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1. Introduction 

 

While policymakers and business leaders are increasingly aware of the linkages through which 

industrial production can affect the natural environment, patterns of ‘environmental behaviour’ 

continue to differ widely across firms, even when those firms reside within the same industry and 

country (Nakamura et al. 2001 and Albornoz et al. 2009).1 If global environmental degradation 

is to be more effectively controlled, a necessary first step would seem to be to gain a deeper 

understanding of the causes of such cross-firm variation in emissions and other aspects of 

environmental behaviour.  

 

A growing body of literature has examined the determinants of firms’ environmental 

management practices (Henriques and Sadorsky 1996, Nakamura et al. 2001 and Cole et al. 

2006) and has highlighted the roles played by a range of internal factors such as firm size and 

ownership structure as well as external factors, including environmental regulations, 

environmental lobbying and globalisation pressures. A weakness of this literature has always 

been the uncertain link between environmental management and actual measures of 

environmental performance such as emissions. A smaller body of literature has therefore 

attempted to directly examine measures of environmental performance, in the form of toxic air 

releases or local air pollution, and to identify the factors that influence them (see for example 

Kahn 1999, Shadbegian and Gray 2003 and Gray and Shadbegian 2004). These studies have also 

typically highlighted a range of factors both internal and external to the firm or plant, although 

data limitations have meant that this body of work focuses exclusively on the US, often 

concentrating on specific states or industries. 

 

A more recent study by Gray and Shadbegian (2007) has extended the previous US 

environmental performance literature by allowing for the fact that the determinants of plant-level 

environmental performance considered in the above studies may be influenced by spatial factors. 

Environmental performance could be spatially correlated for a number of reasons. For instance, 
                                                 
1 We use the broad term ‘environmental behaviour’ to encompass firms’ environmental systems and policies, often 
referred to as environmental management, but also firms’ actual environmental performance, often measured by 
pollution emissions.  
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firms and plants may be subject to location-specific environmental regulation (or enforcement) 

or environmental lobby groups. Additionally, industry agglomeration may result in 

concentrations of similar types of firms with similar levels of pollution intensity. If spatially 

correlated explanatory variables of this type are omitted from an econometric analysis there will 

be spatial dependence within the error term. The solution to this problem is normally to estimate 

a spatial error model in which the error term is spatially lagged. Another reason why 

environmental performance might be spatially correlated is if firms allow ‘best practice’ in 

pollution control to be passed between them via demonstration or imitation effects. Furthermore, 

if firms are subject to ‘yardstick competition’, and know their environmental performance is 

judged by consumers or regulators by making comparisons across firms, they may adjust their 

own environmental performance in response to that of other firms. In these two situations a 

firm’s environmental performance is dependent on the environmental performance of other firms 

which necessitates the inclusion of a spatially lagged dependent variable in the estimation 

model.2 Using a sample of plants based around three US cities, Gray and Shadbegian find 

evidence of spatial correlations in terms of regulatory compliance but not in terms of local air 

emissions. They suggest that a reason for the latter result may be the smaller sample of 299 

plants for which toxic release data were available and 102 plants for which local emissions data 

were available (compared to their main sample of 521 plants).  

 

With this background in mind, this paper examines the determinants of firms’ carbon dioxide 

(CO2) emissions using a unique Japanese firm-level dataset spanning the manufacturing sector. 

We make the following specific contributions. First, to the best of our knowledge, this is the first 

study to examine the determinants of firms’ CO2 emissions, despite the fact that climate change 

has arguably attracted more attention from policymakers in recent years than any other 

environmental problem. This neglect of CO2 reflects the lack of data available for this pollutant 

at firm or plant-level, a limitation now remedied by our Japanese dataset. Second, again to the 

best of our knowledge, this is the first firm-level study of a measure of air pollution emissions for 

a country other than the US. Finally, for the first time, we consider the extent to which firms’ 

emissions of CO2 are spatially correlated. 

                                                 
2 Although not explicitly considered by Gray and Shadbegian (2007), it is also possible that the characteristics of 

other firms may affect a firm’s environmental performance. This requires the inclusion of spatially lagged 
explanatory variables, often in the context of the Spatial Durbin model. 
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The remainder of the paper is structured as follows: Section 2 provides background information 

on CO2 emissions in Japan, Section 3 discusses the supply of, and demand for, pollution, the 

equilibrium level of pollution and possible spatial influences on pollution; Section 3 discusses 

data and outlines our econometric methodology: Section 4 provides our results and Section 5 

concludes. 

 

2. Background: Carbon Dioxide Emissions in Japan 

 

Carbon dioxide is a greenhouse gas, believed to contribute to anthropogenic global warming. 

Although its global warming potential is the lowest of all greenhouse gases when measured on a 

per unit basis, because far more units of CO2 are released compared to the other greenhouse 

gases, its overall warming impact is believed to the greatest (Forster et al. 2007). The main 

source of CO2 emissions is the burning of fossil fuels. Until recently it was believed that the 

adverse impacts of CO2 emissions arose entirely through its contribution to global warming, with 

no known local impacts. However, a recent study by Jacobson (2010) argues that the carbon 

dioxide domes which form over urban areas have the effect of increasing concentrations of local 

ozone and particulate matter, both of which have adverse effects on human health.  

 

In 2008, Japan was the 5th largest emitter of CO2 emissions, behind China, the USA, India and 

Russia and was responsible for 4.01% of global emissions.3 As Figure 1 shows, Japanese per 

capita CO2 emissions appear to have stabilised in recent years although they have yet to decline.4  

Figure 1 also provides CO2 intensity, defined as kilograms of CO2 per US $ of GDP (in 2000 

dollars), and illustrates that this has declined steadily from a peak in 1973, indicating that the 

Japanese economy has become more energy efficient. 

 

[Figure 1 about here] 

 

                                                 
3 United Nations Statistics Division, Millennium Development Goals indicators 

(http://mdgs.un.org/unsd/mdg/Default.aspx). 
4 Since population growth in Japan is close to zero total CO2 emissions follow a very similar path to per capita 
emissions. 
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The chief contributors to Japanese CO2 emissions are the electricity producers, followed by the 

Iron and Steel, Chemicals, Petroleum, Paper and Cement industries.5 Since the share of GDP 

provided by many of these industries has contracted in recent years, these compositional changes 

will explain, in part, the falling pollution intensity in Figure 1, although environmental 

regulations, technological advances and greater energy efficiency more generally are also likely 

to have contributed.6 We now more formally consider the factors that influence the supply of, 

and demand for, pollution emissions.   

 

3. Pollution Supply and Demand 

 

Following Pargal and Wheeler (1996) and Cole et al. (2005), we model pollution in terms of the 

supply of, and demand for, environmental services. Such services form an input into a firm’s 

production function, with the equilibrium level of environmental services reflecting the 

interaction of a firm’s demand for them together with the quantity that society is prepared to 

supply.  

 

3.1 Pollution Demand 

 

A number of factors are likely to determine a firm’s pollution demand schedule. 

 

Factor intensities: A firm's pollution levels are likely to be influenced by the capital intensity of 

its production processes. Antweiler et al. (1999) and Cole and Elliott (2005) demonstrate a link 

between the capital intensity of an industry and its pollution abatement costs per unit of value 

added while Cole et al. (2005) provide evidence of a link between the capital-labour ratio of UK 

industries and the pollution intensity of those industries.7 It therefore appears that firms and 

industries that are heavily dependent on machinery and equipment tend to be more pollution 

intensive than those that are labour intensive. There may also be a link between human capital 

intensity and pollution intensity. Cole et al. (2005) find that the greater the share of value added 

                                                 
5 Japanese Business Federation. 
6 Japanese regulations aimed at tackling CO2 emissions are discussed in Section 3.2. 
7 Antweiler et al. (1999) demonstrate the correlation between capital intensity and pollution abatement costs which 

is then utilised (though not explicitly demonstrated) by Antweiler et al. (2001).  
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paid to skilled workers in the UK the greater the pollution intensity of an industry. Although the 

reasons for such a link are not entirely clear, it is possible that those industries that typically 

generate greater volumes of pollution per unit of output are more likely to be based on complex 

industrial processes that require skilled labour. 

 

Firm size: Studies such as Pargal and Wheeler (1996) and Gray and Shadbegian (2007) indicate 

that larger firms are typically less pollution intensive than smaller firms. This is likely to reflect 

economies of scale in both resource use and abatement activities. In addition, Nakamura et al. 

(2001) and Albornoz et al. (2009) provide evidence to suggest that larger firms are more likely to 

undertake environmental management practices than smaller firms, presumably reflecting the 

greater ability of larger firms to devote resources to such practices. A number of studies suggest 

that the pressure that regulators and lobby groups place on firms is likely to be a function of the 

firm’s size. For instance, Greve (1989) argues that environmental groups are more likely to sue 

larger firms, irrespective of whether they are the worst polluters, simply because they are more 

likely to settle to avoid adverse publicity. However, in contrast, Yeager (1987) argues that 

government agencies are more likely to target smaller firms to prevent protracted legal battles 

with large firms.  

 

Innovation: Firms that invest in research and development (R&D) are likely to benefit from 

product and/or process innovations. A primary or secondary benefit of process innovations will 

often be greater efficiency of resource use which should, other things being equal, result in fewer 

resource inputs and less pollution per unit of output.  

 

Public profile: Firms with a strong public profile may be particularly concerned to appear 'green' 

in the eyes of the general public. Indeed, Badrinath and Bolster (1996) estimate that the main 

cost to firms of the environmental damage that they generate is the market penalty associated 

with being perceived to be environmentally damaging, a finding reinforced by Ziegler et al. 

(2007). Such a penalty is likely to be greatest for high profile, often international, firms.  

