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Abstract— The Travelling Salesperson Problem (TSP) is a 

classic example of a non-polynomial (NP) hard problem, which 

cannot be practically solved using exhaustive algorithmic approaches. 

This study explores the human approach, and presents a Quotient 

Algorithm (Quot) - a modification to the nearest neighbor algorithm - 

inspired by human path crossing avoidance behavior when solving 

ETSP graphs. We compared the developed Quot results against 

standard heuristic algorithms and found that this simple modification 

outperforms the NN, as well as other existing heuristic approaches.  

Keywords— Travelling Salesman; Optimisation Problems; 

Heuristic Algorithms 

I.  INTRODUCTION 

A travelling salesperson starts in their home city and 
attempts to find the shortest tour that allows them to visit every 
city once before returning back home. In computational terms, 
the travelling salesperson problem (TSP) is considered to be a 
non-polynomial (NP) hard problem, since exhaustive testing 
would require us to evaluate the cost of every single possible 
tour [2]. Assuming that costs don’t change with direction (i.e., 
the graph is symmetrical) and we can move in any direction, 
there are (n-1)!/2 possible solutions where n is equal to the 
number of nodes. The exponentially large amount of possible 
solutions means that it would soon become impractical to solve 
such problems using an exhaustive-search algorithm [17].   

As an alternative to exhaustive testing, near optimum “good 
enough” TSP solutions can be derived using either stochastic 
or non-stochastic approaches. Stochastic approaches - e.g. 
Hopfield (or derivatives of Hopfield), artificial neural networks 
[7], evolutionary algorithms [10], simulated annealing [8] - are 
random, and may not be precisely predicted. Non-stochastic 
approaches, often referred to as the heuristic algorithms - e.g. 
the nearest neighbor (NN), nearest insertion, farthest insertion, 
and cheapest insertion [15] - model a predefined relationship 
between factors. The aim of TSP heuristic approaches is to 
provide simple, flexible, and easy to implement near optimal 
solutions. A trade-off therefore occurs between stochastic and 
non-stochastic approaches, i.e. tour cost vs processing speed, 
with stochastic approaches obtaining more near optimal 
solutions, yet non-stochastic approaches requiring less 
computational expense.  

II. HUMAN PERFORMANCE IN THE TSP 

Humans are able to provide near optimal TSP solutions in 
an efficient near linear time period, given that the problem is 
presented in 2D Euclidean space (i.e., using geometric 
distances as a measure of the costs of routes between cities) 
[2,3]. Average human solutions to the TSP, are approximately 
1% more costly than optimal solutions for problems where the 
number of nodes is between 10 and 20 [11], and approximately 
11% more costly for problems where the number of nodes is 
120 [2]; although the results can vary greatly amongst 
participants. For example, Kyritsis et al. [9], found that the 
number of trials containing crossings, and hence sub-optimal 
solutions, ranged from 0% to 93% for specific participants. 

 

Figure 1 - Convex hull of a Euclidean TSP problem 

graph  

MacGregor et al. [12] suggest that when solving the ETSP, 
people apply a global-to-local heuristic. That is, they initially 
form an imaginary perimeter around the boundary nodes of the 
graph, termed the convex hull (see Fig. 1). Empirical TSP 
research has shown that the properties of the convex hull, such 
as the number of boundary nodes, correlate with individual 
performance on the TSP [19]. Accordingly, MacGregor & 
Ormerod [11] theorised that subsequent to forming the global 
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convex hull, individuals solve the TSP by sequentially 
inserting local internal nodes in either a clockwise or a 
counterclockwise direction; a.k.a. a global-to-local perceptual 
organizing heuristic. Whilst this heuristic can provide an 
efficient means of solving the problem through perceptual 
processing of geometric properties of the graph, van Rooji, et 
al. [18] argue that there is insufficient evidence in literature to 
support the convex hull hypothesis, and instead propose an 
alternative heuristic that may also be implemented by humans, 
named the ‘crossing-avoidance hypothesis’. Theorists suggest 
such crossing-avoidance occurs because humans are ‘trained’ 
to regard routes with crossed lines as non-optimal. 

