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We derive the equation of state for supercritical fluids in the framework of the Sutherland and 
Katz potential models using the free energy perturbation expansion. The derived equation of state 
quantitatively agrees with experimental data on isothermal compression of water in the high 
pressure region.  It establishes an explicit relationship between the thermodynamic experimental 
data and the parameters of the molecular potential.  This can be used in calibration protocols for 
simulation forcefields for the high pressure regions. 

 
 

1. Introduction 
 

 Deriving the equation of state (EoS) for water in a wide range of pressure and 

temperature remains a challenging open problem, especially in the high pressure 

region. In the recent papers [1-4] devoted to the water EoS this problem was solved 

by fitting multiparameter formulae with such a large number of adjustable parameters 

that it approaches the number of experimental points. These methods are not based on 

reliable statistical mechanic foundations and the applicability of these EoS is 

restricted. If the functional form of the EoS and their parameters are applicable to 

other substance or solutions is an open question.  

 In comparison with the majority of one-component liquids, water reveals many 

unusual properties in its normal and supercooled states. The analysis of the diffusion 

peak of quasi-elastic incoherent neutron scattering and kinematic shear viscosity of 

water has shown that the global H-bond network disintegrates into an ensemble of 

weakly interacting clusters: dimers, trimers, tetramers etc [9,10,11,12,13]. It was also 

shown [14] that in the supercritical region the properties of water are determined by 

the averaged spherically symmetrical potential. Therefore, it is reasonable to use for 
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water in the high pressure region such well-known models as Lennard-Jones, 

Buckingham, Sutherland or Katz potentials.  

 In this paper we derive the EoS for a supercritical fluid within the framework 

of the Sutherland or Katz potentials. In our previous work []we used a new version of 

the thermodynamic perturbation theory (TPT) originally proposed by Sysoev []. The 

main feature of the proposed TPT is in the assumption that the functional form of the 

perturbed potential is identical to the potential of the reference system and, therefore, 

the deviation of the potential of the more compressed system from the potential of the 

less compressed system is considered as the perturbation. On this basis the concept of 

a reference thermodynamic state has been developed. A functional expansion of the 

free energy gave the possibility to derive, at a certain choice of the parameter 

expansion, two EoS modifications within the framework of a realistic and a “soft” 

sphere potential models. As it was shown in [] these EoS correctly described the 

isothermal compression for supercritical fluids of inert gases.  

 Following [], we here use the free energy perturbation expansion  
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 Equation (1) can be transformed into the expression for pressure (the details are 

given in []): 
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This expression was obtained within the framework of a realistic potential model that 

can be presented in the general form 

( ) ( ) ( )rrr ψϕ +Φ= ,           (3) 

where ( )rΦ  is the repulsive part of the potential and ( )rψ  is its attractive part. 

 



2. The equation of state within the framework of Sutherland and Katz potential 

models 

 

In the case of short-range potentials the expression for pressure can be 

rewritten in the form 
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( ) ( ) ( )0 1qr qr r r rυ ϕ ϕ== −∇ = −∇  is the virial of intermolecular forces in the reference 

state. Taking into account the expression for pressure in the reference state  
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We rewrite (4) as 
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Now the problem of deriving EoS reduces to the evaluation of the integrals (8) and 

(9). We first consider the Sutherland potential  
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d0 is the molecular diameter and the potential well depth ε is defined by md
c

0

=ε . Then 

( )qrϕ  is written as 
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( )dr −δ  is the Dirac delta function and ( )dr −Θ  is the Heaviside step function. The 

expression for L takes the form 
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in which ( ) ( )rfdrf
dr 0

lim
+→

=↓  [18]. The integral in (14) can be evaluated if we assume 

( ) ( )rerg βϕ−≈2 , then in view of ∆+≈ 10
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Here ( )yx,γ  is the upper incomplete gamma function with 
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Using the same assumptions for the integral (9) we obtain 
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where ( ) ( )rgdrg
dr 2002 lim
+→