 

Globalisation: Firms that operate in international markets may have to be more competitive, and 

perhaps resource efficient, than those that merely serve the domestic market, and more likely to 
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adhere to internationally recognised environmental management practices such as ISO 14001.8 

Linked to 'public profile' above, such firms may also be particularly keen to be seen to be 

operating in an environmentally responsible manner. Other aspects of globalisation may also be 

relevant, including whether or not the firm outsources part of its production processes and 

whether the firm is domestically or foreign owned. In the case of outsourcing, a firm may be less 

pollution intensive if it has outsourced some of the dirtier parts of its production process and is 

now responsible only for the cleaner parts. However, if only the more pollution intensive firms 

outsource in this manner we may still detect a positive relationship between outsourcing and 

pollution intensity. Finally, with regard to foreign ownership, there is evidence to suggest that 

foreign-owned firms in developing countries are likely to be cleaner than domestically owned 

firms (Eskeland and Harrison 2003, Cole et al. 2008 and Albornoz et al. 2009) although other 

studies such as Huq and Wheeler (1993) and Hartman et al. (1997) find no such evidence. 

However, in a high-regulation country such as Japan we would not necessarily expect foreign 

ownership to significantly influence pollution intensity.  

 

Other firms: Finally, a firm’s pollution levels may be influenced by the emissions of other firms, 

particularly those located nearby. This may arise through demonstration or imitation effects, in 

much the same way as Foreign Direct Investment (FDI) and export spillovers are suggested to 

occur between firms (Dunning 1977, Gorg and Greenaway 2004). Such effects can occur if firms 

with greater knowledge or experience of pollution control demonstrate to other firms, 

intentionally or otherwise, the most effective methods of controlling emissions and avoiding 

regulation costs. Albornoz et al. (2009) find evidence to suggest that the environmental 

management practices of domestic firms are influenced by the presence of foreign firms within 

the firms’ industry or the industries in which the firms trade. We might expect these effects to be 

strongest for firms that are located in the same area and/or that operate within the same industry. 

Furthermore, yardstick competition may cause a firm’s emissions to be influenced by those of 

other firms if, for instance, a race to the top occurs as firms try to avoid being the target of 

regulators. Finally, in principle, the characteristics of nearby firms could also influence a firm’s 

emissions. While examples of such linkages are less obvious, one example could be if the nearby 

                                                 
8 ISO 14001 is an internationally recognised standard that confirms that a firm has an effective environmental 

management system in place. 
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presence of a large firm made a firm control its emissions more because it now felt it more likely 

that regulators would visit that location. In this situation, the size of neighbouring firms is 

influencing a firm’s CO2 emissions.  

 

3.2 Pollution Supply 

 

Environmental Regulations: Firms will face an upward sloping ‘environmental supply schedule’ 

as a result of environmental regulations. Thus, the more environmental services a firm utilises, 

i.e. the more pollution it releases, the greater the costs incurred by the firm. 

 

A distinction can be drawn between formal and informal environmental regulation. The former 

refers to the traditional style of regulation, often in the form of pollution charges imposed by the 

national government, local government or environmental regulatory body.  However, in 

situations where these formal regulations are considered by local populations to be too weak or 

to not satisfactorily reflect their preferences, we may see the emergence of informal regulation. 

This arises when local communities themselves ‘regulate’ local polluters through bargaining and 

lobbying (Huq and Wheeler 1992, Pargal and Wheeler 1996, Hartman, Huq and Wheeler 1997 

and Kathuria 2007). Although originally associated with developing economies where formal 

regulation may be weak or absent, there is evidence that such informal regulation also occurs in 

developed countries (Cole et al. 2005). If local populations feel that formal regulations are not 

sufficient to protect their local environment they may lobby the regulator to increase monitoring 

or enforcement or may lobby firms directly. However, in principle, there may be no reason to 

assume that such lobbying will always be aimed at strengthening environmental regulations. If 

communities believe that stringent regulations may jeopardise new investment they may lobby 

for reduced stringency of regulations to try to increase their attractiveness to potential investors.  

 

Formal environmental regulations in Japan developed in the 1960s and 1970s and prior to 2001 

was governed by the Environment Agency. In 2001 the newly formed Ministry of the 

Environment took over this role. Recent environmental policy in Japan emanates from a major 

reorganization of the environmental law system that occurred in 1993 with the passing of the 

Basic Environmental Law and other related laws. These national laws cover all aspects of the 
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natural environment including air and water emissions, energy use, solid waste emissions and 

recycling. Prefectures and municipalities are allowed to exceed national regulations if they wish 

to do so and have the flexibility to impose stringent emissions limits, the use of specific 

technologies or reporting and monitoring requirements. A feature of Japanese environmental 

policy is the large number of local agreements made between polluting firms and prefecture or 

municipality level authorities (Hibiki and Arimura 2004). These agreements provide regional 

authorities with the flexibility needed to ensure that national air pollution concentration limits are 

not exceeded. As a result, the regulation of firms in areas dominated by industrial production will 

often be more stringent than the regulation of firms in rural areas. Furthermore, if a firm fails to 

meet its regulations on common air pollutants such as sulphur dioxide or nitrogen oxides, the 

manager could face a fine of 1 million Yen (approximately US$ 13,000) or a one year prison 

sentence. 

 

Having ratified the Kyoto Protocol climate change agreement, the fight against climate change 

became one of the stated priorities of the Ministry of the Environment. In 2003 the Petroleum 

Tax was extended to cover not only petroleum and natural gas usage but also coal. The tax was 

equivalent to 500 Yen (approximately US $6.5) per tonne of carbon from natural gas and 1,100 

Yen (approximately US $14.5) per tonne of carbon from coal. It has since been further 

strengthened, with revenues used to subsidise firms investing in energy conservation.  

 

It is therefore clear that the carbon dioxide emissions of Japanese firms that form the focus of 

this paper will be subject to a range of formal environmental regulation, including direct climate 

and energy policies but also indirectly affected by regulations targeting emissions of energy-

related pollutants such as sulphur dioxide and nitrogen oxides. 

 

However, in addition to these formal regulations, there is evidence that pollution is also 

informally regulated in Japan. Perhaps the best known example of such informal regulation 

occurred in response to so-called Minamata Disease in the late 1950s and 1960s, eventually 

shown to be a result of mercury poisoning arising from chemical production in Minamata City. 

Recognition of the link between mercury emissions and Minamata Disease was only eventually 

accepted by the government and the responsible firms after lengthy campaigns by fishermen and 
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other affected parties. These campaigns ultimately led to the regulation of mercury emissions in 

Japan. A second, more recent, example of informal regulation occurred in 2000 when a group of 

activists, researchers and energy specialists known as the Green Energy Law Network worked 

with an alliance of politicians to pass laws encouraging the use of renewable energy (Schreurs 

2002).   

 

 

3.3 Pollution Equilibrium 

 

Based on the above discussion of pollution demand and supply we can now consider pollution in 

equilibrium to be defined as; 

 

       (1) 

 

where subscripts i and r denote firm and region, respectively, and subscript -i denotes firms other 

than firm i. E represents CO2 emissions intensity (CO2 emissions per unit of output). X is a 

vector of firm characteristics that influence a firm’s pollution demand and Z is a vector of 

regional variables capturing formal and informal regulatory pressures, as outlined above.  

 

One of the contributions of this paper is to argue that firms’ CO2 emissions intensity is likely to 

be spatially correlated.  There are several ways in which spatial correlations could influence a 

firm’s emissions intensity (Ei) in equation (1). First, the error term εi may be spatially correlated 

due to the omission of spatially correlated explanatory variables. As Gray and Shadbegian (2007) 

point out, environmental regulations may be subject to local variations if, for instance, regulators 

apply more stringent conditions in certain areas in a bid to prevent local pollution ‘hot spots’. 

Furthermore, plants located close to each other will share the same local characteristics such as 

the strength of local lobby groups which could potentially influence firms’ emissions. Finally, 

due to agglomeration effects, we might expect firms within the same, or closely related, 

industries to be spatially clustered. As a result, firms in the same locale may share common 

characteristics such as their production processes, the age and types of technology used and, by 

implication, their levels of environmental performance. If any of these factors are omitted as 



11 
 

explanatory variables then εi is likely to be spatially correlated. A second source of spatial 

correlation in equation (1) is if a firm’s emissions are directly influenced by the emissions of 

other nearby firms, Ej, as discussed in Section 3.1 above. Finally, the term Xj in equation (1) 

refers to the characteristics of other nearby firms which themselves may influence a firm’s 

emissions, again as discussed above.  

 

The following section will outline the manner in which these spatial correlations are incorporated 

into our econometric analysis. 

 

4. Data and Methodology 

 

4.1 Methodology 

 

Referring to equation (1), we initially assume that δ and σ are zero and that the error term is not 

spatially correlated. We estimate equation (2) using OLS.9 

 

         (2) 

 

Where each variable is as previously defined. The variables in vector X capture the various 

determinants of pollution demand discussed above. We use the capital-labour ratio (KL) to 

capture physical capital intensity and the wage rate (WAGE) to capture skill levels. To capture 

firm size (SIZE) we split firms into 4 quartiles according to total employment, with the first 

quartile (smallest firms) being the omitted category. Innovation is measured using R&D 

expenditure as a share of output (R&D) and each firm’s public profile is captured using 

advertising expenditure as a share of output (ADV). To capture the various aspects of 

globalisation that may influence pollution emissions we include the proportion of a firm’s output 

that is exported (EXP), the percentage of each firm’s equity that is foreign-owned (FOR), 

whether or not the firm has undertaken FDI and owns foreign affiliates (AFF) and whether a firm 

outsources abroad (OUT) expressed as a share of output. Vector X also includes 24 industry 

specific dummy variables (with one omitted). 

