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This paper considers the problem of collision avoidance for road vehicles, operating at the
limits of friction. A two-level modelling and control methodology is proposed, with the upper
level using a friction-limited particle model for motion planning, and the lower level using a
nonlinear 3DOF model for optimal control allocation. Motion planning adopts a two-phase
approach: the first phase is to avoid the obstacle, the second is to recover lane keeping with
minimal additional lateral deviation. This methodology differs from the more standard ap-
proach of path-planning/path-following, as there is no explicit path reference used; the control
reference is a target acceleration vector which simultaneously induces changes in direction
and speed. The lower level control distributes vehicle targets to the brake and steer actuators
via a new and efficient method, the Modified Hamiltonian Algorithm (MHA). MHA balances
CG acceleration targets with yaw moment tracking to preserve lateral stability. A nonlinear
7DOF two-track vehicle model confirms the overall validity of this novel methodology for
collision avoidance.

Keywords: Vehicle dynamics, Vehicle control, Collision avoidance, Active safety, Stability
control

1. Introduction

The development of Collision Avoidance systems has undergone a transition from warning
systems, where the driver is expected to respond quickly to a visual or audible alert [1–3],
towards auto-braking systems such as [4, 5]. There appear to be clear safety benefits from
autonomous emergency braking systems although such systems are normally restricted
to operate at lower speeds [5, 6].

Studies on collision avoidance have clearly indicated that braking is more efficient
at lower speeds and steering is more efficient at higher speeds [7]. However, it is far
from clear that pure braking or pure steering always provides the most efficient form of
collision avoidance; combined braking and steering may be more effective over a range of
conditions of speed, range and required lateral deviation. Hence, in this paper, we will
investigate various combinations of steering and braking to achieve collision avoidance
using a common design framework. A typical accident avoidance scenario has a stationary
vehicle ahead of the subject vehicle, at a range which is too small for pure braking to
avoid a collision; steering to avoid an impact remains possible but the driver fails to
respond. Then, to avoid collision, an emergency lane change is planned and executed
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autonomously. Here we do not consider the possibility of collisions with other vehicles
due to the lane change manoeuvre, presuming that such risks are very low. While we
assume ‘steer to avoid’ is required, we allow for the possibility of simultaneous braking
action providing assistance in the maneuver.

In existing literature, it is typical to adopt a two-level strategy of path planning followed
by path tracking [5, 7, 8]. There are a number of limitations in terms of optimality,
complexity, or over-reliance on an accurate vehicle model which makes the real world
implementation challenging and, in most cases, infeasible. Two examples illustrate the
points. In [8], Nonlinear Model Predictive Control (NMPC) is used to avoid obstacles
and keep the vehicle in the lane; in [5] a framework is implemented combining model
predictive and feedback control to target path tracking, vehicle stabilization, and collision
avoidance objectives in a coordinated manner. The first approach can lead to infeasible
or over-conservative path planning (due to the highly dynamic nature of the situation)
while the second approach relies on precise gain tuning for a specific test vehicle.

There remains a need for a controller design method that avoids the complexity of
NMPC in real-time, uses a minimal number of tuning parameters, and does not artificially
separate the path and speed planning from dynamic motion control.

Other methods have been explored using numerical optimization to avoid the need
for a predefined collision-free path. In [9], the avoidance problem is formulated as min-
imization of the total vehicle force using a point-mass vehicle model under a friction
constraint. The overall methodology is somewhat similar to that used below, the upper-
level optimal control problem being reduced in complexity via a particle assumption.
However, this work used a rather complex tyre-force allocation scheme to distribute the
calculated global vehicle level forces into individual longitudinal and lateral tyre forces.
A hierarchical control structure was adopted and the distributing algorithm used Se-
quential Quadratic Programming (SQP). The complexity of the overall control structure
makes real-time implementation unrealistic, particularly since the optimization is not
guaranteed to converge.

