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Abstract 
 
Ethosuximide is the drug of choice for treating generalised absence seizures, but its 
mechanism of action is still a matter of debate. It has long been thought to act by 
disrupting a thalamic focus via blockade of T-type channels and thus generation of 
spike wave activity in thalamo-cortical pathways. However, there is now good 
evidence that generalised absence seizures may be initiated at a cortical focus and 
that ethosuximide may target this focus. In the present study we have looked at the 
effect ethosuximide on glutamate and GABA release at synapses in the rat 
entorhinal cortex in vitro, using two experimental approaches. Whole-cell patch 
clamp-studies revealed an increase in spontaneous GABA release by ethosuximide 
concurrent with no change in glutamate release. This was reflected in studies that 
estimated global background inhibition and excitation from intracellularly recorded 
membrane potential fluctuations, where there was a substantial rise in the ratio of 
network inhibition to excitation, and a concurrent decrease in excitability of neurones 
embedded in this network. These studies suggest that, in addition to well- 
characterised effects on ion channels, ethosuximide may directly elevate synaptic 
inhibition in the cortex and that this could contribute to its anti-absence effects. 
 
Key words: entorhinal cortex; ethosuximide; glutamate release, GABA release, 
excitability 
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1. Introduction 

Generalised, non-convulsive absence seizures are characterised by brief episodes 

of unconsciousness accompanied by synchronised bilateral spike and wave 

discharges (SWD). Ethosuximide is the drug of choice in the treatment of absence 

epilepsy (Posner et al., 2004; Glauser et al., 2010). It has a number of potential 

molecular targets, but its precise mechanism of action has not been elucidated.  

 

One view of the basis of absence epilepsy is that it involves an interaction between a 

hyperexcitable cortex and a rhythm generator operative via a thalamocortical loop, 

where rhythmical bursts of activity in the GABAergic neurones of the thalamic 

reticular nucleus play a central role (see Crunelli and Leresche, 2002a; Manning et 

al., 2003; Meeren et al., 2005). These bursts of activity are driven by low-threshold 

(T-type) Ca-currents, and it has been postulated that block of T-type Ca-channels in 

thalamocortical reticular nucleus neurones may be the basis of the anti-absence 

effects of ethosuximide (Coulter et al., 1989a,b; Kostyuk et al., 1992; Huguenard, 

1999; Gomora et al., 2001). However, there is still controversy over whether this 

blockade is the whole story (see Crunelli and Leresche, 2002b; Manning et al., 

2003). Certainly, ethosuximide is promiscuous in its effects and has been shown to 

block other ion channels (Leresche et al., 1998; Kobayashi et al., 2009).  

 

Early studies implicated the thalamus as a primary site of epileptogenesis, but 

increasing attention has centred on a cortical focus in absence seizures 

(Siedenbecher et al., 1998; Meeren et al, 2002; 2005; Holmes et al., 2004; Sadlier et 

al., 2006; Polack et al., 2007). It is possible that ethosuximide acts partially, or 

exclusively, at this level. A weak and delayed reduction of the spike-wave discharges 

in genetically epileptic rats followed infusion of ethosuximide directly into the 

thalamus, but systemic injection resulted in immediate cessation of discharges 

(Richards et al., 2003). Likewise, direct application into somatosensory cortex 

caused immediate cessation of discharges (Manning et al., 2004; Gülhan-Aker et al., 

2010). Polack et al. (2007) suggested that spike-wave discharges were initiated by 

pyramidal neurones layer V, and found that hyperexcitability in this region was 

normalised by systemic ethosuximide (Polack and Charpier, 2009). The molecular 

mechanism of this action of ethosuximide could involve actions at one or more of the 
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ion channel targets noted above but it is also feasible that alterations of inhibitory or 

excitatory synaptic transmission could be involved. For example, Luhman et al. 

(1994) showed an impairment of GABA inhibition in the cortex of WAG/Rij rats, a 

genetic model of absence epilepsy. Also, A number of mutations in GABAA-receptors 

(GABAAr) have been linked to childhood absences (see Galanopoulou, 2010; 

McDonald et al., 2010). One mutation, in the γ2 subunit, has been shown to elicit 

ethosuximide-sensitive absence seizures when expressed in mice, associated with a 

reduced expression of the subunit and a decrease in GABAAr mediated events in 

somatosensory cortex (Tan et al., 2007). Thus, cortical hyperexcitability could be 

associated with the loss of GABA inhibition and ethosuximide could target cortical 

GABA transmission in absence epilepsy. 