Ultimately, in both global-to-local and local-to-global 
models, people intentionally keep the number of crossings to a 
minimum. Because of the crossing-avoidance behaviour, we 
can deduce that a good node candidate (i.e. the best next 
possible node) will:  

1. Most likely be positioned away from the centre of the 
current problem, in order to increase the chance that it 
belongs to the convex hull. For humans, judgment of 
object distance, and identification of the centre of 
mass is an automatic process of the visual system for 
computing positions within, and between, groups 
through object centroids [1, 13, 16]. In light of this, 
we hypothesise that identification of the centroid 
position of the shape (i.e., taking the mean distance 
for x and y) is used by humans to judge relative 
distance between the remaining nodes  

2. Be close enough to the current node to minimise the 
number of possible intersections, a geometric property 
that has been shown to inversely impact human 
performance [3, 19] 

 

III. THE QUOTIENT ALGORITHM 

To incorporate the ‘human’ approach, we developed a 
naive (i.e. simple and non-optimised) quotient algorithm 
(Quot), using R code [14], which emulates the aforementioned 
human problem-solving heuristic. This algorithm was modified 
from a simple nearest-neighbour algorithm, with a complexity 
of O(n2), where cost-to-current/cost-to-centroid defines the 
‘distance’ from the current node. 

1. Quotient Algorithm: ListVisted: Compute List of nodes visited in 
order 

2. Input: ListNodes: List of nodes, initial node 

3. Output:  ListVisted: List of nodes visited in order 

4. ListAvailable ← ListNodes – initialNode 

5. currentNode ← initialNode 

6. ListVisted ← initialNode 

7. while ListAvailable  ≠ Φ do 

8.          centroid ← centroid (ListAvailable + initialNode) 

9.          for each node i ԑ ListAvailable do 

10.                   Cij ← Cost (i, currentNode) 

11.                      Cik ← Cost (i, centroid) 

12.                      ListQuotient ← ListQuotient + Cij / Cik 

13.          end for 

14.          nextNode ← minmum(ListQuotient) 

15.          ListAvailable ← ListAvailable – nextNode 

16.          ListVisted ← ListVisted + nextNode 

17.          currentNode ← nextNode 

18.          ListQuotient ← Φ 

19. end do 

IV. METHOD 

To benchmark the quotient algorithm we chose to compare 
Quot performance results against four existing heuristic 
algorithms, i.e. the nearest neighbor (NN) algorithm and three 
common variations of the insertion algorithms (Nearest, 
Farthest, Cheapest). In order to test and compare heuristic 
algorithms we generated thirty sets of TSP graphs. Each set 
contained randomly generated graphs, with the number of 
nodes ranging incrementally from 50 nodes to 399 nodes, for a 
total of 8750 graphs. The starting node for each graph was 
fixed to keep comparison of results consistent. NN, farthest 
insertion, and cheapest insertion were implemented with the 
help of the TSP library [6, 7]. The costs for all algorithms 
(including the quotient algorithm) were stored in a .csv file for 
further analysis and uploaded to 
https://github.com/markoskyritsis/ETSPPartData, for the sake 
of replication and transparency. 

V. RESULTS 

The distribution of our data was fairly normal, however, 
results failed to satisfy the homogeneity of error variances 
required for use of ANOVA (Levene’s test was < 0.01). As 
such, we used the Kruskal Wallis test as a nonparametric 
alternative, with tour costs as the dependent variable, and the 
heuristic as the independent categorical variable. Results from 
the Kruskal Wallis test showed that there were significant 
differences in average tour costs between algorithms [H(5) 
=450.29; p < 0.001], a finding illustrated in Fig. 2. 

The Dunn test was used to perform pairwise comparisons, 
which revealed that the Quot performed significantly better 
than the NN [z = 6, p < 0.001], the nearest insertion [z = 4.26, p 
< 0.001], and the cheapest insertion [z = 0.14, p < 0.001], 
although the difference between cheapest insertion and Quot 
scores were not very meaningful (Cohen’s d < 0.01). Finally, 
the Quot underperformed compared to farthest insertion [z = -
10.53, p < 0.001]. 



Figure 2 – Comparison of tour costs in an incremental 
volume of graphs. Cost measurements are in arbitrary units 

VI. DISCUSSION 

In this study we introduce the quotient algorithm, which 
was inspired by the way humans solve the Euclidean variant of 
the TSP. We hypothesized that we could model human tours by 
taking the quotient between the cost of the distance between all 
non-visited nodes from their centroid, and the cost of the non-
visited nodes from the current node in each step, and then 
selecting the node with the lowest result. We compared this 
algorithm on 8750 graphs ranging in node quantity from 50 to 
399 nodes. Despite the Quot being a minor adaption of the 
Nearest Neighbour (NN) algorithm, where ‘distance’ is defined 
as cost-to-current/cost-to-centroid, the Quot performed 
significantly better than nearest neighbor, nearest insertion, and 
about as well as cheapest insertion. However, the Quot 
performed worse than farthest Insertion. Nevertheless, because 
of its simplicity, we suggest that the Quot algorithm be 
considered as a potential candidate for inclusion in benchmark 
tests of heuristic performance in the travelling salesperson 
problem.  
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