Previously, a novel control method termed the Modified Hamiltonian Algorithm
(MHA) [10–12] was developed for an Autonomous Emergency Cornering system to pre-
vent highway vehicles from dangerous lane departure due to excessive speed. The under-
lying control concept has been tested with an experimental vehicle and the results suggest
that MHA can run efficiently in real time with a highly satisfactory control performance
[11]. In the present paper, a Collision Avoidance (CA) system is developed using a sim-
ilar general approach. Due to the highly transient nature of the current problem, MHA
requires an effective yaw moment control strategy combined with optimal path and speed
control.

The paper is structured as follows: in section 2, a number of collision avoidance strate-
gies are compared using a friction-limited particle model of the vehicle, leading to an
optimal control formulation. Section 3 introduces the MHA method. Then the upper
and lower level controllers are combined in simulation in section 4. Section 5 concludes
the paper and discusses the possibilities for future implementation.

2. Particle Reference

As mentioned, the overall vehicle controller is designed with a hierarchical structure.
Here we consider the upper level control, which uses a particle model to approximate
an optimal solution. Hence a target mass-center acceleration reference is obtained. The
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particle motion is defined via a friction-limited acceleration vector,

a(t) = ẌEi + ŸEj

√
Ẍ2
E + Ÿ 2

E ≤ µg (1)

assuming a circular friction limit. Then in the vehicle application, this represents the
target mass centre acceleration

ad = a(t) (2)

When motion takes place on the friction limit, the equations of motion are:

ẌE = µg(cos θ)

ŸE = µg(sin θ)
(3)

and the angle θ(t) of the acceleration vector is then a scalar control variable with respect
to the global X coordinate, see Figure 1.

2.1. Simple strategies

In Figure 1 we present a conceptual solution to the optimal collision avoidance problem
which includes two phases of control. The first phase (P0 to P1) is to avoid the collision,
and the second (P1 to P2) is to minimize ‘over-shoot’ ∆y, i.e. intrusion into the adjacent
lane. Parameter A is the available distance for braking or steering to avoid the obstacle,
and B is the required lateral deviation for avoidance. The particle path may be identified
with a target CG trajectory of the vehicle, though as mentioned it is only the acceleration
profile that is tracked during vehicle control. Note that the collision avoidance condition
at P1 should make allowance for vehicle width (plus any ‘safety margin’ distance). We
then require that the vehicle body sideslip angle β remains small, and this condition
forms part of the (MHA) control allocation given below.

It is easy to show that in the second phase (after P1) a constant acceleration with
θ = −90◦ is required. In that case, ∆y = v2

⊥/(2a), where v⊥ is the track-lateral component
of velocity at P1 and a is the magnitude of resultant acceleration vector ad – see Equation
2. As shown in Figure 1, the acceleration vector may rotate during the first (collision

 

 

 

 

 

 

 
 

 

 

 

 

Figure 1. Concept and nomenclature for planar motion with two phase control for collision avoidance. The position

and dimension of the obstacle is shown as a grey box.

avoidance) phase and, in the following, we will find this is typical for the optimal control.
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However, for comparison we will consider certain special cases, including where θ is
constant during this phase, in which case:

A = v0t+
1

2
a(cos θ)t2

B =
1

2
a(sin θ)t2

(4)

The simplest situation is θ = 180◦ corresponding to straight-line braking (SLB). The
over-shoot is then zero and the minimum friction-limited braking distance is ASLB =
v2

0/(2a). A steering-biased collision avoidance strategy is with track-lateral acceleration

(TLA), i.e. θ = 90◦ and ATLA =
√

2Bv2
0/a is the minimum distance for the steering

avoidance phase. The TLA strategy involves a slight increase in vehicle speed, so a more
realistic reference for ‘steer to avoid’ is path-lateral acceleration (PLA), where initially
θ = 90◦, then the acceleration vector rotates to remain perpendicular to the particle
trajectory. The resulting path is a circular arc of radius R = v2

0/a, and the minimum

distance is easily determined as APLA =
√

2BR−B2. Sample results are given in Table 1.

