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Molecular transport in phase space is crucial for chemical reactions because it defines how pre-
reactive molecular configurations are found during the time evolution of the system. Using Molecular
Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in
the phase space for bulk water at ambient conditions by checking the equivalence of the transport
to the random walk model. Contrary to common expectations we have found that some statistical
features of the transport in the phase space differ from those of the normal diffusion models. This
implies a non-random character of the path search process by the reacting complexes in water
solutions. Our further numerical experiments show that significant long period non-stationarity in
the transition probabilities of the segments of molecular trajectories can account for the observed
non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-
stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical
lifetime of known liquid water molecular structures (several picoseconds).

I. INTRODUCTION

Molecular transport in liquids can be considered from
two seemingly different viewpoints. On the one hand,
the familiar diffusion, the mean squared displacement of
atoms in Euclidean three dimensional space, describes
how, on average, the atoms move in the liquid. On the
other, the high-dimensional phase space transport of the
dynamical system trajectories comprising all the coordi-
nates and velocities of all the particles in the volume of
interest can be analysed. It should be noted that both
approaches are closely related, since the Cartesian coor-
dinates defining the three-dimensional volume in the first
case are the phase space coordinates as well. Therefore,
the phenomenon of the first kind is just a projection of
that of the second. It is, however, unclear whether the
properties of a low-dimensional projection carry over to
higher dimensional subspaces. Therefore, it appears in-
teresting to look at the diffusion process in dimensions
higher then three.

High-dimensional transport in molecular systems plays
a crucial role in, for example, defining the rates of chem-
ical reactions. The usual three-dimensional motion de-
scribes how the reacting molecules are brought to phys-
ical contact (Fig. 1, left), while the high-dimensional
transport defines the details of the mutual rearrange-
ments of the reacting species and their relative motion
during the chemical reaction (Fig. 1, right). In other
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words, it characterises how the molecules explore dif-
ferent conformations and reciprocal movements (through
the inclusion of the atomistic velocities). These details
are fundamentally important. For example, the analysis
of the molecular arrangements and the angle of attack
necessary for the reaction leads to a special, commonly
accepted class of molecular structures called ”near attack
conformers”. These are ”special substrate conformations
in which the bond forming atoms are at the van der Waals
distance and at the angle near the one in the transition
state” [1, 2]. Near attack conformers can be investigated
at the classical level of description, before the beginning
of the quantum mechanical process of the actual reaction.
Nevertheless, they are shown to be the necessary prereq-
uisites for many reaction to happen (see, for example,
[3]). Another example is the role of water in the process
of heme degradation by heme oxygenase, where a very
special water cluster is necessary for the O-O cleavage
and the O-Cmeso bond formation to take place [4].

It is believed that three-dimensional diffusion in sim-
ple liquids such as common solvents or small molecules
in solution can be well approximated by a random Brow-
nian motion, at least at the longer than few picosecond
time scale relevant for chemical reactivity. This is a pos-
tulate of one of the cornerstones of the reaction rates
theories, the Kramers theory [5], where the reaction is
considered as a diffusion problem and the solvent influ-
ence is described as a white noise. This view implies that
the reactants find each other as well as the necessary ar-
rangements and angles of attack by pure chance. If this is
experimentally and theoretically supported in the case of
classical three-dimensional diffusion, this point of view is
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apparently unable to describe the emergence of compli-
cated structures and specific reciprocal movements of re-
acting atoms in chemical reactions. In the latter case the
investigation of the high-dimensional phase space trans-
port becomes promising, since it allows studying in detail
the whole sequence of molecular transformations leading
to the pre-reactive complexes. It should be noted in this
respect that the total volume of the phase space is ex-
tremely large and in many cases it seems very unlikely
that the required (actually formed) unique configuration
of molecules corresponding to a small area in the phase
space can be found through a simple random search, Fig.
1.

