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Abstract

The dynamics of peptides and proteins generated by classical MD is

described using a Markov model. The model is built by clustering the

trajectory into conformational states and estimating transition probabil-

ities between the states. Assuming that it is possible to influence the

dynamics of the system by varying simulation parameters, we show how

to use the Markov model to determine the parameter values that preserve

the folded state of the protein and at the same time reduce the folding

time in the simulation. We investigate this by applying the method to

two systems. The first system is an imaginary peptide described by given

transition probabilities with a total folding time of 1µs. We find that only

small changes in the transition probabilities are needed to accelerate (or

decelerate) the folding. This implies that folding times for slowly fold-

ing peptides and proteins calculated using MD cannot be meaningfully

compared to experimental results. The second system is a four residue

peptide VPAL (Valine - Proline - Alanine - Leucine) in water. We con-

trol the dynamics of the transitions by varying the temperature and the

atom masses. The simulation results show that it is possible to find the

combinations of parameter values that accelerate the dynamics and at the
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same time preserve the native state of the peptide. A method for acceler-

ating larger systems without performing simulations for the whole folding

process is outlined.

1 Introduction

There are many variations of Molecular Dynamics which seek to accelerate the

folding of peptides and proteins. In the area of biomolecular simulations one

of the most widely used method is Replica-Exchange Molecular Dynamics [1,

2, 3, 4]. In this method several Molecular Dynamics simulations of the same

system are run concurrently at different temperatures. The selection of the

temperatures is a poorly understood process. At given times the simulations

can exchange temperatures. Low and high temperatures in the simulations allow

the system to explore more of the phase space than is achievable (for a similar

computational effort) with standard Molecular Dynamics. Another method for

speeding up the conformational changes is Accelerated Molecular Dynamics or

Hyperdynamics [5, 6, 7]. In this method an extra term is added to the potential

energy at the values below a given threshold. Because this reduces the energy

barriers between the states, the system explores the phase space faster. A

method designed specifically for accelerating Molecular Dynamics of peptide

and protein systems uses the construction of a Markov model for conformational

transitions [8, 9]. The model allows the simulation to be broken into pieces that

can be run on independent computers in a way similar to Replica-Exchange

Molecular Dynamics. However, unlike Replica-Exchange the simulations are all

run at the same temperature. This technique has been pioneered in particular in

the Folding@Home project and taken to the extent where hundred of thousands

of computers can participate in a simulation.

All the methods mentioned above are used to accelerate the dynamics of

various molecular systems, in particular protein and peptide simulations. Nor-

mally the acceleration comes at a price. In nature, proteins are generally only
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stable in some temperature interval, above and below this they unfold. There-

fore simply raising the temperature may speed up the transitions between some

conformational states, but it may also make some states inaccessible, including

the native state. A similar problem can be expected when the model param-

eters, the forcefield, are changed. In the case of Replica-Exchange Molecular

Dynamics the problem is resolved by letting the temperature change, but the

interval in which to change the temperature is not always clear.

In the present paper we use a Markov model to describe protein and peptide

folding. In our case the model is constructed from Molecular Dynamics data

in a way similar to that employed by the Folding@Home group. However, our

goal is very different. We aim to investigate how the folding dynamics of a

peptide should be changed in order to reduce the folding time. In order to

change the dynamics we assume that the transition probabilities between the

conformational states can be changed by varying parameters in the Molecular

Dynamics simulation such as the temperature or the forcefield. We impose two

requirements on the changes of the Markov model: 1) the folded conformational

state must stay the same and 2) the change must accelerate folding.

