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Estimating a Mean-Path from a Set of 2-D Curves

Amir M. Ghalamzan E., Student member, IEEE, LLuca Bascetta, member, IEEE,
Marcello Restelli, member, IEEE, and Paolo Rocco, member, IEEE

Abstract—To perform many common industrial robotic
tasks, e.g. deburring a work-piece, in small and medium size
companies where a model of the work-piece may not be
available, building a geometrical model of how to perform
the task from a data set of human demonstrations is highly
demanded. In many cases, however, the human demonstrations
may be sub-optimal and noisy solutions to the problem of
performing a task. For example, an expert may not completely
remove the burrs that result in deburring residuals on the
work-piece. Hence, we present an iterative algorithm to estimate
a noise-free geometrical model of a work-piece from a given
dataset of profiles with deburring residuals. In a case study,
we compare the profiles obtained with the proposed method,
nonlinear principal component analysis and Gaussian mixture
model/Gaussian mixture regression. The comparison illustrates
the effectiveness of the proposed method, in terms of accuracy,
to compute a noise-free profile model of a task.

I. INTRODUCTION

In-contact tasks, such as deburring [1], are among the
most common robotic tasks. In case of frequent changes
in a production line in small and medium size companies,
where a model of work-piece may not be available, Robot
Programming by Demonstration (RPD) is potentially useful
to obtain a nominal profile model of the work-piece from
a set of expert demonstrations. RPD simplifies the complex
process of programming a robot and reduces the program-
ming cost. We assume that an expert performance is sub-
optimal and she/he cannot perfectly remove the burrs of
a work-piece resulting in deburring residuals. Hence, we
propose an approach that estimates a nominal profile of the
work-piece from a set of sub-optimal expert demonstrations
(Figure 1).

The problem of a robot learning how to perform the task of
deburring from human demonstrations has been previously
studied [2], [3]. Automatic deburring by using robots has
attracted much research interest due to the increase of pro-
duction speed and operator’s hazard reduction. For example,
the relation between the tool feed rate and burr characteristics
was stored in an associative memory represented by a neural
network in [2]. The obtained neural network was then used to
produce the feed rate for a new burr characteristic, where the
burr size was measured using a laser sensor and assuming a
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model of the work-piece is known. Ziliani et al. [4] used
a hybrid force/velocity control method along with a new
design of the deburring tool with two ball bearings to avoid
penetration of the tool in the work-piece. Aertbelin et al. [5]
modeled the expert actions as an impedance controller with
adaptive parameters in accordance with burr characteristics.
A neural network was then employed to learn the nonlinear
relation between the parameters and the burr characteristics.

The problem of learning the required force and feed rate
has been studied in prior works, from human demonstrations
[2], [5] to adaptation during execution through intelligent
active control [3], [6] or Reinforcement Learning [7], [8].
However, prior works did not take into account the problem
of obtaining a profile model from a set of profiles collected
after the deburring operation was executed. In fact, they
assumed that a nominal profile of a work-piece either is
available or is not needed due to the use of mechanical
constraints [4]. In case that the profile model of the work-
piece is not available a priori, one may benefit from existing
RPD methods to obtain a nominal profile model from expert
demonstrations.

Fig. 1.

A robotic deburring setup.

A. Related works

In the context of RPD, Gaussian Mixture Model/Gaussian
Mixture Regression (GMM/GMR), a nonlinear regression
method, has been studied to compute a generalized trajec-
tory/path from a set of demonstrations [9]. Moreover, in order
to reduce the dimensionality of the demonstrated dataset
and to remove the noise from it, Calinon et al. [10] used
Principal Component Analysis (PCA) before computing the
generalized trajectory by GMM/GMR. The optimal number



of Gaussian Mixture Model (GMM) components can be
estimated by different criteria, such as Bayesian Information
Criterion (BIC) [9]. Cho [11] proposed an online version of
GMM/GMR, that automatically determines the number of
Gaussian components during learning when a new teaching
trial is available.