We are not aware of any detailed investigation of the
high-dimensional phase space transport in molecular sys-
tems. This is partly because of the substantial techni-
cal difficulties in calculating reliable statistics on vari-
ables with very large range of values (it grows exponen-
tially with the investigated subspace dimensionality of
the phase space) and partly because of the unjustified as-
sumption that the phase space coordinates are Gaussian
random variables beyond the correlation time and, thus,
do not possess any additional information compared to
the usual two-point correlation function.

In this paper we analyse the statistical properties of the
phase space transport for bulk water at room tempera-
ture. Contrary to the three-dimensional space we find
significant deviations from the purely random character
of motion. Unlike the standard diffusion model where the
displacements of any atom are adequately represented
by a Gaussian random process, the studied molecular
system exhibits preferable routes in the phase space im-
plying the existence of more probable molecular config-
urations and reciprocal motions defined by the mutual
interactions between the particles. Most surprisingly,
we found that the transition probabilities defining these
phase space routes as the probabilities of ”futures” given
specific ”pasts” slowly change with time that can be at-
tributed to substantial non-stationarity of the atomistic
trajectories. Moreover, we show that this behaviour of
the trajectories in the phase space can be reproduced
with a non-stationary Markov chain-type model by aug-
menting it with periodic time modulation of the transi-
tion probabilities of the period of 100 ps and longer.

II. INVESTIGATED SYSTEM AND
MOLECULAR SIGNAL

We analyse the trajectories of MD simulated bulk wa-
ter at room temperature (see appendix A for the MD
simulation details) sampled at discrete time moments.
To be specific, we analyse the motion of one of the hy-
drogen atoms (signals from other atoms as well as their
combinations result in qualitatively the same conclusions,
see later) of a randomly selected molecule in the ensemble
of 392 water molecules. In the case of normal diffusion
described by a standard random walk model the displace-

FIG. 1: Left: the spatial diffusion in three dimensional
space of atom’s coordinates x, y, z defines how on aver-
age the atom moves from time t0 to time t; right: the
phase space transport in the multidimensional space of
the coordinates and momenta (velocities) of all the atoms
{x1, y1, x2, y2, . . .}, {vx

1 , vy
1 , vx

2 , vy
2 , . . .} takes into account the

mutual arrangements of the molecules, their velocities and the
process of the rearrangements of the molecular complexes; a
chemical reaction takes place when the phase space trajectory
finds a small area R in the phase space that corresponds to a
particular pre-reacting arrangement of the atoms

ment of the atom along any of the three coordinates is
well approximated by a randomly distributed Gaussian
variable. To avoid the influence of short time correla-
tions that have the pronounced influence on the statis-
tical properties of the analysed trajectories, we down-
sample the initially three-dimensional trajectory by in-
troducing a two-dimensional cross-section (see appendix
B) that approximately corresponds to sampling the data
at a rate defined by the first minimum of the autocorre-
lation function. It can be further shown that for study-
ing the properties of trajectories in the phase space, it
appears convenient (and sufficient) to replace the contin-
uous signal with symbols from an alphabet of few values,
for example, the binary alphabet {0, 1} or the three sym-
bol alphabet that we used in our studies {0, 1, 2}, in other
words, introduce a partition.

Thus, we take the velocity of one of the hydrogens
as the experimental trajectory in the three-dimensional
space and construct its symbolic representation [6, 7] (co-
ordinates and other molecular signals produce the same
conclusions, see later). In this way the time series of
the velocities of an atom {. . .vi−3vi−2vi−1vi} is con-
verted into a symbolic sequence {. . . 0010}. Consider-
ing symbols instead of the coordinate values for the sig-
nal gives us an advantage of a simpler and more robust
analysis without essential loss in the statistical informa-
tion content [8]. Moreover, by considering symbolic sub-
sequences of finite length, we can reconstruct the high-
dimensional dynamics of the water molecules ensemble
similar to the procedure based on the famous Takens
embedding theorem that allows reconstructing the vector
dynamics from a scalar observable [9].