This methodology is applied to two systems. First, a hypothetical system

described by given transition probabilities between the states with a total folding

time of 1µs is investigated. We show that by making very small changes in the

probabilities it is possible to reduce the folding time of the system by a few

orders of magnitude. Because these changes are small it is possible to alter

parameters in the Molecular Dynamics simulations to accommodate this. This

also implies that the folding time of slow folding peptides and proteins cannot be

reliably compared to folding times obtained experimentally. Second, we apply

the approach to Molecular Dynamics simulations of a four reside peptide VPAL

(Valine - Proline - Alanine - Leucine), Figure 1. The goal is to find how to vary

parameters of the simulation in order to change the Markov model so as to both

preserve the folded state and reduce the folding time. The parameters that we

have chosen to vary are the temperature and the masses of the system atoms

3



(equivalent to changing the forcefield).

2 Theory

In our investigation configurational states are defined by clustering the simulated

trajectory. This is done by analysing the Ramachandran plots of the residues

of the peptide. Each Ramachandran plot is clustered independently and the

molecule’s configurations are found as a combination of the cluster indices from

all the plots. The Markov model is described by a state vector v which holds

probabilities of the configurations and a transition matrix T . Examples of state

vectors could be (1, 0, 0, 0) or (0.5, 0.5, 0, 0). Here the system has a total of

four possible states obtained from two clusters on two Ramachandran plots. In

the first case the system is with 100% probability in state one. In the second

case the system is in state one with 50% probability and in state two with 50%

probability. Note that the total probability of the state vector has to sum to

100% since the peptide has to be in some configuration. The transition matrix

simply holds the probability that the system is transferred from one state to

another at the next time step. T11 = 0.5 would mean that there is a 50%

probability of the system remaining in the same state. T21 = 0.25 means that

there is a 25% probability of the system changing from state 1 to 2. Because

the total probability of the state vector has to be conserved the requirement
∑

i Tij = 1 is imposed, where i and j runs over all states. Given that the

system has state vector vt at time t, the state vector at time t + ∆t can be

calculated as vt+∆t = Tvt. Whether the dynamics of the system can actually

be described by a Markov model can be determined by investigating how the

eigenvalues of the transition matrix vary with time step ∆t [10, 11].

Assuming the dynamics of protein folding are described completely by the

Markov model with transition matrix T we can use the model to investigate how

to accelerate the dynamics most efficiently. Because T is a transition matrix it

has eigenvalues in the range 0 to 1 with one eigenvalue being 1. In the following
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it is assumed that the eigenvalues are ordered in descending order so that λ0

corresponds to the eigenvalue 1. The time evolution of the system is then given

by

vt+n∆t = Tnvt =
∑

i

λn
i |λi〉〈λi|vt. (1)

At the limit n → ∞ only the largest eigenvalue, equal to 1, survives while all

other eigenvalues, being less then 1 tend to zero. Therefore, the eigenvector

|λ0〉 corresponds to the equilibrium distribution of states. The speed at which

the system approaches the equilibrium distribution is described by all other the

eigenvalues that are less than 1. To speed up the dynamics we must therefore

reduce these eigenvalues, in particular the second largest eigenvalue, since it

describes the slowest convergence in the system.

As mentioned in the introduction there are many methods which seek to

accelerate the dynamics. However, the common problem is that apart from ac-

celerating the convergence they also generally change the equilibrium distribu-

tion of states. Therefore, for a correct acceleration we impose two requirements:

1) the equilibrium distribution of states must be the same as for the original

system; 2) the method must reduce the folding time. These two requirements

can be written as:

〈λ0|∆T |λ0〉 = 0 (2)

and

〈λ′1|T ′|λ′1〉 < 〈λ1|T |λ1〉. (3)

The prime ′ marks the changed system and ∆T = T ′ − T . To obtain a change

in the transition matrix we vary parameters of the molecular model α, β, γ, . . ..

