
Magni�cation Factors for the SOMand GTM AlgorithmsChristopher M. Bishop, Markus Svens�en and Christopher K. I. WilliamsNeural Computing Research Group,Dept. of Computer Science and Applied Mathematics,Aston University, Birmingham, U.K.To appear in Proceedings 1997 Workshop on Self-Organizing Maps, Helsinki, Finland.Available as technical report NCRG/97/008 from http://www.ncrg.aston.ac.uk/AbstractMagni�cation factors specify the extent to which the area of a small patch of the latent(or `feature') space of a topographic mapping is magni�ed on projection to the data space,and are of considerable interest in both neuro-biological and data analysis contexts. Previousattempts to consider magni�cation factors for the self-organizing map (SOM) algorithm havebeen hindered because the mapping is only de�ned at discrete points (given by the referencevectors). In this paper we consider the batch version of SOM, for which a continuous mappingcan be de�ned, as well as the Generative Topographic Mapping (GTM) algorithm of Bishopet al. [2] which has been introduced as a probabilistic formulation of the SOM. We showhow the techniques of di�erential geometry can be used to determine magni�cation factors ascontinuous functions of the latent space coordinates. The results are illustrated here using aproblem involving the identi�cation of crab species from morphological data.1 The Batch SOM AlgorithmWe begin by reviewing the batch form of the SOM [4] and showing how it leads to a continuousmapping from latent space to data space. The batch SOM algorithm involves a set of K referencevectors fyig de�ned in the data space, in which each vector yi is associated with a node i on aregular lattice in a (typically) two-dimensional latent space (often called a `feature' space). Wedenote the coordinate system in latent space by x, so that the ith node is at position xi. Thealgorithm begins by initializing the reference vectors using, for example, principal componentanalysis. At each cycle the corresponding `winning node' j(n) is identi�ed for every data vectortn, corresponding to the reference vector yi having the smallest Euclidean distance kyi � tnk2 totn. The reference vectors are then updated by setting them equal to weighted averages of the datapoints given by yi = Pn h(xi;xj(n))tnPn h(xi;xj(n)) : (1)in which h(x;x0) is the neighbourhood function, which we assume to be a continuous functionof the latent space coordinates (a Gaussian is a common choice). The steps of identifying thewinning nodes and updating the reference vectors are repeated iteratively. A key ingredient in thealgorithm is that the `width' of the neighbourhood function h(x;x0) starts with a relatively largevalue and is gradually reduced after each iteration.1
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As pointed out by Mulier and Cherkassky [5], the value of the neighbourhood function h(xi;xj(n))depends only on the identity of the winning node j and not on the value of the corresponding datavector tn. We can therefore perform partial sums over the groups Gj of data vectors assigned toeach node j, and hence re-write (1) in the formyi =Xj K(xi;xj)mj (2)where mj is the mean of the vectors in group Gj and is given bymj = 1Nj Xn2Gj tn (3)in which Nj is the number of data vectors in group Gj , andK(x;xj) = Njh(x;xj)Pj0 Nj0h(x;xj0 ) : (4)The result (2) is analogous to the Nadaraya-Watson kernel regression formula [1] with the kernelfunctions given by K(x;xj).Thus the batch SOM algorithm replaces the reference vectors at each cycle with a convex com-bination of the node meansmj , with coe�cients determined by the neighbourhood function. Notethat the kernel coe�cients satisfy PjKij = 1 for every i. We see that the batch SOM updateequations (2) de�ne a natural, continuous mapping from latent space to data space, given byy(x) =Xj K(x;xj)mj (5)which coincides with the reference vectors yi when x = xi.2 The GTM AlgorithmThe goal of the GTM algorithm is to model a probability distribution in data space in terms of two`latent' variables corresponding to the coordinates of the latent space. The non-linear mappingfrom latent space to data space is introduced explicitly in GTM in the formy(x) =W�(x) (6)where � = (�1; : : : ; �M )T represents a set of M �xed non-linear basis functions, and W is aD�M matrix of parameters. The mapping (6) de�nes a two-dimensional non-Euclidean manifoldS embedded in the D-dimensional Euclidean data space. A typical choice for the basis functionswould be a set of Gaussians centred on a regular grid in latent space, with a common widthparameter whose value controls the degree of smoothness of the manifold in data space.If we introduce a probability distribution p(x) over latent space, then (6) induces a correspondingdistribution in data space which will be con�ned to the two-dimensional manifold. Since our datawill not live exactly on such a manifold, we convolve this distribution with an isotropic Gaussiandistribution in data space of the formp(tjx;W; �) = � �2��D=2 exp���2 ky(x;W) � tk2� : (7)The distribution in t-space, for given values of W and �, is then obtained by integration over thex-distribution p(tjW; �) = Z p(tjx;W; �)p(x) dx: (8)



