
The `Moving Targets' Training AlgorithmRichard RohwerCentre for Speech Technology ResearchEdinburgh University80, South BridgeEdinburgh EH1 1HN SCOTLANDABSTRACTA simple method for training the dynamical behavior of a neu-ral network is derived. It is applicable to any training problemin discrete-time networks with arbitrary feedback. The algorithmresembles back-propagation in that an error function is minimizedusing a gradient-based method, but the optimization is carried outin the hidden part of state space either instead of, or in addition toweight space. Computational results are presented for some simpledynamical training problems, one of which requires response to asignal 100 time steps in the past.1 INTRODUCTIONThis paper presents a minimization-based algorithm for training the dynamical be-havior of a discrete-time neural network model. The central idea is to treat hiddennodes as target nodes with variable training data. These \moving targets" arevaried during the minimization process. Werbos (Werbos, 1983) used the term\moving targets" to describe the qualitative idea that a network should set itselfintermediate objectives, and vary these objectives as information is accumulated ontheir attainability and their usefulness for achieving overall objectives. The (coin-cidentally) like-named algorithm presented here can be regarded as a quantitativerealization of this qualitative idea.The literature contains several temporal training algorithms based on minimizationof an error measure with respect to the weights. This type of method includesthe straightforward extension of the back-propagation method to back-propagation
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through time (Rumelhart, 1986), the methods of Rohwer and Forrest (Rohwer,1987), Pearlmutter (Pearlmutter, 1989), and the forward propagation of derivatives(Robinson, 1988, Williams 1989a, Williams 1989b, Kuhn, 1990). A careful compar-ison of moving targets with back-propagation in time and teacher forcing appears in(Rohwer, 1989b). Although applicable only to �xed-point training, the algorithmsof Almeida (Almeida, 1989) and Pineda (Pineda, 1988) have much in common withthese dynamical training algorithms. The formal relationship between these andthe method of Rohwer and Forrest is spelled out in (Rohwer 1989a).2 NOTATION AND STATEMENT OF THE TRAININGPROBLEMConsider a neural network model with arbitrary feedback as a dynamical system inwhich the dynamical variables xit change with time according to a dynamical lawgiven by the mapping xit = Xj wijf(xj;t�1) i > 0x0t = bias constant 9=; (1)unless speci�ed otherwise. The weights wij are arbitrary parameters representingthe connection strength from node j to node i. f is an arbitrary di�erentiablefunction. Let us call any given variable xit the \activation" on node i at time t. Itrepresents the total input into node i at time t. Let the \output" of each node bedenoted by yit = f(xit). Let node 0 be a \bias node", assigned a positive constantactivation so that the weights wi0 can be interpreted as activation thresholds.In normal back-propagation, a network architecture is de�ned which divides thenetwork into input, hidden, and target nodes. The moving targets algorithmmakesitself applicable to arbitrary training problems by de�ning analogous concepts in amanner dependent upon the training data, but independent of the network archi-tecture. Let us call a node-time pair an \event". To de�ne a training problem, theset of all events must be divided into three disjoint sets, the input events I, targetevents T , and hidden events H. A node may participate in di�erent types of eventat di�erent times. For every input event (it) 2 I, we require training data Xit withwhich to overrule the dynamical law (1) usingxit = Xit (it) 2 I: (2)(The bias events (0t) can be regarded as a special case of input events.) For eachtarget event (it) 2 T , we require training data Xit to specify a desired activationvalue for event (0t). No notational ambiguity arises from referring to input andtarget data with the same symbol X because I and T are required to be disjointsets. The training data says nothing about the hidden events in H. There is norestriction on how the initial events (i0) are classi�ed.



3 THE \MOVING TARGETS" METHODLike back-propagation, the moving targets trainingmethod uses (arbitrary) gradient-based minimization techniques to minimize an \error" function such as the \outputde�cit" Eod = 12 X(it)2Tfyit � Yitg2; (3)where yit = f(xit) and Yit = f(Xit). A modi�cation of the output de�cit error gavethe best results in numerical experiments. However, the most elegant formalismfollows from an \activation de�cit" error function:Ead = 12 X(it)2Tfxit �Xitg2; (4)so this is what we shall use to present the formalism.The basic idea is to treat the hidden node activations as variable target activations.Therefore let us denote these variables as Xit, just as the (�xed) targets and inputsare denoted. Let us write the computed activation values xit of the hidden andtarget events in terms of the inputs and (�xed and moving) targets of the previoustime step. Then let us extend the sum in (4) to include the hidden events, so theerror becomes E = 12 X(it)2T[H8<:Xj wijf(Xj;t�1)�Xit9=;2 : (5)This is a function of the weights wij, and because there are no x's present, the fulldependence on wij is explicitly displayed. We do not actually have desired valuesfor the Xit with (it) 2 H. But any values for which weights can be found whichmake (5) vanish would be suitable, because this would imply not only that thedesired targets are attained, but also that the dynamical law is followed on boththe hidden and target nodes. Therefore let us regard E as a function of both theweights and the \moving targets" Xit; (it) 2 H. This is the essence of the method.The derivatives with respect to all of the independent variables can be computedand plugged into a standard minimization algorithm.The reason for preferring the activation de�cit form of the error (4) to the outputde�cit form (3) is that the activation de�cit form makes (5) purely quadratic in theweights. Therefore the equations for the minimum,dE=dwij = @E=@wij = 0; (6)form a linear system, the solution of which provides the optimal weights for anygiven set of moving targets. Therefore these equations might as well be used tode�ne the weights as functions of the moving targets, thereby making the error (5)a function of the moving targets alone.



