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Abstract

A 21-residue peptide in explicit water has been simulated using classical molec-
ular dynamics. The system’s trajectory has been analysed with a novel approach
that quantifies the process of how atom’s environment trajectories are explored. The
approach is based on the measure of Statistical Complexity that extracts complete
dynamical information from the signal. The introduced characteristic quantifies the
system’s dynamics at the nanoseconds time scale. It has been found that the pep-
tide exhibits nanoseconds long periods that significantly differ in the rates of the
exploration of the dynamically allowed configurations of the environment. During
these periods the rates remain the same but different from other periods and from
the rate for water. Periods of dynamical frustration are detected when only limited
routes in the space of possible trajectories of the surrounding atoms are realised.

1 Introduction

Despite intensive research the protein folding problem remains largely un-
solved. While the commonly accepted picture of ”folding funnel” explains the
overall behaviour of the system during folding, dynamically it is unclear what
drives the molecular trajectory through the structural changes leading to the
native state. Two features of molecular dynamical systems present major diffi-
culties: its extremely high dimensionality and nanoseconds time scale between
the major configurational changes of the protein molecule (the formation of
the folding motifs such as a-helix and (-sheet). The local dynamics of the
system (the only source of complicated folding behaviour) is commonly de-
scribed using molecular parameters such as correlation times and transport
coefficients with characteristic time scale of the order of few picoseconds. Thus,
new methodologies that provide information about the behaviour of the high
dimensional molecular trajectory at the nanoseconds time scale are desirable.
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Classical molecular dynamics is a tool that is capable of simulating realis-
tic protein systems in water at nanoseconds times. Currently computational
power is enough to simulate small fast folding peptides at times up to com-
plete folding. Therefore, it is now possible to obtain trajectories of the system
with virtually any precision and details. This provides a unique opportunity
to develop new conceptual methodologies for studying the dynamics of the
system at the time scale of the conformational changes and up to folding in
details inaccessible in experiment.

Molecular dynamics has long been used to analyse the dynamics of molecules
by utilising, among other characteristics, various autocorrelation functions and
diffusion constants. In relation to protein folding it has been found that water
molecules around protein exhibit anomalous diffusion and behave like water at
a lower temperature than the bulk water [1-3]. The velocity autocorrelation
functions of protein atoms have been analysed and related to experimental
spectroscopic data [4].

In all these studies, however, the time covered by the dynamical quantities
does not exceed few tens of picoseconds. Moreover, to the best of our knowl-
edge, all known dynamical characteristics of molecular systems that quantify
local dynamics (not the gross quantities such as the parameters of the folding
motifs, gyration ratio, etc. that are the result of the local dynamics) reach their
limiting values at these times and remain unchanged at longer times. For ex-
ample, deviations from normal diffusion have been detected by the analysis of
higher moments of the mean square displacement in water [5,6] at times longer
than commonly accepted few picoseconds. However, the diffusion reaches its
limiting value at times above ~100 picoseconds [5,7]. Nevertheless, despite this
absence of correlations at longer times the local dynamics leads to the emer-
gence of non-trivial structure at the time scale several orders of magnitude
longer than the characteristic time of the common descriptors.

In the present study we introduce a fundamentally new dynamical characteris-
tic, based on the information theoretical approach Computational Mechanics
[8-10]. We show that the methodology provides quantitative information on
the process of how the space of allowed trajectories of the neighbouring atoms
is explored. The time spawned by our measure is of the order of nanoseconds,
that is the characteristic time of elementary structural changes (formation and
destruction of the basic folding motifs such as helices, sheets, turns, etc.) in
realistic proteins during folding. The measure has been shown to reveal time
correlations in molecular signals at the hundreds of picoseconds time scale and
even longer [11]. It quantifies the rate with which the trajectory of the system
explores the allowed areas in the phase space [12].

We have simulated a 21-residue peptide in explicit water that is known to
quickly form an a-helix. We have found that while water molecules’ environ-



Fig. 1. Schematic illustration of the mapping of a full-dimensional phase space
trajectory q; to a macroscopic observable A;. The phase space I is partitioned such
that in each partition the value of A is the same

ment is explored with the same rate as in the bulk water [11] during the whole
time of simulation, the protein atoms exhibit long periods that differ in the
rate of the exploration. Because of the matching time scale we hope that the
introduced measure can be related to the structural changes occurring in the
peptide.