3

The algorithm of symbolisation is not a trivial proce-
dure since it requires an approximation to the generating
partition of the phase space [10]. For this purpose it is
important to perform a proper selection of an observable,
i.e. a variable or a function of variables that allows the
efficient approximation procedure to be developed. With
this in mind we followed the work [8] and aimed at obtain-
ing a symbolic sequence of maximum Shannon entropy.
For this we select the (uniformly distributed) angle ϕxy

between the components vx, vy as a variable of interest
and sample it at a rate defined by the cross-section con-
dition vz = 0. Dividing the area of the angular variable
ϕxy values into three equal segments provides an effi-
cient partitioning for the purpose of symbolisation with
3-symbol alphabet due to the uniformity of the probabil-
ity distribution of the variable ϕxy.

The obtained symbolic sequence can be used to study
the transport in the phase space by analysing the sym-
bolic sub-sequences (or ”histories”) that start at times
t − l and end at times t, with t covering the whole sim-
ulation period (up to 1µs) and l being the length of the
sub-sequence. In this representation each sub-sequence
(word) is an l dimensional projection of the whole dimen-
sional molecular phase space. Varying the word length
l we investigate various projections of the whole dimen-
sional phase space trajectory. We have found that the
results reported here are robust with respect to various
projections (velocities, coordinates, etc., and l ≈ 5-7 to
13-15) as well as symbolisation schemes (see appendix
D).

We would like to stress again that even though we
used low dimensional signals for initial symbolisation of
the trajectory (the most straightforward were three di-
mensional velocities or coordinates of individual atoms,
but we also analysed many-atom signals, like, for exam-
ple, instantaneous temperature) the analysed l-symbol
words correctly represent the l-dimensional subspaces of
the whole phase space corresponding to the molecular
system. Two considerations support this point. First, ac-
cording to Takens embedding theorem, a trajectory of a
high-dimensional dynamical system can be reconstructed
by applying the time delay procedure to a properly se-
lected scalar observable [11]. Second, representing the
selected observable with only few symbols is not an un-
justified oversimplification. This is because sequences of
the data points are considered, when the dynamics ”cut
out” a ”tube” in the phase space that contains only a
small fraction of admissible trajectories, Fig. 2. The
”cross section” area of the tube depends on the length
of the sequences and in the limit of infinitely long se-
quences converges to a single point (in the special case
of a ”generating” partition). We have found that for
our numerically simulated molecular signal, such as an
atomistic velocity, the symbolic sub-sequences of length
7 or higher produce a ”tube” that provides essentially
the same statistics on the sequences of 3 symbols as the
original, continuous valued sequences.

FIG. 2: The process of converting the atomistic trajectory
(two dimensional in this example) into a sequence of symbols
from the alphabet {0, 1}; the area marked ”0” at time t0
is transformed by the dynamics at the next time step; all
trajectories that pass through the dark shaded area at time t1
have the symbolic representation 00; the corresponding area
is transformed at the next time step t2 and the dark shaded
area here represents all trajectories encoded as 000; the area
is non-increasing and for an infinitely long sequence shrinks
into a single point (if the partition is a special ”generating
partition”)

III. THE TEST ON RANDOMNESS OF THE
DIFFUSION PROCESS

Any l-symbol word represents a point in the l-
dimensional symbolic projection of the phase space. To
investigate the way the words diffuse in the phase space
we calculate various statistical characteristics over the
long symbol trajectories generated by the system dur-
ing its evolution in time. The same characteristics were
calculated for an ensemble of artificial random signals
obtained by the methods known in the field of signal
processing as ”surrogate signal analysis” or ”bootstrap
technique” [12]. The procedure of building a ”surrogate”
time series generates a signal indistinguishable from the
original signal in terms of common statistical character-
istics, such as the correlation function, the mean, and
the variance, but random by definition (that is it does
not contain the dynamic correlations originating from the
deterministic motion of atoms). The comparison of the
results for the original molecular signal with the random
surrogate provides a definitive test on the randomness of
the dynamics.