The GTM algorithm corresponds to a particular form of this model in which we consider p(x)to be a sum of delta functions centred on the nodes of a regular lattice in latent spacep(x) = 1K KXl=1 �(x� xl): (9)Note that this lattice is typically much �ner than the grid of points used to de�ne the centres of thebasis functions. Each point xl is mapped to a corresponding point y(xl;W) in data space, whichforms the centre of a Gaussian density function. From (8) and (9) we see that the distributionfunction in data space takes the formp(tjW; �) = 1K KXl=1 p(tjxl;W; �) (10)which represents a mixture of Gaussians in which the centres of the Gaussian functions are con-strained to lie on the two-dimensional manifold S. The parameters W and � can be determinedby maximum likelihood using the EM (expectation-maximization) algorithm [1]. The latent spacedensity p(x) can be regarded as a prior distribution, with the corresponding posterior distributionp(xjt;W; �), for a given data point t, given by Bayes' theorem. For a two-dimensional latentspace this posterior distribution can be visualized using, for example, pseudo-colour. In order tovisualize a set of data points, each of the corresponding posterior distributions can conveniently besummarized by its mean (or mode), which is easily evaluated. The SOM algorithm can be derivedas an approximation to GTM in which the soft, probabilistic assignments of data points to nodesare replaced with hard 0/1 assignments, as discussed by Bishop et al. [2]3 Magni�cation FactorsThe concept of a magni�cation factor arose originally in the context of topographic maps in thebrain, such as those found in the visual and somatosensory areas of the cortex, where it relatesthe two-dimensional spatial density of sensors to the two-dimensional spatial density of the cor-responding cortical cells. In the context of data analysis, the analogous concept plays an equallyimportant role. When a small region of the latent space is mapped to data space it may be com-pressed or stretched as the mapping is optimized to �t the data. One consequence of this is thatwell-separated clusters of points in data space will appear to be more nearly uniform in latentspace, and so inhomogeneities in the data can be obscured.This problem has been addressed in the context of the SOM by Ultsch [7] who uses a gray-scalescheme to display the Euclidean distances between reference vectors on the visualization plot. Thisnecessarily gives a discrete representation of the local magni�cation since the e�ective surface indata space for the standard SOM is de�ned only in terms of the positions of the reference vectors.We now show how the local magni�cation factor for the batch SOM and GTM algorithms can beevaluated as continuous functions of the latent space coordinates, in terms of the mapping y(x),using the techniques of di�erential geometry.Consider a standard set of Cartesian coordinates xi in the latent space. Since each point P inlatent space is mapped by a continuous function to a corresponding point P 0 in data space, themapping de�nes a set of curvilinear coordinates �i in the manifold in which each point P 0 is labelledwith the coordinate values �i = xi of P , as illustrated in Figure 1. Throughout this paper we shalluse the standard notation of di�erential geometry in which raised indices denote contravariantcomponents and lowered indices denote covariant components, with an implicit summation overpairs of repeated covariant-contravariant indices.We �rst discuss the metric properties of the manifold S. Consider a local transformation, atsome point P 0 in S, to a set of rectangular Cartesian coordinates �i = �i(�). Then the squared
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Figure 1: This diagram shows the mapping of the Cartesian coordinate system xi in latent space onto acurvilinear coordinate system �i in the L-dimensional manifold S.length element in these coordinates is given byds2 = ���d��d�� = ��� @��@�i @��@�j d�id�j = gijd�id�j (11)where gij is the metric tensor, which is therefore given bygij = ��� @��@�i @��@�j : (12)We now seek an expression for g in terms of the non-linear mapping y(x). Consider again thesquared length element ds2 lying within the manifold S. Since S is embedded within the Euclideandata space, this also corresponds to the squared length element of the formds2 = �kldykdyl = �kl @yk@xi @yl@xj dxidxj = gijdxidxj (13)and so we have gij = �kl @yk@xi @yl@xj : (14)For the batch SOM, the the metric tensor can be expressed explicitly in terms of the derivativesof the neighbourhood function using (4) and (5). Similarly, using (6) the metric tensor for GTMcan be expressed in terms of the derivatives of the basis functions �j(x) in the formg =  TWTW (15)where  has elements  ji = @�j=@xi.Our goal is to �nd an expression for the area dA0 of the region of S corresponding to an in�nites-imal rectangle in latent space with area dA =Qi dxi. The area element in the manifold S can berelated to the corresponding area element in the latent space by the Jacobian of the transformation� ! � dA0 =Y� d�� = JYi d�i = JYi dxi = JdA (16)where the Jacobian J is given byJ = det�@��@�i � = det�@��@xi � : (17)We now introduce the determinant g of the metric tensor which we can write in the formg = det(gij) = det���� @��@xi @��@xj� = det�@��@xi � det�@��@xj� = J2 (18)