                                                 
9 Our sensitivity analysis explores possible endogeneity concerns. 
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With regard to vector Z, we do not have direct measures of formal and informal regulations. 

Instead, we rely on our industry dummies to capture industry specific formal regulations and 

argue that other aspects of formal and informal regulation are likely to be region-specific, as 

discussed in section 3.2 above. Vector Z therefore includes a number of variables intended to 

capture regional pressures on environmental regulation.  

 

Since regulators have to ensure that national air quality guidelines are not breached, regulation is 

likely to be more stringent for firms operating in areas with high concentrations of manufacturing 

firms. Conversely, it could be argued that firms operating in areas containing high concentrations 

of manufacturing firms may be less ‘visible’ and hence may actually receive less attention from 

regulators. We therefore include a measure of regional manufacturing output as a share of total 

output to capture this effect (MANF). The potential health costs of pollution are likely to be 

greater in areas that are densely populated which may mean firms operating in such areas will 

receive greater attention from regulators. In addition, population density may also partially 

capture informal regulatory pressure since the greater the number of people in a particular area 

the greater the potential lobbying pressure they can exert. We therefore include regional 

population density (POPD). The stringency of a firm’s regulations and the degree to which they 

are enforced may reflect a regional authority’s priorities and the resources they are able, or 

willing, to devote to environmental protection. To capture these effects we include the number of 

officials employed within a region who are responsible for pollution control (POLLCON) 

together with regional per capita income (INC). The level of income in a region will reflect the 

social problems in that region and the extent to which pollution control is likely to be a priority 

of the authorities and the local population. Furthermore, more affluent populations may be more 

concerned about the impact of pollution on property prices and are perhaps better placed to 

mobilise opposition to polluters. Finally, we include two variables to capture the age distribution 

of the population in each prefecture. These are the proportion of the population which is greater 

than 65 years of age (ELDERLY) and the proportion of the population under the age of 16 

(CHILD). Both the elderly and the young may be more susceptible to the health risks of air 

pollution although the elderly may be more politically organised and likely to vote than the 

young but the young may be more environmentally aware than the elderly. Each of these 
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variables is measured at the prefecture level.  Appendices A1 and A2 provide definitions of all 

of our variables and summary statistics, respectively. 

 

While equation (2) provides our base model, it does not include the spatial considerations 

outlined in Section 3.3 above. If we have spatially correlated omitted variables and these omitted 

variables are independent of the included explanatory variables then OLS coefficient estimates 

will be unbiased but inefficient. In this situation we should allow the error term in equation (2) to 

be spatially correlated i.e. to depend upon the error term in neighbouring firms as follows;    

 

∑ 	          (3) 

 

Where ΣjWij denotes the interaction between the error term of firm i (εi) and the error term of 

neighbouring firms (εj), where wij denotes the i,j element of a spatial weight matrix W (discussed 

below) and λ indicates the degree of spatial correlation. Since all spatial interdependence is 

captured by the error term, the estimated coefficients on the explanatory variables can be directly 

compared to those estimated using OLS.  

 

However, if there is spatial correlation within the explanatory variables, implying that firms’ 

emissions are influenced by the characteristics of neighbouring firms, then it is necessary to 

estimate a spatial explanatory variables model as defined below; 

 

∑         (4) 

 

 

Where W is the previously defined spatial weight matrix, X is our vector of explanatory variables 

γ is a vector of parameters to be estimated. The term ΣjWij Xjγ therefore represents spatially 

weighted explanatory variables. 10  

 

Finally, if there is spatial correlation within the dependent variable, implying firms’ 

                                                 
10 If equation (4) also includes the spatially lagged dependent variable (ΣjWij Ej) then it is known as a spatial Durbin 

model. We here estimate equation (4) with and without ΣjWij Ej and find results to be very similar. 
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environmental performance is directly influenced by that of other firms, then a spatial lag model 

may be estimated, as outlined in equation (5); 

 

 

∑         (5) 

 

        

Where ρ is the spatial correlation coefficient, W is the spatial weight matrix as previously defined 

and hence ΣjWij Ej is a spatially lagged dependent variable. Since this is now an autoregressive 

specification, the estimated coefficients cannot be directly compared to those estimated using 

OLS (or a spatial error model).  

 

It is of course possible to combine the different spatial econometric models, for example to 

include both a spatially lagged dependent variable and a spatially weighted error term, often 

referred to as the Kelejian-Prucha model after Kelejian and Prucha (1998). Alternatively, a 

spatial Durbin model includes both spatially lagged dependent variables and spatially weighted 

explanatory variables, while the spatial Durbin error model includes spatially weight explanatory 

variables and a spatially weighted error term. Finally, all three possible spatial terms can be 

included to form a Manski model (Manski 1993). While the focus of this paper is on the models 

outlined in equations (3)-(5) we do also report these further models where appropriate. 

 

It is worth noting here that a recent paper by Gibbons and Overman (2012) questions whether 

causal inference should be attached to estimated spatial coefficients such as ρ and γ. Gibbons and 

Overman argue that identification of such terms is difficult when they are included within the 

same model. We therefore make causal inference with a degree of caution and emphasise the fact 

that controlling for spatial correlations will increase the precision of the non-spatial estimated 

coefficients. 

 

Our spatial analysis utilises three different inverse distance spatial weight matrices (W). First, on 

the basis that firms are more likely to be influenced by firms that reside within the same industry 

we use an industry weight matrix that weights firms in the same industry according to their 
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physical distance and assigns zero weight to firms in different industries. Second, in case firms 

within the same prefecture are more influential than other firms we use a prefecture weight 

matrix that weights firms in the same prefecture according to their physical distance and assigns 

zero weight to firms in different prefectures. Finally, we use a prefecture and industry matrix 

which weights firms in the same industry and prefecture according to their physical distance and 

assigns zero weight to all other firms. All spatial models are estimated using maximum 

likelihood.11 

 

Our analysis proceeds as follows. First we estimate our baseline OLS model without allowing for 

possible spatial correlations within our data. We then undertake several spatial correlation tests 

before estimating our spatial models. 

 

4.2 Data  

 

Our data come from the merger of two firm-level datasets. The first, entitled Kigyou Katsudou 

Kihon Chousa (The Results of the Basic Survey of Japanese Business Structure and Activities), 

is provided by the Research and Statistics Department, Minister’s Secretariat, Ministry of 

Economy, Trade and Industry (METI) and contains information for 13,234 manufacturing firms.  

To be eligible for inclusion in this dataset, firms must have more than 50 employees and capital 

of more than 30 million Yen. The second dataset contains firm-level CO2 emissions for 3,287 

manufacturing firms for 2006 provided by the Japanese Ministry of the Environment. To be 

eligible for inclusion in this dataset, firms must consume more than 1,500 kilolitres of oil 

equivalent per annum.12 We also utilise prefecture-level data provided by the Japanese Statistical 

Bureau in the Ministry of Internal Affairs and Communications. 

 

After merging the firm-level datasets, obtaining co-ordinates for each zip-code, cleaning the data, 

and restricting the sample to contain firms from the manufacturing sector only, we are left with 
                                                 
11 Appendix A3 outlines our maximum likelihood estimation procedure. The variance-covariance matrix for the 
estimated parameters were obtained from the second-derivatives of the log-likelihood with respect to the parameter 
(Anselin 1988 and LeSage and Pace 2009).   
 
12 These firms are required to report their CO2 emissions to the Japanese government. Firms calculate emissions by 

applying 24 different emissions coefficients to 24 highly specific types of energy use and face a strict financial 
penalty if they do not report their emissions or if they are found to have inaccurately reported emissions. 
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1,961 firms for 2006.13  Firms within this sample are distributed across all 24 two-digit 

manufacturing industries and all 47 prefectures. Figure 2 illustrates the geographical distribution 

of our firms. Appendix A4 provides a comparison of the summary statistics in the final sample of 

1,961 with those in the original 13,234 for those variables common to both samples. As can be 

seen, firms in our final sample are on average larger in terms of total employment, have higher 

capital-labour ratios, more R&D and advertising expenditures and higher wages than firms in the 

original sample. These differences reflect the fact that our CO2 dataset includes only firms that 

consume more than 1,500 kilolitres of oil equivalent per annum. 

 

[Figure 2 about here] 

 

4.3 Plants versus Firms 

 

A feature of our dataset is that variables are measured at the level of the firm rather than the plant 

and no information is provided on the number of plants per firm. In some cases firms may be 

single plant firms, in other cases firms may have multiple plants, potentially distributed 

throughout Japan.  

 

The implication for our spatial analysis is that the spatial co-ordinates that we have for each firm 

will belong to the firm’s headquarters in the case of multiple-plant firms, rather than belonging to 

each plant. However, there are three reasons why we still might observe spatially correlated CO2 

emissions across firms. First, some firms will be single plant firms and hence we will be 

accurately measuring the location of those firms. Second, in the case of multi-plant firms, it will 

generally be the headquarters of each firm that determines the firm’s environmental management 

practices, approves the purchasing of environmental technology and ensures that the firm is 

complying with environmental regulations. As a result, the spatial proximity of different firms’ 

headquarters may be a good indicator of the strength of networks between firms and the ability 

                                                 
13 Our sample falls from 3,287 to 1,961 as a result of missing observations for explanatory variables. Co-ordinates 

to allow us to exploit the spatial nature of our data were obtained from www.openstreemap.org. Of the 1,961 firms 
in our sample, 74% have unique latitude and longitude co-ordinates while the remaining 26% share co-ordinates 
with at least one other firm. To ensure that we accurately capture any interdependence between this latter group of 
firms we randomly allocate each firm to a unique co-ordinate within a 25 metre radius of their original co-
ordinates. 
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of one firm’s managers to pass on good practice to the managers of other firms. Thirdly, as 

discussed above, a potential cause of spatial correlation is the fact that different firms may be 

subject to the same regional characteristics (income, demography etc) and regional regulations. 