Table 1. Braking distance and lateral over-shoot for three different collision avoidance strategies with parameters:

µ = 0.9, v0 = 30m/s, B = 3.8m

SLB TLA PLA
A(m) 51.97 27.93 27.57
∆y(m) 0 3.8 3.73

The (well-known) conclusion is that collision-avoidance by steering can be effective
when the available distance is too short for pure braking. However, the lateral motion
leads to over-shoot, and the ‘price to pay’ for the shorter avoidance distance is the
extra lateral deviation, equivalent to an additional lane-width (3.8m) for TLA. The PLA
strategy is seen to be slightly better in both aspects, presumably because there is no
increase in speed. In the next part we consider the optimal particle strategy.

2.2. Optimal control for a particle representation

We start from the equations of motion for the friction-limited particle model - Equations
1, 3. For given distances A and B, the objective is to minimize over-shoot ∆y - see
Figure 1. For a non-trivial solution, we focus on the case where A is large enough to
avoid collision (assume v0 and B are fixed), but insufficient to achieve ∆y = 0 either by
straight-line braking or some other strategies.

We now re-state the optimization problem: to minimize lateral off-tracking into the
adjacent lane (∆y = YEP2

−B) subject to the constraint of avoiding collision at P1:

min
a(t)

∆y (5)

y(t1) ≥ 0

where t1 is the time at point P1. However, between P1 and P2 the optimal control is
simply a = [0, −µg]T, and hence ∆y = ẏ(t1)2/2µg. Further, for this type of problem the
control will remain at its limits [13]. Hence the optimization can be restricted to phase 1
and the optimality condition - Equation 5 is simplified to the minimization of a terminal
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cost ẏ(t1) at P1 with θ as the control variable:

J = min
θ

ẏ(t1) (6)

This optimal control problem is solved in the Appendix A, where the optimal con-
trol can be obtained by solving the coupled state and costate equations as a two-point
boundary value problem. The optimal control law is found to be in the form of a ‘bilinear
tangent law’ [13]:

tan θ∗(t) =
k3t+ k4

k1t+ k2
(7)

Constants k1, k2, k3, k4 are determined, though not fully explicitly, in terms of the prob-
lem parameters. Here we solve the optimization problem numerically and use the ana-
lytical solution as a check on accuracy. We apply the MATLAB built-in function bvp4c
[14] for solving the two-point-boundary-value problem given in the Appendix A. Figure 2
show the numerical solution (blue line), and is compared to analytical solution obtained
from Equation 7 (red stars). Figure 3 gives further validation of the solution, as the
Hamiltonian function should equate to zero (see Appendix).

In the following, the particle reference is pre-computed and used as a fixed reference.
In real-world applications an updating reference will be required and the formulation of
the Appendix A may be used to implement this – for example by creating a lookup table
relating parameters ki to the updating geometric parameters of the collision avoidance
problem. This ‘updating reference’ controller is not considered further in this paper.

2.3. Constant θ optimization

It is found that as distance A approaches the limit for the above numerical optimization
to converge, (slightly less than for the simple steer strategies mentioned in section 2.1)
the duration of the period of rotation becomes very small, i.e. the optimal particle accel-
eration approximates to θ = constant. It is therefore worth considering the problem of
optimizing θ as a constant control parameter, and then compare with the more general
case.
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From Equation 4, eliminating t

A−B(tan θ) = v0

√
2B

a(cos θ)
(8)

To find the minimum value of A, differentiate with respect to θ and impose dA/dθ = 0;
we obtain:

(cos θ)(sin θ)2 =
2Ba

v2
0

(9)

which can be solved numerically for θ. It is convenient to introduce the dimensionless
parameter α = 2Ba/v2

0. Once the optimal value of θ is found from Equation 9, the
resulting (minimum crash avoidance) distance is obtained:

A∗ = (
2√

α(cos θ)
+ (tan θ))B (10)

For the sample case of Table 1 we find θ∗ = 1.8688 rad, and A∗ = 25.84m, i.e. slightly
less than for the simple steering strategies and much less than for SLB.