The derivation of the derivatives with respect to the moving targets is spelled outin (Rohwer, 1989b). The result is:dEdXas =Xi �i;s+1ei;s+1wiaf 0as � �aseas; (7)where �it = � 1 (it) 2 T [H0 (it) 62 T [H (8)eit =Xj wijf(Xj;t�1)�Xit; (9)f 0it = df(x)dx ����x=Xit ; (10)and wij =Xk  Xt �itXitYk;t�1!M (i)�1kj ; (11)where M (a)�1 is the inverse of M (a), the correlation matrix of the node outputsde�ned by M (a)ij =Xt �atYi;t�1Yj;t�1: (12)In the event that any of the matrices M are singular, a pseudo-inversion methodsuch as singular value decomposition (Press, 1988) can be used to de�ne a uniquesolution among the in�nite number available.Note also that (11) calls for a separate matrix inversion for each node. However ifthe set of input nodes remains �xed for all time, then all these matrices are equal.3.1 FEEDFORWARD VERSIONThe basic ideas used in the moving targets algorithm can be applied to feedfor-ward networks to provide an alternative method to back-propagation. The hiddennode activations for each training example become the moving target variables.Further details appear in (Rohwer, 1989b). The moving targets method for feedfor-ward nets is analogous to the method of Grossman, Meir, and Domany (Grossman,1990a, 1990b) for networks with discrete node values. Birmiwal, Sarwal, and Sinha(Birmiwal, 1989) have developed an algorithm for feedforward networks which in-corporates the use of hidden node values as fundamental variables and a linear



system of equations for obtaining the weight matrix. Their algorithm di�ers fromthe feedforward version of moving targets mainly in the (inessential) use of a speci�cminimization algorithm which discards most of the gradient information except forthe signs of the various derivatives. Heileman, Georgiopoulos, and Brown (Heile-man, 1989) also have an algorithmwhich bears some resemblance to the feedforwardversion of moving targets. Another similar algorithm has been developed by Krogh,Hertz, and Thorbergasson (Krogh, 1989, 1990).4 COMPUTATIONAL RESULTSA set of numerical experiments performed with the activation de�cit form of thealgorithm (4) is reported in (Rohwer, 1989b). Some success was attained, butgreater progress was made after changing to a quartic output de�cit error functionwith temporal weighting of errors:Equartic = 14 X(it)2T(1:0 + at)fyit � Yitg4: (13)Here a is a small positive constant. The quartic function is dominated by the termswith the greatest error. This combats a tendency to fail on a few infrequently seenstate transitions in order to gain unneeded accuracy on a large number of similar,low-error state transitions. The temporal weighting encourages the algorithm tofocus �rst on late-time errors, and then work back in time. In some cases thishelped with local minimum di�culties. A di�culty with convergence to chaoticattractors reported in (Rohwer, 1989b) appears to have mysteriously disappearedwith the adoption of this error measure.4.1 MINIMIZATION ALGORITHMFurther progress was made by altering the minimization algorithm. Originally theconjugate gradient algorithm (Press, 1988) was used, with a linesearch algorithmfrom Fletcher (Fletcher, 1980). The new algorithm might be called \curvatureavoidance". The change in the gradient with each linesearch is used to updatea moving average estimate of the absolute value of the diagonal components ofthe Hessian. The linesearch direction is taken to be the component-by-componentquotient of the gradient with these curvature averages. Were it not for the absolutevalues, this would be an unusual way of estimating the conjugate gradient. Theabsolute values are used to discourage exploration of directions which show anyhint of being highly curved. The philosophy is that by exploring low-curvaturedirections �rst, narrow canyons are entered only when necessary.4.2 SIMULATIONSSeveral simulations have been done using fully connected networks. Figure 1 plotsthe node outputs of a network trained to switch between di�erent limit cycles underinput control. There are two input nodes, one target node, and 2 hidden nodes,as indicated in the left margin. Time proceeds from left to right. The oscillation



period of the target node increases with the binary number represented by the twoinput nodes. The network was trained on one period of each of the four frequencies.
Figure 1: Controlled switching between limit cyclesFigure 2 shows the operation of a network trained to detect whether an even or oddnumber of pulses have been presented to the input; a temporal version of paritydetection. The network was trained on the data preceding the third input pulse.Figure 3 shows the behavior of a network trained to respond to the second oftwo input pulses separated by 100 time steps. This demonstrates a unique (inthe author's knowledge) capability of this method, an ability to utilize very distanttemporal correlations when there is no other way to solve the problem. This networkwas trained and tested on the same data, the point being merely to show thattraining is possible in this type of problem. More complex problems of this typefrequently get stuck in local minima.5 CONCLUDING REMARKSThe simulations show that this method works, and show in particular that distanttemporal correlations can be discovered. Some practical di�culties have emerged,however, which are currently limiting the application of this technique to `toy'problems. The most serious are local minima and long training times. Problemsinvolving large amounts of training data may present the minimization problemwith an impractically large number of variables. Variations of the algorithm arebeing studied in hopes of overcomming these di�culties.AcknowledgementsThis work was supported by ESPRIT Basic Research Action 3207 ACTS.
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