2 The idea

Consider a molecular trajectory in the full-dimensional phase space. With
time it generates 2/N-dimensional points q; = (x;,p;) (Fig. 1), where N is
the number of the system’s degrees of freedom and x;, p; are the coordinates
and momenta of the atoms. N is of the order of several thousands even in
MD simulations, and of the order of Avogadro number for real systems. In
order to extract any sensible information from the series {q;} a function has
to be chosen that converts the full-dimensional points to a low-dimensional
observable A; = f(q;). Because of the low-dimensionality of A and the finite
precision of measurements, different q; can be mapped to the same values
of A. Therefore, the function f partitions the phase-space I' into mutually
exclusive and jointly exhaustive sets, on each of which f takes a unique (up
to the tolerance) value (Fig. 1).

For example, the velocity of one of the atoms v can be taken as such a function.
The velocity is the function of all phase space variables in the sense that its
value depends on the coordinates and momenta of all other atoms (taking into
account the past values of the latter, see the details at the end of this section).
It is easy to see that in this case different values of q, when the differences are
in the positions or velocities of distant atoms, correspond to the same values
of A = v, that is the velocity of the chosen atom.



Thus, we would like to analyse a low-dimensional signal {A;}. The analysis
is normally done in the form of a statistic on the series, considering A as a
random variable, that is a stochastic process (a deterministic signal is a limit-
ing case of the stochastic process with the probabilities being the J-functions).
Elaborating the example with the velocities the observable can be chosen to be
the scalar product of the velocity values at times ¢ and t+7: Cy(7) = vy viy, b
If the statistic is calculated as a simple time average we obtain the velocity
autocorrelation function C'(1) = %ZtT Vi - Vi, where T is the total number
of points in the signal.

In Computational Mechanics [8-10] the statistic is built on the histories (pasts)
of the observable {A; = ... A; 2A; 1A;} in such a way that they are grouped
into so-called ”causal states”. The criteria of grouping is defined on the future
sequences (futures) that follow each history. Two pasts A; and A; belong to
one causal state if they produce the same (statistically) futures. In terms of
probabilities two pasts are defined equivalent if the conditional distributions
over their futures P(A*|A;") and P(A*|A;) are equal. In this way all possible
histories of the signal are distributed between the causal states. Moving from
point to point in the observed series {A;} is converted to the transitions from
one causal state to another. There is a number of very useful fundamental
properties of this representation of the signal that are described in Appendix
A. Perhaps the most important property of the formalism in the scope of the
present study is the completeness of the dynamical information extracted from
the signal. This is in contrast to almost all dynamical characteristics used to
analyse molecular dynamics (autocorrelation function, for example, is a very
crude, two-point linear characteristic).

Consider two signals of the observable {A;},i=0...7) and i =0...T75. Let’s
chose T} o such that they are significantly longer than the characteristic time
of the analysed dynamical quantity. For the velocity autocorrelation example
the characteristic time can be the value of 7 when the correlations become
essentially zero. For the Computational Mechanics case this can be the length
of the histories A~ at which the causal states structure does not change (see
section 3).

In this setting the phase space trajectory passes many times through the same
partitions A; accumulating the statistics on the same sequence of the observ-
able (Fig. 2). The statistics produced by the two signals would be different
if the values of 77 » are not high enough, that is new passes of the trajectory
alter the probabilities of the observable sequences. At some values 775 > T"
the statistics would become essentially the same. This limiting statistic would

I More precisely, in this case the observable is more involved: it is not a number,
but a 7-dimensional vector of the products Cx = {v;-vy44|j = 0...7} for each time
t
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Fig. 2. Two signals {A;} of different lengths 7T} o generated from the same molecular
trajectory. The trajectory q passes through the same partitions of the macro-observ-
able A thus accumulating the statistic on the history {A;_2A; 1A;}. For Ty # T
the statistic can be different in that the same history {A;_2A4;_1A;} can be followed
by the futures A;41 and A} 11 with different probability distributions for T and T3

produce a limiting value of the analysed dynamical quantity (in the autocor-
relation function example the function would converge to its "true” value).
To the best of our knowledge for all common dynamical characteristics of
molecular systems 7" does not exceed few tens of picoseconds.