IV. RESULTS OF NUMERICAL ANALYSIS

The simplest statistic characterising the words (phase
space points) is their occurrence rate in the long sym-
bolic trajectories corresponding to the whole analysed
time series. An example of the occurrences for a typi-
cal water trajectory is shown in Fig. 3. For a random
symbolic sequence, the occurrence probabilities should
be uniform, i.e. constitute a uniform distribution. This
is indeed observed for the case of the surrogate signal,
Fig. 3. However, the same statistic calculated from the
molecular signal shows significant non-uniformity in the
corresponding distributions. There are several frequent
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FIG. 3: The probabilities P (si) of 9-symbol words in the
symbolic sequence obtained from the hydrogen velocities of
a 1µs long molecular trajectory (left) and the surrogate of
the same length (right); the alphabet of 3 symbols {012} was
used; words si are numbered arbitrarily

FIG. 4: Conditional probabilities P (0|si) versus P (1|si) for
the signal of Fig. 3, where si are all sequences of 9 symbols
from the three symbol alphabet {012}; upper row: molecular
signal, lower row: the surrogate; the time shown on the panels
is the length of the trajectory used to calculate the plot

words that signify preferable routes in the phase space of
the water dynamical system.

A more elaborate statistic describes the conditional
probabilities of the symbol following each sequence:
P (vi+1|si), where si ≡ {vi−l+1 . . .vi−1vi}. Since we
have chosen the 3-symbol alphabet, this characteris-
tic can be easily visualised with two-dimensional scat-
ter plots by plotting the probabilities of P (0|si) versus
P (1|si) (the probability of the third symbol is defined by
the first two). The results for the molecular and the cor-
responding surrogate time series are shown in Fig. 4.
Two features become clear after the analysis: (i) the
distributions are significantly different for the two cases
and (ii) the statistic converges extremely slow even at
the time scale as long as hundreds of nanoseconds. The
difference in the shapes of the observed patterns thus
quantifies the deviation of probabilities P (vi+1|si) in our
molecular time series from those expected for a purely
random signal.

In order to analyse the slow convergence in conditional
probabilities P (vi+1|si) we studied their dependence on
the length N of the symbolic series. For this we in-

FIG. 5: The histograms of the standard deviations σ of the de-
pendence Disp(N) in the interval N ∈ [30×106; 31×106], see
text; histograms were calculated for all 9-symbol words occur-
ring in the symbolic sequences of left: a molecular trajectory
(thick line) and corresponding surrogate (thin line); right:
the surrogate obtained from the molecular trajectory (thin
line) and an artificial symbolic sequence with non-stationary
conditional probabilities (thick line), see text; periodic non-
stationarity with the period of 5000 symbols was used; the
molecular trajectory and the corresponding surrogate are the
same as used in Fig. 3

troduced a parameter Disp as the deviation of points
around the straight line approximating the dependence
of P (vi+1|si) on N at large values of N (the last 3%
of the total simulation interval from 0 to N). The stan-
dard deviations of Disp were plotted as histograms for
the molecular signal and the surrogate, Fig. 5, left. The
curve corresponding to the molecular signal demonstrates
pronounced fluctuations shifted to larger values of the
variance that implies poorer convergence of the proba-
bilities P (vi+1|si) for the molecular signal.

Finally, in order do provide a quantitative description
of the detected poor convergence in the conditional prob-
abilities of the water time series we utilised the technique
known as Computational Mechanics (CM) approach [13].
The CM analysis introduces a characteristic, Statistical
Complexity Cµ, that is calculated over the distribution of
conditional probabilities P (vi+1|si) (see appendix C for
details) and estimates its Shannon entropy. By defini-
tion, the Statistical Complexity equals to zero for either
purely random symbolic sequences (all conditional proba-
bilities are equal, i.e. uniform distribution is observed) or
trivial periodic ones (strictly predictable sequence, that
is one conditional probability equals to unity, others van-
ish), taking non-zero values for ”structured” symbolic se-
quences (non-trivial distribution of conditional probabil-
ities).

