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Abstract

Introgressing the Submergence1 (Sub1) allele into chromosome 9 of high-yielding rice (Oryza sativa L.) 
cultivars introduced the flood-tolerant trait, but this chromosome also includes quantitative trait loci for seed 
storage survival. Loss in seed dormancy and viability during post-harvest storage were investigated in rice 
cultivars ‘IR64’ and ‘IR64-Sub1’ to test if the introgression of Sub1 affected seed longevity. They were grown in 
the same controlled environment, mature seeds harvested and ability to germinate monitored during subsequent 
hermetic storage at 40°C with 13.5-13.9% moisture content. The overlapping patterns of loss in dormancy and 
loss in viability during storage were quantified well by a multiplicative model, with similar responses in the two 
near-isogenic cultivars: both showed almost full dormancy initially with complete, similar, loss in dormancy 
during the first seven days of storage, loss in viability after 43 days and 50% viability periods (p50) of 26.4-28.1 
days. Hence, introgression of the submergence-tolerant allele Sub1A-1 in rice cv. ‘IR64’ did not affect seed 
dormancy or survival after harvest substantially, but duration to flowering was nine days longer and seed yield 
also greater in cv. ‘IR64-Sub1’.

Keywords: dormancy, germination, longevity, Oryza sativa L., rice, seed, Sub1

Experimental and discussion

Seed dormancy in rice (Oryza sativa L.) is necessary to avoid, or reduce, pre-harvest 
sprouting and varies considerably amongst cultivars at maturity (Roberts, 1963; Tejakhod 
and Ellis, 2018). It must be lost after harvest for seeds to germinate when sown. Rice 
seed dormancy declines during maturation in planta (Tejakhod and Ellis, 2018); and 
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subsequently during storage ex planta (after ripening) at a rate dependent upon temperature 
(Roberts, 1965) and moisture content (Ellis et al., 1983). There is no causal relationship 
between seed dormancy and longevity (Roberts, 1963; Miura et al., 2002). Nonetheless, 
rice seed storage longevity (storage period for a given loss in viability) is also a function 
of temperature and moisture content (Ellis and Hong, 2007). In addition to the death of 
a fraction of the stored seeds, the surviving seeds age (Ellis and Roberts, 1981). Aged 
rice seeds often emerge poorly from seedbeds producing a non-uniform crop with poor 
growth, fewer panicles and filled grains, and lower yield (Siddique et al., 1988; Yamauchi 
and Winn, 1996). 

The widely-grown, high-quality, high-yielding mega rice cv. ‘IR64’ is now being 
replaced by newer varieties, many of which are its progeny or relatives (Mackill and 
Khush, 2018). Furthermore, submergence-tolerant varieties have been developed by 
introgressing the Sub1A-1 allele into high-yielding parents such as ‘IR64’ by marker-
assisted backcrossing (Septiningsih et al., 2009). They can survive flooding during the 
vegetative phase for up to two weeks (Ram et al., 2002; Das et al., 2009; Sarkar et al., 
2009; Singh et al., 2009). Submergence during the reproductive phase can reduce yield 
and induce pre-harvest sprouting, but less so in Sub1-introgressed lines than in parents 
(Ray et al., 2017; Tejakhod and Ellis, 2018). 

Marker-assisted backcrossing is an essential tool to breed new varieties with a 
particular phenotype rapidly (Collard and Mackill, 2008), but may result in genetic 
linkage between selected loci and neighbouring regions and so reduce or reinforce certain 
traits (Harrison et al., 1987). Major quantitative trait loci (QTL) for seed viability, qLG-
9 (Miura et al., 2002; Sasaki et al., 2005; Shigemune et al., 2008; Li et al., 2012), and 
submergence-tolerance, Sub1 (Xu and Mackill, 1996; Xu et al., 2000, 2006), are both 
located on chromosome 9 in rice.

Genetic linkage between the Sub1 locus and adjacent loci on chromosome 9 in rice 
has been reported after introgression (Ideta et al., 1995; Neeraja et al., 2007; Shao et al., 
2012). There is currently no evidence of potential linkage between QTLs for longevity 
and submergence-tolerance on chromosome 9 in ‘IR64’. This is supported by the recent 
discovery of a large deletion in the qLG-9 region (Kretzschmar et al., 2015); and because 
the Sub1 region (Xu et al., 2006) does not share any candidate genes/markers with the 
QTL for seed viability, qLG-9 (Sasaki et al., 2015). Nonetheless, recent results from seed 
storage implied that introgression of the Sub1A-1 allele might have increased longevity 
slightly, whether or not mother plants were submerged after flowering, and highlighted
the need for further study (Tejakhod and Ellis, 2018). Rice seed survival in storage is 
affected by the seed production environment (Ellis et al., 1993; Kameswara Rao and 
Jackson, 1996). Hence, any post-harvest comparison of cultivars requires the same 
conditions of seed production and of storage. Seeds of the two cultivars, ‘IR64’ and 
‘IR64-Sub1’, were produced and then stored in the same environments to test the null 
hypothesis that introgression of the Sub1A-1 allele into ‘IR64’ does not affect ability to 
germinate after storage.

