutionary radiations involving this group.

The existence of a suite of pre-existingmorphological variants
that could underpin the evolution of new signal values does not
guarantee the evolution of such new signal values or subsequent
diversification; these vestigial resonators may be best thought of
as a facilitating, yet not sufficient, requirement for such a mode
of diversification. For new signals to evolve, receiver structures
and physiology must also coevolve. On a trivial level, that this
has happened repeatedly throughout the evolution of sexually
signalling taxa is demonstrated by the existence of divergent mate
recognition systems across extant groups. The singing insects,
for example, produce an exceptionally broad range of species-
diagnostic carrier frequencies (27, 33, 35). One well characterised
system involves the genus studied here, in which females of the
sister species T. oceanicus and T. commodus filter male advertise-
ment songs differing in carrier frequency by approximately 1 kHz,
to discriminate against heterospecific calls that might be experi-
enced in sympatry (21, 45). In another group of calling insects,
lebinthine crickets, both signal and receiver shifts have occurred
not only across frequency spectra (audible to ultrasonic), but also
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Table 2.

Table 2. Kauai and Oahu male wing resonances. Peak resonances are provided for the
harp area1 of each specimen’s right and left forewing (forewings show a dominant
right-over-left overlap in this species). Normal-wing males from each population are
included as verifications of the technique and to aid comparison with flatwings, and full
frequency spectra of all specimens are given in Fig. 5.

Origin Morph2 PL3 (mm) RHFL3 (mm) Peak ƒ (kHz) left
wing

Peak ƒ (kHz)
right wing

Kauai fw 4.23 11.45 10.80 16.54
fw 3.90 9.80 11.09 11.64
fw 4.04 10.82 10.35 10.37
fw 4.09 10.65 12.86 10.69
nw 4.24 11.61 5.66 5.16
nw 3.85 10.65 4.58 4.78

Oahu fw 3.95 10.06 6.13 6.77
fw 3.94 10.44 5.13 7.66
fw 3.87 10.05 4.06 6.53
fw 3.75 9.93 7.05 6.14
fw 3.83 10.83 6.05 12.8
fw 3.75 10.50 7.89 5.16
fw 3.92 10.30 5.66 8.35
fw 3.85 10.28 7.08 9.24
nw 4.62 11.85 5.02 5.02
nw 4.44 11.55 4.95 4.81

1 in flatwings, refers to either the vestigial structure, or the area in which it would
otherwise be located 2 fw = pure-breeding flatwing genotype, nw = pure-breeding
normal- wing genotype 3 pronotum length (PL) and rear hind femur length (RHFL):
mean of three measurements

Fig. 5. Wing resonance plots for flatwing males from Kauai (A) and Oahu (B)
populations, with normal-wing comparators (C, D). Coloured lines indicate
average spectra for each group, with ±1 standard deviation shown in grey.
Dashed lines indicate peak frequencies of normal-wing males recorded from
each population to aid comparison with flatwing resonances. Sample sizes
are provided in Table 2.

across modalities (from acoustic to vibratory mate localisation)
(38). We note that although T. oceanicus females discriminate
males on the basis of call frequency, with a selectivity peak at
approximately 5 kHz, they will also respond to artificial song
playbacks ranging from 2.5 to 7.0 kHz (21). The plausibility of
a scenario involving co-option and elaboration of vestigial res-
onators via sexual selection is supported by the recent observation
that female T. oceanicus from a population on Molokai preferen-
tially associate with attenuated acoustic stimuli produced by some
flatwing males, compared to silence (46). It is unclear whether

these flatwing males’ acoustic emissions result from engagement
of a residual file and scraper mechanism or friction affecting
other wing structures; amplitude of the acoustic stimuli is orders
of magnitude lower than that of singing normal-wing males and
likely to be close to the auditory detection threshold (47), and
their frequency spectra are relatively flat (46). Nevertheless, this
finding confirms observations that auditory neurons in grylline
crickets show broad frequency tuning (48) and suggests that
female responses to novel acoustic frequencies may be less of a
barrier to signal evolution than are the biomechanical constraints
imposed by morphological adaptations for sound production.