Since, in many cases, the plants within a multi-plant firm will be located within the same 

prefecture, not least due to agglomeration effects, these plants will be subject to the same 

regional characteristics.  Furthermore, since we use prefecture level variables to capture the 

strength of regional informal regulations, our use of prefecture level variables will be appropriate 

if a firm’s plants are located within the same prefecture. 

 

5. Results 

 

Column 1 of Table 1 reports the results from our baseline non-spatial OLS model. We can see 

that CO2 emissions per unit of output are a positive function of the capital-labour ratio, as 

expected, and the wage rate. With regard to firm size, we find that medium, large and extra large 

firms have lower emissions intensities than small firms (the omitted category), as expected, 

although for extra large firms the difference is not statistically significant. So, although our 

sample includes only larger than average firms, we still find CO2 intensity to be sensitive to firm 

size. R&D expenditure, advertising expenditure, export share and a firm having foreign affiliates 

are all found to reduce CO2 intensity in a statistically significant manner.14 Whether or not the 

firm is foreign-owned or outsources do not affect CO2 intensity. For our OLS model none of the 

local variables are statistically significant.  

 

[Table 1 about here] 

 

We now begin to explore the spatial correlations in our data by performing Lagrange Multiplier 

(LM) tests and Moran’s I tests on the OLS residuals and on the dependent variable (CO2 

intensity) for each of our three weight matrices. We also perform the Moran’s I test on the 

explanatory variables. The results are reported in Table 2 while the tests themselves are outlined 

in Appendix A5. With regard to the OLS residuals, both tests indicate the presence of spatial 

                                                 
14 In unreported estimations we replace the export share variable with a dummy variable indicating whether or not 

firms export. This was also a negative and statistically significant determinant of CO2 intensity. 
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correlation with the exception of the same industry and prefecture weight matrix. Both tests also 

indicate the presence of spatial correlation in the dependent variable. Anselin and Rey (1991) 

indicate that if the spatial lag LM test statistic is greater than the spatial error LM test statistic 

then the former model should be chosen. Table 2 indicates that this is indeed the case, although 

for completeness we report both spatial error and spatial lag models. By comparing the Moran’s I 

test statistics for CO2 intensity and the OLS residuals we can see that, for the same industry 

weight matrix, the OLS model captures the majority of the spatial correlation within CO2 

intensity, leaving only a small test statistic for the residuals. The same is also true of the same 

industry and prefecture weight matrix, although the test statistic for the residuals is not 

statistically significant. In contrast, in the same prefecture weight matrix model, the majority of 

the spatial correlation remains within the residuals. Turning to the test statistics for the 

explanatory variables, we can see that there is spatial correlation in the majority of them. As we 

might expect, in the same prefecture model, where the majority of the spatial correlation remains 

in the OLS residuals, the test statistics for the explanatory variables are relatively small. In 

contrast, for the same industry and the same industry and prefecture weight matrices, where 

relatively little spatial correlation remains in the residuals, the test statistics on the explanatory 

variables are larger. In these two models, the largest spatial correlations are in R&D and exports 

(EXP). 

 

[Table 2 about here] 

 

Table 1 contains the spatial error models, for our 3 weight matrices, which can be directly 

compared to the OLS model. Generally, the sign and significance of the estimated coefficients 

are similar to those from the OLS estimation with the majority of the local variables remaining 

statistically insignificant. The exception is regional income in the industry weight matrix model 

which is found to be a negative determinant of CO2 intensity and significant at 10%. The 

negative coefficient on regional income implies that more affluent regions are cleaner, as one 

would expect. Consistent with the Moran and LM residual tests, the spatial correlation 

coefficient λ is statistically significant for the industry weight matrix and the prefecture weight 

matrix but not for the combined industry and prefecture weight matrix. 
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Table 3 provides the results from our spatial explanatory variables model as provided by 

equation (4). It can firstly be seen that the sign and statistical significance of the non-spatial 

explanatory variables are very similar to those in Table 1. However, the estimated coefficients on 

the spatially weighted explanatory variables are almost all statistically insignificant with the 

exception of ADV in the ‘prefecture’ weight matrix model and, to a lesser extent, in the ‘industry 

and prefecture’ weight matrix model. This is in contrast to the Moran’s I test result in Table 2. 

Table 3 also reports the results of LM tests on the residuals which show that the residuals from 

the prefecture, and industry and prefecture models are not spatially correlated but spatial 

correlation is found within the residuals for the industry weight matrix. For this weight matrix 

alone, a spatial Durbin error model is therefore estimated in which a spatially weighted error 

term is included alongside spatially weighted explanatory variables.15 The sign and significance 

of our explanatory variables remain very similar to the previous results.  

 

We also estimate a standard spatial Durbin model, containing spatially weighted dependent and 

explanatory variables, and a Manksi model containing spatially weighted dependent and 

explanatory variables and a spatially weighted error term. In all cases ρ, the coefficient on the 

lagged dependent variable, was not statistically significant and hence the models simplified to 

the spatial explanatory variables model and the spatial Durbin with error models, respectively. 

For reasons of space the spatial Durbin and the Manski models are not reported. 

 

We therefore now turn to our spatial lag results. Since the estimated coefficients from a spatial 

lag model cannot be compared directly with those in Table 1, we report these coefficients in 

Appendix A6. However in the main text we instead follow LeSage and Pace (2009) and report 

the total impact of explanatory variable X on dependent variable E, which is the sum of the direct 

and indirect impacts. The direct impact  (i.e.  where xiq denotes the qth variable from the 

explanatory variable matrices) represents how changes in Xi affect Ei combined with how those 

changes in Ei affect Ej (i.e. other firms’ emissions) and how that subsequently feeds back to Ei. 

The indirect impact (i.e.  where i	 ) captures how Xj affects Ej and how that impact on Ej 

                                                 
15 Estimating the spatial Durbin with error model for the prefecture, and industry and prefecture weight matrices 

provides statistically insignificant values of λ. 
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affects Ei. These impacts can then be directly compared with the OLS and spatial error 

coefficients in Table 1. Table 4 reports the total impact of each explanatory variable for our three 

weight matrices. Table 5 provides the direct and indirect impacts. Appendix A7 explains how the 

total, direct and indirect effects are computed. Table 4 also reports the results of LM tests on the 

residuals which indicate that spatial correlation remains in the residuals despite the inclusion of a 

spatially lagged dependent variable for the Industry weight matrix alone. For this weight matrix a 

Kelejian-Prucha model is therefore estimated which includes both a spatially lagged dependent 

variable and a spatially weighted error term. 

 

[Table 4 about here] 

 

The sign and significance of results in Table 4 are very similar to those in Table 1. The key 

determinants of CO2 intensity continue to be the capital-labour ratio, firm size, R&D 

expenditure, advertising expenditure and exports. Regional variables are not statistically 

significant. Variable ρ from equation (5), which is the coefficient on the spatially lagged CO2 

intensity of other firms, is positive and statistically significant for all three weight matrices, 

although it is noticeably smaller in the Kelejian-Prucha model.16 If we interpret ρ in a causal 

manner, a positive value suggests that when a firm reduces (increases) its CO2 emissions, the 

CO2 emissions of neighbouring firms also fall (rise). More specifically, taking the example of the 

prefecture weight matrix model which provides a value of ρ of 0.26, we see that a 1 unit 

reduction in all other firms’ CO2 intensity will reduce firm i’s CO2 intensity by 0.26 units. To put 

this another way, if all firms start at the same level of emissions intensity, it will require a 

reduction in all other firms’ emissions of 38.5% to reduce firm i’s emissions by 10%. 

 

It is notable that the impacts of KL, R&D, ADV and EXP are all larger in the spatial lag results 

than in the OLS or spatial error results indicating that failing to incorporate a spatially lagged 

dependent variable had the effect of biasing downwards the estimated coefficients. For example, 

the final column of Table 4 indicates that the total effect of a unit increase in KL is to increase 

CO2 intensity by 0.075 units, whereas the OLS result provide a coefficient of 0.060, indicating 

                                                 
16 Estimating the Kelejian-Prucha model for the Prefecture, and Industry and Prefecture weight matrices, provides a 

statistically insignificant λ for each and a ρ with a magnitude very similar to those estimated using the Prefecture 
and Industry and Prefecture weight matrices in Table 4. 



21 
 

that the latter impact is 20% underestimated. Part of this underestimation is from the indirect 

effect which the OLS coefficient, which should be interpreted as a direct effect, does not 

incorporate. However, even when we compare the OLS coefficient with the spatial lag direct 

effect for KL of 0.0735 from Table 5, we still find that the OLS coefficient is underestimated by 

18.4%. The degree of underestimation of the OLS coefficients for the other statistically 

significant variables ranges from 2.8% to 12.1%. 

 

To illustrate the economic significance of our results, the Industry and Prefecture model from 

Table 4 indicates that, for example, CO2 intensity in large firms is 1.048 units lower than in small 

firms. To put this in context, average CO2 intensity within the small firms quartile is 3.25 tonnes 

of CO2 per million Yen of output and hence if a firm moved from the small quartile to the large 

quartile, ceteris paribus, its emissions intensity would decline by 32%. Similarly, if the share of 

R&D expenditure in total output for the average firm increased by 10%, CO2 intensity would fall 

by 0.029 units, equivalent to a fall of 1.62% for the average firm in the sample.17 Generally, 

aside from SIZE, comparing a one standard deviation change in the other variables indicates that 

KL has the largest effect, followed by R&D. 

