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Abstract 

We have demonstrated the successful production of titanium phosphate glass microspheres 

in the size range of approximately 10–200 µm using an inexpensive, efficient, easily scalable 

process and assessed their use in bone tissue engineering applications. Glasses of the 

following compositions were prepared by melt-quench techniques: 0.5P2O5–0.4CaO–(0.1 – 

x)Na2O–xTiO2 where x = 0.03, 0.05 and 0.07 mole fraction (denoted as Ti3, Ti5 and Ti7 

respectively). Several characterisation studies such as density measurement, differential 

thermal analysis, degradation (performed using a novel time lapse imaging technique) and 

pH and ion release measurements revealed significant densification of the glass structure 

with increased incorporation of TiO2 in the glass from 3 mol% to 5 mol%, although further 

TiO2 incorporation up to 7 mol% did not affect the glass structure to the same extent. Cell 

culture studies performed using MG63 cells over a 7-day period clearly showed the ability of 

the microspheres to provide a stable surface for cell attachment, growth and proliferation. 

Taken together, the results confirm that 5 mol% TiO2 glass microspheres, on account of their 

relative ease of preparation and favourable biocompatibility, are worthy candidates for use 

as substrate materials in bone tissue engineering applications. 

Keywords: Titanium, phosphate glass, microsphere, bone cells, tissue engineering  
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1. Introduction 

Titanium phosphate glasses have been widely researched for use in orthopaedic 

applications because of their highly favourable material properties and ability to elicit a 

positive bone cell response [1-4]. From a material science perspective, these glasses are of 

great interest because their physicochemical properties are highly tuneable, so that subtle 

changes in glass composition allow for major changes in glass structure and consequently in 

the degradation and ion release behaviour of these materials [5, 6]. Changes in titanium 

phosphate glass chemistry can be brought about by variations in the concentrations of the 

constituent oxides or the addition of small amounts of metal oxides other than TiO2 [7-13]. 

The structure of the glass network has been elucidated using diverse analytical techniques 

such as differential thermal analysis (DTA), Raman and Fourier transform infrared (FTIR) 

spectroscopies, x-ray diffraction (XRD), Solid State Nuclear Magnetic Resonance (NMR), x-

ray absorption spectroscopy (XAS), Ti K-edge x-ray absorption near-edge structure 

(XANES) and neutron/x-ray scattering [6]. The information gained from all these analyses is 

beneficial to biomaterials researchers who are then able to make highly informed choices 

regarding the specific glass composition required for specific clinical applications.  

From a biological perspective, it is now well known that titanium phosphate glasses provide 

a surface that is quite conducive to the attachment, growth and proliferation of bone cells 

[14-16]. The fact that oxides of phosphorus, sodium and calcium, which constitute the major 

components of most phosphate glass compositions, are also found in the mineral phase of 

bone is a major contributing factor to the bioactivity of these glasses, particularly considering 

that the ions released from these glasses can exert positive effects on bone cells [17-20]. A 

range of in vitro and in vivo studies have been conducted on titanium phosphate glasses and 

highly promising results have been obtained that offer exciting possibilities for using titanium 

phosphate glasses in various therapeutic applications to combat bone loss [8, 13, 14, 21-23]. 

In order to realise viable commercial applications of these glasses, some form of glass 

processing is essential, for which it is necessary to develop glass processing methodologies 

that are efficient, cost-effective and easily scalable. However, relatively little research has 
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been published thus far on processing routes that would be suitable for titanium phosphate 

glasses. To some extent, this can be explained by the difficulties involved in processing 

these glasses. Glass microfibres have been commonly produced by drawing glass melt on to 

a rotating steel drum at high temperature. This method has been used to produce iron 

phosphate glass fibres that have demonstrated their efficacy in the tissue engineering of 

muscle cells and neuronal cells [24-27]. However, only one report in the literature exists on 

the use of this method to produce titanium phosphate glass fibres [28].  

In this study, we propose the use of flame spheroidisation as a method to produce 

microspheres from melt-derived titanium phosphate glasses. Microspheres can be produced 

very quickly by this method since the particle residence time in the flame is of the order of 

milliseconds, which makes this method feasible for commercial synthesis of titanium 

phosphate glass microspheres for use in biomedicine, particularly as a substrate for scalable 

tissue engineering approaches.  