The release of variation in T. oceanicus following secondary
loss of song satisfies a key requirement for models of rapid
diversification following trait loss (2, 3, 7). Some variation among
flatwing males, for example those derived from different island
populations, appears to reflect different genetic causes (16), but
the background and family-level effects that we found to release
furthermorphological variation is characteristic of decanalization
under different genetic backgrounds (32). Genetic control of
canalisation has been characterised in other contexts, for example
the heat shock protein Hsp90 in Drosophila melanogaster (49),
and our results support the idea that a reduction in canalisation
following the evolutionary loss of song in field crickets can gen-
erate a broad phenotypic substrate of male forewing variants that
could facilitate the evolution of new signals. Another intriguing,
non-mutually exclusive possibility is that developmental plasticity
contributes to the variation in wing morphology we observed,
raising the possibility that signal diversification following trait
reversal could involve a simultaneous combination of selection
on genetic variation and canalization of developmentally plastic
phenotypes (50). Analysis of flatwing resonances revealed that
vestigial resonators have the potential to generate acoustic signals
at frequencies outwith the range of ordinary calling song in T.
oceanicus, and more variable. It remains to be seen (perhaps
not in our lifetimes) whether a radiation of sexual signals in T.
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oceanicus will evolve from this broad substrate of vestigial wing
structures and contribute to establishing new species boundaries.
The predictions we tested about patterns of vestigial signal traits
and their design features are focused on the earliest stages of such
a process, and our results lend empirical support to the idea that
trait loss could precede and facilitate bursts of diversification (2,
51-53).

Methods
Cricket lines and crosses. Laboratory stocks of crickets were established
from eggs laid by approximately 20-30 wild-caught females. Collections were
made in 2012 from populations near Wailua, Kauai and La’ie, Oahu. In
the complementation experiment, we used Kauai lines breeding pure for
flatwing or normal-wing morphology. The establishment of these lines using
two generations of standard Mendelian crosses to identify homozygous
flatwing and homozygous normal-wing genotypes has previously been de-
scribed in detail (54). Crickets were reared within a temperature-controlled
chamber at 25 °C on a 12h:12h photo-reversed light:dark cycle following
established protocols (55). They were maintained in 16L translucent plastic
tubs at a density of approximately 30-50 individuals, with cardboard egg
carton for cover and ad libitum Burgess Excel Junior and Dwarf rabbit food
and water. Maintenance was performed twice weekly.

The crossing design for the complementation test followed the
schematic in Fig. 2A-B. We set up five individual crosses using flatwing Kauai
P0 dams and flatwing Oahu sires. We did not have pure-breeding Oahu lines
at the time of the complementation test, so we performed the inter-island
cross in one direction only. As a control, five crosses between flatwing Kauai
females and flatwing Kauai males were simultaneously performed. At the F1
generation, ten individual full-sibling crosses for the five test and three of the
control crosses were performed. All offspring were reared under common
garden conditions as described above.

Wing morphometrics. Landmark-based geometric morphometrics was
performed as previously described (16, 56). For n = 1067 F2 test crickets and
n = 245 F2 control crickets, male forewings were removed and immediately
mounted between two slides. They were then photographed using a Leica
DFC295 digital camera affixed to a Leica M60 dissecting microscope. The 16
landmarks illustrated in Fig. 2C were placed using the programme tpsDIG
v.2.16 (57). Software from the Integrated Morphomerics Package suite of
morphometrics programmes (58, 59) was used to superimpose landmark
data from all samples and quantify variation in wing venation shape us-
ing Procrustes distances (60). For each comparison performed, a common
dataset comprising landmark data from all the individuals required for the
comparison was assembled and Procrustes distances were produced using
CoordGen6f (58). Principal components and scores for all landmark data were
generated using PCAgen6n (58).

Wings of Kauai and Oahu flatwing males from a previous study (16)
were used as a reference comparison for the F2 male wings produced in
the complementation crosses. The same worker (S.P.) scored wing features
and landmarks in both studies. We visually assessed all F2 cricket wings from
the complementation experiment to classify them as Kauai-like or Oahu-
like. Given the potential subjectivity of this qualitative classification, we also
recorded the presence or absence of full or partial (i.e. vestigial) scrapers
and mirrors. We verified this approach using a randomly selected subset of
100 wing photographs from the test and control crosses. A separate scorer
(N.W.B.) blinded to sample identity scored whether each of the wings in the
validation subset had scraper and a mirror. The proportion of scrapers in the
test vs. control individuals from both datasets was compared, and the original
scorer (S.P.) then blindly rescored the validation subset as well. Concordance
between scorers was found to be highly reliable, providing confidence in our
method of visually classifying wing traits.