 

We have recently studied the effects of anticonvulsant drugs on excitatory and 

inhibitory transmission in the entorhinal cortex (EC). Using patch clamp recordings of 

spontaneous postsynaptic currents, we have studied the effects of the drugs on 

GABA and glutamate release (Cunningham et al., 2000; 2003; 2004; Cunningham 

and Jones, 2000; Yang et al., 2007). We have complemented these studies using a 

novel approach (Greenhill and Jones, 2007; 2010) to determine global, network 

driven, background excitation and inhibition, estimated from the distribution of resting 

membrane potential fluctuations (VmD) in individual neurones (see Rudolph et al., 

2004; 2007). We have studied a number of drugs used to treat tonic-clonic 

convulsive seizures, some of which are also used in absence epilepsies. Patch 

clamp studies revealed diverse effects on spontaneous of glutamate and GABA 

release, and these were reflected by global changes in excitation and inhibition 

determined by VmD studies. However, the drugs had the common effect of elevating 

the ratio between inhibition and excitation in favour of the former (Greenhill and 

Jones, 2010). Concurrently, they caused a decline in intrinsic neuronal excitability. 

 

We have now determined the effect of specific anti-absence drug, ethosuximide, on 

synaptic transmission and excitability in the rat EC. Whilst evidence suggests that 

the frontal and somatosensory cortex are likely foci in absence seizures (Meeren et 

al., 2002; Polack et al., 2007), EEG studies indicate that some absence and related 

seizures could originate at temporal sites (e.g. Lambroso, 1997; Holmes et al., 2010; 
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Caraballo et al, 2008; Tucker et al., 2007). In addition, studies in EC-hippocampal 

slices have suggested that there is altered excitability and susceptibility to 

epileptogenesis in GAERS (Genetic Absence Epilepsy Rat from Strasbourg; Armand 

et al, 1998; 1999), and it is also the case that local cerebral glucose utilisation is 

increased in limbic regions (including EC) as well frontal and somatosensory areas 

(Nehlig et al., 1998; Carcak et al., 2009) in GAERS.  For these reasons, and 

because our investigations of other anticonvulsants have focussed on this area we 

decided to continue with it in the present study, although we do not suggest that the 

EC may be a primary focus in absence seizures 

 

2. Materials and Methods 
 

2.1. Slice preparation 

 

All experiments were performed in accordance with the U.K. Animals (Scientific 

Procedures) Act 1986, European Communities Council Directive 1986 (86/609/EEC) 

and the University of Bath ethical review document. The number of animals used 

was kept to a minimum and every precaution was taken to minimize any suffering 

and stress inflicted. EC slices were prepared from male Wistar rats (60-100 g) male 

Wistar rats (P28-40) anaesthetised with ketamine (120 mg/kg) plus xylazine (8 

mg/kg). Rats were decapitated and the brain removed and immersed in artificial 

cerebrospinal fluid (aCSF; see below for composition) at 4°C. Slices (400 µM) were 

cut using a Campden Vibroslice and stored in aCSF bubbled with carbogen (95% 

O2/5% CO2) at room temperature. To increase neuronal survival and viability, 

ketamine (4 µM) was included in the cutting solution, and the antioxidants n-acetyl-l-

cysteine (6 µM) and uric acid (100 µM), added to both cutting and storage solutions.  

For patch clamp recordings slices were transferred to a recording chamber perfused 

(2ml/min) with oxygenated aCSF at 31-32°C on an Olympus BX50WI microscope. 

Neurones were visualized using DIC optics and an infrared video camera. In VmD 

experiments slices were transferred to a recording chamber where they were held at 

the interface between a continuous perfusion of oxygenated aCSF (1.5 ml/min) 

maintained at 32 ± 0.5 °C and warm moist carbogen gas. Intracellular recordings 

were made “blind” from slices visualised with a binocular microscope (Wild M8). We 

have found (Woodhall, G.L. and Jones, R.S.G., unpublished observations) that the 
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use of antioxidants produces robust and long-lasting slices, but does not have any 

apparent effect on the pharmacology of glutamate or GABA transmission. 

Nevertheless, in both recording situations slices were allowed to equilibrate in the 

recording chamber for at least 1 hour prior to recording to allow for washout of these 

agents. The perfusion and storage aCSF contained (in mM): NaCl (126), KCl (3.25), 

NaH2PO4 (1.4), NaHCO3 (19), MgSO4 (2), CaCl2 (2), and D-glucose (10). For cutting 

the slices at 3-4oC, NaHCO3 was increased to 25 mM to maintain pH at acceptable 

levels (7.3). 