The analysis in the CM framework has confirmed that
(i) the molecular signal is indeed different from the ran-
dom surrogates (the Statistical Complexity is signifi-
cantly higher for water) and, very unexpectedly, (ii) the
value of Cµ never converges with the length of the simula-
tion N , up to the longest simulations we tried, 1µs. This
is in contrast to the surrogate symbolic sequence which
demonstrates a quick convergence to a constant value,
significantly lower than that for the molecular signal. We
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thus confirm the conjecture that the stable growth of Cµ

with N is the result of the slow convergence of the con-
ditional probabilities in the water time series, Fig. 4. It
is defined not by short time correlations that could be
detected by a standard correlation analysis, but by long
time statistical properties of the trajectories of atoms in
the phase space.

Here we would like to make a short remark concerning
a possibility that the detected effect is a numerical arte-
fact of the algorithm used in our MD simulations. For
example, a natural question to ask would be: is the phe-
nomenon a simulation artefact due to the numer-
ical errors and/or the thermostat? We addressed
this and other similar questions by a thorough check of
the numerical inaccuracies of the simulation protocol and
the use of the thermostat. For this purpose we varied the
thermostat parameters (in the range of several orders of
magnitude) as well as we made experiments with several
different types of the thermostat (deterministic rescal-
ing of velocities or stochastic), as described in Appendix
A. In addition, the simulations with single as well as
double floating point precision were compared. In all
cases the calculations brought statistically identical re-
sult, thus, confirming the genuine dynamical origin of
the found non-randomeness in the molecular time series.

V. NON-STATIONARY DIFFUSION MODEL

To provide an explanation for the slow convergence of
the conditional probabilities of symbolic sub-sequences
we have constructed a simple Markov chain-type model
that, on the one hand, has trivial statistical measures,
and on the other, demonstrate significant deviation of
Cµ from zero. The application of CM approach to such
symbolic sequences reveals similar results to what was ob-
served for the molecular signal. The model is a ternary
random sequence with the following properties. The
probabilities of any of the three symbols in the alpha-
bet {0, 1, 2} are equal to P (0) = P (1) = P (2) = 1/3,
as well as the probabilities for any combinations of two
symbols P (00) = P (10) = . . . = 1/3. The conditional
probabilities of the third symbol given a two symbol word
are made different and, moreover, they are time depen-
dent. In other words, the resulting symbolic string is
non-stationary.

The introduction of non-stationarity appears to be nec-
essary for producing the symbolic strings with the de-
sired property (demonstrating the growth of the Statis-
tical Complexity with the data volume). We have found
that the introduction of a periodic modulation as a non-
stationarity in defining the conditional probabilities in
three symbol words causes the shift in the histograms of
the parameter Disp (Fig. 5, right) and also makes Cµ

grow with N very similar to the molecular signal. More-
over, the effect depends on the period of the introduced
non-stationarity, being negligible for short period modu-
lation, and becoming pronounced at the time scales of the

order of 100ps modulation. This was in sharp contrast to
the case of the Markov chain with stationary conditional
probabilities, that always produced fast convergence and
constant value of Cµ. Thus, we believe that it is the non-
stationarity in the transition probabilities that produces
the growth of Cµ and exhibits non-trivial behaviour in
their distributions P (vi+1|si).

VI. CONCLUSIONS

We have found that molecular trajectories of bulk wa-
ter fill the phase space in a very non-uniform manner and
hence not randomly. This contradicts the simple assump-
tion of the applicability of the random walk model tra-
ditionally made in the case of normal diffusion. The as-
sumption on random motion of atoms is fundamental for
many theories of chemical reaction rates in molecular sys-
tems and, thus, our funding may have significant conse-
quences for them. More specifically, this implies very dif-
ferent waiting times until the required pre-reactive com-
plexes and angles of attack occur compared to the com-
monly assumed random search mechanism. Our results
show that the mechanism leading to the non-randomness
of the phase space search is the existence of preferable
routes in the phase space that leads to the appearance of
more probable pieces of the phase space trajectories. We
have also found that one of the possible mechanisms for
such an unexpected behaviour can be the modified ran-
dom walk where the transition probabilities conditioned
on the pieces of the trajectory change in time at the scale
of 100 ps and longer.