2. Materials and methods 

2.1. Glass manufacture: The glasses (total 3 compositions; see Table 1) were 

manufactured according to the methods of Abou Neel et al. [7] using stoichiometric 

quantities of the following precursors (all with purities of >98% and obtained from VWR-

BDH, Poole, UK) without further purification: phosphorus pentoxide (P2O5), calcium 

carbonate (CaCO3), sodium dihydrogen orthophosphate (NaH2PO4) and titanium oxide 

(TiO2). After preheating at 700°C for 30 min to remove CO2 and H2O, the precursor mixture 

was then melted according to the conditions listed in Table 1. After melting for the required 

period, the glass was rapidly quenched by pouring on to a steel plate at room temperature 

and then allowed to cool overnight. 

2.2. Preparation of glass microspheres: The glasses obtained from the melt quench step 

were broken into fragments and the fragments were crushed to form microparticles using a 

Retsch MM301 milling machine (Retsch, Germany). The microparticles were then passed 

through a flame spheroidisation apparatus to produce microspheres in the approximate size 

range of 10–200 µm. The flame spheroidisation apparatus comprises the following 
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component assemblies: (1) blow torch connected to a MAPP gas cylinder, (2) feed and (3) 

collectors (see Figure 1). During operation, glass microparticles placed at one end of the 

trough travel to the other end under the influence of vibratory forces exerted by the DC 

motor. At the other end, the particles pass into the flame and then travel along the flame axis 

(or at varying angles to the flame axis). As they pass through the flame, they undergo 

spheroidisation due to surface tension forces and are then collected in the glass boxes 

placed one after the other below the flame (Figure 1).  

The microspheres from each collector were separately visualised using by light microscopy. 

The material present in the collector immediately below the torch outlet was discarded since 

it usually contained a mixture of glass microspheres along with a significant proportion of 

non-spherical particles; the material in the remaining glass boxes contained very few non-

spherical particles, if any, and was therefore collected and stored for further studies. 

2.3. Particle size distribution: For determining the particle size distribution of the obtained 

microspheres, the material from all four glass boxes was collected and a small quantity of 

the material was then added to a drop of Fractoil synthetic immersion oil (VWR, Poole, UK) 

placed on a microscope slide and the material was manually dispersed in the oil. A cover slip 

was placed on top of the slide and the slides were then imaged on an Olympus BX50 

microscope (Olympus Corporation, Japan) using a CoolSNAP-Pro cf camera (Photometrics, 

USA). Image analysis and microsphere diameter measurements were carried out using 

Image-Pro Plus software (Media Cybernetics, USA). 

Based on the results of the particle size distribution experiments, microspheres in the size 

range 63–106 µm were used in subsequent experiments involving microspheres. These 

microspheres were obtained by passing the feed particles through 63 µm and 106 µm sieves 

(Endecotts Ltd., London, UK) on a Fritsch Spartan sieve shaker (Fritsch GmbH, Germany). 

2.4. Density measurements: Density measurements were carried out on the basis of 

Archimedes’ principle using triplicate samples of glass fragments. An analytical balance 

(Mettler Toledo, UK) with a density measurement kit was used for this purpose. Absolute 
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ethanol was used instead of water as the immersion liquid since the glasses are water-

soluble in nature. The following formula was used to calculate the glass density (ρglass): 

ρglass = [Mair/(Mair – Methanol)] × ρethanol (1) 

where Mair and Methanol are the masses of the sample in air and ethanol (g), respectively, and 

ρethanol is the density of ethanol at ambient temperature (g.cm–3).  

2.5. Differential thermal analysis: DTA studies were performed on glass microspheres 

using a Setaram differential thermal analyser (Setaram, France). The samples were heated 

from room temperature to 1000°C at a heating rate of 20°C.min–1 using air as the purge gas; 

an empty platinum crucible was used as a reference. The parameters measured in DTA 

were the glass transition temperature (Tg), crystallisation temperature (Tc) and melting 

temperature (Tm).  