 
2.2. Whole-cell patch clamp recordings.  

 

Patch pipettes pulled from borosilicate glass were used for recording spontaneous 

EPSCs (sEPSCs). They were filled with a Cs-gluconate based solution containing (in 

mM) D-Gluconate (100), HEPES (40), QX-314 (1), EGTA (0.6), MgCl2 (5), TEA-Cl 

(10), phosphocreatinine (5); ATP-Na (4) and GTP-Na (0.3). To record spontaneous 

(sIPSCs) or miniature (mIPSCs) inhibitory PSCs, the patch solution contained CsCl 

(100), HEPES (40), QX-314 (1), EGTA (0.6), TEA-Cl (10), MgCl2 (5), ATP-Na (4) 

and GTP-Na (0.3). Solutions were adjusted to 275 mOsmol and pH 7.3 with CsOH. 

Whole-cell voltage clamp recordings (holding potential -60 mV) were made from 

pyramidal neurones in layer III of the medial division of the EC, using an Axopatch 

200B amplifier. Signals were filtered at 2 kHz and digitized at 20 kHz. Series 

resistance compensation was not employed, but access resistance (10-30 MΩ) was 

monitored at regular intervals and cells were discarded if it changed by more than 

±10%. Liquid junction potentials (EPSC +12.0 mV; IPSCs +10.2 mV) were estimated 

using pClamp-8 software, and compensated for in the holding potentials. When 

recording IPSCs, AMPA-receptors and NMDA-receptors were blocked with bath 

applied NBQX and 2-AP5, respectively.  

 

Data were recorded using Axoscope software and Minianalysis (Synaptosoft, 

Decatur) was used for analysis of PSCs off-line. Spontaneous events were detected 

using a threshold-crossing algorithm. Cumulative probability distributions of 

interevent interval (IEI) of spontaneous currents were compared using the 

Kolmogorov-Smirnoff test (KS). When data were pooled for this analysis, a minimum 

of 200 events was sampled during a continuous recording period for each neurone 
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under each condition. Mean amplitudes, rise times (10-90%) and total decay times 

were compared using a paired t-test. In some cases, to gain an overall picture of the 

effects of ethosuximide on the level of spontaneous inhibition or excitation, we 

estimated total charge transfer associated with sIPSCs. This is calculated by 

measuring the area of sIPSCs or sEPSCs, and is directly proportional to the 

amplitude multiplied by the decay time (Hollrigel & Soltesz 1997). We determined 

charge transfer associated with sPSCs in a set time period of 2 min in control and in 

the presence of the drug. All error values in the text refer to standard error of the 

mean. 

 
2.3. VmD estimations 

 

Sharp electrodes pulled from borosilicate glass and filled with potassium acetate 

(3M) were used to make intracellular voltage recordings from pyramidal neurones in 

layer III of the medial EC using an Axoprobe 1A amplifier (Molecular Devices, 

Sunnyvale CA, USA) in bridge mode. Once membrane potential was stabilised after 

impalement, estimates of global background excitation (Ebg) and inhibition (Ibg) were 

derived from membrane potential fluctuations using the VmD method at regular 

intervals throughout the recordings. This approach was derived by Rudolph et al., 

(2004) and we have adapted it for recording in EC slices (Greenhill and Jones, 

2007). Briefly, neurones were depolarised (for 15–20 s) by injection of two levels of 

known positive current via the recording electrode. The values of the currents 

differed from neurone to neurone, but were maintained the same throughout any 

individual experiment. One level was chosen to elicit a depolarization to within 1-2 

mV of action potential threshold, and the second was adjusted to depolarize the 

neurone to about half way between this and resting membrane potential. Membrane 

potential fluctuations at these two levels were fitted to Gaussian distributions (using 

Prism 4 software, GraphPad, San Diego, USA) and the mean and variance of the 

membrane potential determined. Leak conductance in each neurone was calculated 

from the ohmic response produced by a small (0.1 nA 100 ms) hyperpolarizing 

current, injected at resting membrane potential. These parameters, together with 

mean reversal potentials for AMPA-receptors and GABAAr mediated synaptic 

responses (derived from preliminary experiments Greenhill and Jones, 2007), 

allowed us to use the VmD relationship to quantify background inhibitory and 
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excitatory conductances resulting from global network input onto individual 

neurones. 