and so, using (16), we obtain an expression for the volume element in curvilinear coordinates inthe form dA0dA = J = det 1=2g: (19)Although the magni�cation factor represents the extent to which areas are magni�ed on projec-tion to the data space, it gives no information about which directions in latent space correspondto the stretching. We can recover this information by considering the decomposition of the metrictensor in terms of its eigenvectors and eigenvalues. As we shall see in the next section, it is conve-nient to display this information by selecting a regular grid in latent space (which could correspondto the reference vector grid, but could also be much �ner) and to plot at each grid point an ellipsewith principal axes oriented according to the eigenvectors, with principal radii given by the squareroots of the eigenvalues. The standard area magni�cation factor is given from (19) by the squareroot of the product of the eigenvalues, and so corresponds to the area of the ellipse.4 Results: Crabs DataAs an illustration of magni�cation factors we consider a data set1 of measurements taken from thegenus Leptograpsus of rock crabs [3]. Measurements were taken from two species classi�ed by theircolour (orange or blue) with the aim of discovering morphological di�erences which would allowpreserved specimens (which have lost their colour) to be distinguished. The data set contains 50examples of each sex from each species, and the measurements correspond to length of frontal lip,rear width, length along mid-line, maximum width of carapace, and body length. Since all of thevariables correspond to length measurements, the dominant feature of the crabs data is an overallscaling of the data vector in relation to the size of the crab. To remove this e�ect each data vectortn = (t1n; : : : ; tDn)T is normalized to unit mean, so thatetkn = tkn, DXk0=1 tk0n: (20)Results from the crabs data are shown in Figure 2. It can be seen that the two species form
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Figure 2: Plots of the latent-space distribution of the crabs data, in which + and � denote male andfemale blue crabs, while the circles and squares denote male and female orange crabs, respectively. Resultsfor SOM is shown on the left and GTM on the right. The grey-scale background in each case shows thecorresponding area magni�cation factor as a function of the latent space coordinates.1Available from Brian Ripley at: http://markov.stats.ox.ac.uk/pub/PRNN.



distinct clusters, with the manifold undergoing a relatively large stretching in the region betweenthem. Within each cluster there is a partial separation of males from females. Corresponding plotsof the local eigenvector decomposition of the metric are given in Figure 3, showing both the directionand magnitude of the stretching. Ripley [6] shows a visualization of the SOM reference vectors for

Figure 3: Plots of the local stretching of the latent space, using the ellipse representation discussed inSection 3, for SOM (left) and GTM (right) algorithms.the crab data using the representation of [7], which corresponds to a discrete approximation to themagni�cation factors of the GTM model.AcknowledgementsThis work was supported by EPSRC grant GR/K51808: Neural Networks for Visualisation ofHigh-Dimensional Data. Papers relating to the original GTM algorithm, as well as softwareimplementations of GTM and data sets used in the development of GTM, can be found athttp://www.ncrg.aston.ac.uk/GTM/.References[1] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.[2] C. M. Bishop, M. Svens�en, and C. K. I. Williams. GTM: the generative topographic map-ping, 1997. Accepted for publication in Neural Computation. Available as NCRG/96/015 fromhttp://www.ncrg.aston.ac.uk/.[3] N. A. Campbell and R. J. Mahon. A multi-variate study of variation in two species of rockcrab of genus leptograpsus . Australian Journal of Zoology, 22:417{425, 1974.[4] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 1995.[5] F. Mulier and V. Cherkassky. Self-organization as an iterative kernel smoothing process. NeuralComputation, 7(6):1165{1177, 1995.[6] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, Cam-bridge, 1996.[7] A. Ultsch. Knowledge extraction from self-organizing neural networks. In O. Opitz, B. Lausen,and R. Klar, editors, Information and Classi�cation, pages 301{306, Berlin, 1993. Springer.