Seeds of the near-isogenic Indica cultivars ‘IR64’ and ‘IR64-Sub1’ (IR07F102) from 
the Plant Breeding, Genetics and Biotechnology Division, International Rice Research 
Institute (IRRI), Los Baños, Philippines, were multiplied at the University of Reading.
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The respective absence and presence of the Sub1A-1 allele in multiplied seeds was 
confirmed by DNA extraction, PCR amplification, digestion with the restriction enzyme 
BseNI, gel electrophoresis and DNA sequencing of the appropriate band (Tejakhod, 2015).

Plants of the two cultivars were grown in pots in growth cabinets at 28/20°C day/night 
(11 hours/13 hours) with 11 hours day-1 photoperiod at the Plant Environment Laboratory, 
University of Reading, in a randomised complete block design of three blocks with eight 
replicates for each cultivar (48 pots in total). Plant growth procedures were as described 
by Tejakhod et al. (2018). Seeds were sown on 2 June 2014 and thinned at 70 days after 
sowing (DAS) to the four strongest in each pot. Phenology was recorded and a nutrient 
solution (Yoshida et al., 1976) provided by drip-feed irrigation until two days before 
harvest.

Seeds were harvested by hand 44 days after anthesis, grains threshed from panicles 
by hand, combined from all plants within each cultivar within each block, and unfilled 
seeds discarded. Seed moisture content was determined by the two-stage, high-constant-
temperature-oven method (ISTA, 2013) with two replicates of 2.5-3.0 g for each seed 
sample. Dry matter yield per pot was recorded. Thousand seed dry weight was determined 
from 800 seeds (of known moisture content) drawn by hand sampling.

Seeds were dried initially at 22 ± 2°C and moisture content then adjusted to 13.7 ± 

0.2% by drying in a desiccator over silica gel at 20°C. Seed equilibrium relative humidity 
(eRH) was monitored by dew point hygrometer (Aqualab, 3TE, Decagon Devices, Inc., 
Pullman, USA). After equilibration for seven days at 2-4°C in an airtight glass bottle, 
moisture content was determined by the high-constant-temperature-oven method (ISTA, 
2013). 

Samples were sealed in separate laminated-aluminium-foil bags (Retort laminate, 
Moore & Buckle Ltd., St Helens, UK), stored in a heated incubator at 40 ± 0.5°C, and 
withdrawn from storage to test ability to germinate at 1-5 day intervals for up to 43 days. 
Three replicates of approximately 70 seeds each were sown between moist rolled paper 
towels [Kimberley Clark Professional, Hostess Natural Hand Towels  – S Fold (Natural, 
240 × 350 mm), Greenham Sales, UK] within loosely-folded polyethylene bags, and 
placed upright at 34/11°C (16 hours/8 hours) for 21 days to break dormancy and promote 
germina tion (Ellis et al., 1983). Seed covering structures were removed from seeds still 
firm after 21 days and tests extended by seven days. Normal seedlings (ISTA, 2013) were 
identified, removed, and recorded. 

Statistical analyses were carried out using GenStat (17th Edition, 2014, VSN Inter-
national Ltd., UK). For each of seed moisture content at harvest, weight, and yield per 
pot, a two samples t-test was performed to compare varietal differences between ‘IR64’ 
and ‘IR64-Sub1’.

Serial results for ability to germinate normally during storage were fitted by probit 
analysis in accordance with

 v = Ki − p / σ (1)

where ν is probit percentage viability after p days in storage under a constant environment, 
σ is the standard deviation of the frequency distribution of seed deaths in time (days), Ki 
is the seed lot constant, and the 50% viability period (p50) is the product of Ki and σ
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(Ellis and Roberts, 1980). Due to considerable dormancy at harvest, a multiplicative model 
combining loss in dormancy and viability (Kebreab and Murdoch, 1999) was also applied:

 g = (Kd + β1p) × (Ki − (p / σ)) (2)

where g is probit percentage ability to germinate normally, Kd is initial probit germina-
tion (i.e. non-dormant seeds) in normal equivalent deviates (NED), β1 is loss in dormancy 
(NED day-1), with Ki, p and σ as above.

Cultivar ‘IR64’ produced flag leaves on 81 DAS, with flowering (50% anthesis) 96 
and harvest 140 DAS. For ‘IR64-Sub1’, these development stages were each nine days 
later at 90, 105 and 149 DAS, respectively. The latter also flowered six days later than
‘IR64’ in a separate study (Tejakhod, 2015). The sensitivity of crop duration to photo-
thermal environment varies amongst rice genotypes (Summerfield et al., 1992). The 
introgression of Sub1 into ‘IR64’ may have affected the expression of genes controlling 
phenology; this difference in the duration of the vegetative phase warrants investigation 
in contrasting photothermal environments. 