A MANOVA was run using the first 5 principal components from a PCA
in which all F2 test crickets were pooled with the previously-published set of
flatwing males from Kauai and Oahu, to test whether wing morphology of
flatwing males arising from the test complementation crosses differed from
flatwings from either or both island populations. A post-hoc homogeneity
of variance analysis was performed on the MANOVA residuals for each of
the five principal components, to assess whether wing variation among
complementation F2 crosses differed from that of the original Kauai and
Oahu flatwing males. We re-ran the PCA and MANOVA analyses to compare
the same set of test crickets against the n = 245 control wings produced using
the same crossing procedure. Subsequently, we ran a separate MANOVA on
scores of the first n = 5 principal components from a PCA of the complemen-
tation test F2 crickets only, here assessing family-level variation in wing vena-

tion. The purpose of using five test families for the complementation analysis
was to provide a sufficient sample size of F2 flatwing males for analysis
and identification of potential recombinant phenotypes. The crossing design
was insufficient to formally estimate heritability of wing patterning, but
quantifying family-level variation provided an indication of genetic variation
underlying flatwing male wing venation, as this full-sib cross design included
genetic and common environmental effects (61). Statistical analyses were
performed in SPSS v.23.

Laser Doppler vibrometry. Biophysical analyses of male forewing acous-
tic resonances were performed using an additional three pure-breeding
Kauai lines that had been re-established following outcrossing and re-
crossing, plus pure-breeding Oahu lines that were later established following
the same crossing procedures as described in (54). Each sampled cricket’s
pronotum length and right hind femur length was measured to the nearest
0.01 mm three times and then averaged. Crickets were anaesthetized using
FlyNap (Carolina Biological Supply), then mounted whole with forewings
extended dorso-laterally, fixed with a mixture of beeswax (Fisher Scientific)
and Colophony (Sigma-Aldrich). Following Chivers et al. (62), we measured
vibrating-producing regions of the mounted wings and characterised as-
sociated frequency spectra using a micro-scanning LDV (Polytec PSV-500;
Waldbronn, Germany) with a close up attachment. The wings of mounted
specimens were positioned perpendicular to the lens of the laser unit, and
an acoustic stimulus was broadcast from a loudspeaker (Ultrasonic Dynamic
Speaker Vifa, Avisoft Bioacoustics, Glienicke, Germany) positioned above
the laser unit and facing the specimen (Fig. 4A). The stimulus consisted
of periodic chirps (1-50 kHz) generated using Polytec software (PSV 9.2),
passed to an amplifier (A-400, Pioneer, Kawasaki, Japan), and sent to the
loudspeaker. We flattened the periodic chirp stimulus so that all frequencies
were presented at 60 ± 1.5 dB (SPL re. 20 µPA) at the position of the wings.
A 1/8 inch condenser microphone (Brüel & Kjær, Denmark) was positioned
dorsally between the outstretched wings to monitor and record the stimulus
as a reference. Using the laser in scan mode, the extended wings were
scanned using 250-300 scan points, averaging 3 times to obtain the value
for each point. For each point, a fast-Fourier transform was generated using
a rectangular window at a sampling rate of 512,000 samples/second, a 64 ms
sampling time, and a frequency resolution of 15.63 Hz.

Raw vibrometry data was analysed using Polytec software (v. 9.2) and
custom MATLAB (The MathWorks Inc., Natick, MA, USA) scripts. Vibrometry
frequency spectra were normalised to the playback signal received by the
microphone using a transfer function (63). To estimate the amount of unre-
lated noise, we also computed the magnitude-squared coherence between
the vibrometer and microphone signals for each data point (64). Coherence
ranges between zero and one, where one indicates no unrelated or external
noise. Our aim was to identify sharply-tuned resonant peaks on crickets’
forewings, which we assessed using the dimensionless index Q (65). We
calculated Q by dividing the peak frequency by the bandwidth at 3 dB below
the peak amplitude (66), identifying the sharpest peak (highest Q) on the
surface of each pair of wings in the centre of the harp (in the case of normal-
wing controls) or vestigial harp area (in flatwings) to report the dominant
resonant frequency for each. Two-tailed t-tests were used to compare peak
frequency differences between Kauai and Oahu flatwing male resonators.
Although sample sizes were small, the large effect sizes (Cohen’s D for left
wing comparison = 4.75, for right wing comparison = 2.66) provide a measure
of confidence in this approach (67). Right wing comparisons involved samples
with heterogeneous variances so we performed a nonparametric test to
verify the inference that Kauai flatwings produce higher peak resonances
than Oahu flatwings (Mann-Whitney U test: U = 3, P = 0.028).
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