2.4. Multi-objective performance trade-off
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Figure 4. Trade-off between over-shoot ∆y and intervention distance A for several strategies. The red squares
represent the Pareto front, obtained by the optimal control method of section 2.2. P-refers to particle results,
MHA refers to vehicle simulation (section 4). No solution is possible for A < 27.3 m.

The optimization problem has been formulated, to minimize the over-shoot ∆y for
given A. According to Table 1, if A is larger than around 52m (for the parameters shown)
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then no over-shoot is required. At shorter distances it is necessary to perform the lateral
manoeuvre and some over-shoot may be necessary. A number of results are plotted in
Figure 4. The solid blue line is obtained from Equation 4, where θ = constant is varied
to define a simple trade-off. The blue circle is for straight-line braking (single point) and
the dashed black curve is for a switching strategy during the first phase, θ = 270◦ for
t > ts. The switching time ts is varied to produce the curve. Optimal control results are
plotted as red squares - these represent the Pareto front of multi - objective optimization,
i.e. ∆y can only be reduced by increasing A. As A tends towards its minimum, the
optimal control results tend towards a solution with θ = constant; hence the uppermost
square coincides with the θ = constant (blue curve). Close to the minimum distance
for collision avoidance, ∆y becomes very sensitive to A, i.e. the unavoidable over-shoot
rises very quickly as the available intervention distance reduces. On the other hand, with
A ≥ 36m, both the optimal and switching strategies give negligible over-shoot. This is
also true for the vehicle implementation (MHA) described in the following section.

3. Vehicle Implementation Using MHA

3.1. Vehicle and Tyre Model

We introduce a nonlinear vehicle model for simulation, a 7-degree-of-freedom (DOF)
planar two-track model with three motion states (vx, vy, ψ̇) relative to the vehicle body
coordinates (x, y), plus four wheel rotational speeds ω̇i. Wheel indices i = (1, 2, 3, 4) cor-
respond to front-left, front-right, rear-left, rear-right locations respectively. While suspen-
sion motion is not fully represented, a load transfer model is used, including the effects
of the roll-moment ratio Λ between front and rear suspensions. The aim is to include the
major dynamic processes relevant to non-linear transient dynamics, without making the
model overly complex. The equations of motion are:

M(v̇x − vyψ̇) = Fx1 + Fx2 + Fx3 + Fx4

M(v̇y + vxψ̇) = Fy1 + Fy2 + Fy3 + Fy4

Izψ̈ = lf (Fy1 + Fy2)− lr(Fy3 + Fy4) + w/2(Fx2 − Fx1) + w/2(Fx4 − Fx3)
ω̇i = I−1

w (Ti −Rw F txi)

(11)

Here (Fxi, Fyi) are the longitudinal and lateral tyre forces resolved in vehicle body axes,
Ti are the wheel drive torques (if positive) or brake torques (if negative), and Iw is the
nominal wheel inertia, assumed equal for all wheels. Other parameters are the wheel
rolling radius Rw, distances (la, lb) from the mass centre to the front and rear axles
respectively, and w is the track width of the vehicle.

Forces (Fxi, Fyi) are related to the components (F txi, F
t
yi) in tyre axes via the steering

angle:

Fx 1,2 = F tx 1,2 cos δ − F ty 1,2 sin δ Fx 3,4 = F tx 3,4

Fy 1,2 = F ty 1,2 cos δ − F tx 1,2 sin δ Fy 3,4 = F ty 3,4
(12)

Tyre forces (F txi, F
t
yi) are modelled via a standard Pacejka magic tyre (MF) formula,

see Equation 13, which is a load-dependent combined-slip model, using normalized slip
and isotropic similarity scaling [15, 16]. Further details of the MF model are given in
[10, 17].
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P (x) = D sin(C tan−1(Bx− E(Bx− tan−1Bx))) (13)

where x is the input variable: slip angle α or slip ratio sx and P is the output variable:
longitudinal force Fx or lateral force Fy.