We have found that in the case of Computational Mechanics, the causal states
structure never converges at least at the lengths of feasible MD simulations.
From the phase space trajectory point of view this means that the system
produces different futures for the same pasts at all observed in the simulation
times (Fig. 2). It should be stressed that this behaviour is not an artefact of the
procedure of the analysis, but rather an intrinsic property of the molecular
dynamical system. Extensive tests illustrating this are provided in [12] and
summarized in Appendix B.

Similar behaviour can be observed for, for example, the mean square displace-
ment of an atom (z%(¢)), where z is an atom’s coordinate. This quantity also
diverges with time. However, there is a fundamental difference in the case
of Computational Mechanics: non-trivial behaviour at all times is observed,
whereas the diffusion constant characterising the displacement quickly reaches
it’s limiting value.

The differences in the dynamics of v are completely defined by the dynamics
of the environment of the atom, that is the coordinates and momenta of the

neighbouring atoms. Indeed, the time evolution of the velocity is defined by the
Newton equation v = —%F, where the force F derived from the interatomic

interaction potential V' is a function of the surrounding atoms’ coordinates
x;: F = —VV = f(x;)|i=1.n. When considering the histories of the velocity
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Fig. 3. The atom’s velocity time signal v(¢) is a function of the trajectories of the
neighbouring atoms r;(t) (see text for details)

values {v;} they become the functions of the histories of the neighbouring
atoms’ coordinates and momenta (Fig. 3).

The number of possible combinations of the trajectories of the atoms influenc-
ing the atom under consideration is extremely large. Therefore, a long time is
required for exhaustively sampling all of them. That is the statistic on them,
quantified by the e-machine, would change as more and more dynamically al-
lowed combinations of the trajectories are realised in the simulation. In this
sense the changes in the e-machine quantify how the space of neighbourhood
atoms’ trajectories is explored. Our results demonstrate that the latter is very
different for the solvent and the protein atoms.

3 The method
3.1 The observable A;

The way we construct the observable A for the analysis in the framework of
Computational Mechanics involves several steps. Each step is based on well
grounded theoretical approaches and verified by extensive numerical tests.

First, we have chosen the velocity of one of the hydrogens as a continuous
molecular signal. Then, the velocity was sampled in a way that resembles the
construction of the Poincare section thus providing the points on the trajectory
at the average intervals of 0.03 ps. This value corresponds to the first minimum
on the velocity autocorrelation, a recommended in signal analysis sampling
rate.

It turns out that for long enough histories in the Computational Mechanics
framework it is sufficient to chose a very coarse grained observable such as a
symbol that can take on a value from a finite alphabet. In other words, the



atom’s velocity space can be partitioned into few areas labelled with symbols
(Fig. C.1). We have tested the cases of 2, 3, 4, and 5 symbols alphabets
and found that starting from size 3 alphabet and higher the results produced
by Computational Mechanics are essentially the same. Therefore for all our
calculations we used symbols from the alphabet {0, 1,2}.

The described procedure resulted in a sequence of typically two to five millions
symbols that was shown to contain most of the statistical information from
the original molecular trajectory (see Appendix C for details).

3.2 The statistic: Computational Mechanics

In the framework of Computational Mechanics the ”past” sequences of length
[ are formed from the analysed signal together with their probabilities (com-
puted as the number of occurrences of a sequence divided by the total number
of sequences). The pasts are then grouped into the ”causal states” €; using the
criteria of the statistical equivalence of the ”futures” following each ”past”:
e = {\: P(AT|\) = P(A"|A;)}, where A~ and A" are pasts and futures
respectively. Each state has its own probability defined by the probabilities
of the pasts constituting the state. A matrix of transition probabilities from
state to state defines the Markov sequence of the causal states in the signal
(note: the signal itself can be non-Markovian). The collection of the causal
states together with the transition probabilities constitute the e-machine. The
rigorous definition of the e-machine and its mathematical properties are given
in Appendix A.