Seed moisture content of ‘IR64’ was marginally greater (P < 0.001) at harvest than 
‘IR64-Sub1’ (table 1). It also had slightly heavier seeds than ‘IR64-Sub1’ (P < 0.01), 
whereas grain yield per pot for ‘IR64’ was 30% less than for ‘IR64-Sub1’. In an earlier 
investigation, however, yield per pot tended to be greater in ‘IR64’ (Tejakhod, 2015). 
This considerable difference reinforces the general view that growth chamber studies are 
not reliable indicators of crop yield. Nonetheless, the greater yield of ‘IR64-Sub1’ here 
was derived from a 52% increase in the number of seeds per plant which, in turn, was 
compatible with the longer vegetative phase.

Table 1. Moisture content, seed weight and yield of rice cultivars ‘IR64’ and ‘IR64-Sub1’ produced in a growth 
cabinet at 28/20°C (11 hours/13 hours).

‘IR64’ ‘IR64-Sub1’
P*

Mean (SE) Mean (SE)

Moisture content at harvest (%)†  30.9 0.1  29.6 0.2 < 0.001

1000 seed dry weight (g) ‡, §  21.0 0.2  19.7 0.1 < 0.002

Yield (g pot-1) ‡, § 102.2 9.2 146.4 3.6 < 0.011

* Test for significance of difference between cultivars for the independent variable shown in each row.
† Mean of six replicates (two per block).
‡ Mean of three replicates (one per block).
§ Four plants grown in an effective area of 0.0324 m2 per pot.

Seeds showed high dormancy initially (figure 1). This was lost over the first seven 
days of storage with almost full germination before subsequent loss in viability over the 
next 36 days. The patterns of loss in dormancy and of viability were described well by 
the multiplicative model combining loss of seed dormancy and of seed viability (Equation 
2), with positive and negative cumulative normal distributions respectively in both 
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cultivars. The overall model could not be constrained to a common line for both cultivars
(P < 0.001), nor for loss in seed viability (P < 0.01), but loss in dormancy (β1) did not 
differ between the cultivars (P > 0.25) with a common value applied (figure 1, table 2). 
Seeds of ‘IR64-Sub1’ retained dormancy for marginally longer than those of ‘IR64’, but 
lost viability slightly earlier. These small differences between cultivars were of similar 
magnitude to those amongst blocks; comparison within blocks showed identical estimates 
of p50 in Block 1, but greater estimates in ‘IR64’ than ‘IR64-Sub1’ in Blocks 2 and 3 
(table 2).

The full release from dormancy in hermetic storage over seven days at 40°C with 
13.7 ± 0.2% moisture content (figure 1) is in broad agreement with the recommendation 
to break rice seed dormancy by sun drying to 11% moisture content and then incubating 
at 47°C for seven days (Roberts, 1962). The high proportions of dormant seeds at harvest 
in both cultivars combined with very similar patterns of loss in dormancy are compatible 
with both showing high resistance to pre-harvest sprouting after four days of complete 
submergence of plants during the reproductive phase (Tejakhod and Ellis, 2018). 

That earlier study also showed good agreement of fitted values of σ with independent 
values provided by the improved seed viability equation (Ellis and Hong, 2007). This was 
not the case in the current study: σ fitted by Equation (2) ranged from 5.4 to 9.5 days at 
40°C with 13.5-13.9% moisture content (table 2), much less than independent estimates 
of 14.4 to 22.4 days at 39-41°C with 13.5-13.9% moisture content (Ellis and Hong, 2007). 

Figure 1. Changes in ability to germinate normally during hermetic storage at 40°C with 13.5-13.9% moisture 
content for seeds of rice cultivars ‘IR64’ and ‘IR64-Sub1’ produced in a growth cabinet at 28/20°C (11 hours/13 
hours). Observations are means ± standard errors (n = 9, three germination test replicates each from three blocks). 
The fitted models describing the combined loss in dormancy and loss in viability (Equation 2) are quantified in 
table 2 (seed lots from all three blocks combined).
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Furthermore, surprisingly (given their lower moisture content), less than the range 11.6 
to 19.0 days for many more seed lots of these cultivars in the harsher storage regime of 
40°C with 14.5-14.9% moisture content (Tejakhod and Ellis, 2018). Whitehouse et al. 
(2018) also reported that longevity in Indica and Japonica rices was overestimated by the 
independent estimates from Ellis and Hong (2007). 

In conclusion, only small differences were detected in the current study in air-dry seed 
storage longevity (p50) and release from dormancy between these near-isogenic cultivars, 
with p50 for ‘IR64’ > p50 for ‘IR64-Sub1’ and Kd for ‘IR64’ > Kd for ‘IR64-Sub1’ (figure 
1). The latter is negligible compared with that shown between different rice cultivars 
produced in one environment (Roberts, 1963). Similarly, the difference in longevity 

detected is smaller than those amongst blocks within each cultivar (table 2). Moreover, 
previous research with these two cultivars provided slightly greater seed longevity for 
‘IR64-Sub1’ than for ‘IR64’ in all seed production environments studied (Tejakhod and 
Ellis, 2018). Hence, the introgression of Sub1 has had no detrimental effect on rice 
seed dormancy or longevity after harvest, but may have altered crop durations in some 
photothermal environments.
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