In another line of research, in order to capture and re-

move nonlinear correlation between data points lying on a
nonlinear manifold, Nonlinear Principal Component Analysis
(NLPCA) has been proposed [12], [13], in analogy with
standard PCA.
In a dataset related to a deburring example, we assume
that every single demonstrated work-piece profile is strongly
correlated with the nominal one. Hence, a nonlinear principal
component of the demonstrated dataset is an estimation of
the nominal profile of the work-piece, and captures the most
variation of the dataset.

In this work, we present a metric that allows us to compare
the precision of the profiles computed by NLPCA [12],
GMM/GMR [10]. We show that the precision of these
methods depends on the shape of the profile. Consequently,
we propose an iterative algorithm computing a nonlinear
profile that minimizing the proposed metric. This algorithm
results in a smaller error, with respect to GMM/GMR and
NLPCA, for different shapes of the profile. In fact, though
increasing the number of components in the GMM/GMR
model improves the accuracy of the estimated profile, the
comparison illustrates that the proposed approach outper-
forms the GMM/GMR and NLPCA in terms of accuracy.

The remainder of this paper is organized as follows. In
Section II, the problem definition and formulation are intro-
duced. Section III presents a transformation from the Carte-
sian space to a new space that, as described in Section IV,
ease the computation of the Mean-Path. In Section V, a case
study, based on a deburring example with real burr profiles, is
used to compare GMM/GMR and NLPCA with the proposed
approach.

II. PROBLEM DEFINITION

Consider a set of n continuous 2-D curves f3; (Fig. 2)

X ={Bu(s),Ba(s),- -, Bu(s)} (D

where s is the arc length.

Although curves as expressed in eq. (1) are continuous,
they are, usually, available only through a set of collected
sample points. Hereinafter, we call a sequence of sample
points, collected from a continuous curve 3, a path §, and
we assume that all the paths ({; € 27,j =1,2,...,n) are
represented by the same number of sample points

—{Pue BBy = i), Vi 1...om)

In the fo]lowmg, we always considered a path as a sequence
of points unless differently stated.

In order to formalize the definition of Mean-Path, an
Euclidean distance (Fig. 2) between a point on a path,
called Reference-Path, and another path is introduced in the
following.

(r)
90° L
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\O\O\T\“\_Pf{i
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Fig. 2. A set of four 2-D curves (continuous paths  and their collected data
points §, shown by circle signs); Reference-Path f, and its data points {,
shown with square signs; line segment &, » = P; », P 3 linearly approximates

the continuous path B, between P>, and P, 3; line Lgr is perpendicular to

and each Ag denoted by Pd ,Vj=1,2,3 (marked
r)

Sg“_; intersections of LSr)

with triangle sings). Vector d;
Pgr.i :

determines the position of P 2 Iy relative to

A. DISTANCE BETWEEN A REFERENCE-POINT AND A
PATH

Let & ={P;, 1., P} be a 2-D path, called Reference-
Path, taken as a reference for distance computation. Further,
Py, ;s are called Reference-Points (RPos).

A set of line segments, denoted by Agj, connecting two
consecutive points of a path, is defined as follows

ACj = {gj,hgj,b---,gj.mfl}

where & ;i 1s a line segment with the initial point P;;_1 and
terminal point P;;. As a continuous path f3; is usually not
available, a piece-wise linear approximation of the sequence
of points AC is used instead. For example, the subspace
orthogonal to B, is approximated by the subspace orthogonal
to each line segment of the Reference-Path, o ; at a point

§;i=P P (2

Py, ;, which is denoted by l?; € R™»~! In the 2-D case

this subspace is a line called Perpendicular-Line, ﬁ L 5
(Fig. 2), and is characterized by the fact that the inner product
(r

of the unit vectors on L; * and 397,- is zero.