It is worth noting that several characteristic motions of
molecules are known to exist in water (however, specific
molecular structures and mechanisms are still the subject
of active discussion, see, for example, [14, 15]). Classified
by the time scale, they include librations (< 1ps), rear-
rangements within the ”cage” of the nearest molecules
(≈1ps), and long-term motions causing the hydrody-
namic ”tails” in the correlation function (tens of picosec-
onds). However, all these phenomena can be unambigu-
ously identified by the standard analysis with the autocor-
relation function and have the time scales much shorter
that the discussed convergence rates of conditional prob-
abilities in the symbolic time series. Finally, we have
also found that the described phenomenon is probably
not linked to any unique properties if water, since it is
also found in other molecular liquids (we tested liquid ar-
gon, octanol, and octanol-water mixtures). Therefore, it
seems to be a rather general property of liquid molecular
systems.

Acknowledgement The work is supported by
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Number 012835 - EMBIO).
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APPENDIX A: SIMULATION DETAILS

Bulk water consisting of 392 or 878 SPC, SPC-E (Sim-
ple Point Charge Extended) [16], or TIP3P (Transferable
Intermolecular Potential 3 Point) molecules was simu-
lated using the GROMACS molecular dynamics [17] pack-
age. The temperature of the system was kept constant
at 300K using Berendsen [18] or Nose-Hoover [19] ther-
mostats, with a coupling time of 0.1 ps, whose combi-
nation with various coupling constants was investigated.
Pressure coupling was also applied to a pressure bath
with reference pressure of 1 bar and a coupling time of
0.1 ps. A 1 nm cutoff distance for both van der Waals
and Coulomb potentials was used. An equilibration until
the potential and kinetic energies reach constant levels
of fluctuations was performed before collecting data for
analysis. The velocity or the coordinate of the oxygen
and hydrogen atoms of one of the water molecules was
used as a 3-dimensional signal for the analysis. Instant
temperature, Tinst = 1

Ndf k

∑
i miv2

i , where the summa-
tion is over all atoms, Ndf is the number of degrees of
freedom and k is the Boltzman constant, was also used
for the analysis. The simulation time step was 2 fs and
all time points were used in the analysis.

APPENDIX B: CONVERTING THE
MOLECULAR SIGNAL INTO A SYMBOLIC

SEQUENCE

To discretise the three-dimensional velocity trajecto-
ries of individual atoms of the molecular system we used
its intersections with the xy cross-section plane (similar
to Poincare section in dynamical systems theory). For
hydrogen water atoms, for example, the average time in-
terval between the intersections was equal to 0.032 ps.
Very conveniently it roughly corresponds to the first min-
imum on the autocorrelation function, obeying the gen-
eral rule for time sampling of signals. The resulting
two-dimensional points approximately uniformly cover
the area and form a centrally-symmetric distribution of
points, Fig. 6.

In order to convert the points at the cross-section into
a sequence of symbols from a finite alphabet, an appro-
priate partitioning of the continuous space is required.
A natural choice for such partitioning is the generating
partition (GP) [20] that has the property of a one-to-one
correspondence between the continuous trajectory and
the generated symbolic sequence. That is, in the ideal
case of GP, all information is retained after the symboli-
sation.

Consider a dynamical system xi+1 = f(xi), f : M →
M and a finite collection of disjoint open sets {Bk}K

k=1,
partition elements, such that for their closures M =
∪K

k=1B̄k. Given an initial condition x0, the trajectory
{xi}n

i=−n defines a sequence of visited partition elements
{Bxi}n

i=−n or {si}n
i=−n, where si are symbols from the

alphabet that mark the elements where xi ∈ Bi. For

a generating partition the intersection of all images and
pre-images of these elements is, in the limit n → ∞, a
single point: ∩n

i=−nf (−i)(Bxi).
This elegant mathematical construct has two disadvan-

tages when applied to realistic molecular signals. First,
an algorithm for calculating a GP in a general case is un-
known. Second, it is shown for simple tent maps [21] that
the values of statistical complexity for different GPs of
the same system are different (a system can have many
GPs, not to confuse with the uniqueness of a symbolic
representation of a trajectory for a given GP).