2.6. Degradation study: Degradation studies on the glass microspheres were carried out 

using a time lapse imaging method. Approximately 40 mg of glass microspheres was added 

to a cell culture flask containing 10 ml of ultrapure high-purity deionised water (resistivity = 

18.2 MΩ.cm–1) obtained from a PURELAB UHQ-PS (Elga Labwater, Marlow, UK). Prior to 

the addition of microspheres and water, the bottom inner surface of the flask had been 

scraped with a brush in order to provide surface roughness so that the microspheres would 

remain reasonably stationary during the experiment. The flask was then placed on the stage 

of a Leica DMIRB microscope (Leica Microsystems CMS GmbH, Germany) fitted with a 

Solent Scientific incubator system (Solent Scientific Ltd., Segensworth, UK). Time lapse 

images of the microspheres were acquired at intervals of 1 hour over an 80-hour period 

using a Tucsen TCA-10.0-N camera (Tucsen Image Technology Inc., China) running on 

µManager microscopy open source software (Ron Vale Lab, University of California San 

Francisco, USA); subsequent image analysis and diameter measurements were carried out 

using ImageJ [29]. For each glass composition, the diameters of six spheres were measured 

and the mass of the sphere was obtained by the equation 

msphere = ρglass × vsphere = ρglass × 4/3 × π(rsphere)
3 (2)  
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where msphere is the mass of the sphere (µg); ρglass, the density of the glass obtained from the 

previous density measurement (µg.µm–3); vsphere, the volume of the sphere (µm3); and rsphere, 

the radius of the sphere (µm). 

The percentage weight loss per unit surface area of the sphere at each time point was then 

calculated by the following equation: 

[(msphere(0) – msphere(t))/msphere(0)At] × 100 (3) 

where msphere(0) is the mass of the microsphere at time t = 0 (µg); msphere(t), the mass of the 

microsphere at time t (µg); and At, the surface area of the microsphere at time t (µm2).  

2.7. pH and ion release measurements: The pH and ion release measurements were 

carried out in triplicate at the following time points: 0, 24, 72, 168, 336 and 504 hours. Prior 

to the measurements, approximately 250 mg of microspheres were placed in closed plastic 

containers containing 25 ml of deionised water. The pH of this deionised water had been 

previously adjusted to 7 ± 0.1 using NH4OH or HCl. At the above time points, the solution 

from each container was removed and stored while the microspheres were dried and 

reintroduced into fresh medium. The pH of the solution was measured using an Orion pH 

meter (Orion, UK) that was fitted with a pH glass electrode (BDH, UK). The cation and anion 

release measurements were carried out by ion chromatography techniques [8]. The release 

of polyphosphate anions from the glass discs was analysed using a Dionex ICS-2500 ion 

chromatography system (Dionex, Surrey, UK) without prior purification, while Na+ and Ca2+ 

cation release were measured using a Dionex ICS-1000 ion chromatography system after 

passing the solution through a Dionex OnGuard IIA cartridge to eliminate anions that bind to 

the cation column.  

2.8. X-ray diffraction: XRD analysis was performed using methods similar to those used in 

a previous study [8] on microsphere samples placed in simulated biological fluid (SBF) at 

37°C. For preparation of SBF, the protocol provided by Kokubo and Takadama was followed 

[30]. The samples were analysed on a Bruker D8 Advance Diffractometer (Bruker, UK) in flat 

plate geometry using Ni-filtered Cu Kα radiation. Data was collected at 2θ values from 10° to 

100° with a step size of 0.02° and a count time of 12 s. Sample analysis was first carried out 
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before immersing the microsphere sample in the medium (i.e. at day 0), and at time points of 

3, 7 and 14 days post immersion, the microspheres were removed from the medium, dried 

and then analysed. 

2.9. Nuclear magnetic resonance: Solid state 31P magic angle spinning (MAS) NMR 

experiments were undertaken at 9.4 T using a Bruker DSX-400 spectrometer operating at a 

Larmor frequency of 161.92 MHz. All measurements were facilitated using a Bruker 4 mm 

dual channel probe in which MAS frequencies of 12.5 kHz were implemented. All 31P MAS 

NMR data were acquired using single pulse experiments, where pulses of 2.5 μs duration 

(corresponding to π/4 flip angles) were employed with recycle delays of 240 s to achieve a 

quantitative survey of the P speciation. 31P chemical shifts were referenced against the 

primary IUPAC standard of 85% H3PO4 (δ 0.0 ppm) via a secondary solid reference of 

(NH4)[H2PO4] (δ 1.0 ppm). Each spectrum was processed with Bruker TOPSPIN software, 

with the spectral deconvolutions performed using the DmFit software package [31].  