A similarity measure between a Reference-Path and an-
other path in the set, denoted by (rl) , at each Reference-
Point P i Vi=1,...,m, is a vector Whose absolute value is
a distance between PCN and AC," Vj=1,...,n, as follows

d\) = pl |4V = Pl

where Pd is an intersection between Ag, and L(—§ (Fig. 2).
Intu1t1ve1y, a local observer, moving along the Reference-
Path, measures a distance from its location to A;/. at each

MRS

L. <_§

In the case of more than one intersection between Lgr and
AC," 75? with the minimum distance is chosen. Further, it
is assumed that for a set of paths 2" and a considered {,

Py, ; along



there is always an intersection between L.’ and each AC ,

N
R

otherwise the distance between A and Agj along L;
assumed to be infinite!.

It is worth mentioning that the proposed definition of dis-
tance between Ay, and Agj is not symmetric. This definition
first determines a corresponding point on Agjs, namely P]dl,
with a point of {,, namely P ;. Then the distance between
these two points is taken as a similarity measure, computed
by eq. (3).

For example, taking Ay as Reference-Path Pd Vji=1,.
correspond to P, ;. However, for Ag; as Reference Path Pg ;
does not necessarily correspond with P/dl, as the sub-spaces
orthogonal to A and Ag; are not necessarily the same.

Note that, this similarity measure can be extended to
higher dimensions by considering an intersection of a path
and a subspace orthogonal to a Reference-Path.

ITIT. THE DISTANCE SPACE

In this section, the similarity measure (eq. (3)) just intro-
duced is used to transform paths based on their distances
from the Reference-Path, in such a way that the information
concerning the relative position of the considered path with
respect to the Reference-Path is kept invariant.

Consider a Reference-Path {, C 27, a new representa-
tion of the set of paths Z°, denoted by 2 = {yi,...,%}
where y;={d;¢ ....,d;¢,,}, is obtained by computing the
similarity measure proposed in eq. (3) (Fig. 3). The vectors
computed by eq. (3) constitute a bijective mapping, namely
@2, from points of the data set in the Original-Space .2~ to
a set of points in the Distance-Space 2, as follows

I?;LCV‘”PC”*
o(2,G): 2

Consequently, an inverse mapping, denoted by W, from the
Distance-Space, shown in Fig. 3(b), to the Original-Space,
shown in Fig. 3(a), is also defined using the same ;.

It is worth mentioning that maps & and W, based on
Reference-Path {,, are symmetric, resulting in a one-by-one
correspondence of each pair of points in 2" and 2 (Fig. 3),
as follows

F=0(X,G) X =20 “

Note also that the mapping from Original-Space to Distance-
Space @ transforms , to the horizontal axis (Fig. 3(b)).

IV. MEAN-PATH

To find a nonlinear path Q_’ along which the maximum
variation of the dataset 2~ is captured, we minimize the

ITo be more precise, if no intersection is found, the intersections of

L,(r and either 8j,5mrt = Pi.Z:PLtmpa where Pltm =tX Pz 27Pt 1, or 6/ end =
Piena—1,Priimp, where Piyyp =1t X P, ong—1,P,; ena, are considered. If no in-
tersection is found, not even with 8; ug and &; gar, an infinite distance is
assigned to that point. The parameter 7 has been chosen equal to 20 for the
data sets in this paper.

2Notice that the mapping is invertible since it is bijective.

X, [m]

Distance from Reference-Path [m]

1

\,\I \

-0.2 ; ;
0 20 40 60 80 100

Reference-Path sample

(b)

Fig. 3. A point ij‘j in the Original-Space is transformed into a point
in the Distance-Space and back, based on the considered Reference-Path
(black dashed line). The Reference-Points, P4 S and Pd s are marked with
bold dots in both spaces. (a) A set of 2- B paths (red lines), a chosen

Reference-Path {, (black dashed line), the computed similarity metric di l),
and the local coordinate frame x; fixed at a Reference-Point and tangent to
54_, (blue arrow). (b) The corresponding paths in Distance-Space and the
corresponding local coordinate frame x; at the corresponding Reference-
Point (blue arrow). For better view, continuous representation of paths are
shown.

trace of the data covariance in Distance-Space as follows

é: min _tr(X)
é’reRmXZ
st. T=E[2T % )
QF = @(%7 Cr)

The Reference-Path that minimizes the objective function
in eq. (5) is called Mean-Path and is denoted by Z__f . In fact,
a Distance-Space representation of the dataset based on the
computed Mean-Path corresponds to align the first principal
component of the dataset with the first main axis in the linear
principal component analysis.

