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We extend the theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked
fiber lasers. Dissipative structures exist at high map strengths, leading to the generation of stable, short
pulses with high energy. Two types of intramap pulse evolution are observed depending on the net cavity
dispersion. These are characterized by a reduced model, and semianalytical solutions are obtained. © 2009
Optical Society of America
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Over the past two decades, mode-locked lasers have
evolved from fundamental science to commercial in-
struments, with a wide variety of applications [1].
The most important processes in a passively mode-
locked laser are linear group velocity dispersion
(GVD), nonlinear phase accumulation through self-
phase modulation (SPM), and some form of ampli-
tude modulation from a saturable absorber. Funda-
mental to mode locking is the ability to control
accumulated phase shifts due to GVD and SPM. To
do this, some mode-locked lasers are designed with a
dispersion map consisting of both negative and posi-
tive dispersion segments [1]. The change in sign of
the dispersion causes the dissipative dispersion-
managed (DM) solitons to temporally broaden and re-
compress as they propagate. Similar to conservative
DM solitons in fiber transmission [2], higher-energy
pulses are possible owing to the increased average
pulse duration [3,4]. Depending on the net average
dispersion, two types of pulse evolution per map pe-
riod are observed. For net-anomalous and slightly
net-normal dispersion, the solitons stretch and com-
press twice per cavity round trip, reach a minimum
duration in the middle of each segment, and acquire
both signs of chirp. These pulse solutions have been
referred to as stretched pulse (SP) solutions [3]. For
larger net-normal dispersion values the solitons
stretch and compress once, have minimum duration
at the beginning of the normal dispersion segment,
and are positively chirped throughout the cavity [4].
Here we will refer to this pulse evolution as posi-
tively chirped pulse (PCP) evolution. In this Letter,
we describe families of dissipative DM solitons in a
mode-locked fiber laser by using a distributed DM
Ginzburg–Landau type equation. We highlight the
main differences between dissipative DM solitons
and their conservative DM counterparts. Both types
of pulse evolution observed experimentally [3,4] are
obtained and completely classified with a reduced
system of ordinary differential equations.

Pulse propagation in a mode-locked fiber laser can
be modeled with a normalized, distributed equation
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where u represents the electric field envelope nor-
malized by the peak field power P0, %u%2='#u#2dt is
the energy of the pulse, t represents time in the rest
frame of the pulse normalized by T0, and z is the
propagation distance normalized by the cavity length
L. The normalized GVD and SPM coefficients are
given by d!z"=−"2!z"L /T0

2 and !=2#n2P0L / !$0Aeff",
respectively. Here "2 is the fiber dispersion coeffi-
cient, n2 is the nonlinear refractive index, $0 is the
carrier wavelength, and Aeff is the effective fiber
area. Equation (1) differs from the well-known non-
linear Schrödinger equation (NLSE) owing to the dis-
sipative terms on the right-hand side of the equation,
which represent gain saturation and an ideal satu-
rable absorber [1]. The dissipative parameters g0
=LG, e0=Esat / !P0T0", l0=L%, and ps=Psat /P0 are the
normalized small-signal gain coefficient, saturation
energy, unsaturated loss coefficient, and saturation
power, respectively. Here G (in inverse meters) is the
linear gain from amplification, % (in inverse meters)
is the distributed losses in the cavity, Esat (in nano-
joules) is the saturation energy of the gain medium,
and Psat (in milliwatts) is the saturation power for
the saturable absorber. In contrast to prior analysis
of Eq. (1) [5], here we characterize the intramap
dynamics and classify the different families of dissi-
pative DM solitons.

To illustrate the possible pulse solutions and dy-
namics, we consider a simple two-step dispersion
map so that d!z"=d+ d̄ for !N−1"L&z&NL and d!z"
=−d+ d̄ for NL&z& !N+1"L, where d!'0" is the map
depth and d̄ is the average dispersion value. The dis-
sipative terms in Eq. (1) play an important role in the
scalings considered and are responsible for major dif-
ferences between properties of DM solitons in laser
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systems and in fiber transmission lines. The energy
saturation determines the pulse power P0, allowing
us to choose the appropriate pulse duration T0 to
scale the ratio of the SPM coefficient ! to the disper-
sion coefficient d [6]. In all simulations, we let the ra-
tio of the normalized SPM to GVD coefficient ! /d=1.

Numerical simulations of Eq. (1) with a two-step
dispersion map show that for a wide range of param-
eter space stable and robust pulse solutions exist.
These solutions are similar to DM solitons in that
they are periodic solutions that broaden and com-
press depending on their position within the disper-
sion map. In contrast to the conservative DM soli-
tons, however, the periodic breathers act as stable
attractors to the system. From the final periodic
state, the minimum pulse duration (min and maxi-
mum energy Emax within each map period can be cal-
culated. Figure 1 shows solution branches that are
characterized by the dispersion ratios )= d̄ /d. Each
data point corresponds to a numerical simulation of
Eq. (1) with a two-step dispersion map in which a
stable breathing evolution is the final state. The so-
lutions are classified in terms of the maximum en-
ergy Emax and the map strength S=2dL /(min

2 , which
is typically used to classify DM systems [7].