 

[Table 5 about here] 

 

Table 5 provides the direct and indirect effects from our spatial lag model. The direct effects can 

be compared with the spatial lag coefficient estimates provided in Appendix A6. The difference 

between the two reflects the feedback effects that pass through neighbouring firms back to the 

original firm. Taking the example of ADV from the ‘prefecture’ model, we find a direct effect of -

13.445and a coefficient of -13.30 (from Appendix A6), implying a feedback effect of -0.145, 

equivalent to -1.05% of the direct effect. The feedback effects for the other explanatory variables 

are similarly small. It is noticeable that some feedback effects reinforce the direct effect, as in the 

case of ADV above, whereas others reduce the direct effect. An example of the latter would be 

the case of RD which has a direct effect of -13.007 and a coefficient estimate of -13.01, 

indicating a feedback effect of 0.003, equivalent to 0.71% of the direct effect.  

                                                 
17 Calculated as ((12.99/(1/(0.022*0.1)))/1.80)*100  = 1.59%, where 12.99 is the estimated coefficient on R&D, 

0.022 is the mean level of R&D in the sample and 1.80 is the mean level of CO2 intensity in the sample. 
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Turning now to the indirect effects, these are statistically significant for KL, SIZE MEDIUM, 

SIZE LARGE, R&D, ADV and EXP indicating that if one of these variables changes for a 

particular firm, the effect is not just a change in the CO2 intensity of that firm, but also a change 

in the CO2 intensity of neighbouring firms. In all cases the indirect effect has the same sign as the 

direct effect. If we compare the magnitude of these with the magnitude of the direct effects we 

see that the indirect effects form 27.9%, 34.9% and 2.23% of the direct effects in the ‘industry’, 

‘prefecture’, and ‘industry and prefecture’ models, respectively. 18 Therefore, the characteristics 

of firms within the same prefecture have the greatest impact on other firms’ CO2 intensities. In 

contrast, the characteristics of firms within the same prefecture and same industry have only a 

small impact on other firms’ CO2 intensities. This latter result is perhaps surprising but may 

simply reflect the more restrictive nature of the industry and prefecture weight matrix. 

 

5.1 Sensitivity Analysis 

 

In order to assess the robustness of our results we first consider the possibility that some of our 

explanatory variables are endogenously determined by CO2 emissions intensity. For example, we 

might expect WAGE to be higher in pollution intensive firms due to the workers receiving a 

compensating differential (although CO2 has no known local impact), or advertising expenditures 

may be higher in pollution intensive firms in order to offset any negative press attention, or 

pollution intensive firms may reduce their size to become less visible to regulators or lobby 

groups.  

 

Although to some extent the cross-sectional nature of our dataset limits our ability to deal with 

endogeneity concerns, we nevertheless explore the effect of possible endogeneity. We do this by 

replacing our firm-level measures of WAGE, ADV and SIZE with industry-level measures given 

that there should be less concern of endogeneity between firm-level CO2 emissions and industry-

level measures of WAGE, SIZE and ADV.  The results are presented in Table 6 for both spatial 

error and spatial lag models.19 As can be seen, the results are generally very similar to those 

                                                 
18 Within each model the indirect effects form the same proportion of the direct effects for each variable. 
19  For reasons of space the results presented in Table 6 were all estimated using the ‘prefecture’ weight matrix. The 
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estimated using firm-level measures of WAGE, SIZE and ADV. Industry-level WAGE is not 

statistically significant in common with firm-level WAGE in many models. Industry-level SIZE 

affects CO2 in a negative and statistically significant way, again consistent with our firm-level 

measures of SIZE. Finally, industry-level measures of ADV are negative and statistically 

significant as we found for firm-level ADV. Since the coefficients on industry-level WAGE are 

not statistically significant we cannot meaningfully compare them with the previous findings, 

while SIZE is now measured as a continuous variable rather than the previous dummy variables, 

again making a direct comparison difficult. However, we can see that the coefficients on 

industry-level ADV are very similar in magnitude to those estimated for firm-level ADV, 

suggesting that endogeneity was not unduly influencing the latter coefficients. It is also notable 

that, when measuring a variable at industry-level, the sign, significance and magnitude of the 

other estimated coefficients, including the spatial correlation coefficients remain stable. This 

gives us some reassurance that our key findings, including the presence and magnitude of spatial 

relationships, are not unduly influenced by endogeneity concerns. In unreported estimations we 

also include all other explanatory variables measured at industry level. The results were 

consistent with those estimated using firm-level variables. Finally, again in unreported 

estimations, we drop a single explanatory variable at a time to assess the robustness of the 

remaining variables. We found no evidence of instability amongst the sign, significance and 

magnitude of our coefficients. 

 

Next, we consider the possibility that more productive firms may have lower emissions but may 

also be larger and more likely to engage in exports. As such, our estimations may suffer from 

unobserved heterogeneity. A lack of data on material inputs limits our ability to estimate a 

comprehensive measure of total factor productivity (TFP) while the presence of KL in our model 

suggests that the inclusion of TFP alongside it may not be ideal. Nevertheless we try to address 

this issue by including a measure of labour productivity (LABPROD) defined as output per 

worker with the results reported in models (7) and (8) of Table 6. For both spatial error and 

spatial lag models LABPROD is negative but not significant. Its inclusion does not notably 

change the other estimated coefficients or the estimated spatial correlations. In unreported 

                                                                                                                                                             
results from the other weight matrices are very similar and are available upon request. In unreported estimations 
we also include the other explanatory variables measured at industry level. The results were highly consistent 
with those estimated using firm-level variables. 
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estimations we replace LABPROD with a measure of TFP estimated using capital and labour 

inputs alone and with a measure of the share of profits in output to capture efficiency. The results 

are very similar to those for LABPROD with the estimated coefficients on the other explanatory 

variables and the spatial correlations remaining stable. We do not therefore find evidence to 

suggest that our main results suffer from unobserved heterogeneity relating to productivity. 

 

While we fully acknowledge that none of the above robustness exercises can formally rule out 

the existence of endogeneity, we believe they should provide some confidence in our results. 

However, a further exploration of robustness will not be possible until more data are available, 

including time series data. As such, this remains a task for future research. 

 

Finally, earlier in the paper we raised the possibility that because our data are measured at firm, 

rather than plant, level the regional variables may not perform well for multi-plant firms. In order 

to assess whether this fact may partially explain the general lack of statistical significance 

amongst the regional variables we try dropping firms in the top quartile of employment levels 

from our sample on the basis that these firms are most likely to be multi-plant firms. Models (9) 

and (10) in Table 6 provide the results. As can be seen, the coefficients on the regional variables 

remain statistically insignificant and the magnitude of the spatial correlation coefficients are very 

similar to those in previous models. Removing the firms most likely to be multi-plant firms does 

not therefore affect our results.20 

 

 

6. Conclusions 

 

In light of the previously observed variations in environmental behaviour across firms and plants 

(Cole et al. 2006 and Albornoz et al. 2009) and the previous literature’s emphasis on measures of 

environmental management rather than actual measures of environmental performance, this 

paper, for the first time, estimates the determinants of firms’ CO2 emissions. By using Japanese 

                                                 
20 Finally, we estimate our main results using three weight matrices based purely on distance, with a weighting 

applied to firms within 30km, 50km and 100km of the firm in question. For reasons of space these results are not 
reported here and are available on request, but they are very similar to those in Tables 1, 3 and 4, providing further 
evidence that our results are not sensitive to the choice of weight matrix. 



25 
 

firm-level data this paper is also the first to estimate the determinants of firm-level air emissions 

for a country other than the US and the first to do so using spatial econometric techniques.  

 

This paper finds that the key determinants of a firm’s CO2 emissions are its capital-labour ratio, 

its size, its R&D expenditure, its advertising expenditure (presumably reflecting the firm’s public 

profile) and its exports as a share of output. These are important findings that aid our 

understanding of firms’ environmental performance. For example, the strong effect of firm size 

in our estimations provides clear evidence that large firm release fewer emissions per unit of 

output than smaller firms, presumably because of economies of scale in resource use or 

abatement activity. Our results also indicate that investment in R&D is a useful tool to reduce 

emissions intensity. 

 

Our results provide only limited evidence to suggest that local lobbying power, as captured by 

community characteristics, influences CO2 emissions despite the fact that our sample contains 

larger than average firms that would be visible to local communities. There are several potential 

reasons for this lack of evidence of community lobbying, although our analysis suggests that the 

fact that our data are measured at the firm, rather than plant level, is not one of them. One 

possibility is that our inability to measure regional characteristics for geographical areas smaller 

than prefectures may be a partial reason for their lack of statistical significance. Studies such as 

Pargal and Wheeler (1996) and Gray and Shadbegian (2007) do measure community 

characteristics at a finer geographical level which may partially explain their stronger results for 

these variables, though Cole et al. (2005) do find significant results using data for UK regions 

which are broadly similar in size to Japanese prefectures. However, unlike this study, the focus of 

each of these prior studies was on pollutants with local impacts and hence it is possible that the 

communities do not lobby against CO2 in quite the same way as they might for pollutants that are 

directly influencing the local environment.  Finally, our findings may also suggest that national 

decision making is the main driver of Japanese regulations and community lobbying does not 

play a significant role in the formation of Japanese policy. This would contrast with findings for 

the UK, Bangladesh, Indonesia and Brazil for whom local lobbying has been shown to play a 

role in environmental policy making (da Motta 2006, Cole et al. 2005, Pargal and Wheeler 1996 

and Huq and Wheeler 1993). 
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Evidence is found to suggest that firms’ CO2 emissions are spatially correlated. More 

specifically, our results indicate that the error terms within an OLS model are spatially 

correlated, perhaps because firms located close to each other are affected by similar local factors 

that are not being controlled for, such as agglomeration effects. We do not find spatially weighted 

explanatory variables to be significant determinants of CO2 emissions but our results do suggest 

that there is spatial correlation within the dependent variable, CO2 emissions, perhaps because of 

demonstration or imitation effects. Once such spatial correlations within the dependent variable 

are controlled for it is found that the marginal effects of the explanatory variables increase in 

magnitude, indicating that a failure to incorporate spatial correlations has the effect of biasing 

downwards the estimated coefficients. We also find evidence of small feedback effects, whereby 

a firm’s CO2 emissions affect other firms’ CO2 emissions which in turn affect the original firm’s 

emissions, as well as indirect effects on CO2 driven by the characteristics of neighbouring firms.  