The Statistical Complexity is the informational measure of the size of the e-
machine and quantifies the amount of information about the past of the system
that is needed to predict its future dynamics: C,, = H[P(¢;)], where P are the
probabilities of the states and H is the Shannon entropy of the distribution
of a random variable v, H[P(v)] = — %, P(v)log, P(v). e-machines can be
reconstructed from observed data using the CSSR algorithm described and
implemented in [13].

As an illustrative example, consider an infinite sequence of symbols from the
alphabet {0,1}: ...0101010101.... The e-machine for this signal is shown in
Fig. 4. Causal state B consists of all pasts of the form ...0101, while the state
C contains the pasts ...1010. When leaving the state B symbol 0 is emitted
with probability 1 and the process is transferred to state C (when adding 0
to the history ...0101, that belongs to the state B, the current past becomes
...1010). The initial state A, containing both histories ...0101 and ...1010,
is required to start the process and the probabilities of emitting either 0 or 1
on leaving this state are equal.
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Fig. 4. e-machine for the symbolic sequence shown on the left. A, B, and C are
causal states. The numbers on the arrows show the transition probabilities between
the states when emitting either 0 or 1.

A finite length of the pasts and futures has to be chosen in practical calcula-
tions. We have tested various lengths and found that from the length 6 and
longer the results are essentially the same. Therefore, we have used the length
9 in all the calculations.

Thus, the dynamical quantity of interest is the Statistical Complexity C,. We
are interested in the behaviour of this quantity at different lengths of the signal
T" (see section 2). Therefore, we calculated the values of C, as a function of
the signal length (simulation time) 7.

4 Molecular system and simulation details

We have chosen a 21-residue peptide A5(A3RA)3A from the review [14] where
it is reported to fold in 0.8 us on average. The forcefield for the simulations was
GROMOSY6 [15]. The peptide was solvated by 1658 SPC water molecules [16]
and after proper minimisation of the system’s energy was simulated for 0.5 us
using the GROMACS molecular dynamics [17] package. The temperature and the
pressure of the system were kept constant at 300K and 1 bar respectively us-
ing Berendsen [18] thermostat. A sufficient equilibration was performed before
collecting data for analysis. We have not reached the folded state, however,
prolonged periods of the existence of 5-sheet and a-helix motifs were recorded
(see section 5). The velocities of one of the water hydrogens, and of the nitro-
gens of the residues 1 and 3 were taken for the analysis (see Appendix C for
the signal processing details).



5 Results

We have found that the Statistical Complexity C), grows logarithmically with
the signal length 7. This is clearly seen in the log,T" - C), coordinates, Fig. 5.
The data can be fitted by the curve C), = a + hglog, T where the parameter
hq quantifies the growth of the Statistical Complexity value. h¢g characterises
the changes in the e-machine, that is the changes in the statistic on the histo-
ries (see section 2). The changes are defined by the rate with which the space
of dynamically allowed trajectories of the neighbouring atoms is sampled (ex-
plored).

The main result reported in this study is the qualitative and quantitative
difference in hg for water and protein atoms (Fig. 5). While for water the
environmental configurations are explored uniformly, producing a perfect line
on the logT' - C, plot, the peptide exhibits well pronounced periods with
significantly different rates of the exploration. Within one period the growth
can still be satisfactory fitted with a line. Importantly, the changes between
the periods are quite sharp such that the whole curve is divided into well
separated parts. This can also be seen in Fig. 6 where the same fitted curves
were plotted in linear time coordinates.

In the figure the values of hg are also plotted for the corresponding peri-
ods. For some periods the growth is faster, for others - slower than for water.
Sometimes the exploration rate becomes very low, signalling that the peptide
atoms environment has covered almost completely the (dynamically) allowed
area. The number of possible combinations of the neighbouring atoms tra-
jectories is extremely large (even for only energetically allowed phase space
areas) and they can not be exhaustively sampled in the relatively short time
of the simulation. Therefore, the slow change in the statistic on the histories
indicate a dynamical frustration at these periods of the protein’s evolution. In
other words, the neighbourhood of the atom moves along a very limited set of
routes selected by the dynamics from the space of all possible trajectories. It
is interesting to note, however, that on average the value of hg does not differ
substantially from that of water molecules. This is, perhaps, the indication
of the fact that hg is a characteristic of the whole dimensional phase space,
rather than the dynamics of the individual atoms under consideration. The
dynamical frustration found here could be related to the general considera-
tions of the emergence of complex dynamics in systems possessing explicitly
this sort of frustration [19].