 

Cellular excitability was determined by injecting depolarizing current pulses at resting 

potential during intervals between Ebg and Ibg estimates. Firstly, action potential (AP) 

thresholds were determined using brief incremental peri-threshold injections of 

depolarising current (0.1-1.0 nA, 50 ms) via the recording electrode, with firing 

threshold measured with respect to resting membrane potential. Secondly, trains of 

action potentials were elicited by longer, supra-threshold current pulses (0.2-1.0 nA, 

200 ms), and the number of spikes per pulse determined. Action potential amplitudes 

(from rest) and half-widths were also determined. Statistical analysis (paired t-tests 

or one-way ANOVA) was performed with Prism 4 software. All error values in the text 

refer to standard error of the mean. 

 

2.4. Materials 

 

Salts used in preparation of aCSF were purchased from Merck/BDH or Fisher 

Scientific (UK). All drugs were applied by bath perfusion. The following drugs were 

used: ethosuximide (3-ethyl-3-methyl-pyrrolidine-2,5-dione, Sigma-Aldrich, UK), TTX 

(Alamone Labs, Israel), NBQX (6-nitro-7-sulphamoylbenzo[f]quinoxalone-2,3-dione 

sodium, Tocris, UK), 2-AP5 (2-amino-5-phosphonopentanoic acid, Tocris, UK).  

 

3. Results 
 

The experiments described below were obtained from a total of 40 neurones of the 

medial division of the EC. Cells for intracellular recordings (the VmD method) were 

identified as pyramidal based on their firing characteristics, resting membrane 

potential and response to injected current, using criteria established by a previous 

study employing intracellular recordings and biocytin fills [36]. Whole-cell recordings 

were visualised using IR-DIC optics and cells were selected for their clear pyramidal 

morphology. Ethosuximide was tested at 2 concentrations, 250 and 500 µM, which 

represent the lower and mid-range of the therapeutically relevant plasma 

concentrations respectively (e.g. see Rogawski and Porter, 1990). 
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3.1 Whole-cell Patch Clamp 

 
Ethosuximide had little detectable effect on sEPSCs. In control recordings (n=12) the 

mean IEI was 255±41 ms and this was unaltered (286±31 ms) in the presence of 

ethosuximide (250 µM). Mean amplitude was also unaltered (14.1±1.1 nA v 

13.6±0.9nA). In 7 neurones, ethosuximide was added cumulatively to a 

concentration of 500 µM. In these neurones, mean IEI and amplitude were 271±21 

ms and 12.9±0.7 pA in the presence of ethosuximide at 250 µM, and again neither 

parameter was altered with the higher concentration (288±51 ms and 12.0±1.1 pA). 

Fig. 1A illustrates recordings of sEPSCs in one neurone, and the pooled IEI and 

amplitude data are shown in Fig. 1B. 

 

In contrast to sEPSCs, ethosuximide caused pronounced changes in sIPSCs. In 

control conditions, sIPSCs (n=13) had a mean IEI of 115±21 ms. Addition of 

ethosuximide at 250 μM decreased IEI to 89±9 ms. KS analysis of cumulative 

probability distributions of pooled IEI data showed that the change was significant 

(P<0.001) and it represented an increase in mean frequency from 9.2±2.1 Hz to 

11.4±0.9 Hz. In 6 neurones ethosuximide was increased to 500 µM, and this resulted 

in a further decrease in IEI from 90±13ms to 62±9 ms (11.3±1.2 Hz to 16.2±1.0 Hz) 

and again the change was significant (KS; P<0.001). Respective mean amplitudes 

were 30.1±2.3 pA, 32.5±1.9 pA and 35.1±2.7 pA in control, 250 µM and 500 µM 

ethosuximide, but the changes were not significant (2-way ANOVA). The drug did 

not affect rise time of sIPSCs (not shown), and although decay time tended to be 

slightly longer in the presence of the drug (control 15.3±1.6 ms; ethosuximide (250) 

16.2±1.3 ms; ethosuximide (500) 17.4±1.1 ms), the differences were not significant 

(2-way ANOVA). Recordings in one neurone are illustrated in Fig. 2A. Pooled data 

for IEI and amplitude are illustrated by the graphs in Fig. 2B. 