 

Although the precise mechanisms driving the spatial dependence of firms’ CO2 emissions remain 

speculative, and are undoubtedly the subject of future research, our results suggest that the 

activities of firms are inherently interrelated. Firms do not operate in isolation and pollution 

patterns are likely to be influenced by a complex mix of imitation effects, demonstration effects 

and competitive pressures more generally. The presence of such interrelationships implies that 

future attempts to econometrically estimate the determinants of firm-level environmental 

performance will need to accommodate these spatial correlations. Attempts to model industrial 

pollution patterns and their evolution over time also require an understanding of spatial 

interrelationships and will need to formally acknowledge that firms’ emissions are inter 

independent. Such interrelationships also have implications for environmental policy and suggest 

that focusing attention on key firms may be fruitful. Indeed, encouraging best practice pollution 

control in prominent, well connected, firms within each region, may result in reductions in 

emissions beyond those firms.  
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Figure 1. Japanese CO2 Emissions Per Capita and CO2 Intensity 1960-2007 

 

 
Source: World Bank World Development Indicators  

(http://data.worldbank.org/data-catalog/world-development-indicators) 
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Figure 2. Map of Japan Showing Firms in our Sample (the White Cross Represents Tokyo).
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Table 1: OLS and Spatial Error Estimations (Dependent variable: CO2 emissions per unit of output) 
Non Spatial Error Models 

Spatial 
OLS Industry Prefecture Industry & Prefecture 

KL 0.06*** 0.07*** 0.07*** 0.07*** 

(3.51) (5.97) (6.14) (5.89) 
WAGE 0.08* 0.07 0.08* 0.07 

(1.94) (1.55) (1.79) (1.58) 
SIZE MEDIUM -0.99*** -0.94*** -0.90*** -0.98*** 

(-3.55) (-3.86) (-3.71) (-4.00) 
SIZE LARGE -1.04*** -0.99*** -0.99*** -1.03** 

(-3.89) (-3.81) (-3.96) (-3.95) 
SIZE EXLARGE -0.36 -0.30 -0.28 -0.36 

(-1.15) (-1.01) (-0.97) (-1.12) 
R&D -13.04*** -12.95*** -12.75*** -13.09*** 

(-5.56) (-3.30) (-3.29) (-3.32) 
ADV -13.73*** -13.21** -12.94* -13.64** 

(-4.95) (-2.01) (-2.00) (-2.06) 
EXP -1.10*** -1.04* -0.96 -1.08* 

(-3.35) (-1.66) (1.55) (-1.72) 
FOR -0.01* -0.01 -0.01 -0.01 

(-1.92) (-1.30) (-1.10) (-1.40) 
AFF 0.002 0.02 0.06 0.01 

(0.01) (0.08) (0.28) (0.04) 
OUT 0.02 0.03 0.02 0.02 

(0.98) (0.72) (0.70) (0.68) 
POPD -0.0002 -0.0002 -0.0004 -0.0002 

(-0.48) (-0.35) (-0.12) (-0.31) 
INC -0.79 -0.88* -1.26 -0.81 

(-0.53) (-1.72) (-0.38) (-0.57) 
MANF 2.28 2.39 3.22 2.25 

(0.67) (1.03) (1.11) (0.93) 
CHILD 5.17 2.59 -9.20 5.02 

(0.19) (0.12) (-0.17) (0.20) 
ELDERLY -9.71 -9.05 -12.18 -9.66 

(-1.02) (-1.00) (-0.40) (-0.95) 
POLLCON 3.57 3.43 5.64 3.71 

(0.59) (0.39) (0.13) (0.35) 

R2  0.21 0.22 0.23 0.21 
λ - 0.22*** 0.27*** 0.02 
LR value dof(1) - 1651.18** 1679.14** 1631.36** 
F-test - 14.88** 15.99** 14.02**

Observations 1961 1961 1961 1961 
***, ** and * denote significance at 1%, 5% and 10%, respectively. T-statistics are in parentheses 
LR test for comparison between OLS and spatial error models. F-test for combined significance 
λ is the spatial correlation coefficient within the error term as defined by equation (3) 
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Table 2: Moran and LM tests 

Weight Matrix 
Same 

Industry 
Same 

prefecture 
Same Industry and 

Prefecture 

LM test 

LM test on OLS residual (spatial error test) 8.59*** 32.08*** 0.460 

LM test on CO2 intensity (spatial lag test) 10.35*** 42.47*** 12.71** 

Moran I test 

CO2 intensity 0.20*** 0.12*** 0.18*** 

OLS residuals 0.04*** 0.09*** 0.01 

KL 0.11*** 0.11*** 0.16*** 

WAGE 0.11*** 0.07*** 0.13*** 

SIZE MEDIUM 0.01 0.02* 0.02 

SIZE LARGE 0.01 0.02** 0.01 

SIZE EXTRA LARGE 0.12*** 0.07*** 0.13*** 

R&D 0.26*** 0.08*** 0.25*** 

ADV 0.14*** 0.03*** 0.13*** 

EXP 0.23*** 0.04*** 0.22*** 

FOR 0.07*** 0.07*** 0.09*** 

AFF 0.08*** 0.05*** 0.11*** 

OUT 0.004 0.002 0.004 

***, ** and * denote statistical significance at 1%, 5% and 10%, respectively 
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Table 3. Spatial Explanatory Variables Model: (Dependent variable: CO2 emissions per unit of output) 
Variable Industry Prefecture Industry and 

prefecture 
Industry (Spatial 

Durbin error)3 
 X1 WX2 X WX X WX X WX 

KL 0.08*** -0.01 0.07*** 0.08 0.07*** 0.03 0.06*** 0.88 
(3.55) (-0.12) (3.44) (0.96) (3.29) (0.35) (4.8) (0.78) 

WAGE 0.09** 0.32 0.08** 0.18 0.08** 0.21 0.11** -1.82 
(2.28) (1.56) (2.12) (1.54) (2.00) (1.02) (2.5) (-0.89) 

SIZE MEDIUM -0.93*** -0.99 -0.90*** -1.19 -0.95** -0.56 -0.84*** -0.71 
(-3.40) (-0.96) (-3.31) (-1.23) (-3.37) (-1.17) (-3.5) (-0.31) 

SIZE LARGE -0.96*** -1.21 -0.91*** -0.87 -1.02*** -0.87 -0.89*** -0.83 
(-3.56) (-1.14) (-3.45) (-0.92) (-3.61) (-1.36) (3.5) (-1.1) 

SIZE EXLARGE -0.25 -1.21 -0.20 -1.16 -0.33 -0.73 -0.16 -0.24 
(-0.77) (-1.49) (-0.61) (-0.94) (-0.95) (-0.95) (-0.55) (-0.16) 

R&D -12.67*** 1.68 -12.81*** -7.01 -12.66** 8.96 -11.5*** -2.4 
(-5.51) (0.13) (-5.39) (-0.44) (-5.11) (0.67) (-3.02) (-0.19) 

ADV -14.14** -26.20 -12.60** -74.42*** -14.20** -11.31* -13.24** -1.20 
(-5.03) (-1.41) (-4.32) (-2.96) (-5.17) (-1.78) (-2.09) (-0.84) 

EXP -1.14*** -1.87 -1.01*** -1.37 -1.26* -1.86 -1.12* 3.02 
(-3.36) (-1.50) (-2.96) (-0.75) (-3.46) (-1.06) (-1.82) (1.5) 

FOR -0.01* -0.02 -0.01 -0.02 -0.01* 0.01 -0.006 -9.2 
(-1.74) (-0.97) (-1.14) (-1.35) (-1.82) (0.29) (-1.0) (-0.4) 

AFF 0.01 -0.59 0.03 -1.09 0.01 -1.14 0.16 -11.11 
(0.08) (-0.82) (0.25) (-1.32) (0.08) (-1.38) (0.75) (-0.87) 

OUT 0.03 -0.04 0.03 0.14 0.02 -0.13 0.031 3.79 
(1.01) (-0.51) (0.99) (0.70) (0.97) (-1.53) (0.90) (0.20) 

POPD -0.0002  -0.0002  -0.0001  -0.054  
(-0.48)  (-0.42)  (-0.35)  (-1.16)  

INC -0.91  -1.03  -0.91  -0.40  
(-0.61)  (-0.68)  (-0.61)  (1.3)  

MANF 2.36  2.82  2.41  -0.98  
(0.69)  (0.83)  (0.71)  (-1.12)  

CHILD 2.94  0.81  4.88  0.63  
(0.10)  (0.03)  (0.17)  (0.70)  

EDERLY -10.17  -9.71  -9.28  -9.78  
(-1.08)  (-1.04)  (-1.02)  (-0.80)  