In the case when we have small changes in the transition matrix we can assume

that:

∆T (α, β, γ, . . .) ≈ ∆T (α) + ∆T (β) + ∆T (γ) + . . . (4)

This is a very useful approximation since it allows varying each parameter in
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turn when we investigate how T changes with the parameters. Using first order

perturbation theory we obtain (see Appendix A):

〈λ|∆T |λ〉 ≈ δλ, (5)

where λ′ = λ + δλ. Therefore, assuming that the changes in the transition

matrix are small, the conditions given by Equations 2 and 3 can be written as:

〈λ0|∆T (α)|λ0〉+ 〈λ0|∆T (β)|λ0〉+ 〈λ0|∆T (γ)|λ0〉+ . . . = 0 (6)

and

〈λ1|∆T (α)|λ1〉+ 〈λ1|∆T (β)|λ1〉+ 〈λ1|∆T (γ)|λ1〉+ . . . < 0. (7)

3 Application I

For a small peptide of realistic size the folding time can be expected to be, for

example, 1µs. If the transition matrix is constructed with a time step of 100ps

the number of steps required for folding is n = 1µs
100ps = 10000. Let us assume

that this time is equivalent to the time it takes to reduce the part of the initial

state spanned by |λ1〉 to half of its value, i.e. the halftime of the eigenstate |λ1〉,
Eq. (1): λn

1 = 1
2 . Then, we designate the folding time as a ”folding half time”

that can be calculated as

n1/2 = − ln 2
ln λ1

. (8)

By rearranging the eigenvalue itself can be found:

λ1 =
(

1
2

) 1
n1/2

(9)

Suppose that we have changed the dynamics and, as a result, the eigenvalue

λ1 has changed by an amount δλ1. The half time for this new eigenvalue is

n′1/2 = − ln 2
ln (λ1 − δλ1)

(10)

6



For the folding time of 10000 steps the corresponding eigenvalue is λ1 = 0.999930688,

Equation (9). The speedup with different values of δλ1 as found using (10) is

shown in Figure 2. From (10) it is clear that the longer the folding time of the

peptide or protein the larger the speedup for a given change δλ1. Therefore, the

speedup will be most significant for proteins which fold slowly.

These considerations also have important consequences for the accuracy of

the folding time obtained in MD simulations. It is clear from the above that

proteins with long folding times are very sensitive to the changes in the transition

matrix and, in turn, the forcefield. Since any force field is only approximately

correct this means that calculated folding times are significantly inaccurate,

even though the folded state reached in the simulation is correct. It is therefore

not meaningful to make a comparison between a simulated folding time and

that determined experimentally, especially for slowly folding proteins.

Finally it should be noted that the results rely on the Markovian behaviour

of the system on the 100ps timescale. We have shown in our previous work that

this is indeed the case for a small peptide [11]. Work is under way to elucidate

the time scale at which larger peptide and protein systems behave Markovian.

4 Application II

4.1 Method

We have investigated how to accelerate a Molecular Dynamics simulation of a

four residue peptide VPAL at the temperature of 300K. To do this we calculated

the transition matrix from the simulation trajectories. We then wished to find

out how to change the transition matrix to accelerate the dynamics. The change

in the transition matrix is accomplished by changing only two parameters of the

molecular model: the temperature and the masses of the atoms.

We first investigate how the transition matrix changes with the parameters

varying in an interval around their original values. For the simulations with

different parameter values we construct transition matrices and hence find how
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the transition matrix varies with the parameters.

All the simulations were performed using the software package GROMACS

3.2 [12]. The peptide, Figure 1, was solvated in 874 SPC water molecules.

The forcefield 53a6 [13, 14, 15] optimized for bimolecular systems interacting

with water was used. Periodic boundary conditions with the box of the size

3.0x3.0x3.0Å were used. The temperature was kept constant using the Berend-

sen thermostat [16]. The atomic positions were recorded at every 0.5ps. The

integration algorithm was a Verlet type and the integration step was 0.002ps.

The system was equilibrated before it was sampled for 200ns.