 

To make an overall comparison of the level of spontaneous GABAergic inhibition we 

estimated the total charge transfer associated with sIPSCs. In control conditions 

charge transfer in a 2 min recording block was 1620±281 pC, and this increased to 

2419±402 pC and 3420±495 pC in the presence of ethosuximide at 250 µM and 500 

µM, respectively. The increase at 250 µM just failed to reach significance, but that at 

500 µM was significant (P<0.05). These data are illustrated in Fig. 2C. 
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In 4 neurones we determined the effect of ethosuximide (500 µM) on mIPSCs 

recorded in the presence of TTX (1 µM). Mean IEI and amplitude in control 

recordings was 236±42 ms, and 22.9±1.8 pA, reflecting a reduced frequency and 

amplitude of isolated activity-independent release compared to sIPSCs. However, 

ethosuximide was still effective in elevating GABA release, decreasing mean IEI to 

114±32 ms. Mean amplitude of mIPSCs in the presence of the drug were slightly 

larger (25.1±1.3 pA) but, again, the change was not significant. 

 
3.2. VmD studies 

 

Thus, ethosuximide increased spontaneous GABA release, but had little effect on 

spontaneous glutamate release. We next determined whether these changes in 

spontaneous transmitter release reflected global background inhibition or excitation 

by using the VmD approach. 

 
Sharp electrode recordings (n=6) gave an estimated mean global background 

inhibitory conductance or IBg of 5.8±0.6 nS. In contrast, mean EBg, the global 

background excitation was considerably lower at 1.4±0.2 nS. Thus, the mean I:E 

ratio was 4.3±0.3, which is entirely consistent with previous studies showing a 

dominance of inhibition over excitation (Greenhill and Jones, 2007; Rudolph et al., 

2004; 2007). In the presence of ethosuximide (250 µM) IBg increased to 9.1±3.0 nS 

but this just failed to reach significance. Concurrently EBg was unaltered (1.4±0.2 v 

1.2±0.3 nS). However, despite the lack of significant change in either parameter 

individually, there was a significant change in the I:E ratio in favour of inhibition from 

4.3±0.3 to 7.6±1.3 (P<0.05). The changes in global conductances and the I:E ratio 

are summarised in Fig. 3A and C. 

 

In 5 further neurones we tested the effect of ethosuximide at 500 µM (Fig. 3B-D). In 

control conditions IBg was 4.5±0.5 nS and EBg was estimated at 1.3±0.1 nS, giving a 

mean I:E ratio of 3.7±0.3. With the addition of ethosuximide, EBg remained stable at 

1.2±0.2 nS, but IBg increased substantially and significantly to 12.1±2.2 nS (P<0.05, 

paired t-test), resulting in a marked rise in mean I:E ratio to 9.8±1.3.  
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The increase in dominance of global background inhibition over excitation was 

accompanied by evidence of a reduction in cellular excitability, without any 

appreciable change in spike generating mechanisms. Control parameters for 

neurones in studies with either concentration of ethosuximide were similar and so 

are pooled for simplicity. Mean membrane potential in control conditions was -

71.5±0.7 mV. This tended to hyperpolarize with both 250 µM (-73.6±0.6 mV) and 500 

µM ethosuximide (-74.4±0.8 mV), but the changes were not significant. Mean action 

potential amplitude and half-width were 95.6±1.2 mV and 0.51±0.06 ms, 

respectively. These parameters were also unaltered by ethosuximide at either 250 

µM (97.7±1.8 mV, 0.48±0.06 ms) or 500 µM (96.6±2.1 mV, 0.44±0.05 ms). 

Concurrently, however, with the lower concentration, spike firing threshold was 

increased from 21.6±0.9 mV to 25.0±1.2 mV positive to rest (P<0.05), and the 

number of spikes evoked by a 250 ms depolarising pulse was reduced from 4.8±0.2 

to 3.0±0.5 (P < 0.01). The changes were increased further with the higher 

concentration of ethosuximide, with spike threshold elevated to 27.1±1.2 mV positive 

to rest, and the number of spikes evoked by a depolarizing pulse falling to 2.4±0.6. 

The changes in excitability are illustrated for pooled data and in an individual 

neurone in Fig. 3E and F. 