POLLCON 3.53  3.03  2.82  8.96  
(0.59)  (0.54)  (0.49)  (0.56)  

R2 0.21  0.21  0.22  0.28  
λ    0.15**  
LM test on 
residuals 6.99*** 

 
0.56 

 
3.24 

   

Observations 1961  1961  1961  1961  
***, ** and * denote statistical significance at 1%, 5% and 10%, respectively    

1 X refers to the non-spatially weighted explanatory variables 
2 WX refers to the spatially weighted explanatory variables from equation 4 
3 The Spatial Durbin Error model includes a spatially weighted error term  
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Table 4. Spatial Lag Results: Total Impact (Dependent variable: CO2 emissions per unit of output) 

Industry Prefecture
Industry & 
Prefecture 

Industry  
(Kelejian-Prucha)1 

KL 0.094*** 0.093*** 0.075*** 0.063***

(5.87) (5.60) (5.94) (4.75) 

WAGE 0.095* 0.105* 0.076 0.099**

(1.68) (1.72) (1.61) (2.09) 

SIZE MEDIUM -1.239*** -1.244*** -1.009*** -0.88***

(-3.92) (-3.76) (-4.01) (-3.55) 

SIZE LARGE -1.314*** -1.342** -1.048*** -0.95***

(-3.81) (-3.76) (-3.97) (-3.53) 

SIZE EXLARGE -0.423 -0.439 -0.358 -0.18 

(-1.08) (-1.02) (-1.18) (-0.56) 

R&D -16.637*** -17.542*** -13.279*** -11.72***

(-3.30) (-3.24) (-3.16) (-3.07) 

ADV -17.270** -18.127** -13.849** -13.00*

(-2.02) (-1.98) (-2.05) (-1.94) 

EXP -1.345* -1.286 -1.117* -1.03 

(-1.68) (-1.60) (-1.77) (1.56) 

FOR -0.011 -0.010 -0.009 -0.0059 

(1.38) (-1.15) (-1.47) (-0.87) 

AFF 0.014 0.049 -0.005 0.16 

(0.05) (0.17) (-0.02) (0.73) 

OUT 0.031 0.032 0.026 0.032 

(0.70) (0.67 (0.72) (0.91) 

POPD -0.0003 -0.0003 -0.0002 -0.00024 

(-0.50) (-0.63) (-0.54) (-0.62) 

INC -1.048 -1.495 -0.846 -1.06 

(-0.56)) (-0.72) (-0.54) (-0.69) 

MANF 2.954 4.208 2.413 2.77 

(0.51) (0.66) (0.51) (0.58) 

CHILD 5.165 -5.603 4.990 -6.87 

(0.13) (-0.12) (0.15) (-0.21) 

ELDERLY -11.997 -14.495 -10.128 -11.18 

(-1.23) (-1.38)) (-1.24) (-1.43) 

POLLCON 4.164 5.662 3.782 3.74 

(0.55) (0.68) (0.60) (0.62) 

ρ 0.22*** 0.26** 0.20** 0.045***

λ    0.10***

R2 0.20 0.22 0.21  

LR value dof(1) 1652.88** 1690.60** 1633.46**  

F-test 14.95** 16.35** 14.04*  

LM test on residuals 9.63*** 0.15 0.81  

Observation 1961 1961 1961  

***, ** and * denote statistical significance at 1%, 5% and 10%, respectively. 
ρ  is the spatial correlation coefficient defined in equation (6) 

1 The Kelejian-Prucha model includes both a spatially lagged dependent variable and a spatially weighted 
error term
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Table 5: Spatial Lag Results: Direct and Indirect Impacts (Dependent variable: CO2 emissions per unit of output) 
Direct Impacts Indirect Impacts 

Industry Prefecture Industry & Prefecture Industry Prefecture Industry & Prefecture 

KL 0.073*** 0.069*** 0.073** 0.021*** 0.024*** 0.002*** 
(5.87) (5.70) (5.94) (5.84) (4.53) (5.93) 

WAGE 0.074* 0.078* 0.074 0.021* 0.027* 0.002 
(1.68) (1.72) (1.61) (1.68) (1.66) (1.62) 

SIZE MEDIUM -0.969*** -0.923*** -0.987*** -0.271** -0.321*** -0.022** 
(-3.922) (-3.77) (-4.01) (-3.91) (-3.38) (-3.99) 

SIZE LARGE -1.027*** -0.996*** -1.025*** -0.287*** -0.347*** -0.023*** 
(-3.81) (-3.79) (-3.97) (-3.80) (-3.36) (-3.95) 

SIZE EXLARGE -0.331 -0.326 -0.350 -0.092 -0.113 -0.008
(-1.08) (-1.02) (1.18) (-1.078) (-1.00) (-1.18) 

R&D -13.005*** -13.007*** -12.990*** -3.631*** -4.536*** -0.290*** 
(-3.30) (-3.27) (-3.16) (-3.30) (-2.96) (-3.16) 

ADV -13.500** -13.445** -13.547** -3.770** -4.682* -0.302** 
(-2.02) (-1.98) (-2.05) (-2.02) (-1.92) (-2.04) 

EXP -1.054* -0.95 -1.093* -0.294* -0.331 -0.024* 
(-1.68) (-1.59) (-1.77) (-1.68) (-1.55) (-1.77) 

FOR -0.009 -0.007 -0.009 -0.002 -0.003 -0.0002 
(-1.38) (-1.15) (-1.47) (-1.38) (-1.125) (-1.47) 

AFF 0.011 0.036 -0.005 0.003 0.012 -0.0001 
(0.05) (0.17) (-0.02) (0.05) (0.16) (-0.02) 

OUT 0.024 0.024 0.025 0.007 0.008 0.001 
(0.70) (0.62) (0.72) (0.70) (0.66) (0.72) 

POPD -0.0002 -0.0003 -0.0002 -0.0001 -0.0001 -0.0001 
(-0.50) (-0.63) (-0.54) (-0.50) (-0.63) (-0.05) 

INC -0.820 -1.109 -0.827 -0.229 -0.386 -0.018 
(-0.56) (-0.72) (-0.54) (-0.56) (-0.71) (-0.54) 

MANF 2.309 3.117 2.361 0.645 1.091 0.053 
(0.51) (0.66) (0.51) (0.51) (0.65) (0.51) 

CHILD 4.037 -4.142 4.88 1.13 -1.462 0.110 
(0.13) (-0.12) (0.15) (0.13) (-0.12) (0.15) 

ELDERLY -9.378 -10.75 -9.908 -2.62 -3.741 -0.221 
(-1.23) (-1.38) (-1.24) (-1.23) (-1.35) (-1.24) 

POLLCON 3.255 4.208 3.700 0.909 1.453 0.082 
(0.55) (0.68) (0.60) (0.55) (0.68) (0.59) 



34 
 

Table 6: Sensitivity Analysis (Dependent variable: CO2 emissions per unit of output) 
1 2 3 4 5 6 7 8 9 10 

Variable 
Spatial 
Error 

Spatial 
Lag 

Spatial 
Error 

Spatial 
Lag 

Spatial 
Error 

Spatial 
Lag 

Spatial 
Error 

Spatial 
Lag 

Spatial 
Error 

Spatial 
Lag 

KL 0.07*** 0.10*** 0.07*** 0.09*** 0.07*** 0.10*** 0.094*** 0.094*** 0.08*** 0.09***

AveWAGE 0.37 0.65        
WAGE 0.08* 0.10* 0.07 0.09 0.090* 0.094** 0.07 0.11 
AveSIZE  -0.02** -24.43     
SIZE MEDIUM -0.88*** -1.22*** -0.90*** -1.25***  -1.34*** -1.38** -0.97*** -1.29***

SIZE LARGE -0.96*** -1.31*** -1.01*** -1.38***   -1.72*** -1.76** -1.01*** -1.36*** 
SIZE EXLARGE -0.26 -0.41 -0.31 -0.48   -1.07*** -1.11***   
R&D -11.86*** -16.10*** -13.16*** -18.44*** -11.48*** -16.21*** -13.69*** -13.63*** -12.54*** -18.61***

AveADV 499.63* 504.9**   
ADV -12.93** -18.06** -13.28** -18.81** -15.22** -15.71** -8.88** -11.82**

EXP -0.97 -1.36 -0.89 -1.08* -0.96 -1.33 -1.71** -1.80*** -0.97 -1.33*

FOR -0.01 -0.01 -0.01 -0.01 -0.004 -0.01 -0.0036 -0.0043 -0.01 -0.01 
AFF 0.07 0.06 0.05 -0.002 0.02 0.003 0.010 -0.0011 -0.35 -0.49 
OUT 0.03 0.04 0.03 0.02 0.03 0.04 0.016 0.017 0.02 0.03 
LABPROD    -0.0024 -0.0025   
POPD -0.0003 -0.0003 -0.0004* -0.0002 -0.0003 -0.0003 -0.00067 -0.00056 -0.001 -0.001 
INC -1.22 -1.37 -1.33 -0.90 -1.60*** -1.91 -1.15 -1.11 -0.22 -0.05 
MANF 3.38 4.49 3.28 2.27 3.60 4.67 2.36 2.83 -2.13 -3.04 
CHILD -9.30 -5.02 -7.81 6.94 -15.43 -12.40 -2.60 -1.078 -2.35 -11.03 
ELDERLY -11.81 -13.88 -12.32 -9.86 -13.37 -16.29 -12.81 -11.90 -13.90 -15.75 
POLLCON 5.22 4.90 5.59 3.70 4.91 4.58 10.42 8.94 7.54 7.16 
λ 0.23 0.27*** 0.27***  0.27***  0.27***