To find the likely effect of varying the parameters we assume that the

Transition State Theory is valid (i.e. the transition rate is proportional to

exp
(
− ∆E

kBT

)
). It is then clear that an increase in temperature will lead to an

increase in transition rate and vice-versa (this is essentially what is exploited

in Replica-Exchange Molecular Dynamics). To find the effect of varying the

masses we need to look at Newton’s second law. The variation in the masses is

described by the introduction of the unified parameter α so that the new masses

are α ·m:

(α ·m) · a = −δV

δr
(11)

or

m · a = −δ V
α

δr
. (12)

From this it can be seen that varying the masses by a factor of α is equivalent

to varying the potential energy by a factor of 1
α , that is changing the forcefield

of the model. Therefore from the Transition State Theory an increase in the

masses will increase the transition rate and vice-versa, in other words the change

in temperature with the factor α should be equivalent to a change in the masses

by the same factor. However, the effect of varying the masses is expected to

be less. This is because we use a thermostat in the simulations. To keep the

temperature constant the velocities of the atoms are adjusted to compensate for

the changes in the masses.
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4.2 Results

In our investigation we have varied the temperature from 250K to 350K in

steps of 10K while keeping the scaling constant α at 1.0. We have also varied

the scaling α from 0.75 to 1.25 in steps of 0.05 while keeping the temperature

constant at 300K. We then calculated the transition matrices for each of these

simulations as described in Section 2. There are a total of five conformational

states (see [11] for details). The transition matrix from the simulation at 300K

and scaling at 1.0 is as follows:

T =




0.7729 0.5324 0.2807 0.1238 0.1041

0.1950 0.4472 0.1856 0.0221 0.1952

0.0004 0.0007 0.0054 0.0033 0.0061

0.0290 0.0041 0.4142 0.7220 0.2153

0.0028 0.0156 0.1172 0.1288 0.4793




(13)

In Figure 3 the eigenvalues are plotted for the variation in temperature

(right) and scaling (left). It can be seen that an increase in temperature increases

the speed of conformational transitions between the states. This is because the

eigenvalues decrease as the temperature is raised. However, the effect is barely

visible in the case of the change in scaling. Overall the changes are as predicted

in Section 4.1.

When considering reasonable boundaries for variations in the temperature

and scaling changes in the transition matrix are small, the conditions that must

be satisfied are given by equations 6 and 7. To find which parameter sets

satisfy these conditions we calculate the different elements in the equations. In

Figure 4 the elements 〈λ0|∆T |λ0〉 and 〈λ1|∆T |λ1〉 are shown for the variation

in temperature. 〈λ0|∆T |λ0〉 is a measure of how the equilibrium distribution

of states is changed by a given change in temperature. Similarly, 〈λ1|∆T |λ1〉
is a measure of the acceleration achieved (the change in the second largest

eigenvalue) for a given change in temperature. In Figure 5 the same quantities
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are plotted for the variation in scaling.

The parameter values which satisfy the condition (6) can be found simply

by overlapping the 〈λ0|∆T |λ0〉 graphs of Figures 4 and 5. From these we then

take the combinations which also satisfy the condition (7) by overlapping the

〈λ1|∆T |λ1〉 graphs of Figures 4 and 5. The parameter set which gives the

best acceleration will also give the most negative value on the left hand side in

Equation (7) and can, therefore, be easily identified.

The above procedure would be instructive in finding the parameters which

speed up the folding of the peptide system. Unfortunately our simulations to

date do not produce good enough statistics, longer trajectories are required and

these are currently being generated. However, by looking at the range of values

it is clear that there is a parameter set which satisfies the conditions and thus

leaves the folded state unchanged but accelerates the overall dynamics.