=↓ . Taking into account the smallness of the parameter ∆ , 

we can expand ( )dg 2  at a point d0 using the Taylor series 
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Γ is the term which comprises the incomplete gamma function  
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For the Sutherland model it is expressed through the second virial coefficient B2(T): 
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experimental data for some dense fluids (water, argon, neon, krypton) show that this 

term can be neglected at the condition 310≈Π  with the accuracy of 1%. There is a 

wide range of values of thermodynamic variables where the isothermal 

compressibility is low (∆<< 1) corresponding to the pressure interval 100 – 2200 

MPa. The term ( )( ) 212 ∆+ TC  can also be ignored with the same accuracy. Finally, we 

arrive at the equation of state in the framework of the Sutherland model: 
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The expression (21) is a three-constant equation of state with the adjustable 

parameters B(T), C(T) and A(T). The parameter B(T) depends on temperature. It is 

related to the pressure caused by attractive forces 
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Where rP0  is the pressure caused by the repulsive forces in the reference state and aP0  

is the part of pressure due to the attractive forces. The parameter A(T), within the 

framework of the Sutherland model, is expressed by the formula 
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 If we use the Katz potential model  
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where R0 is the interaction radius of the attractive forces, 
π4

3
0aR  is the interaction 

constant, Eq.(21) retains its functional form, but the parameter A(T) is defined by the 

formula  
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The parameters B(T) and C(T) are defined in a similar way. 

 

3. Experimental PVT data analysis 

 

We used the technique from the previous paper [] to process the PVT data and 

evaluate the EoS parameters. It turns out that Eq.(21) yields good agreement with the 

experimental PVT data under the extrapolation to the high pressure region. The 

results of the comparison are presented in Fig. 1. 
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Fig.1. The experimental and theoretical PVT data for supercriticlal water.  
Table 1.  The values of the EoS parameters. 

T,K 300 350 400 450 500 550 

B(T), MPa       

C(T)       

A(T), K-1 0,0042 0,0037 0,0032 0,0027 0,0024 0,002 

 

 Of special interest is the values of the parameter A(T) because it is related to 

the parameters of the potential, formulae (23), (25) for the Sutherland and Katz 

models. On the basis of (23) we evaluated the values of the potential well depth ε at a 

fixed value m =12 common-used in the Lennard-Jones model (Tab.2).  
 

Table 2.  The values of ε (Sutherland potential) at m=12 in the  

temperature interval 300-550K. 

T,K 300 350 400 450 500 550 

ε, J·103/mole 0,493 0,562 0,650 0,769 0,866 1,038 

 



If we fix the value of ε = 0,650 kJ/mole, which corresponds to the SPC/E model [], 

we obtain the variation of the softness parameter m with temperature. In general, 

fixating  ε at the values for well-known potential models, such as  ,[] , [] , [], leads to 

the variation of the softness parameter m with temperature within the framework of 

the Sutherland potential.  

 

4. Conclusion 

 

The approach developed on the basis of the free energy perturbation expansion and a 

new version of TPT resulted in some universality (generalisation) for the EoS 

statistical foundation of low weight molecular supercritical fluids.  The concept of the 

thermodynamic reference state implies that an initial state (P0 , V0) on the isotherm 

corresponds to the reference system with unperturbed potential and every subsequent 

point on the isotherm (P1,V2),… (Pn,Vn ) corresponds to the system with the perturbed 

potential at isothermal compression of the system. This modification of TPT allowed 

obtaining the EoS which exhibits good results under the extrapolation to the high 

pressure region. Most importantly, it establishes a relationship between the 

parameters of the model potential and the thermodynamic properties of substances. 

This relationship gives estimations for the values of the parameter ε (Tab. 2).  

Interestingly, the values are of the same order of magnitude as the values of many 

well known water models (SPC/E, ). However, the temperature dependence of ε in 

this region of thermodynamic variables remains to be explained.  Nevertheless, this 

data can be used as additional information for calibrating potential parameters used in 

simulations. 
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