2.10. Ti K-edge X-ray near edge absorption: The Ti K-edge XANES data were collected in 

fluorescence mode using the micro-focus beam-line I18 at the Diamond Light Source, UK. 

Spectra were collected from 80 eV below the edge to 220 eV above the edge in order to 

allow an accurate background subtraction. The spectra were collected in three step sizes; a 

5-eV step size was used for the pre-edge (4900–4940 eV), a 0.25-eV step size was used 

over the pre-peak and edge (4940–5000 eV) and a 2-eV step size was used after the edge 

(5000–5200 eV). All measurements were conducted at room temperature. The spectra were 

normalized to have an edge step of one.  

2.11. Cell culture: Cell culture studies were conducted on the basis of Chen et al.’s methods 

using MG63 osteoblast-type cells [32]. For seeding of cells on the glass microspheres, 

approximately 40 mg of glass microspheres were weighed and placed in small glass vials for 

sterilisation under dry heat at a temperature of 180°C for 1 hour. The microspheres were 

then carefully transferred to Transwell® cell culture inserts (Corning, USA) placed in 24-well 

plates such that the entire surface of the insert mesh was covered by a thin layer of 

microspheres. Subsequently, the MG63 cells were seeded on the microspheres at a seeding 
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density of 10,000 cells per well followed by incubation at 37°C in an atmosphere of 95% air 

and 5% CO2.  

Scanning electron microscopy (SEM) images were obtained at 7 days post seeding. Fixation 

in 3% glutaraldehyde, dehydration through a graded series of ethanol (50, 70, 90, and 

100%) and drying in hexamethyldisilazane (Aldrich, UK) were carried out in situ in the 

inserts, after which each insert was taken out of the well and the entire insert mesh was 

carefully cut out from the insert along the edge using a scalpel. The meshes with the cell-

cultured spheres on them were mounted onto aluminium stubs. The mounted samples were 

sputter-coated with gold/palladium and observed with a scanning electron microscope 

(model JSM 5410LV, JEOL, Japan) using various magnifications at an operating voltage of 

10 kV. 

Scanning laser confocal microscopy (SLCM) images were also obtained at 7 days after 

seeding using Alexa Flour 488 phalloidin (Invitrogen, UK) to stain the actin filaments of the 

cytoskeleton and propidium iodide (BD Biosciences, UK) to stain the nucleus. Prior to 

imaging, the samples were processed by first fixing in 4% paraformaldehyde until required 

for imaging. The fixed samples were then washed twice with phosphate buffered saline 

(PBS) and permeabilised using a solution of 0.1 vol% Triton-X in PBS for 3–5 min. A solution 

of 2.5 vol% phalloidin methanolic stock solution in PBS was then added to each sample well 

and the samples were maintained for 20 min in a dark atmosphere to minimise evaporation 

and photobleaching. After washing again with PBS, the samples were counterstained with 1 

µg/ml of propidium iodide for 10 min. The stained samples were visualised by confocal 

microscopy (Biorad, USA).  

The cell proliferation assay was conducted after 1, 4 and 7 days in culture. The control 

comprised the mesh of the cell culture insert with cells seeded on it. The MG63 cells were 

seeded on the glass microspheres and control mesh at a seeding density of 10,000 cells per 

well, followed by incubation at 37°C in an atmosphere of 95% air and 5% CO2. Cell 

proliferation at each time point was determined using the AlamarBlue™ assay (AbD Serotec, 

UK) as described previously [32]. Fluorescence detection was accomplished by means of a 
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Fluoroskan fluorimeter (Thermo Scientific, UK) with absorption and emission values set to 

530 nm and 590 nm, respectively. The fluorimeter provided absorbance data, so to plot the 

data in terms of the number of cells, a standard calibration curve was measured separately. 