5 Outlook

The method requires the complete knowledge of the dynamics (converged tran-

sition matrix) for finding the optimal acceleration parameters. This presents a

problem for a larger protein, since the conformational space is computationally

impossible to sample exhaustively. A possible solution could be to investigate

how to accelerate parts of the protein, and then incorporate this into the simu-

lation. This would work if the conformations adopted by the separate parts are

similar to those of the whole protein. It is clear that the larger the parts the

more similar the conformations are likely to be. Whether this is possible is the

subject of our current work. However, with a good control over the forcefield

the idea looks promising.
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6 Conclusions

We introduced a method for accelerating the dynamics of a peptide or protein in

a way which does not change the equilibrium distribution of states (the folded

state).

The method was applied to two systems. The first system was an imaginary

peptide with a folding time of 1µs. We found that folding time could be reduced

significantly by making very small changes in the transition matrix. In general

it was found that peptides and proteins which fold slowly are most sensitive to

the acceleration. This result also implies that folding times of peptides and pro-

teins calculated using Molecular Dynamics simulations cannot be meaningfully

compared to experimental results, especially for slowly folding molecules.

We also tested the acceleration method on a four-residue peptide VPAL.

The parameters we varied in order to alter the transition matrix T were the

temperature and the atom masses. From the simulations we have obtained

the expected behavior for the temperature variation. By varying the masses,

however, there was almost no change in T . This was attributed to the effect

of the thermostat. For both cases we expect more pronounced effect for longer

simulation times. Nevertheless, the results demonstrate the possibility of finding

the combinations of the temperature and masses that accelerate the dynamics

and at the same time preserve the native state.
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A Approximation of λ′

In the following we find an approximation for λ′ using the first order perturba-

tion theory. We have that

T |λ〉 = λ|λ〉 (14)

For the changed dynamics of the system the new transition matrix T ′ has cor-

responding eigenvalues and eigenvectors.

T ′|λ′〉 = λ′|λ′〉 (15)

Assuming that the changes are small we write this as the original equation with

small perturbations added

(T + δT )(|λ〉+ |δλ〉) = (λ + δλ)(|λ〉+ |δλ〉). (16)

Expanding on both sides gives

T |λ〉+ δT |λ〉+ T |δλ〉+ δT |δλ〉 = λ|λ〉+ δλ|λ〉+ λ|δλ〉+ δλ|δλ〉. (17)

The first two terms on either side are equal and therefore cancel each other.

The terms which are of the second order in the change can be neglected because

we have assumed small changes. By rearranging the remaining terms we obtain

δT |λ〉 ≈ δλ|λ〉+ λ|δλ〉 − T |δλ〉 (18)

Now 〈λ|T ′|λ〉 can be approximated as

〈λ|T ′|λ〉 = 〈λ|T + δT |λ〉 = 〈λ|T |λ〉+ 〈λ|δT |λ〉 (19)

≈ λ + 〈λ|δλ|λ〉+ 〈λ|λ|δλ〉 − 〈λ|T |δλ〉 (20)

= λ + δλ + λ〈λ|δλ〉 − λ〈λ|δλ〉 (21)

= λ + δλ = λ′, (22)
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where (20) follows from (19) by substituting (18). Therefore, for small changes

〈λ|T ′|λ〉 ≈ λ′. (23)

This is a very useful result because it provides an easy way of calculating new

eigenvalues when the matrix is changed from T to T ′.
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Figure 1

VPAL (Valine - Proline - Alanine - Leucine).

Figure 2

(left) The folding half time of the eigenvalue vs. the change in eigenvalue. (right)

The percentage speedup vs. the change in the eigenvalue.

Figure 3

The variation in eigenvalues with varying scaling (left) and temperature (right).

Figure 4

The variation in 〈λ0|∆T |λ0〉 and 〈λ1|∆T |λ1〉 with varying temperature. The

former is a measure of the change in the equilibrium distribution of states while

the latter is a measure of the acceleration.

Figure 5

The variation in 〈λ0|∆T |λ0〉 and 〈λ1|∆T |λ1〉 with varying scaling. The former

is a measure of the change in the equilibrium distribution of states while the

latter is a measure of the acceleration.
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Figure 1:
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