 

4. Discussion 
 

Ethosuximide increased the frequency of sIPSCs in principal neurones in layer III. A 

small increase in amplitude and decay time of sIPSCs may indicate a weak effect at 

postsynaptic GABA receptors, but it is likely that the predominant effect of the drug is 

presynaptically to increase GABA release. The effect was specific to inhibitory 

synapses as sEPSCs were unaltered by ethosuximide. The increase in GABA 

release was reflected by an increase in network driven, global background inhibition 

estimated by the VmD approach. These studies provide a further validation of VmD 

estimations for recording integrated activity in neurones embedded in an active 

synaptic network (Rudolph et al., 2004; Greenhill and Jones, 2007). The combined 

observations demonstrate that increased GABA release at the cellular level is 

reflected by an elevation of global background inhibition, and a shift in balance of 

network bias to reduce excitability. 
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We have previously examined the effects of other anticonvulsants on spontaneous 

background synaptic activity using the same approaches (Cunningham et al, 2000; 

2003; 2004; Cunningham and Jones, 2000; Yang et al, 2007; Greenhill and Jones, 

2010) and the profile of effects varied. Phenytoin, lamotrigine and carbamazepine 

decreased background excitation and concurrently increased inhibition (Cunningham 

et al., 2000; Cunningham and Jones, 2000; Greenhill and Jones, 2010), all three 

drugs increasing I:E ratio. In contrast, gabapentin, pregabalin and felbamate 

decreased excitation but left inhibition intact (Cunningham et al., 2004; Yang et al., 

2007; Greenhill and Jones, 2010), again increasing I:E ratio. Valproate decreased 

the frequency of both sEPSCs and sIPSCs in whole cell patch clamp studies but it 

prolonged the decay time of sIPSCs so, overall, synaptic inhibition and IBg were 

effectively increased (Cunningham et al., 2000; Greenhill and Jones, 2010) with a 

consequent increase I:E ratio. Finally, the GABA uptake blocker, tiagabine 

decreased sIPSC frequency but increased both amplitude and decay time, again 

effectively increasing IBg. It concurrently increased sEPSC frequency and, thus, 

weakly increased EBg (Greenhill and Jones, 2010), but overall, it also increased I:E 

ratio. The current observations reveal a new spectrum of effects with ethosuximide, 

but again, as with the other drugs investigated, I:E ratio was increased.  

 

Thus, despite the varying profile of effects and regardless of the (putative) molecular 

targets of the different drugs (e.g. see Loscher and Rogawski, 2004; White et al., 

2007) they all increased global I:E ratio demonstrating a biasing of global network 

activity in favour of inhibition. Concurrently, cellular excitability was decreased by all 

the anticonvulsants (Greenhill and Jones, 2010), although any connection between 

these effects remains circumstantial at present. However, there is a considerable 

literature suggesting that background network activity is instrumental in determining 

neuronal excitability and gain (see Jones and Woodhall, 2005; Greenhill and Jones, 

2007; and refs therein). Thus, it is possible that a common end point of therapeutic 

intervention is to decrease neuronal excitability and synchronisation, irrespective of 

the primary molecular target. It is interesting that somatosensory cortical neurones in 

GAERS display a depolarized membrane potential and high firing rate, and 

ethosuximide, concurrent with abolition of spike-wave discharges, restored 

membrane potential and firing rate to that seen in normal control animals (Polack 

and Charpier, 2009). In our experiments, ethosuximide tended to hyperpolarize EC 

  12



neurones (but not significantly) and we did see a clear reduction in excitability. Thus, 

it is tempting to speculate that the reduced excitability seen with ethosuximide in the 

GAERS (Polack and Charpier, 2009) may be linked to increased background release 

of GABA.  

 

Do our observations in concord with previous studies of the effect of ethosuximide on 

glutamate and GABA systems? Early evidence suggested that the reduction in 

GABA levels subsequent to GAD inhibition in mouse brain could be reversed beyond 

control levels by ethosuximide (Löscher and Frey, 1977). Ethosuximide alone 

increased rat whole brain and frontal cortical GABA-levels (Linn-Michell et al., 1986; 

Ponnusamy and Pradhan, 2006), which could accord with an increased release of 

GABA. However, it had no effect on spontaneous or stimulated release of GABA in 

rat cortical slices (Skeritt and Johnson, 1983; Crowder and Bradford, 1987) and did 

not alter extracellular GABA concentrations in motor cortex in vivo (Terzioglu et al., 

2006). Although these studies conflict with the increase in GABA release that we 

see, they used large-scale approaches to look at release, and may not detect subtle 

changes at the cellular level. Some evidence also suggests that high concentrations 

of ethosuximide may weakly block GABAAr in cortical and thalamic neurones 

(Barnes and Dichter, 1984; Coulter et al., 1990), which contrasts with the trend 

towards an increased amplitude of mIPSCs and sIPSCs seen in our studies. Finally, 

there is evidence that ethosuximide may block GABA uptake (Rainesalo et al., 

2004). Such an effect could conceivably be reflected as an increase in GABA 

release at inhibitory synapses (cf tiagabine; Greenhill and Jones, 2010). As with 