We have also plotted the classification of the structural motifs of the peptide
generated by the DSSP algorithm [20], Fig. 6. The figure illustrates the same
time scale of the changes in the folding motifs and the values of hq. Is is difficult
to extract specific correlations between the two and data on other peptide’s
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Fig. 5. Dependence of C, on the logarithm of the trajectory length T". From top to
bottom: the hydrogen of one of the water molecules, the nitrogens of the first and
third residues of the peptide respectively. The solid lines represent the linear fits,
shifted downwards for clarity

atoms is needed for more substantiated analysis, which is the subject of our
current work.

6 Conclusions

A new measure hg has been introduced that characterises the dynamics of
molecular system at the nanoseconds time scale. The measure quantifies the
way the dynamical patterns in the trajectories of the neighbouring atoms
are explored. For water hq is found to be constant that implies a uniform
covering of the patterns. For the peptide atoms, hg exhibits well separated
periods of very different rates of the environment exploration. In some periods
the values of hg are very low suggesting small volumes of the dynamically
allowed configurational space, a dynamical frustration. For others, the rate is
significantly higher than that of water.

Since the lengths of these periods are of the order of tens of nanoseconds,
they can potentially be correlated with the structural changes of the peptide,
because the changes belong to the same time scale. Further investigations that
would include other atoms of the peptide are required and they are the subject
of our current work.
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turn, green - bend, black - S-bridge
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A Computational Mechanics

Computational Mechanics analyses symbolic dynamics. All past A;” and future
A} halves of bi-infinite symbolic sequences centred at times i are considered.
Two pasts A} and A, are defined equivalent if the conditional distributions
over their futures P(AT|A7) and P(A1| A7) are equal. A causal state e(A;) is
a set of all pasts equivalent to A7 : ¢, = (A7) = {\: P(AT|\) = P(AT|A;)}.

At a given moment the system is at one of the causal states, and moves to the
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next one with the probability given by the transition matrix T;; = P(ejle;).
The transition matrix determines the asymptotic causal state probabilities as
its left eigenvector P(¢;)T = P(¢;), where >, P(¢;) = 1. The collection of the
causal states together with the transition probabilities define an e-machine.

It is proven [21] that the e-machine is

- a sufficient statistic, that is it contains the complete statistical information
about the data;

- a minimal sufficient statistic, therefore the causal states can not be subdi-
vided into smaller states;

- a unique minimal sufficient statistic, any other one simply re-labels the
same states.

The Statistical Complexity is the informational measure of the size of the e-
machine and quantifies the amount of information about the past of the system
that is needed to predict its future dynamics: C,, = H[P(¢;)], where H is the
Shannon entropy.

B Computational Mechanics produces consistent results

Two parameters of the algorithm should be set in calculating C), of a signal of
given length (we used a trajectory of bulk SPC water at 300K of 30 ns long,
that is ~1 million data points), the alphabet size K and the length [ of the
histories A~ used by the e-machine reconstruction algorithm CSSR.

The dependence of C), on both parameters is shown in Table B.1. The con-
vergence with [ is excellent, so that for [ > 6 the algorithm produces almost
identical results. Reliable results for large alphabet sizes K are more difficult
to obtain because for higher K the value of the entropy rate h is also high.
Therefore, much longer signals are required. This explains the somewhat in-
creased values of C, for K = 5 in Table B.1.

Varying the sampling intervals in converting the velocity signal to discrete
times did not lead to any change in the results. The effect of various parti-
tionings of the continuous space has been checked by applying non-symmetric
(same as symmetric but shifted along the x and y axes) partitions. In all
cases this resulted in lower values of C),. Any variants of centrally symmet-
ric partitioning produced identical results, and such partition was used in all
subsequent calculations.

The influence of particular MD models and the parameters of the numerical
methods on the phenomenon were insignificant. They are as follows.