Recently methods for finding approximations for GP
are reported. The method from [10] is shown to re-
produce GP for known systems and can treat multi-
dimensional observed time-series data. The results of the
application of this method to our velocity data using 2, 3,
4, and 5 partitions are shown in Fig. 6. For all cases the
resulting approximations to GP are centrally symmet-
ric (reflecting the central symmetry of the data points
distribution). Thus, for our signals we used centrally
symmetric 3-partitions in all subsequent calculations.

Summarising, in converting the three-dimensional
molecular trajectories into symbolic sequences we, first,
built a two-dimensional map by finding the intersections
of the trajectory with the xy-plane and, second, assigned
a symbol to each point of the map depending to what
segment of the partition the point belongs (Fig. 6).

FIG. 6: The process of converting the continuous atomic ve-
locity signal v into symbolic sequence. On the right the sym-
bolisation with 2, 3, 4, and 5 symbols are shown

APPENDIX C: COMPUTATIONAL MECHANICS

Computational Mechanics analyses symbolic sequences
that represent a temporal dynamics of some system. All
past A−i and future A+

i halves of bi-infinite symbolic se-
quences centred at times i are considered. Two pasts A−1
and A−2 are defined as equivalent if the conditional distri-
butions over their futures P (A+|A−1 ) and P (A+|A−2 ) are
equal. A causal state ε(A−i ) is a set of all pasts equivalent
to A−i : εi ≡ ε(A−i ) = {λ : P (A+|λ) = P (A+|A−i )}. At a
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given time moment the system is in one of the causal
states, and moves to the next one with the probabil-
ity given by the transition matrix Tij ≡ P (εj |εi). The
transition matrix determines the asymptotic causal state
probabilities as its left eigenvector P (εi)T = P (εi), where∑

i P (εi) = 1. The collection of the causal states together
with the transition probabilities define an ε-machine.

It is proven [22] that the ε-machine is

- a sufficient statistic, that is it contains the com-
plete statistical information about the data;

- a minimal sufficient statistic, therefore the causal
states can not be subdivided into smaller states;

- a unique minimal sufficient statistic, any other one
simply re-labels the same states.

The Statistical Complexity is the information-theoretic
measure of the size of the ε-machine and quantifies the
amount of information about the past of the system that
is needed to predict its future dynamics: Cµ = H[P (εi)],
where H is the Shannon entropy.

APPENDIX D: ROBUSTNESS OF THE RESULTS
WITH RESPECT TO VARIOUS PROJECTION

OF THE PHASE SPACE

Two parameters of the algorithm should be set in cal-
culating Cµ of a signal of given length, the alphabet size

K and the length l of the histories s− used by the ε-
machine reconstruction algorithm CSSR.

The dependence of Cµ on both parameters is shown
in Table I. The convergence with l is excellent, so that
for l ≥ 6 the algorithm produces almost identical results.
Reliable results for large alphabet sizes K are more diffi-
cult to obtain because for higher K much longer signals
are required. This explains the somewhat increased val-
ues of Cµ for K = 5 in Table I.

Varying the position of the Poincare section plane
along the z axes did not lead to any significant change
in the results. The effect of various partitionings of
the continuous space has been checked by applying non-
symmetric (same as symmetric but shifted along the x
and/or y axes) partitions. In all shifted partitioning cases
this resulted in somewhat lower values of Cµ. Any vari-
ants of centrally symmetric partitioning produced iden-
tical results.

Finally, different values of the adjustable parameter
of the CSSR algorithm, the significance level for the χ-
squared test that quantifies the statistical equivalence of
the histories, has been checked. For the values of 0.001,
0.01, and 0.1 the same qualitative behaviour of Cµ has
been reproduced.
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