GABA, glutamate release in cortical slices and in motor cortex in vivo was unaffected 

by ethosuximide (Skerrit and Johnson, 1983; Crowder and Bradford, 1987; Terzioglu 

et al., 2006), and chronic administration of the drug had no effect on glutamate levels 

in frontal cortex or hippocampus (Ponnusamy and Pradhan, 2006). These results 

agree with ours that suggest that glutamate release is unaffected by ethosuximide 

(but see discussion concerning Huang et al. (2011) below). 

 

We have not studied the molecular targets of ethosuximide, but some discussion is 

warranted. It has been suggested that T-type Ca2+ channels in thalamo-cortical 

neurones are a primary target of ethosuximide (Coulter et al., 1989a,b; Kostyuk et 

al., 1992; MacDonald and Kelly, 1994; Gomora et al., 2001), blockade of which is 
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proposed to reduce oscillatory burst firing and the consequent drive to spike-wave 

discharges in the cortex. Other evidence suggested that somatic T-type currents are 

weakly blocked by ethosuximide  (Thompson and Wong, 1991; Sayer et al., 1993; 

Leresche et al., 1998) so such a mechanism of action is equivocal. It is possible that 

an action at T-type channels could be involved in the effects of ethosuximide on 

GABA-release. At least one subtype of T-type channel (CaV3.3) is localised to soma 

and dendrites of calbindin and parvalbumin containing interneurones in mouse 

somatosensory cortex (Liu et al., 2011). However, if ethosuximide were blocking 

equivalent channels in the EC we might expect a decreased interneurone excitability 

and firing, and a consequent decrease in GABA release rather than an increase. 

Since ethosuximide also increased the activity independent release of GABA, this 

largely rules out an interaction with somato-dendritic channels. T-type Ca-channels 

do not appear to be located on presynaptic inhibitory terminals in somatosensory 

cortex (CaV3.3, Lui et al., 2011) or in layer III of the EC (CaV3.2, Huang et al., 2011) 

and, in any case, it would be difficult to reconcile a blockade of these channels with 

the increase in GABA release we observe.  

 

Persistent Na-channels, Ca-activated K-channels and GIRKs (Leresche et al., 1998; 

Kobayashi et al., 2009) may also be blocked by ethosuximide. Blockade of soma-

dendritic K-channels in interneurones could potentially lead to increased tonic firing 

and elevated GABA release but the increase in activity independent release seems 

to rule out this possibility. It is possible that an effect on GIRKs in inhibitory terminals 

could elicit an increase in GABA release. For example, we have shown that GABA 

release at inhibitory terminals in the EC can be depressed by GABAB-receptors 

(GABABr; Bailey et al., 2004), and this could involve activation of GIRKs. GABABr 

can be tonically activated by ambient GABA (Bailey et al., 2004), so if ethosuximide 

was to block the GIRK linked to this receptor, it could result in a reduction in tonic 

depression of GABA release, manifested as an increase. Such a possibility deserves 

investigation. 

 

We found no change in glutamate release with ethosuximide, but it should be noted 

that T-type channels (CaV3.2) have been located at excitatory terminals in layer III of 

the EC, where they can, under some circumstances, enhance glutamate release 

(Huang et al., 2011). This study suggests that the channels may be inactivated under 
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resting conditions, and may contribute to release only when terminals are 

hyperpolarized (Huang et al., 2011). Our studies suggest that even if these channels 

were blocked by ethosuximide this may be of minor consequence under resting 

conditions, since glutamate release was unaffected. It is possible is that 

ethosuximide could reduce glutamate release by blocking presynaptic channels 

when terminals are hyperpolarized, but the circumstances under which this might 

occur conjectural. Nevertheless, it is interesting that blockade of T-type channels by 

ethosuximide may be stronger at hyperpolarised potentials (Coulter et al., 1989b).  