For the standard curve, cell populations of 0, 10000, 20000, 50000 and 100000 cells were 

cultured over a 1-day period in a 24-well plate and fluorescence measurements were carried 

out using the same fluorimeter. 

3. Results 

3.1. Particle size distribution: Glass microspheres were successfully obtained for all the 

glass compositions over an approximate size range of between 10 µm and 200 µm (Figure 

2). For all the compositions, up to 85% of the microspheres had sizes of 120 µm or less. 

There was no significant difference between the particle size distributions for the different 

glass compositions, thereby indicating that the microsphere production process was 

independent of the glass composition and therefore influenced by the parameters of the 

flame spheroidisation process, e.g. flame temperature and particle residence time in the 

flame. 

The results obtained from the particle size distribution were further confirmed by light 

microscopy images of the microspheres obtained for particles of different size fractions. 

Taking the Ti7 microspheres as a representative example, it was observed that at particle 

sizes of 45–63 µm, very few microspheres were obtained (Figure 3). The feed particles 

tended to aggregate together on the feed trough and it was difficult to ensure adequate 

particle separation on the trough before the particles entered the flame; inside the flame, the 

particle aggregates tended to break up into the constituent particles without significant 

microsphere formation. At particle sizes of 106–150 µm, a significant number of particles 

were too large and the particle residence time in the flame was too short for the particles to 

undergo spheroidisation; consequently, microsphere samples in this size range tended to 

contain large numbers of non-spherical particles. The proportion of non-spherical particles 

was minimal at particle sizes of 63–75 and 75–106 µm. Therefore, in all subsequent 

experiments involving microspheres, a size range of 63–106 µm was adopted. 
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3.2. Density measurements: The density of the investigated glass compositions increased 

with the Ti content from 2.635 ± 0.004 g/cm3 for Ti3 to 2.672 ± 0.002 g/cm3 for Ti7 (Table 1). 

The results indicated significant structural densification with the increase in the TiO2 content 

of the glass. 

3.3. Differential thermal analysis: The density results were further confirmed by the 

increase in the Tg value of the glass from 489°C for Ti3 to 529°C for Ti7 (see Table 1 for Tg, 

Tc and Tm values). In all the glass compositions, two overlapping crystallisation peaks were 

observed, with the extent of overlap being greater for Ti3 than for Ti5 and Ti7. As with the Tg 

values, the Tc values for the first crystallisation peak increased with the Ti content from 

689°C for Ti3 to 739°C for Ti7. All three compositions showed a single broad melting peak 

with Tm values ranging from 878°C for Ti3 to approximately 904–905°C for Ti5 and Ti7. 

3.4. Degradation study: Figure 4 shows the percentage cumulative weight loss per unit 

surface area of the microspheres as a function of the degradation time for the investigated 

titanium phosphate glass microspheres. The plot shows that the degradation rate of the 

microspheres appeared to increase with time. With regard to Ti3 and Ti5, a clear correlation 

between the TiO2 content and the degradation rate was observed, whereby as the TiO2 

content increased, the degradation rate of the glass microspheres decreased. At 80 hours, 

the percentage cumulative weight loss per unit surface area was 0.0092 %.µm–2 for Ti3 

which was approximately 3 times that for Ti5 (0.0032 %.µm–2). However, the difference 

between the weight loss values of the Ti5 and Ti7 microspheres was not as marked (0.0032 

%.µm–2 for Ti5 versus 0.0024 %.µm–2 for Ti7). Thus, while the trend in the degradation rate 

at 80 hours could be represented as Ti3 > Ti5 > Ti7, the effect of TiO2 addition on the 

degradation rate was appreciable only when the TiO2 content was increased from 3 to 5 

mol%. It is worth noting that the error bars of all the data points in the graph were small, 

which indicated the reliability of the methodology. 

3.5. pH measurements: Microspheres of all the investigated glass compositions caused a 

decrease in pH when immersed in deionised water over the 21-day study period (Figure 5). 