The above tyre model is only a broad representative of real tyre behaviour, but is
thought to incorporate sufficiently realistic aspects of force generation from the linear
region up to saturation.The MHA controller also comprises the same tyre model for
commanded tyre force generation. Some of the key vehicle and tyre parameters are given
in Table 2. To further implement the MHA controller with a high-fidelity vehicle model
or an experimental vehicle, this tyre model can be easily tuned (with only two key
parameters B and C) to fit to that of the simulation vehicle model or test vehicle.

Table 2. Vehicle and tyre parameters.

Parameter Physical Meaning Unit Value
M total mass kg 1000
Iz yaw inertia kgm2 1600
lf CG to front axle m 1.0
lr CG to rear axle m 1.8
w track width m 1.6
HG mass centre hight m 0.35
Iw nominal wheel rota-

tional inertia
kgm2 0.5

Rw loaded tyre radius m 0.3
Λ ratio of front-to-rear

suspension roll moment
- 0.5

ρ air mass density kg/m3 1.2
Aaero reference area m2 2.4
CD drag coefficient - 0.3
B,C,D,E MF tyre coefficients dimensionless 0.7094,1.4097,1.000,0

3.2. Modified Hamiltonian Algorithm

Figure 5 shows a block diagram of the overall chassis control system. It includes a high-
level control reference generator (discussed in the next section) to provide a target CG
acceleration demands for the vehicle. Then MHA acts as a control distributor, converting
vehicle level demands into actuator signals. In [18], it was proposed to implement optimal
control via terminal control cost, so that the Hamiltonian function becomes linear in the
virtual controls, i.e. the vehicle force components and yaw moment. A single costate
ratio (denoted by λ in the following) determines the balance between yaw moment and
mass centre force control. Inspired from this, the proposed method takes an alternative
approach, by estimating this ratio in real-time using a single adaptation strategy.

The aim now is to convert acceleration demands, obtained from the particle model
above, into actuator control signals: front wheel steering and four wheel braking torques.
Let ad = [adx, a

d
y]
T be the desired mass centre acceleration vector, which we assume to be

on the limits of friction. The Hamiltonian function is linear in the virtual controls

H = pxFx + pyFy + λMz (14)
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Figure 5. Overall structure of the MHA algorithm.

where p is a unit vector in the direction opposing the desired acceleration, p = −ad/|ad|.
For yaw moment control, λ is adapted to track a desired yaw moment Md

z . In previous
work [10–12] a switched adaptation rule was used

λ→ λ+ S · σ(∆Mz) (15)

where σ(x) = sgn(x), ∆Mz = Mz −Md
z , and Mz is the estimated yaw moment from

the controller, including contributions from longitudinal and lateral tyre forces. The
controller is updated every 20 ms and the overall yaw moment tracking performance
was found to be satisfactory [10–12]. Here, to suppress high-frequency oscillations, a
saturation function is used for σ in Equation 15:

σ(∆Mz, ε) =

{
ε ∆Mz if |ε ∆Mz| < 1
sgn(∆Mz) otherwise

(16)

The following parameters were used: ε = 10−4, S = 0.1. Since the Hamiltonian function
is linear in tyre forces, the optimization can be achieved through a local minimization at
each individual tyre. For more detail, the reader should refer to [10].

4. Simulation Results

To perform the simulation, a simple driver model is used to control the vehicle at a
constant speed of 30 m/s and tracking the original lane. All the parameters used for
simulation are consistent with the sample case used for particle optimization. The colli-
sion avoidance is executed at 60m (red car) to avoid a frontal obstacle located at 90m,
illustrated via a pair of stationary blue vehicles, see Figure 6. In this case A=30m for
the particle-optimal avoidance strategy (see Figure 1) which is used as the acceleration
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Figure 7. Steering angle output from the MHA controller (2 - 3.5 seconds) and driver model (other times).

reference. Taking account of the dimension of the obstacle and the subject vehicle, we
formally require B=3.8m for the CG trajectory. Figure 6 shows the path and acceler-
ation during the interventions. Three acceleration vectors are plotted, also indicating
the duration of the interventions. These are: (a) the desired acceleration reference ad

(red) obtained from particle optimization (section 2.2); (b) acceleration acmd expected
from the MHA controller using its internal tyre model (black); (c) the actual vehicle
CG acceleration vector aact (blue). Differences between ad and acmd arise due to actua-
tor limitations, while difference between acmd and aact results from the highly transient
dynamics during the emergency lane change manoeuvre.