 

Our experiments have been conducted in normal tissue so we need to ask is 

whether the results have relevance to the epileptic situation. Stringer (1996) showed 

that pentylenetetrazole, which blocks the GABAAr (Huang et al., 2001), enhanced the 

spread of evoked epileptiform activity from the EC to the hippocampus in vivo. The 

enhancement was attenuated by ethosuximide, and this occurred via an action of the 

drug on the EC itself (Stringer, 1996). One explanation for this could be that 

increased GABA release elicited by ethosuximide could overcome the competitive 

block (Huang et al., 2001) of GABA receptors by pentylenetetrazole. Of profound 

interest are studies in a mouse model of familial absence epilepsy (Tan et al., 2007). 

Mice heterozygous for a point mutation in the GABAAr γ2-subunit showed 

spontaneous cortical spike-wave absence seizures. The seizures were accompanied 

by a reduction in amplitude of mIPSCs in layer 2/3 of the cortex. Although the study 

did not investigate the effects of ethosuximide on spontaneous inhibition, the drug 

ameliorated the spike-wave discharges. It seems possible that ethosuximide could 

be acting by increasing GABA release in similar way to that we report here, thus 

reversing the decreased cortical inhibition seen in the mutant mice.  

 

It is worth considering some paradoxical aspects of our findings. Ethosuximide is 

therapeutically specific for generalized absence seizures, and may precipitate or 

exacerbate tonic–clonic partial and generalized seizures (Perucca et al., 1998; 

Chaves and Sander, 2005). Yet, in common with drugs that target the latter, it 

increased the ratio of background synaptic inhibition to excitation in cortical neurones 

(Greenhill and Jones, 2010). It seems likely that a generalised increase in cortical 

background inhibition is important for anticonvulsant actions, but therapeutic 
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specificity for particular types of epilepsy is also conferred by concurrent actions at 

other molecular targets and locations. In the case of ethosuximide, a combination of 

increased cortical inhibition may require concurrent modulation of thalamo-thalamo, 

cortico-thalamo and thalamo cortical interactions (Manning et al., 2003) for the drug 

to exert its overall anti-absence effects.
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Figure legends 

 

Fig. 1: Ethosuximide (ETX) has no effect on spontaneous glutamate release. A. 

Whole-cell patch-clamp recordings of sEPSCs from a layer III pyramidal cell in the 

EC. Application of ethosuximide had no effect at either 250 µM or 500 µM. B. Pooled 

data (at least 200 events in each cell in each recording condition) in 12 neurones in 

250 µM and 7 neurones with 500 µM. Control data for the two drug groups have 

been pooled for simplicity. Cumulative probability for IEI and amplitude distributions 

show complete overlap, illustrating the lack of effect of the drug. 

 

Fig. 2: Ethosuximide (ETX) increases spontaneous GABA release. A. Whole-cell 

patch-clamp recordings of sIPSCs from a layer III pyramidal cell in the EC. 

Ethosuximide caused an increase in frequency of sIPSCs, which was more marked 

at the higher concentration (500 µM). In this neurone there appeared to be an 

increase in larger amplitude events as well. B. Pooled data (at least 200 events in 

each cell in each recording condition) reflect these changes, with a concentration- 

related leftward shift in cumulative probability distribution of IEI, reflecting the 

increased frequency. There was a slight rightward shift in amplitude distribution at 

500 µM, but this did not reach significance. C. The changes in sIPSCs were reflected 

by a clear increase in the total inhibitory charge transfer, and again this was 

concentration-related. 

 

Fig 3. Ethosuximide (ETX) increased global background inhibition but not excitation. 

A. The graphs show mean data for global background synaptic activity. At 250 µM, 

ethosuximide non-significantly enhanced background inhibition together with a slight, 

but again non-significant fall in excitation. B. Ethosuximide at 500 µM had similar, but 

more marked effects, with the increase in IBg reaching significance. C. The combined 

effect of these changes resulted in a doubling of the I:E ratio in the presence of the 

drug which was significant at both concentrations. D. The traces are sharp electrode 

recordings taken at resting potential (Em) and at two levels of induced depolarization 

used to determine VmD (see Greenhill and Jones , 2007) E. Concurrent with the 
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effects of ethosuximide on global synaptic conductances there was no apparent 

change in spike generation mechanisms (no effect on amplitude or half width), but 

spike threshold was significantly increased and the number of spikes elicited by a 

200 ms depolarizing current pulse was reduced. F. Intracellular recordings from one 

neurone illustrating the excitability changes. On the left, a short depolarizing current 

pulse was used to elicit a single pulse, and in the presence of ethosuximide this had 

to be increased to overcome the elevated spike threshold. On the right, equivalent 

depolarizing pulses elicited a series of 5 spikes in control but only 2 in the presence 

of the drug. 
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