A significantly strong decrease in pH was observed from day 0 to day 1; however, the pH 
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decrease became progressively more gradual over the rest of the immersion time. The 

measured pH values ranged from 2.8–4.5 for Ti3 to 3.4–5.5 for Ti5 and Ti7. Thus, the 

deionised water solution containing Ti3 microspheres was more acidic than those containing 

Ti5 and Ti7 microspheres. The pH trend was broadly similar to the trend observed in the 

degradation rate; thus, while Ti3 showed a greater pH decrease than Ti5, the pH decrease 

shown by Ti5 and Ti7 was not significantly different. The decrease in pH for all the glasses 

was attributed to the release of phosphate ions which formed phosphoric acid in the solution. 

3.6. Ion release measurements: As in the degradation study, the ion release studies 

revealed an increase in the release of all the measured ionic species with time over the 

entire study period. The rates of ion release shown in Figure 6 for the Ca2+ ions and in Table 

2 for the remaining ions are obtained by calculating the slope of the linear fit of ion release 

over time. For both cationic (Na+ and Ca2+) and anionic (PO4
3–, P3O9

3–, P2O7
4– and P3O10

5–) 

sets of species, the ion release of Ti3 was significantly greater than that of Ti5 which in turn 

was greater than that of Ti7 but by a much lesser degree (Table 2).  

3.7. X-ray diffraction: As shown in Figure 7 for Ti5, no apatite formation could be discerned 

as evidenced by the lack of crystalline peaks in the XRD spectra at all the specified time 

points. Similar results were obtained for Ti3 and Ti7 (data not shown). 

3.8. Nuclear magnetic resonance: The 31P NMR MAS spectra revealed that with increasing 

TiO2 incorporation, no apparent significant change in Q species could be observed, although 

there was a monotonic upfield movement of both Q1 and Q2 chemical shifts towards more 

negative values (see Table 1), and a concomitant increase in the line widths of both Q1 and 

Q2 resonances. As a result, the Q2/Q1 ratio remained essentially constant for all three 

compositions.  

3.9. Ti K-edge X-ray near edge absorption: The Ti K-edge XANES spectra (not shown) 

revealed that the pre-edge, for all of the samples, consisted of two small peaks at 4968 and 

4970 eV with normalized intensities of 0.08 and 0.05, respectively. These results are 

consistent with Ti occupying a six-fold coordinated (TiO6) environment.  
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3.10. Scanning electron microscopy and confocal microscopy: The SEM images (Figure 8) 

and SLCM images (Figure 9) results reveal that by day 7, microspheres of all the 

compositions were covered with a significant number of cells. Most of the microspheres 

appeared to be covered with a finite countable number of cells that enveloped the 

microsphere surface. The majority of the cells covering the spheres showed a flattened 

morphology. In many cases, cells on different microspheres appeared to bridge across to 

each other by means of cell processes. Thus, the investigated titanium phosphate glass 

microspheres clearly supported osteoblatic cell attachment and proliferation on their surface. 

3.11. Cell proliferation assay: Cell proliferation using the AlamarBlue™ cell proliferation 

assay was determined over time points of 1, 4 and 7 days on the investigated titanium 

phosphate glass microspheres (Figure 10). The results revealed that for all the compositions 

studied, MG63 cells were capable of sustained expansion over the culture period. At day 1, 

the cell numbers for microspheres of all the compositions were similar to those on the 

control. On day 4, the Ti-containing phosphate glass microspheres showed comparable cell 

numbers, while, as expected, that of the mesh insert control was noticeably higher. By day 7, 

a considerable increase in cell number in comparison with days 1 and 4 was observed for all 

three compositions, thereby confirming not only the biocompatibility of the investigated 

microspheres with respect to favourable cell attachment, but also suitability as a substrate 

that actively supports osteoblastic cell proliferation. 

4. Discussion 

The present study is the first to demonstrate the successful production of melt derived 

phosphate glass microspheres. Several interesting results from this study suggest that the 

produced glass microspheres possess favourable properties and biocompatibility for use in 

biomedical applications.  