Figure 1 illuminates distinct differences with con-
servative DM solitons [7]. For DM solitons with dis-
persion ratios ) != "'0, the map strength correlates
to the map depth [7]. In contrast, dissipative DM soli-
tons in this regime exist only at high map strengths
regardless of map depth. At low map depths, the
gain/loss saturation provides the necessary stabiliza-
tion to achieve high-power, ultrashort pulses [see Fig.
2(b)]. DM solitons with dispersion ratio ) != "&0 ex-
ist only for large map depths [7,8]. In contrast, dissi-
pative DM solitons exist for both small and large map
depths. It is interesting that these branches are dis-
continuous. For example, for the ratio )=−0.01,
there exist three branches, in the top right, bottom

right, and bottom left of Fig. 1. The corresponding
map depths for these branches are d! !0.1,0.32" (top
right), d! !0.33,1.23" (bottom left), and d! !3.5,13"
(bottom right). Only the bottom right branch, where
the map depth d is large, has a counterpart in the
conservative NLSE system [7]. Further, for )&0
there exist new solution branches that stem from the
point !S ,Emax"= !0,1". We emphasis that the )&0
branches terminate at the solid dots and cannot be
extended numerically. Figure 2 shows the typical
trends of the pulse amplitude and duration along ex-
amples of each type of branch. Following the solution
branch along the direction of the arrow (inset) corre-
sponds to increasing map depth d (and net disper-
sion). For both branches, at small net dispersion, the
amplitude is large, while the pulse duration is small,
leading to high-energy pulses. As the map depth is
increased, the amplitude decreases, while the pulse
duration increases until the energy approaches a con-
stant value.

In Fig. 1, the solutions along the branches stem-
ming from the point !S ,Emax"= !16,1" (and to their
right) have a SP evolution that is similar to typical
DM solitons of the conservative NLSE. Along the
branches that stem from the point !S ,Emax"= !0,1"
the intramap pulse evolution is clearly distinct and of
PCP type. In general these pulses exist for large net-
normal dispersion and are broad and highly chirped.
These solutions have recently been achieved experi-
mentally [4]; however, in that particular laser there
is no nonlinearity in the anomalous dispersion seg-
ment, making Eq. (1) an approximate model. To gain
insight into the different pulse evolutions, we apply
the variational method [9] with pulse ansatz [8]
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The peak intensity !*", pulse duration !(", and chirp
parameter !C" satisfy the ordinary differential equa-
tions

*z = −2 d!z"C* + $ 2g0e0
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Fig. 1. Dependence of maximum pulse energy on map
strength for a range of average cavity dispersion values )

= d̄ /d. Each point represents a stationary solution of Eq. (1)
with a two-step map for L=1. Dissipative parameters are
g0=2, e0=1, l0=1, and ps=3.

Fig. 2. Trends of the pulse amplitude (solid) and duration
(dashed) along two distinct branches (insets) for (a) )
=−0.05, (b) )=0.01.
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where Fj='−,
, tjf2!t" / )1+* /psf2!t"*dt, f!t"=exp!−t2",

and c1=(2/#. The functions 3F0−4F2 and 4F2−F0
can easily be calculated as a function of * /ps and are
positive. A comparison between the final solution
state of the reduced model (2) and the full evolution
equation (1) is shown in Fig. 3 over two map periods.
Although the reduced model is constrained by the an-
satz assumption, it is remarkable how accurately it
models the full equation dynamics.

Numerical simulations suggest when the dissipa-
tive DM soliton reaches its stable periodic evolution,
the main pulse shaping is dominated by GVD and
SPM, with the dissipative processes retreating to a
secondary role. Neglecting the dissipative terms in
Eqs. (3), we are able to solve Eqs. (3a) and (3b) in
terms of the accumulated chirp '0

zd!s"C!s"ds. Using
these solutions and setting Eq. (3c) to zero gives the
necessary condition

+
0

z
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for C to have a turning point in the anomalous dis-
persion segment, where !*0 ,(0 ,C0" are the solution
parameters at the beginning of the anomalous seg-
ment. Equation (4) provides a key insight into the
pulse evolution. For example, in Fig. 3 at the point
z= z̄ the chirp and accumulated chirp are roughly the
same for both SP and PCP evolutions. However, at
this point inequality (4) is satisfied for SP evolution,

where it is not satisfied for the PCP evolution owing
to its large initial duration (0 and smaller value of
d!1+)". Indeed, inequality (4) is not satisfied any-
where within the anomalous segment for the PCP
evolution, and the turning point for the chirp is when
the dispersion changes signs. For broad PCP solu-
tions, approximate solutions to Eqs. (3) can be ob-
tained. Neglecting both the dissipative terms as well
as O!1/(2" terms, Eqs. (3) have the solutions

*!z" =
*0

1 + 2d! ± 1 + )"C0z
, !5a"

(!z" = (0!1 + 2d! ± 1 + )"C0z", !5b"

C!z" =
C0
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where since C0&0, z& !2d!1+)" #C0 # "−1 in the anoma-
lous dispersion segment. These analytic solutions are
plotted in Fig. 3 (gray dots) and show excellent agree-
ment with both solutions to the reduced model (3)
and simulations of the full equation (1). In deriving
Eqs. (5), the nonlinearity has been neglected. Thus
the PCP evolution is governed mainly by linear pro-
cesses, although the stabilization of such solutions
requires nonlinearity and gain/loss saturation. Fu-
ture work will investigate the detailed relation
between the dynamics of Eq. (1) and that observed
in [4].

In conclusion, we have extended dispersion-
managed (DM) soliton theory to dissipative DM soli-
tons that are characterized by the average disper-
sion, map strength, and energy. Both stretched pulse
and positively chirped pulse evolutions are observed
and characterized by a simple inequality. In the case
of positively chirped pulses, semianalytic solutions
are obtained.
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Fig. 3. Evolution of pulse parameters for typical SP
(black) and PCP (gray) solutions from both reduced model
(3) (dashed) and full model (1) (solid). Also included is ana-
lytic solution (5) (gray dots). Dissipative parameters are
the same as in Fig. 1, and map parameters are d=1,
d̄=0.01 (SP), and d=0.3, d̄=−0.015 (PCP). Shaded regions
correspond to the anomalous GVD segment.
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