A. Iterative algorithm to estimate the Mean-Path

In this section, we present an iterative algorithm that
computes a solution to eq. (5) for a set of paths, {;V; =
1,...,n

First, a path CV(Z) CEZ,t=13is picked as a reference

3The superscript (¢) stands for the iteration number, whereas the super-

script with other letters such as (r) stands for the values computed based
on the considered Reference-Path.



for Mean-Path computation. It is assumed that the paths are
highly correlated with a nonlinear nominal path £, and each
path has a small deviations from the nominal path at different
points. Hence, Cr(l) C & is taken as an initial guess for the
Mean-Path algorithm.

Then, the data set 2 is transformed into Distance-Space, as
shown in Fig. 3, using eq. (4). Consequently, the residual
of the dataset based on the considered Reference-Path is
computed by eq. (5).

For each subspace L? in Distance-Space, the points,
Pj{i, Vj=1,...,n, are assumed to be generated randomly,
therefore the expected value of P]‘fi, Vj=1,...,n,is estimated
by maximizing the likelihood of the sample points.

As for a set of normally distributed data points, the expected
value minimizes the variance of the data points, a new
point Pffl) is computed minimizing the variance of all the
corresponding intersection points P;.{,.,v j=1,...,n

An innovation for each point of the Reference-Path is defined
as ?Et) =P ; fPfl). Updating the origin of the coordinate
systems by ?l@s can be considered as a gradient descent
direction of the objective function in eq. (5). The sequence
of Pfi)s is taken as a new Reference-Path Cr(tﬂ), and the

residual of the data based on CSIH) and Crm are compared
to check the convergence condition, i.e. rr(X*+1) < tr(Z")).
If the convergence condition is not satisfied a regularized
innovation, },?Et), is used to compute the updated reference
points, where A € [0, 1]. This procedure is repeated with the
new Reference-Path until converge to a solution.

A description of the iterative algorithm is reported in Algo-
rithm 1.

V. CASE STUDY

To evaluate the precision of the estimated profile by
different methods, we present an example in which the
nominal profile is known. We compare the computed path
Cr(i) to the nominal path ¢ using the following metric

mj

e =Y

i=1

Ay
P!, —Ps =Lz NA

Lo 6

.o g

where ¢, { € R"™*2, ?Zi 1L Af’ P?i is the i, sample point
of Z, m is the number of profile sample points, AZ and A ¢
are computed by using eq. (2). This error is used to evaluate
the accuracy of the computed Mean-Path.

Here we discuss the problem of automatically computing
the deburring profile of a work-piece from a set of demon-
strated profiles.

In order to have a robot that learns from demonstrations
how to autonomously perform the deburring task, the robot
must compute a nominal profile of the work-piece from a
set of profiles collected after the deburring process. The
nominal profile provides a baseline for another controller
that computes the feed rate and velocity of the deburring
tool. Therefore, an inaccurate estimation of the nominal
profile results in a poor quality of the final work-piece, while

Algorithm 1 Mean-Path algorithm, Ae is a chosen small
threshold
1: procedure MEAN-PATH(Z = {{;,...,{4})

2 =100« &, Ae=land A = 1
3 while Ae > Ae do
4 7 =a2,5")
x0 = Ty,
el) «—tr(2),
5: PY —EP ez vj=1,.n)
P = ¥(P) 8)
Vi=1,...,m
6: T AP —PD)vi=1,...m
7. Cr(tJrl) - gr(tj‘i’?(t)
. Qp:q)(%’gr(wl))’
y(+1) — ngf,
e(t+1) %tr(z(wl))
9: if ¢t > ¢() then
10: A2
11: else
12: Ae || — et =1+ 1and A + 1
13: end if
14: end while
15: return C,’

16: end procedure

an accurate nominal profile results in minimum deburring
residuals and minimum tool penetration.