The particle size distribution experiment was carried out to investigate whether the glass 

composition can affect the size of microspheres obtained from the flame spheroidisation 

apparatus. The microsphere size was found to be independent of the glass composition; this 

is a favourable result since it implies that a wider range of microsphere sizes can be 
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obtained by suitably modifying the flame spheroidisation set up. The present set up yielded 

microspheres in the size range of ~10–210 µm. At the lower end of this range, particle 

agglomeration in the feed apparatus and subsequent dispersal of the agglomerates in the 

flame considerably restricted the number of glass microspheres with sizes of <30 µm. This 

problem can possibly be overcome by dispersing the feed particles in a suitable liquid 

dispersant prior to introduction in the flame. On the other hand, at the upper end of the 

range, microsphere numbers were limited because the residence time of the particles in the 

flame was inadequate for achieving complete spheroidisation. This problem can be resolved 

by generating a flame of greater length and higher temperature to provide a longer residence 

under hotter conditions. A larger blow torch connected to a gas–oxygen source may be used 

for this purpose, as has been implemented in several previous glass microsphere studies 

[33-35]. As such, the flame spheroidisation apparatus used in the present study was found to 

yield maximum proportion of spherical particles over a size range of 63–105 µm; as a result, 

all microsphere-related experiments were conducted using spheres within this size range. 

The characterisation studies yielded several sets of closely related results that clearly 

demonstrate the increased densification of the glass structure with the incorporation of 

increasing amounts of TiO2, especially from 3 mol% to 5 mol% TiO2. Thus, the increase in 

density from Ti3 to Ti5 was observed in conjunction with the increase in Tg and Tc values in 

the DTA and the decrease in the degradation rate, pH and ion release. It has already been 

explained that the increase in structural densification is associated with the formation of TiO5 

and TiO6 units that enter the glass structure to form P–O–Ti bonds; at the same time, more 

Q1 units are introduced at the expense of Q2 units [9]. Between Ti5 and Ti7, however, the 

differences in degradation, pH and ion release were not as pronounced. It is possible that 

the addition of 5 mol% TiO2 to the glass serves to saturate the glass structure, and any 

further TiO2 that may be added has a reduced effect on the glass network. Any evidence of 

secondary phases is lacking as these would show evidence of 4- and 5-fold coordination.  

The characterisation results are broadly in agreement with those of previous studies on 

TiO2-containing quaternary phosphate glasses [2, 3, 7-9, 11, 36]. Yet, there are some 
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important differences that merit further discussion. Differences exist between the DTA 

profiles of the present study and those obtained in the previous study by Abou Neel et al. [9], 

particularly in terms of the presence of additional crystallisation or melting peaks. These 

differences may be dependent on the particle sizes of the samples being analysed. The 

present study utilised glass microspheres in the size range 63–106 µm, whereas it is 

probable that powdered samples containing particles of smaller sizes were used for DTA 

analyses in the previous study. The differences in the particle sizes may have preferentially 

promoted surface nucleated phases during the course of the experiment. 

An important difference is noted between the shape of the degradation profiles in the present 

study and that in previous studies on TiO2-containing phosphate glass [7-9, 11]. In previous 

studies, degradation experiments were conducted on glass discs and the results showed 

either quite linear degradation or higher degradation rates at the beginning of the experiment 

followed by lower rates as time progresses, leading to an overall plateau-like profile shape. 

On the other hand, the present study investigated the degradation of spheres and the results 

revealed an exponential curve. Here, it is worth noting that to the best of our knowledge, the 

use of a time lapse imaging technique to obtain degradation data for glass microspheres has 

not been reported previously; thus, this novel technique allows us to understand more 

accurately how glass microspheres degrade when immersed in a liquid. The degradation 

profile obtained in the present study has important implications for the development of 

microsphere-based biomedical applications, since degradation of the microspheres in vivo 

would be considered to follow a similar profile. For equivalent weights of glass microsphere 

and glass disc samples, the microsphere samples would possess a much larger surface 

area, which would lead to differences in degradation rates as well as in the local 

environments of the samples undergoing degradation.  

The NMR and XANES results reveal very little change in either the Q speciation or in the Ti 

coordination in all three compositions. The reason for this lack of change particularly for TiO2 

contents of 7 mol% is connected to these glasses being in the metaphosphate region [37]. 

With regard to the XANES results, previous studies have shown that the relative height of 
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the pre-peak is ~0.9(1) for 4-fold Ti and ~0.4 to 0.7 for 5-fold Ti [38]. The absence of this 

sharp pre-edge feature at ~4970 eV therefore excludes the possibility of a significant 

proportion of Ti occupying either a 4- or 5-fold coordinated environment in the investigated 

compositions.  