Discrepancies are most obvious during the transient phase in the middle of the emer-
gency lane change manoeuvre when the rate of change of ad is large. However, the three
arrows converge well during the event. It appears that the tyre force control is satisfactory
and the collision can be avoided while having minimum off-shoot. From Figure 6, it also
can be seen that the maximum off-shoot is reached around 100m along the track. Com-
pared to other strategies, the maximum off-shoot is significantly reduced from around
3.7m to 1.2m. Figure 7 shows the steering wheel angle output from the MHA controller
during the event. It is seen that, the MHA controller kept adjusting the steering wheel
angle output at each updating time step during the event and working within saturation
limits of +- 120 degrees. The oscillation of the steering input can be further reduced by
using a smooth switching function within the controller, for more details see [10].

Figure 8 shows that by dynamically adapting λ, it is possible to control yaw moments
and actually achieve tight control of body sideslip. It is worth mentioning that, for the
stability control, the aim is not to minimize the body sideslip angle, but rather control
the body sideslip angle within a suitable range to facilitate lateral force generation. Here,
the upper threshold on slip angle is chosen to be 6◦ and the actual peak is within ±6◦

shown in Figure 9. The effect of the tyre relaxation and vehicle inertia during transient
state is also captured in Figure 8. At around 2.7 seconds, the desired yaw moment Md

z

starts to increase; this is to prevent excessive over-shoot during the second phase lane
keeping control. And the actual yaw moment (Izψ̈) follows the commanded yaw moment
Mz based on λ adaptation strategy, but with some off-set value. However, the whole
process only lasts around 0.3 seconds and the overall yaw tracking performance is highly
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satisfactory. This off-set between the commanded and actually yaw moment can also be
explained with Figure 10 - 13. During 2.7 - 3 seconds, the actual braking forces at the rear
tyres are less than the commanded braking forces. This is because the force allocation
formulation presented above operates under the assumption of perfect estimation of the
effective friction level on each tyre, which is clearly a source of error since both tyre loads
and vehicle dynamics are subject to rapid change as the vehicle is making a sudden lane
change. Hence it is expected that with a slip regulation scheme, the controller would be
capable of allocating the braking forces more precisely.

5. Conclusion

A particle model is used to calculate the optimal solution of a collision avoidance problem
with the focus on minimizing the resultant over-shoot. The optimal control shows a
rotation of the global acceleration vector at a given set of collision avoidance scenario.
As a special case, it is found that, at the limiting braking distance, the acceleration vector
is fixed in the global frame. Then different collision avoidance strategies, represented with
different acceleration reference are compared in terms of a trade-off between the braking
distance and resulting over-shoot in the collision avoidance scenario. It is found that,
using a combined braking and steering strategy resulting from minimizing the lateral
velocity component at the collision avoidance location presents the least amount of over-
shoot in the lane keeping phase. A recently developed efficient control allocation method
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angle.

MHA is applied to operate the collision avoidance manoeuvre at the limit of friction in
the fully autonomous fashion (automatic braking and steering), given the acceleration
reference provided with an ideal particle model. The simulation results have shown a close
match with the ideal solution from a particle model while the vehicle stability is controlled
via closely tracking a desired yaw reference. This is achieved through distributing the
braking torque as precisely as possible. Although simulation has shown some off-set
between the commanded and actual braking force for a short period of time during
the intervention, it is expected this can be improved by introducing a low-level slip
ratio controller. It is also worth mentioning that, the proposed control strategy can be
easily extended to include driving torque (torque vectoring) e.g. via active differentials or
electric motors. Such a control method might be used for intersection safety with regards
to the possibility of crossing the intersection ahead of an oncoming vehicle for collision
avoidance. It will be interesting to see, with the added control authority through driving
torque, how much can be gained.