12



Table B.1

Statistical Complexity C,, vs. the length of histories [ (total signal length is 30 ns,
K = 3) and the alphabet size K (similar signal, [ = 9) for bulk water hydrogen
velocity signal

I C. K C,
317 2 5.22
475

7.95
6.11
7.31
7.95

8.23
8.68

[ S

8.15
8.21
8.29
8.37

© 0 N O Ot = W N

—
)

- Both Nose-Hoover and Berendsen thermostats produced almost identical re-
sults in C), with the same log,-like behaviour. Varying the coupling constant
of the Berendsen thermostat by two orders of magnitude did not change the
results.

- An SPC-E water model produced slightly higher values of C), than SPC
while keeping the same overall behaviour of the curves unchanged.

- Systems containing 392 and 878 water molecules resulted in the same values
of the complexity parameters.

- Varying the position of the Poincare section plane along the z axes did not
lead to any change in the results. The same behaviour with the number of
data points was obtained, except that the time between the data points was
larger for obvious reasons.

- Finally, different values of the second adjustable parameter of the CSSR
algorithm, the significance level for the y-squared significance test, 0.001,
0.01, and 0.1, reproduced the same qualitative behaviour of C,,.

C Converting molecular trajectory into symbolic sequence

C.1 Discretisation

Without any loss of dynamical information, an n-dimensional trajectory of a
dynamical system can be converted to an (n — 1)-dimensional map using the
Poincare section. At the locations where the trajectory pierces the Poincare
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section surface the points of the map are generated, thus sampling the con-
tinuous signal at discrete time moments. However, the dynamics of the map
is equivalent to the original signal only if the full-dimensional phase space
trajectory is considered. For molecular signals when the 3-dimensional con-
figuration (or velocity) trajectory of one atom (or higher dimensional for a
group of atoms) is analysed the Poincare map is undefined. However, a sim-
ilar approach can be used to naturally sample the roughly periodic signal of
molecular systems.

To discretise the three-dimensional velocity trajectories of individual atoms of
the molecular system we used its intersections with the xy plane. For hydrogen
water atoms, for example, the average time interval between the intersections
was equal to 0.032 ps. Very conveniently it roughly corresponds to the first
minimum on the autocorrelation function, obeying the general rule for time
sampling of signals. The resulting two-dimensional points approximately uni-
formly cover the area and form a centrally-symmetric distribution of points,
Fig. C.1.

C.2  Symbolisation

In order to convert the trajectory map into a sequence of symbols from a
finite alphabet, an appropriate partitioning of the continuous space is required.
A natural choice for such partitioning is the generating partition (GP) [22]
that has the property of a one-to-one correspondence between the continuous
trajectory and the generated symbolic sequence. That is, all information is
retained after the symbolisation.

Consider a dynamical system x;1 = f(x;),f : M — M and a finite collection
of disjoint open sets { By }X_,, partition elements, such that for their closures

M = UK | By. Given an initial condition xg, the trajectory {x;}" . defines
a sequence of visited partition elements { By, }I_,, or {A4;}_,, where A; are

symbols from the alphabet that mark the elements where x; € B;. For a
generating partition the intersection of all images and pre-images of these
elements is, in the limit n — oo, a single point: N £~ (B,.).

This elegant mathematical construct has two disadvantages when applied to
realistic molecular signals. First, an algorithm for calculating a GP in a general
case is unknown. Second, it is shown for simple tent maps [23] that the values
of statistical complexity for different GPs of the same system are different (a
system can have many GPs, not to confuse with the uniqueness of a symbolic
representation of a trajectory for a given GP).

Recently methods for finding approximations for GP are reported. The method
from [24] is shown to reproduce GP for known systems and can treat multi-
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Fig. C.1. Approximations for generating partitions obtained using the method by
Buhl and Kennel [24] for the discretised hydrogen velocity for 2, 3, 4, and 5 parti-
tions.

dimensional observed time-series data. The results of the application of this
method to our velocity data using 2, 3, 4, and 5 partitions are shown in Fig.
C.1. For all cases the resulting approximations to GP are centrally symmetric
(probably, because of the central symmetry of the data points distribution).
Thus, for our signals we used centrally symmetric partitions in all subsequent
calculations.

Summarising, in converting the three-dimensional molecular trajectories into
symbolic sequences we, first, built a two-dimensional map by finding the in-
tersections of the trajectory with the xy-plane and, second, assigned a symbol
to each point of the map depending to what segment of the partition the point
belongs.
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