ρ 0.26*** 0.20***  0.26***  0.26***  0.26***

R2 0.20 0.22 0.23 0.21 0.22 0.21 0.23 0.21 0.21 0.21 
Observations      1961 1961 1961 1961 1961 1961 1961 1961 1470 1470 

All models use the ‘prefecture’ weight matrix. ***, ** and * denote statistical significance at 1%, 5% and 10%, respectively.  
λ and ρ are the spatial correlation coefficients from equations (5) and (6), respectively. 
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Appendix A1: Variable Definitions 

Variable Definition 
CO2 intensity Tonnes of CO2 per million Yen of output 
SIZE SMALL 1st quartile of firms in terms of total employment, ranging from 50-233 employees 
SIZE MEDIUM 2nd quartile of firms in terms of total employment, ranging from 234-470 employees 
SIZE LARGE 3rd quartile of firms in terms of total employment, ranging from 471-1032 employees 
SIZE EXLARGE 4th quartile of firms in terms of total employment, ranging from 1033-78200 employees 
EXP The share of total output that is exported 
KL Physical capital stock per worker 
R&D R&D expenditure as a share of output 
FOR Percentage of equity that is foreign owned 
ADV Advertising expenditure as a share of output 
WAGE The annual wage rate per worker (million Yen) 
AFF A dummy variable = 1 if a firm has foreign affiliates 
OUT Foreign outsourcing as a share of output 
LABPROD Labour productivity, defined as output per worker 
POPD Thousands of people per square kilometre in each prefecture 
INC GDP per capita (in hundreds of Yen) in each prefecture, logged 
MANF Share of manufacturing output in total output in each prefecture 
ELDERLY Proportion of the population 65 or older in each prefecture 
CHILD Proportion of the population under the age of 16 in each prefecture 
POLLCON 
 

Number of prefecture, city and town hall officers who are responsible for pollution and 
environmental protection in each prefecture, scaled by area (in square kilometres) 

 
 
Appendix A2: Summary Statistics 
Variable Obs Mean Std. Dev. Min Max 
CO2 intensity 1961 1.80 4.016 0.0029 69.50 
SIZE SMALL 1961 0.25 0.43 0 1 
SIZE MEDIUM 1961 0.25 0.43 0 1 
SIZE LARGE 1961 0.25 0.43 0 1 
SIZE EXLARGE 1961 0.25 0.43 0 1 
EXP 1961 0.090 0.16 0 0.97 
KL 1961 5.23 7.43 0.022 97.32 
R&D 1961 0.022 0.027 0 0.25 
FOR 1961 5.26 14.57 0 100 
ADV 1961 0.0053 0.015 0 0.21 
WAGE 1961 6.23 2.061 0.47 26.06 
AFF 1961 0.31 0.46 0 1 
OUT 1961 0.23 2.46 0 85.68 
LABPROD 1961 55.24 64.43 5.52 1383.05 
POPD 1961 1.47 1.82 0.00056 4.13 
INC 1961 8.12 0.22 7.62 8.41 
MANF 1961 0.13 0.061 0.045 0.24 
ELDERLY 1961 0.20 0.023 0.16 0.27 
CHILD 1961 0.13 0.013 0.11 0.19 
POLLCON 1961 3.91E-07 2.02E-07 1.38E-08 7.54E-07 
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Appendix A3: Maximum likelihood Estimation of spatial models: 

 

Let us define X=[Xi Zr] to be nxk explanatory variables that includes both firm (i) and region (r) 

specific variables. Y denotes the nx1 vector of CO2 emission intensities. 

 

The full log-likelihood function can be written as: 

 

2
ln ln| |

′

2
 

 

where  for the spatial error model. We estimate the coefficients by first 

deriving regression residuals from an OLS estimation and we then search for the value of  that 

maximises the log likelihood function above, conditional on the least square estimated value 

 and .  Finally we update the value of  and 	conditional on the value of  

estimated.  This would be counted as one pass and the process continues until convergence is 

achieved in the residuals. 

 

Similarly, the full log-likelihood function for the spatial lag model can be written as: 

 

2
ln ln| |

′

2
 

 

Where  with ∈ min	ω , max	ω  and ω denotes the eigenvalue 

from weight matrix W.  We first perform OLS for the model 	  and 	

 and derive the residuals, where  and .  Next we find 

the value of  that maximises the concentrated likelihood function below: 

 

2
ln ln| |

2
ln

1 ′  

 

Finally, given  that maximises the concentrated likelihood function, Anselin (1988) shows 

 and ′ . 
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Appendix A4: A Comparison of Summary Statistics 
Variable Sample used in this paper Full sample1 

Obs Mean Obs Mean 
SIZE  1,961 727 13,234 384 
KL 1,961 5.23 13,234 4.35 
R&D 1,961 0.022 13,234 0.017 
ADV 1,961 0.0053 13,234 0.0038 
WAGE 1,961 6.23 13,234 4.89 

1 From Kigyou Katsudou Kihon Chousa (The Results of the Basic Survey of Japanese Business Structure 
and Activities) 
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Appendix A5 Moran and Lagrange Multiplier Tests 
 

Moran I test 

Moran's I is the most widely used test for possible spatial dependence in error of regression 

model. Let  denotes the regression residual from an OLS regression21.  The Moran I 

statistic can be written as: 

/ ′  

 

The asymptotic distribution of the standardised Moran's I statistics follows a standard normal 

distribution. The mean and standard deviation can be written as: 

/  

 

and  where 2  

and . 

The standardised Moran I statistics can be written as: 

/ /  

where a value statistically different from zero indicates spatial dependence.  A positive value 

indicates positive spatial dependence whilst a negative value indicates negative spatial 

dependence.  

 

Lagrange Multiplier (LM) test 

With the same notation as in Moran I test above, the LM test provides an alternative way to test 

for possible spatial dependence in the error term of a regression.  The test statistics can be 

written as: 

1
/ ~ 1  

where ∗ .  The test statistic follows a chi-square distribution with 1 degree 

of freedom.  A value that is significantly different from zero indicates spatial dependence in the 

error.  

                                                 
21 To test for possible spatial correlation in dependent and explanatory variables, we first regress the variable in 

question against only an intercept term using OLS. 
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Appendix A6 Spatial Lag Estimation Coefficients (Dependent variable: CO2 emissions per unit of output) 

Variable Industry Prefecture
Industry & 
Prefecture

KL 0.07*** 0.07*** 0.07*** 
(5.93) (5.65) (5.89) 

WAGE 0.07 0.08* 0.07 
(1.63) (1.73) (1.60) 

SIZE MEDIUM -0.97*** -0.91*** -0.99*** 
(-3.96) (-3.78) (-4.01) 

SIZE LARGE -1.03*** -0.99*** -1.04*** 
(-3.96) (-3.85) (-3.97) 

SIZE EXLARGE -0.35 -0.33 -0.36 
(-1.15)) (-1.10) (-1.21) 

R&D -12.84*** -13.01*** -13.06*** 
(-3.28) (-3.36) (-3.31) 

ADV -13.50** -13.30** -13.67** 
(-2.06) (-2.04) (-2.07) 

EXP -1.07* -0.97 -1.09* 
(1.71) (-1.56) (-1.72) 

FOR -0.009 -0.007 -0.009 
(-1.38) (-1.15) (-1.41) 

AFF 0.01 0.033 0.01 
(0.06) (0.16) (0.03) 

OUT 0.02 0.02 0.02 
(0.67) (0.70) (0.68) 

POPD -0.0002 -0.0003 -0.0002 
(-0.53) (-0.64) (-0.55) 

INC -0.83 -1.10 -0.81 
(-0.56) (-0.71) (-0.54) 

MANF 2.29 3.13 2.23 
(0.51) (0.67) (0.49) 

CHILD 4.07 -3.89 5.22 
(0.13) (0.12) (0.16) 

ELDERLY -9.29 -10.72 -9.67 
(-1.22) (1.39) (-1.26) 

POLLCON 3.52 4.11 3.70 
(0.59) (0.70) (0.62) 

ρ 0.22*** 0.26** 0.02**

(98.02) (9.86) (52.23) 
R2 0.20 0.22 0.21 
LR value dof(1) 1652.88** 1690.60** 1633.46** 
F-test 14.95** 16.35** 14.04* 
Observation 1961 1961 1961 
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Appendix A7. Calculating Total, Direct and Indirect Impacts in the Spatial Lag Model 

 

Due to the spatial correlation in the dependent variable ( ), changes in the explanatory variable 

in one firm affect the average CO2 emission of other neighbouring firms in other locations.  

This means that the interpretation of the impact from the explanatory variables are not 

represented by the estimation coefficients (β) (Kim et al. 2003, Anselin and LeGallo 2006 and 

LeSage and Pace 2009).  Instead, they are a combination of the coefficients (  and ) and the 

spatial weighting matrix (W).  It can be written as: 

    

where  indicates the qth explanatory variable in  for individual firm i and  indicates 

the estimated coefficients for the variable .  LeSage and Pace (2009) develop a method to 

calculate the impact and their inferences based on a simulation of the normally distributed 

parameters ( , 	  and σ2).  The effect of the independent variables on the dependent variable 

is called the total impact.  There are n*q such effects, one for each explanatory variable  

and observation i.  The average effect over all observations is represented by the average total 

effect calculated from ′ . 

 

The average direct impact is calculated as  that represents the 

average response of the dependent variable to the independent variables plus the feedback effect 

from firm i to all the other firms then back to itself.  The average indirect effect is the difference 

between the average total and average direct impact.  It represents the average externality of the 

explanatory variable from/to neighbouring firms.   

 

The dispersion of the impacts was estimated with Bayesian Markov Chain Monte Carlo (MCMC) 

methods as in LeSage and Pace (2009). 

 