The MHA method is designed to be executed in real-time and has been tested previ-
ously with an experimental vehicle for developing a departure prevention system. The
experimental results have shown a high level of correlation with the simulation results.
Regarding collision avoidance experiment, the time delay in the system should be com-
pensated in advance for better control performance, and this can potentially be achieved
through the particle reference. Additionally, in real-world applications an updating ac-
celeration reference based on the formulation of the Appendix A could be obtained, for
example, using a pre-stored lookup table relating parameters ki to the updating geomet-
ric parameters of the collision avoidance problem. Another possible application would be
to adapt to variations in road surface friction.

Appendix A. Optimal Control Proof

Write Equations 3 in the state-space form

ẋ = Ax + q(u) (A1)

where the state vector x and input vector u are given

x = [x1 x2 x3 x4]T

u = [u1 u2]T
(A2)
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where x1 = XE , x2 = ẊE , x3 = YE , x4 = ẎE , subject to friction constraint u2
1 +u2

2 ≤ µ2g2

The optimal control problem is formulated as minimize the lateral off-tracking ∆y
after the collision avoidance, as discussed above in section 2.2, equivalent to minimize
lateral velocity component (ẎE) at P2. This results in minimizing the terminal cost. The
terminal time T for the first phase control is stated in section 2.2 as t1.

Φ(x) = x4 (A3)

The optimal control problem for the particle model is solved by extending the dynamic
model to an augmented Hamiltonian system

ẋ =
∂H

∂P
Ṗ = −∂H

∂x
(A4)

where P is the co-state vector and where the Hamiltonian function is:

H = PT · [Ax + q(u)] (A5)

According to the Pontryagin minimum principle, the optimal control problem is now
reduced to minimize the Hamiltonian function over the set of all permissible controls u.
This is a free terminal time problem, H(t) = 0 during the whole time history. According
to Equation A4, A5 The equations for the co-states are particular simple:

Ṗ = −∂H
∂x

=⇒ Ṗ = [0, −P1, 0, −P3]T (A6)

These relations are easily integrated to yield:

P = [−k1, k1t+ k2, −k3, k3t+ k4]T (A7)

With only terminal cost function, L = 0 the Hamiltonian function of the system is

H = P1x2 + P2u1 + P3x4 + P4u2 (A8)

Thus the optimal control for the acceleration reference is

tan θ∗(t) =
P4

P2
=
k2t+ k4

k1t+ k2
(A9)

We do not care about the final value of the longitudinal speed at t = T, resulting in
P2(T) = 0 and the transversality condition is P4(T) = −(∂Φ/∂x)T = −1. The boundary
conditions are 

x1(0)
x2(0)
x3(0)
x4(0)

 =


0
v0

0
0



x1(T)
P2(T)
x3(T)
P4(T)

 =


A
0
B
−1

 (A10)

Equation A4 combined with the above initial conditions, the optimal solution can be
solved numerically with MATLAB built-in function bvp4c. The following gives some
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analytical aspects of the optimal solution.
Considering the optimality condition

H = P2u1 + P4u2 +H0 = P̂ · u +H0 (A11)

where H0 is independent of ui, the optimal control u∗

u∗ = −µgP̂ (A12)

where P̂ = [P2 P4]T

P 2
2 +P 2

4
. Note that, for the free terminal time problem, H(t) stays zero over

the entire control trajectory

H(0) = P1(0)v0 +

(
P2(0)
P4(0)

)
·
(
u1(0)
u2(0)

)
+ 0 = 0 (A13)

where (
u1

u2

)
= −µg

(
P2

P4

)
× 1√

P 2
2 + P 2

4

(A14)

and (
P2

P4

)
·
(
u1

u2

)
= −µg P 2

2 + P 2
4√

P 2
2 + P 2

4

= −µg
√
P 2

2 + P 2
4 (A15)

So at t = 0

H(0) = −k1v0 − µg
√
k2

2 + k2
4 = 0 (A16)

and

k1 =
−µg

√
k2

2 + k2
4

v0
(A17)

and

T = −k2

k1
=

k2v0

µg
√
k2

2 + k2
4

(A18)
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