We assume that an expert cannot always perfectly
remove the burrs of a set of work-pieces, because
human demonstration can be sub-optimal. Hence, a set
of demonstrated profiles having deburring residuals with
small sizes at different positions along the profile of the
work-pieces is considered.

A dataset of nominal linear profiles and a dataset of
nominal circular profiles with deburring residuals have been
thus generated (see Fig. 5). To do so, a set of seven linear
profiles with the same length and with different deburring
residuals was first prepared, see Fig. 4(a). A camera and a
laser projector were exploited through a visual triangulation
algorithm to reconstruct the 2-D profiles of these deburring
residuals (Fig. 4(b)). We consider that the nominal profile,
linear or circular, consists of a number of profile segments
with identical length. For each segment, a random binary
generated number determines whether the deburring resid-
val is added. Then a deburring residual profile is selected
randomly and added to the nominal profile.

In order to estimate a nominal profile, we use the proposed
algorithm, GMM/GMR [10] with different numbers of com-
ponents, and NLPCA [12] with different modeling types.
The errors, € [mm], between the computed and the nominal
profile are reported in Table I*. For the linear profile,
NLPCA and GMM/GMR result in error values of 127.1 and

4NA means that the corresponding error value is not available.
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Fig. 4. (a) Sample work-pieces with the artificial deburring residuals. (b)
The seven deburring residual models used to generate the data set.

127.8 [mm], while the Mean-Path algorithm error is 99.6 [mm]
(Fig. 6). The circular profile obtained with NLPCA and
GMM/GMR results in a relative error of 1433.4 [mm] and
75.9 [mm] with respect to the circular nominal profile, but
the profile computed with the Mean-Path algorithm results
in an error of 75.3 [mm] (Fig. 7). Although the circular
profile obtained with GMM/GMR has almost similar error
value compared to the one obtained with the Mean-Path
algorithm, the work-piece will be damaged if the robot
follows this profile during the execution of the deburring
task, as this profile penetrates in the work-piece in some
parts (see Figs. 6(b) and 7(b) in which the green shaded
areas represent the nominal work-piece).

The aforementioned comparison illustrates the superiority
of the proposed approach for both linear and circular profiles.

TABLE I
€ [mm] OF DEBURRING DATASET BY USING NLPCA, GMM/GMR AND
MEAN-PATH FOR LINEAR/CIRCULAR PROFILE

symmetric hierarchic
circular/bottleneck NA / NA NA / NA
circular/inverse NA /14334 NA / 18534.5
non-circular/bottleneck 127.1 / NA 586.4 / NA
non-circular/inverse 169.5 / NA 2226.8 / NA
GMM/GMR 127.8 /1 75.9
Mean-Path 99.6 / 75.3
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Fig. 5. (a) Ten linear profiles with randomly added artificial deburring

residuals (red dashed lines), according to the models in Figure 4, and the
computed mean profile (blue line). (b) Ten circular profiles with randomly
added artificial deburring residuals (red dashed lines), and computed mean
profile (blue line).

VI. CONCLUSION

Human demonstrations are often sub-optimal and noisy

solutions to the problem of performing a task. For many
tasks, such as for example deburring, if a nominal trajectory,
i.e. a model of the work-piece, is not available, a learning
phase aiming at estimating it, is required. For this reason,
we proposed an iterative algorithm to estimate a nominal
path characterizing a task, given a set of noisy human
demonstrations.
The effectiveness of the proposed algorithm is also shown
considering a deburring example. Furthermore, a comparison
with NLPCA and GMM/GMR demonstrates that the accu-
racy of these methods depends on the shape of the path,
whereas the Mean-Path algorithm always results in approxi-
mately the same error, and its accuracy is always higher than
the one achieved through the previous algorithms.
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