With regard to the XRD results, the absence of an apatite layer on the surface of the titanium 

phosphate glass microspheres as revealed by XRD experiments is an interesting and 

important result. Immersion of the biomaterial under investigation in SBF for specific time 

periods has been used frequently in previous studies in order to confirm the biocompatibility 

of the material, but it has also been argued that the lack of apatite-forming ability need not 

necessarily imply lack of bioactivity [6, 30]. The XRD results in this study are in agreement 

with those of previous studies on titanium phosphate glasses which have shown the 

absence of apatite formation on the glass surface upon SBF immersion even as the glasses 

have demonstrated a high level of bioactivity from both in vitro and in vivo tests [7-9, 14]. 

Furthermore, the absence of an apatite layer on the microsphere surface may even have 

beneficial effects on cell attachment and proliferation on account of the absence of debris 

formation, which allows the microspheres to offer a stable surface for cell growth. This is an 

important factor if developing the beads for stem cell scale up as it offers a clean 

methodology for expansion.  

Promising results have been obtained from the cell culture experiments on the titanium 

phosphate glass microspheres. Both SEM and SLCM images show the attachment and 

spreading of MG63 osteoblastic cells on the surface of the microspheres by day 7, indicating 

the favourable biocompatibility of the microspheres. Furthermore, the AlamarBlueTM results 

provide quantitative confirmation of the ability of the microspheres to provide a stable 

substrate for osteoblastic cell proliferation. The mesh insert control exhibits superior cell 

proliferation than microspheres of all compositions on day 4 and particularly on day 7, but 

this is to be expected, as, like tissue culture plastics, the mesh insert has been specifically 

developed to be highly biocompatible for multiple cell types. Specifically they are specially 

designed to facilitate high levels of cell attachment, growth and migration. Taking these 
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factors into consideration, a more suitable control for this study would be commercially 

available silica glass microspheres of sizes similar to those of the phosphate glass 

microspheres.  

5. Conclusions 

In summary, this study demonstrates the successful production of titanium phosphate glass 

microspheres in the size range of approximately 10–200 µm from glasses of compositions 

0.5P2O5–0.4CaO–(0.1 – x)Na2O–xTiO2 where x = 0.03, 0.05 and 0.07 mole fraction. The 

flame spheroidisation process used for this purpose is inexpensive, efficient and easily 

scalable, all of which are highly desirable attributes from the viewpoint of developing viable 

commercial applications. Glass characterisation studies show that increasing the glass TiO2 

content from 3 mol% to 5 mol% results in significant structural densification but further 

increase in the TiO2 content to 7 mol% does not change the glass properties to the same 

extent. Cell culture studies reveal that microspheres of all the investigated compositions 

provide a surface that is conducive to the attachment, growth and proliferation of MG63 

cells, with significant increase in cell numbers observed over a 7-day culture period. 

Considering the relative ease of production of 5 mol% TiO2 glass microspheres (particularly 

in comparison with those containing 7 mol% TiO2 in terms of melting time and temperature) 

and their optimal properties with respect to degradation, ion release and biocompatibility, we 

plan to use the 5 mol% TiO2 microspheres to explore the development of clinical applications 

in the orthopaedic domain. 

Work is now underway on the primary end application of the investigated titanium phosphate 

glass microspheres as a bioreactor substrate for the scale up and possible guided 

differentiation of human mesenchymal stem cells (hMSCs). Bioreactors offer dynamic 3D in 

vitro environments that can closely mimic in vivo conditions and are therefore an important 

tool not only for the in vitro growth of tissue substitutes, which is indeed the goal of all tissue 

engineering approaches, but also for researching the responses of cells and tissues to 

various stimuli of mechanical and biochemical origin. It is envisaged that two types of 

bioreactors might be used in order to develop viable bone tissue from hMSCs. Initial cell 
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growth will be carried out in spinner flasks, after which it will be necessary to further culture 

the cells in perfusion bioreactor systems in order to ensure proper tissue growth and 

encourage cell differentiation. It is anticipated that the end product of these approaches will 

be the development of viable small-sized bone tissue that can be used for the treatment of 

bone loss caused by congenital abnormalities, traumatic injuries or disease. 
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